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Abstract
Health professional education stands to gain substantially from collective efforts toward 
building video databases of skill performances in both real and simulated settings. An 
accessible resource of videos that demonstrate an array of performances – both good and 
bad—provides an opportunity for interdisciplinary research collaborations that can advance 
our understanding of movement that reflects technical expertise, support educational tool 
development, and facilitate assessment practices. In this paper we raise important ethical 
and legal considerations when building and sharing health professions education data. Col-
lective data sharing may produce new knowledge and tools to support healthcare profes-
sional education. We demonstrate the utility of a data-sharing culture by providing and 
leveraging a database of cardio-pulmonary resuscitation (CPR) performances that vary in 
quality. The CPR skills performance database (collected for the purpose of this research, 
hosted at UK Data Service’s ReShare Repository) contains videos from 40 participants 
recorded from 6 different angles, allowing for 3D reconstruction for movement analysis. 
The video footage is accompanied by quality ratings from 2 experts, participants’ self-
reported confidence and frequency of performing CPR, and the demographics of the par-
ticipants. From this data, we present an Automatic Clinical Assessment tool for Basic Life 
Support that uses pose estimation to determine the spatial location of the participant’s 
movements during CPR and a deep learning network that assesses the performance quality.
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Introduction

Healthcare professionals, across all disciplines, must master many movement-based techni-
cal skills to ensure positive outcomes for patients and avoid injury to themselves. Improper 
patient lifting techniques can cause harm to both patient and practitioner; inaccurate 
intubation can damage vocal cords, and inefficient surgeries are linked with poor opera-
tive results. Due to the importance of quality care, training programs for healthcare pro-
fessionals around the world have started to shift curricula towards an education paradigm 
known as competency-based education (CBE), which eschews time-based schedules of 
learner progression in favour of systems of matriculation that depend on direct observation 
of learner competence across a pre-defined set of professionally relevant activities (Frank 
et al., 2010; Harden, 2007).

The subjective nature of competency-based assessment provides a key challenge. Where 
some healthcare disciplines [e.g. robotic-assisted surgery (El-Sayed et  al., 2024)] have 
devoted more research toward understanding how objective measurements of movement 
relate to expertise and the clinical outcomes of patients, most disciplines have lacked the 
technology to easily extract such information to determine how and when movement pat-
terns matter for the patient and practitioner. Innovations in computer science that provide 
an opportunity to study technical skills in simulated and real environments without needing 
specialised recording devices provide this much-needed opportunity for healthcare skills 
more generally. Thus, empirically validated competency targets could be established by 
analysing video datasets that can be easily accumulated during training and practice across 
multiple healthcare disciplines.

A second challenge of CBE is that it is human resource intensive. CBE requires frequent 
formative and summative assessments to be implemented by healthcare educators who may 
have contemporaneous patient care and educational commitments. With appropriate objec-
tive competency thresholds established, automated feedback and assessment systems could 
provide the opportunity for self-directed deliberate practice, lessening the amount of form-
ative feedback required from a coach and allowing students who need more practice time to 
have that opportunity. These formative assessment techniques could also flag when some-
one may meet the required competency and is ready to be assessed for progression. Such 
tools would also represent cost savings given that they would reduce the human resource 
requirements of training, which is of rising concern within the educational sector (Castillo 
et al., 2019).

Yet, the above benefits cannot be achieved without substantial investment in accumulat-
ing and sharing relevant data. Thus, this paper represents a call for collective effort from 
healthcare institutions (both educational and providing) toward amassing skills perfor-
mance data that can be used to determine clear competency thresholds that healthcare stu-
dents, educators, and professionals can target to enhance patient and practitioner outcomes. 
With recent innovations, the computational barrier to processing and analysing such com-
plex data no longer exists; instead, the barrier is access. The surgical field has a much 
longer history of evaluating human movement-based skills on a kinematic level and has 
begun to look at implementing pose estimation and artificial intelligence techniques to bet-
ter understand surgical skill and enhance education (Constable et al, 2024a; Likosky et al, 
2021). As such, surgical tool and procedure datasets (Bouget et al., 2017; Srivastav et al., 
2018) are currently being collated to accelerate the development of specialised pose esti-
mation algorithms within the discipline. We suggest that all healthcare disciplines could 
benefit from such an agenda and call for a concerted effort across healthcare and science, 
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more broadly, to develop policies and practices that provide the means to develop technolo-
gies to support healthcare trainees, professionals and patients alike.

By creating repositories of skills performance data alongside other factors of impor-
tance (e.g. demographics, educational level, patient factors), collaborative efforts from 
researchers in the fields of computer science, data science, human movement and health-
care education can begin to meet the first challenge of establishing objective, validated, 
and measurable competency-based thresholds. Furthermore, established competency 
thresholds and videos of skills performances will subsequently assist computer scientists in 
building rigorous skills assessment tools. With the two above challenges in mind, the pre-
sent work aims to demonstrate how the accumulation of skills performance data sets can 
be combined with innovations in computer science (specifically, pose estimation and deep 
learning for the classification of expertise) to study technical competencies within health-
care professional education and provide automated means of assessing skills performance 
for the educational setting.

In computer vision, pose estimation refers to tracking movement from videos or pic-
tures. Here, we focus on deep learning techniques which involve ‘training’ an Artificial 
Neural Network (ANN) on annotated videos or stills that indicate the relevant objects or 
body parts to be tracked (Ionescu et al., 2014; Lin et al., 2014). After training, the ANN 
can identify the relevant body parts or objects and, in turn, ‘poses’ within videos with-
out human assistance. The kinematic parameters of a given movement can be calculated 
from body part locations and the frame rate of the video. Although these techniques require 
more powerful hardware than a standard computer, acquiring and setting up such track-
ing is more accessible than using specialised motion tracking cameras because it can be 
done with traditional video cameras. Further, pose estimation algorithms and toolboxes are 
advancing rapidly, with multi-person pose estimation possible with pre-trained networks 
at near real-time speeds (Huang et  al., 2020), meaning that real-time feedback could be 
provided.

The kinematic data obtained from pose estimation can be used to levy an assessment of 
movement or to support formative development. The kinematic data could be used directly 
or by classifier algorithms to provide further assessment. For example, optimal posture 
during CPR requires the practitioner’s shoulders to be directly above the patient. Deviation 
from this optimal posture could be relayed back to the trainee to allow them to explore and 
feel their approach. Pose estimation data could complement instructor observations or data 
from computerised manikins, allowing trainees to refine psychomotor techniques, improv-
ing compressions and protecting practitioners from injury. Such applications of kinematic 
feedback have been repeatedly demonstrated in high-stakes sports training environments 
(Giblin et  al., 2016; Glazier, 2021) and surgical training environments (Judkins et  al., 
2008) and are consistent with fundamental teaching and learning theory (Ericsson, 2004; 
Platt et al., 2021).

Classifier algorithms can extend on the above by making decisions along a given dimen-
sion. Here, neural networks are trained on relevant data that could be used to decide on 
competence (e.g., pose estimation data and evaluation data). Classifier algorithms have 
been demonstrated as useful and highly accurate for both assessment purposes and for 
highlighting aspects of the skill for improvement (e.g. suturing, (Ismail Fawaz et  al., 
2018)). For example, if competency is of interest, the ANN must be trained in example 
performances to learn patterns representing good, adequate, or poor performance. The 
neural network can then identify the competency level displayed in new videos based on 
learned patterns. Nevertheless, it is vital to be cautious in the development of these algo-
rithms: the decisions risk being biased if the training data does not accurately represent 
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the to-be-assessed data or the intended purpose (Veale & Binns, 2017); decisions may be 
based on parameters that co-occur with the classified groups but are not meaningful to the 
decision-making process. Considering the quality, depth and breadth of the training data 
can assist in protecting against such concerns.

While such tools are more commonly applied directly to tasks that are weighted toward 
psychomotor ability, these tools could also be used to assess non-technical skills. For 
example, situational awareness is critical in many healthcare contexts but is challenging 
to teach and assess. Simulation-based educational interventions yield better outcomes 
in situational awareness training (Walshe et al., 2019). In high-fidelity clinical simulations, 
final-year nursing and paramedicine students perceived that using eye-tracking technol-
ogy combined with video debriefing assisted in their development of situational aware-
ness (O’Meara et  al., 2015). This intervention required participants to wear eye-tracking 
glasses, which may be challenging to implement for many training programmes. However, 
recent advances in pose estimation show that human attention can be tracked and modelled 
within a task space with information about head pose and orientation. Of course, this is 
less precise than eye-tracking. Nevertheless, this technique has been demonstrated to be 
a viable method of assessing concentration loss, collaborative attention and stress levels 
more generally for industrial applications (Lagomarsino et al., 2022), suggesting that pose 
estimation techniques could assist in the tracking and understanding situational awareness 
for healthcare applications.

Considerations in implementing pose estimation and classifier algorithms

Such techniques have limitations, especially in real healthcare settings, which are often 
busy and complex environments. It is possible that occluded points will not be estimated 
or will be estimated with lower accuracy. Using multiple cameras (Kocabas et al., 2019) 
will alleviate this issue. A range of gap-filling strategies, including those employing ANNs 
(Kanazawa et  al., 2018), can also be used to estimate missing data. If high precision is 
still needed, a hybrid approach could be used with specialist simulators combined with a 
visual approach. For example, manikins that track compression depth and rate (e.g. QPCR 
manikins from Laerdal) could be used simultaneously with video data, which allows pos-
ture to be tracked. With further advances in computer vision techniques, accuracy thresh-
olds across all relevant dimensions may reach a level where a hybrid approach may not be 
needed for high-precision cases.

Just as humans make mistakes, algorithms can too. A recent systematic review evaluat-
ing the use of machine learning for classifying surgical expertise indicated typical accu-
racy rates of over 80% (Lam et  al., 2022). Accuracy rates are likely to rapidly improve 
as appropriate video data is obtained for development purposes; nevertheless, even with 
accuracy rates at 80%, trust and acceptance of the use of classifier algorithms for assess-
ment would be enhanced with a ‘human-in-the-loop’ approach (Enarsson et al., 2022) that 
provides a means of cross-checking. With human oversight, classifier algorithms could be 
used to track progression against milestones for healthcare trainees and flag when a stu-
dent is ready to be formally assessed against competency thresholds by a human assessor. 
Importantly, the human in the loop must be participatory; decisions should not blindly fol-
low the classifier’s recommendation and decisions should be monitored if this strategy is 
used (Kazim et al., 2021).

Considering potential bias and how the algorithm makes decisions is ethically crucial 
in developing classifier algorithms. If the data used to train the algorithms is biased, then 
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this bias will be evident in any decisions. This point highlights the importance of access-
ing wide and diverse data sets. Of course, it can be challenging to determine if a data set 
is biased for the purposes for which it is being used. Classifier algorithms that output a 
meaningful description of the decisional parameters [Explainable Artificial Intelligence, 
(Taylor & Taylor, 2020)], combined with a human-in-the-loop approach, can assist in miti-
gating any potential bias. Unfortunately, classifier algorithms often disadvantage under-
represented groups (Holstein et al., 2019). Thus, carefully considering the training data is 
essential to ensure the algorithms’ fair and equitable decisions (Corbett-Davies et al., 2023; 
Veale & Binns, 2017).

In some cases, it may be reasonable to develop algorithms that ignore protected charac-
teristics to ensure that the algorithms cannot learn the systematic biases present in society; 
however, in many cases, this may eliminate important information which impacts conclu-
sions made (Hajian & Domingo-Ferrer, 2013). For example, in the case of physical dis-
ability, movement patterns may be markedly different. Ignoring that characteristic of the 
performer may lead to improper classification of competence, particularly when they have 
found a viable movement pattern that deviates from the sample norm. If an algorithm con-
siders such diverse information, then the outcome will likely be fairer (Veale & Binns, 
2017). Fairness and equity will require careful consideration of the context. Ensuring 
that systematic discrimination is avoided during implementation must be a high priority 
(Hagendorff, 2019). For thorough reviews and strategies for anti-discrimination in machine 
learning, see Veale & Binns (2017) and Hagendorff (2019).

Data acquisition, storage and use considerations

Beyond the demonstrated application, opening doors to movement analysis in real health-
care settings provides opportunities to understand how movement patterns relate to 
patient outcomes in a given environment through data mining. Such a pursuit could lead 
to data-driven support for change to environments and policies that support practitioners. 
Furthermore, it has been challenging in some healthcare professions to link competency 
milestones with patient outcomes (Kendrick et al., 2023). Large datasets that speak to the 
trajectory of expertise, patient outcomes, and practitioner injury would allow the profes-
sion to develop competency thresholds informed by empirical evidence where necessary. 
Yet, data availability is currently limited, and initiatives to accumulate and share such data 
require careful consideration.

Where the potential benefit of collecting and evaluating video performance data to 
enhance healthcare appears substantial, there are also significant barriers. Installing cam-
eras to monitor patient care (e.g. operating room black boxes) is becoming more com-
monplace; however, healthcare professionals have raised concerns over data safety and 
litigation. Cultural factors seem to play a role in such concerns. For example, Canadian 
healthcare professionals are more concerned (Gordon et al., 2022) than Danish healthcare 
professionals, who indicated relatively high opinions toward monitoring initiatives (Strand-
bygaard et al., 2022). Where it is most certainly essential to consider acceptance to main-
tain an environment of trust, it is also important to note that regardless of perception, video 
data most often supports healthcare professionals from a legal standpoint (van Dalen et al., 
2019) and thus is most likely to offer protection in a litigious environment.

Legal policies around recording healthcare professionals, students and patients will 
likely differ considerably between governing bodies. Still, there has been a considerable 
cultural shift toward prioritising the data privacy of individuals and ensuring that personal 
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data is protected, with the General Data Protection Regulation (GDPR) being one of the 
most comprehensive examples globally. Within the (evolving) legal framework, institutions 
should develop strong policies to ensure that video footage and any associated data regard-
ing outcomes is recorded, stored, and used ethically and legally.

Data minimisation is one principle that may arise in both legal and ethical frameworks 
globally (e.g. Europe’s GDPR and California’s CPRA) that allows for a balance between 
the processing of personal data and data privacy (Goldsteen et al., 2022). This principle 
requires that the minimum amount of data be collected and processed. However, this prac-
tice could hinder finding important patterns between clinical practice, patient and practi-
tioner factors, and patient outcomes without careful consideration. Identifying patterns that 
result in incremental gains to patient outcomes is important in healthcare situations. Where 
identifying patterns in such large datasets may not have been previously possible, machine 
learning opens the doors to such pursuits, and the importance of a particular variable may 
not be known ahead of time.

‘Big Data’ seems at odds with principles of data minimisation, and indeed, recently 
the UK’s Information Commissioner’s Office has indicated that data minimisation should 
be applied at both training and inference stages of machine learning (Kazim et al., 2021) 
with global regulatory bodies also providing guidelines for ethical use. In response, new 
methods are being developed to minimise the data required whilst maintaining accuracy or 
providing evidence that the minimum amount of data was used to achieve the aims (Gold-
steen et al., 2022). As the use of artificial intelligence technology becomes more common, 
discussion of how to balance data privacy with scientific advancement will likely become a 
particularly hot topic from an ethical standpoint. Regardless, adherence to the Declaration 
of Helsinki (World Medical Association, 2013), also requires that consent be obtained for 
the use of any identifiable human data.

Privacy rights can be protected by depersonalising data, which is already a commonly 
implemented ethical practice. It is not typical for science to be interested in the identity 
attached to data; therefore, depersonalisation would rarely impact the potential scientific 
gain. At a minimum, depersonalisation can be achieved by removing obviously identifying 
information such as names or faces. Artificial Intelligence (AI) tools can also assist with 
this, as we have used in the present paper. However, it is important to consider that richer 
data sets may provide information that could be combined to identify a participant. For 
example, rich patient data, or even kinematic data that is only spatially or temporally based, 
could be backward engineered to identify the source. While this is unlikely, given that the 
motivation to do so would be low, it does pose a risk that should be carefully assessed.

Where a patient is concerned, consent, confidentiality, anonymity, and protection needs 
should be carefully considered from both an ethical and legal standpoint, as the data could 
be considered particularly sensitive. Video data of procedures need not always be added to 
a patient’s medical record if the video is collected solely for quality improvement, and the 
video would not be used to inform patient care (van Dalen et al., 2019).

Moving toward a culture of data sharing

In sum, collective efforts toward accumulating skills performance data alongside relevant 
demographic or patient data have the potential to advance healthcare professional educa-
tion substantially. In doing so, empirically validated competency targets can be established, 
and computer scientists can leverage the data to develop high-quality, robust tools to facili-
tate healthcare professionals and trainees to learn and maintain healthcare skills.
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Establishing a culture of data sharing does face several challenges, although policies 
are rapidly evolving to support such initiatives. As policy is being developed globally, at 
a local level, healthcare and educational institutions may wish to establish their collab-
orative policies within current legal and ethical frameworks to advance research around 
healthcare professional skills education. In parallel, the educational and research commu-
nity could benefit from establishing consensus on what may be considered informative data 
and guidelines for data organisation to facilitate access. By carefully considering the type 
of data required and its organisation, the field will balance the opportunity that exploratory 
work can bring with data minimisation principles. Established skills performance data-
bases will then invite interdisciplinary researchers to engage with the institutions that have 
a stake in the outcomes (healthcare and educational institutions) to advance the field.

Here, we demonstrate the process in practice with an established interdisciplinary 
research team of healthcare professional educators, human movement scientists, and com-
puter scientists. We provide a database of CPR skills and performances of varied experts 
who have been assessed for performance quality by two experts. Then, using computer 
vision and machine learning, we leverage this data to demonstrate the possibility of an 
Automatic Clinical Assessment tool for Basic Life Support.

Automatic clinical assessment for basic life support

Early recognition of a cardiac event and quick application of CPR with high-quality chest 
compressions is advocated internationally (Berg et al., 2023; Merchant et al., 2020; Olas-
veengen et al., 2021; Resuscitation Council UK, 2021). Indeed, there is consensus within 
the evidence that high-quality CPR improves outcomes for patients in cardiac arrest (Gates 
et al., 2015). Thus, basic life support (BLS) education is essential to healthcare professional 
education. It is also a primary feature of first aid training delivered to individuals who are 
not healthcare professionals or trainees. High-quality chest compressions are reflected in 
hand and elbow position, compression depth, rate and recoil, alongside consideration of 
the angle of compression force application and rescuer safety (Resuscitation Council UK, 
2021). Feedback during training has been found to significantly enhance compression qual-
ity (Baldi et al., 2017). Studies using Kinect depth cameras and pose estimation techniques 
show promising tracking and feedback provision capabilities (Lins et al., 2019; Xie et al., 
2020). Indeed, real-time feedback from Kinect can significantly improve chest compres-
sion quality for rescuers who weigh below 71 kg (Wang et  al., 2018). The body weight 
limit here may be attributed to a higher quality baseline in those with higher body weights. 
However, such a limit also indicates the importance of accessing diverse datasets. Other 
Kinect-based studies have demonstrated comparable benefits to real-time visual feedback 
for skills development in CPR (Semeraro et al., 2013). Although these Kinect-based stud-
ies demonstrate the utility of providing feedback for training purposes, Kinect does require 
specialist cameras and sensors, which may limit uptake.

Pose estimation can be performed using a computer and any camera. Initial work com-
paring expert ratings and evaluations from such computer vision techniques has shown 
promising results. In a study of arm angle (and chest-to-chest distance between team mem-
bers), pose estimation was thought to be more precise in estimating arm angle than experts 
(Weiss et al., 2023). Here, we seek to demonstrate how deep learning techniques can pro-
vide an automatic assessment of CPR technique against a comprehensive set of metrics 
that assess both the quality of movement concerning the CPR performance and the postural 
safety of the performer.
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Alongside this paper, we provide a CPR performance data set comprising a range of com-
petencies for use to advance research that understands technical competency and builds tools 
to support the development of such competencies. The data set includes demographic infor-
mation, self-ratings of confidence and frequency of performance, and two expert evaluations 
of the performance. The database contains video data of CPR from multiple angles with a 
checkerboard allowing for 3D reconstruction.

Methods

Participants

Participants were recruited on three different days. Participants were recruited from Northum-
bria University’s Department of Nursing and Midwifery on the first day via the researchers’ 
networks. Recruitment resulted in 22 participants with varied expertise, ranging from com-
plete novices who had never performed CPR before to individuals with extremely high levels 
of expertise in CPR (trained professionals and educators who regularly perform CPR). On the 
second day, 20 students who attended a skills event held by the Department were recruited on 
a voluntary basis as an opportunity to practice CPR and contribute to research. They were of 
varied skill levels, with some having previously undergone training and others not; all were 
students of the Department. On the third day, the recording session was set up to coincide 
with a first-year training session; 10 first-year students in the Department of Nursing and Mid-
wifery and one non-student in the Department were recruited. Thus, data from 53 participants 
was collected. Authors [MDC, FXZ, TC, DM, JR, CF, LJP, AP] participated. All participants 
provided informed consent and indicated how they would like their data to be used (Video or 
evaluative data available only to the research team/available in a safeguarded science reposi-
tory for scientific use). For the present paper, we have used data from all participants; where 
participants consented (n = 40) videos with faces digitally obscured have been uploaded to UK 
Data Service Reshare (Constable et al, 2024b). Participants who did not consent to their data 
being used outside the research team have not been included in the repository. Researchers or 
educational professionals may access the repository in a safeguarded manner subject to adher-
ing to the terms and conditions of the repository. To gain access researchers must email the 
data controller (MDC) stating their status as a researcher and their intention for the data; they 
will then be granted access. Northumbria’s Ethics System (No. 44602) approved the research, 
and all research was performed per the Declaration of Helsinki.

The average age of participants was 33.60 years (SD = 13.00); and 14 were men, and 39 
were women (self-declared), see Table 1 for age by gender. Participants self-reported confi-
dence in performing CPR, ranging the full spectrum of possible responses from Very Con-
fident to Very Unconfident (5-point Likert scale), with the median response being ‘Some-
what confident’. Self-reported frequency also ranged the full spectrum of possible responses 
from Very Frequently to Very Infrequently (5-point Likert scale), with the data being skewed 
toward infrequent performance (median response = Very Infrequently). The skew in the data 

Table 1  Average age (Standard 
deviation in parentheses) by self-
identified gender

Gender Male Female

Age 42.57(15.02) 30.38 (10.67)



23Advancing healthcare practice and education via data sharing:…

reflects that both students and clinicians use CPR skills relatively infrequently and thus require 
regular refresher training (Oermann et al., 2011).

Data protection

We obtained informed consent from participants who were able to indicate how they would 
like their data to be used and stored. Further, the data has been depersonalised by digitally 
obscuring their faces. Access is granted with safeguarding protections such that users must 
agree to the terms and conditions of the repository. Importantly, these terms and conditions 
require users to be registered, to only use the data for research or learning purposes, and to 
maintain the confidentiality of the participants. Any participants who indicated that they 
did not want their data to be used outside of the research team have not been included in 
the data set available to researchers external to the research team. Furthermore, participants 
could elect to have only their videos or evaluations shared should they wish.

Recordings

Each person was recorded using 6 Go-Pro Cameras. The first camera was set up to have a 
wide frontal view (see Fig. 1). Cameras 2 and 3 were placed behind the participant, offset 
to the right and left. Camera 4 was placed in front of Camera 1 to provide a lower and 
closer frontal view. Cameras 5 and 6 were placed perpendicularly to the direction the par-
ticipant was facing in line with the participant. A checkerboard was placed in front of a 
QCPR manikin and in view of all six cameras as a common landmark. The CPR space was 
defined for the participant with two foam mats. One for them to kneel on, the manikin was 
placed on the other.

Fig. 1  The recording space. Circles depict the location of the cameras. The checkerboard was placed in 
front of the task space with one foam mat for the manikin and one foam mat for the participant. Approxi-
mate distances between cameras are provided, although there was some slight variation between days
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Participants were asked to perform 4 sets of 30 chest compressions for each recording 
with a short pause in between to rest. Participants were asked at the beginning and end of 
the task to clap. This clap was used to calibrate cameras in time.

Ratings

An evaluative framework (see supplementary material) was developed in consultation 
with the BLS experts on the team (TC, DM). Both experts have been teaching BLS for 
over 20 years in clinical and educational settings, and the UK Resus Council recognises 
both as Advanced Life Support Instructors, representing exceptional expertise in the field. 
Given that the present data was collected within the UK educational system, the evaluative 
dimensions were informed by guidelines from the Resuscitation Council UK (2021). Addi-
tional evaluative dimensions were included to reflect good posture and technique taught to 
maintain endurance, reduce the likelihood of injury, and prevent fatigue. Each evaluative 
dimension represented a factor that would be currently instructed in the educational set-
ting; nevertheless, in practice, each factor is not equally important for patient outcomes 
as indicated by the International Liaison Committee on Resuscitation’s recommendations, 
which are updated yearly based on cumulative science (Berg et al., 2023).

For each cycle (4 per participant), one point was provided for good form in the fol-
lowing evaluative dimensions: Hand Position (Centre of the chest, within one average 
hand margin), Arm Position (Straight Arms, minimal flex in elbows or minimal variability 
in elbow joint angle), Shoulder Position (Over patient, the line from centre of patient to 
shoulders should be perpendicular), Depth of Compressions (5-6cm), Rate of Compres-
sions (100–120 per minute), Release (complete recoil of chest, hands return to neutral start 
point). A metronome was used to assist in evaluating the rate of compressions. Experts also 
coded for incorrect form (see supplementary material – evaluative checklist), such that if 
there were multiple ways a participant could exhibit poor form, that will be reflected in the 
data (e.g. Depth of compressions could be either too shallow or too deep). Overall ratings 
(Excellent, Good, Borderline, Poor, Unacceptable) for each cycle were also provided.

The two expert raters initially rated alone and then resolved any discrepancies to provide 
an agreed rating. To determine rater agreement when raters were rating alone we calculated 
weighted Cohen’s kappa for overall ratings for each cycle (rated: Unacceptable, Poor, Bor-
derline, Good, Excellent). Overall, raters were in moderate agreement for Cycles 2, 3, and 
4 when they rated alone, κs = 0.550, 0.567, 0.518, respectively. Agreement was poor for 
Cycle 1, κs = 0.204, potentially reflecting inconsistencies in performance during the initial 
cycle, which could reflect a ‘practice’ run.

Automatic clinical assessment

Our methodology systematically assesses CPR techniques using human motion data, mir-
roring expert evaluations while leveraging the advantages of automation. Our approach to 
assessing clinical techniques includes two main components: markerless pose estimation 
and a deep learning network designed specifically for Automatic Action Quality Assess-
ment (AQA), as shown in Fig. 2. The first step in our framework is to use markerless pose 
estimation to capture the 3D positions of a participant’s joints from different angles in 
the video. This process is notable because it does not rely on physical sensors or mark-
ers attached to the participant. Instead, it directly analyses the video frames to identify 
and track the movements of the joints. Following this, the pose information that has been 
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extracted is input into a deep learning network. This network is trained to assess the qual-
ity of CPR performance against predefined criteria as same as those used in manual expert 
assessments. The network produces ratings for various aspects of the CPR technique, thus 
providing an objective, automated evaluation of the participant’s skill level.

Markerless pose estimation

We employed MediaPipe (Lugaresi et al., 2019), a framework that enables machine learn-
ing models to interpret and analyse human motion video data. This approach allowed us to 
capture the movements of various joints, outputting their positions in a three-dimensional 
space ( X , Y  , and Z coordinates) relative to a standard’ world coordinate system,’ which 
provides a consistent frame of reference for movement analysis. The results of our pose 
estimation are organised in a structured format, denoted as Pk ∈ RT×N×C , where k denotes 
the camera viewpoint, T  denotes the total number of video frames (or the duration of the 
video), N denotes the count of distinct joints tracked, and C denotes various data features 
for each joint, including their spatial coordinates and the confidence level of these estima-
tions. An illustrative example of how we visualise this pose estimation data can be seen in 
Fig. 3.

Deep learning for automatic action quality assessment

The graph representation of human skeleton

After obtaining the pose estimation outputs, denoted asPk , which detail the positions of 
various joints over time, we conceptualise the human skeleton as a graph structure. This 

Fig. 2  Overview of the framework for our automatic AQA. The process begins with extracting joint motion 
information from raw video footage captured from multiple viewpoints, using pose estimation techniques. 
Following this, deep learning algorithms analyse the spatial–temporal features of the extracted data from 
each angle. The system then integrates these features across different views to accurately predict the perfor-
mance ratings for each assessed skill
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graph-based representation, (V ,E) , allows our neural network to incorporate the anatomical 
and biomechanical constraints inherent to human movement (Feng et al., 2022). In this graph, 
the set of nodes V represents the joints, indexed from 1 toN , where each node vi corresponds 
to a specific joint. The edgesE , represent the connections (i.e. bones) between these joints, 
such as bones or ligaments, defined within a set S that specifies which pairs of joints are con-
nected, which promotes the network to represent the physical structure of the human body.

The multiview spatial temporal graph convolutional network

After defining the graph representation based on the pose estimation results, we developed a 
multiview neural network tailored for Automatic Action Quality Assessment (AQA), using 
the estimated human poses as its foundation. To achieve this, we adopted Spatial Temporal 
Graph Convolutional Networks (STGCN) (Yan et al., 2018), configuring the network with a 
five-layer architecture to robustly capture and model the dynamics of the pose estimation data 
from each camera viewpoint. This approach incorporates the skeleton graph structure dynam-
ics of the human body to constrain our deep learning model for joint motion analysis. The 
detailed operation for the input pose estimation Pk as follow:

where Hk denotes the learned hidden feature for camera viewpoint k , Wk denotes the learn-
able parameters in our STGCN. A and ∧ denote the adjacency matrix and its normalised 
form, respectively. The value of A is defined such that Ai,j = 1 if vivj ∈ E , which introduces 
the semantics of our defined human skeleton graph into deep learning.

Then, the learned features Hk from each view are then fused via a learnable parameter. 
Finally, a two-layer fully connected neural network is applied to estimate the final rating for 
each item score related to clinical technique quality.

Optimisation

In the optimisation phase, our primary aim is to enhance the accuracy of our network’s pre-
dictions. To this end, we utilise the Mean Absolute Error (MAE) as our metric of choice. 

Hk = ∧−1∕2A∧−1∕2PkWk,

Fig. 3  An example of the estimation visualisation. Key joint landmarks relevant to the clinical technique are 
clearly captured
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MAE is a straightforward yet effective measure that calculates the average of the absolute 
differences between the predicted values by our network and the rating values (‘ground 
truth’) after clinical experts’ agreement. This metric is particularly useful for our item 
scores, as it clearly indicates how close our predictions are to reality, on average, without 
being influenced by the direction of errors. The formula for our loss function, which incor-
porates MAE, is given by:

where Q denotes the different item scores related to clinical technique quality, ŷq  and yq 
denote the predicted score and the ground truth score for each item, respectively. Our goal 
during training is to minimise this loss, which means reducing the average absolute error 
between our predictions and the expert ratings, thereby aligning our network’s assessments 
more closely with the expert evaluations.

For the optimisation process, we employ the Adam optimiser, a widely used optimi-
sation algorithm known for its effectiveness in handling sparse gradients and automati-
cally adjusting the learning rate. This choice promotes a more efficient and robust training 
process, with an initial learning rate set at 0.01 and a weight decay of 0.1, to gradually 
improve our model’s performance by iteratively adjusting its parameters in a direction that 
minimises the loss function.

Evaluation

We evaluate our automatic AQA framework’s performance using Mean Absolute Error 
(MAE), employing a fivefold cross-validation approach. In each validation cycle, 80% of 
the data was used as the training set, while the remaining 20% was used as the test set, 
ensuring different train and test sets for each iteration. The training epoch is set to 100. 
Our evaluation not only compares our automated method’s predictions to the final expert-
agreed scores but also examines the alignment of initial individual expert annotations with 
these consensus ratings.

The comparison involves calculating the MAE between our method’s predictions and 
the expert-agreed scores and, similarly, between individual expert scores before consensus 
and the final agreed scores. This approach highlights our method’s potential accuracy in 
relation to initial expert assessments. MAE was selected as the primary metric due to its 
interpretability, robustness, and consistency. It is a common metric for skill assessment in 
the biomedical engineering domain (Anastasiou et al., 2023; Wagner et al., 2023) It allows 
us to directly quantify the average error in our model’s predictions compared to expert 
ratings. Thus, we use MAE across both optimisation and evaluation phases, facilitating a 
clearer comparison of our model’s accuracy relative to expert assessments.

For a fair comparison, we align our automated assessments with expert evaluations by 
focusing on data from cameras 1, 4, and 5, which the experts predominantly used. This 
strategy ensures that our method is evaluated from the most relevant perspectives for accu-
rate clinical technique assessment. Cycle 1 was included in the analysis to assess the per-
formance of our system in scenarios where human raters have difficulty reaching consen-
sus. The low agreement among experts in Cycle 1 highlights the complexity of certain 
CPR assessments and underscores the importance of having an automated system that can 
provide consistent evaluations. By including Cycle 1, we ensure that our system is tested 

L =

Q∑

q=1

|ŷq − yq|
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not only on straightforward cases where human agreement is high but also on more chal-
lenging cases where human agreement is low.

We implemented our method with PyTorch 1.10.1 and trained the models using one 
Nvidia GeForce GTX 2080 Ti GPU. For further reproduction and implementation of our 
research, our code and step-by-step deployment instructions can be found on our GitHub 
page: https:// github. com/ Franc isXZh ang/ CPR.

Results and discussion of AQA

In our analysis, Table  1 illustrates the MAE comparisons between the automatic AQA 
framework and the initial scores given by two human evaluators. Specifically, the MAE 
values represent the average difference between the scores assigned by our AQA system 
or each evaluator and the final agreed-upon ground truth scores established through expert 
consensus. The full score for each evaluated item is 4. In most cases, the error margin of 
our framework remains below 1, underscoring our automated methods’ potential accuracy 
and applicability. When comparing our method with manual assessments, we found that 
our automatic AQA consistently exhibits significantly lower error in evaluating hand, arm, 
and shoulder positions. This may be attributed to our framework’s reliance on precise pose 
information, providing a more objective assessment of the participant’s posture. Our AQA 
exhibited higher error rates in the compression depth and compression rate items. This dis-
crepancy could be because these two items require assessing interactions between the par-
ticipant and the dummy (Kılıç et al., 2018), something our framework currently does not 
capture. This demonstration focused solely on the pose information of the participant and 
did not incorporate visual interaction data between humans and objects; further work could 
establish the importance of considering such interactions. It is also noteworthy that the 
expert raters used a metronome to assist in their rate judgements, which may account for a 
higher than typical expert-assessed accuracy rate in this dimension (Table 2).

We acknowledge that the size of our dataset, comprising 53 samples, might appear lim-
ited for training deep learning models. However, we employed a fivefold cross-validation 
approach, promoting robust evaluation by using 80% of the data for training and 20% for 
testing in each fold, which helps in assessing the model’s performance comprehensively 
and mitigating overfitting. Our dataset size is comparable to those used in other research 
within the domain of healthcare training systems, such as the 10 cases used in Liao et al. 
(2020) demonstrating the feasibility of using similar dataset sizes. Moreover, the results 

Table 2  Mean average error 
(Human experts vs. AQA 
framework)

Item Evaluator 1 Evaluator 2 AQA

Hand Position 1.62 1.08 0.33
Arm Position 0.70 0.15 0.07
Shoulder Position 0.40 0.34 0.13
Depth 0.49 0.30 0.69
Rate 0.89 0.11 1.67
Compression Release 1.04 0.98 1.00
Total 3.96 2.69 2.98

https://github.com/FrancisXZhang/CPR
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indicate that the tool performs well as compared to human raters, confirming the reliability 
of the measure.

To further compare our model with the human raters, qualitative research for individu-
als by our model compared to the raters’ evaluations is shown in Fig. 4. To better demon-
strate the efficiency of our work, we included both cases of conflicts and agreements in 
our exemplars. As the main potential advantage of our system is based on pose estimation, 
these exemplars are mainly focused on pose-related scores.

In Fig. 4, Case 1, both human raters gave high scores for the subject’s hand, arm, and 
shoulder positions (score from human raters = 4, maximum rating = 4). Similarly, our 
model also gave a score of 4 for these pose-related aspects. In Fig. 4, Case 2, although the 
reviewers gave a score of 4 for the arm and shoulder pose of the participant, one rater gave 
a 0 for the hand position while the other gave a 4 before they reached an agreement. The 
reason for the 0 was ‘Too far toward the feet’, but the rater who gave a 4 thought it was 
‘Just in the center of the chest’. After double-checking the video, they ultimately agreed 
to give the subject a score of 4, as the hand pose was, indeed, ‘In the center of the chest 
(within one average hand margin)’.

One major reason for this conflict is that the raters typically make their judgments based 
on a single camera view. However, the information from one camera can be limited due to 
different participants’ angles towards the camera and varying initial postures, which some-
times affects their judgment. For instance, in Case 2, the ratings are highly focused on the 
close front view. The participant’s habit of performing CPR vertically makes their hand 
compression position appear farther from their body for the human raters. Our method, 
which fuses information from multiple camera views, overcomes this limitation. Even 
though our pose estimation may occasionally show misdetections (pose estimation visu-
alisation for the full video can be found in the Supplementary Material), summarising the 
motion information from multiple views makes our rating results more robust for pose-
related scores.

The present work sought to illustrate how accumulating skills performance datasets in 
real or simulated settings could provide a foundation for understanding healthcare skills 
and building educational technology to support healthcare professionals and educators. A 
fundamentally interdisciplinary approach (in this case, with a strong emphasis on computer 

Fig. 4  Qualitative exemplars for comparing our model with human raters. Our model’s performance aligns 
with the final rating after agreement, whether in the human raters’ initial agreed score or their conflicted 
score
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science) in the study of technical skills may assist in ensuring healthcare professional com-
petence. Specifically, we have shown how innovations in computer vision can be lever-
aged to provide (1) Data from real settings that can be scientifically assessed (e.g. the spa-
tial location of each joint in cartesian coordinate space alongside estimation confidence) 
and (2) an assessment of performance quality based on both objective measurements and 
learned parameters from expert raters. This assessment technique demonstrated compara-
ble accuracy in overall assessment relative to our expert raters, indicating the validity of 
the approach. Furthermore, the margin of error from this assessment technique was typi-
cally below 1, indicating that accuracy between defined thresholds of competency was 
excellent. However, specific to performance features, our assessment technique sometimes 
outperformed or underperformed relative to the raters. Our intention with this work is to 
call for foundations to be put in place that allow for the collection and sharing of diverse 
healthcare technical skills performances that provide the opportunity for interdisciplinary 
collaborations to enhance the efficacy and efficiency of healthcare professional education.

Manikins and simulators that provide automated feedback on a range of critical meas-
ures to facilitate the acquisition of an appropriate skill threshold exist (e.g. QCPR manikins 
(Laerdal)). However, they are often limited in the type of feedback they can provide, highly 
specific to a given skill or class of skills, or expensive. The computer vision approach dem-
onstrated in the present work has the potential to provide automated and targeted feedback 
for a range of skills that can be assessed visually with low-cost video cameras and comput-
ers that would already be present within an educational setting. Furthermore, the fact that 
a range of skills could be assessed with the relatively low-cost set-up and without the need 
for specialist simulators represents an economic benefit. The flexibility of the computer 
vision approach also makes it ideal for assessing complex skills performance in highly 
realistic simulations. Indeed, self-training programmes exist using items that can be found 
around the home for a makeshift manikin (Wanner et al., 2016), it is possible that this tech-
nology could be implemented using a webcam to provide feedback to the trainee at home.

In future research, we plan to consider human-object interaction in our model. Incor-
porating interactions with other humans or objects into our model necessitates a com-
prehensive approach. First, we would expand our dataset to include scenarios involving 
human–human and human-object interactions, ensuring a wide range of contexts and 
activities. Second, more detailed annotations would be required to label these interactions 
accurately, such as the actual physical contact between humans and objects to make train-
ing closer to real-world conditions (Zhou et al., 2023). Third, our model architecture would 
need modifications to handle the additional complexity, such as integrating temporal-based 
pose estimation for more consistent motion information capture (Zhou et  al., 2023). By 
addressing these steps, we aim to significantly enhance the model’s utility in more realistic 
and dynamic environments, ultimately improving its applicability for various educational 
and training purposes.
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