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Abstract
Hypothesis tests are essential tools in applied statistics, but their results can vary when
repeated. The reproducibility probability (RP) quantifies the probability of obtain-
ing the same test outcome—either rejecting or not rejecting the null hypothesis—if a
hypothesis test is repeated under identical conditions. In this paper, we apply the para-
metric predictive bootstrap (PP-B)method to evaluate the reproducibility of parametric
tests and compare it with the nonparametric predictive bootstrap (NPI-B) method. The
explicitly predictive nature of both methods aligns well with the concept of RP. Sim-
ulation studies demonstrate that PP-B provides RP values with less variability than
NPI-B, benefiting from the assumed parametric model. The bootstrap approach offers
a flexible framework for assessing test reproducibility and can be extended to a wide
range of parametric tests.

Keywords Bootstrap · Reproducibility probability · Hypothesis tests · Parametric
predictive bootstrap · Nonparametric predictive inference bootstrap

1 Introduction

The term reproducible refers to the ability of results gained from an experiment
or statistical analysis of a data set to be reproduced when the study is replicated.
Reproducibility is a key concept in scientific methods, providing confidence in know-
ing exactly what has been achieved. Over recent years, reproducibility has received
increasing attention, with several scientific journals launching campaigns to raise
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awareness of reproducibility issues, such as “Journals Unite for Reproducibility” [35].
Many institutional drug agencies, such as the United States Food and Drug Admin-
istration (FDA) and the European Medicines Agency (EMA), require at least two
well-controlled clinical trials to evaluate the efficacy and safety of a new drug product
before marketing approval [34]. The primary purpose of conducting a second clinical
trial is to support the effectiveness of a treatment and to assess whether the clinical
results of the first trial can be replicated in the second trial.

Statistical tests serve as tools for experimental evidence to support the effectiveness
of a treatment. However, the results of statistical hypothesis tests can vary when the
tests are repeated. The concept of reproducibility probability (RP) in the context of
hypothesis testing was first addressed by Goodman, who pointed out that there was
some misunderstanding about the meaning of the statistical p-value [27]. According
to Goodman, the replication probability can illustrate that p-values may exaggerate
the evidence against the null hypothesis. In a later discussion, Senn [38] disagreed
with Goodman’s statement, emphasising the difference between the p-value and RP.
However, Senn agreed with Goodman on the importance of reproducibility of test
results.

The RP of a test is the probability that the same test outcome, either rejection of
the null hypothesis or not, would be reached if the test were repeated based on an
experiment performed in the same way as the original experiment. RP indicates the
reliability of the result of a statistical hypothesis test. It is particularly relevant when
the test leads to the rejection of the null hypothesis, as significant effects in clinical
trials may lead to new treatments. For example, Begley and Ellis [5] conducted a study
attempting to replicate results from 53 preclinical cancer research studies, confirming
the original findings in only 6 cases. Similarly, Bayer HealthCare in Germany found
that they could reproduce only about 25% of the results from similar studies. Begley
and Ellis emphasised the importance of improving the reproducibility of preclinical
studies and building a stronger system, but they did not delve deeply into the statistical
techniques used in these studies. They recommended avoiding publication bias toward
only positive results and stressed the importance of RP for the reliability of medical
tests. These concerns highlight the ongoing challenges in achieving reproducibility,
which has led to debates in the literature. The definition and interpretation of RP
appear to not be uniquely determined in classical frequentist statistics. For instance,
the paper by Simkus et al. [41] addresses variations in the definitions of reproducibility
by exploring different experimental contexts, such as changes in datasets, labs, and
conditions. It also emphasises the challenges of low reproducibility due to factors
like publication bias and poor statistical methods. This work advocates for framing
statistical reproducibility as a predictive problem, offering a structured approach to
better quantify and address reproducibility challenges.

Recent years have seen growing interest in RP, especially due to its relevance for the
practical outcomes of test results. Shao and Chow [39] presented three approaches for
evaluating RP in clinical trials: the estimated power approach, the lower confidence
bound of power estimates, and the Bayesian approach. These methods estimate the
power of a future test using data from previous trials, considering the lower confidence
bound as a conservative estimate for RP, especially when the first trial result is highly
significant. They argued that a single clinical trial is sufficient if its statistical result
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is strongly reproducible. De Martini [20] used test power as an estimate for RP in
parametric tests and proposed defining statistical tests based on estimated RP. This
power-based approach was also followed by De Capitani and De Martini [17–19]
to study RP for nonparametric tests, including the Wilcoxon signed-rank test, sign
test, Kendall test, and binomial test. However, the power-based approach is somewhat
limited because it only focuses on cases where the null hypothesis is rejected, which
is not consistent with the natural interpretation of reproducibility. Additionally, this
approach doesn’t account for the variability of repeated tests with different data, which
is a key factor in understanding RP.

Miller [36] emphasised the importance of distinguishing between two scenarios
in test repetition: (1) repetition by independent researchers working under different
conditions, and (2) repetition by the same researcher under identical conditions.Miller
was sceptical about making precise inferences from an initial test, especially when
the true effect size and test power were unknown. In this paper, we focus on the
second scenario-repetition by the same researcher under identical conditions-because
meaningful frequentist inferences can be derived in this scenario. We define statistical
reproducibility for a test as the probability that the same test outcomewould be reached
if the testwere repeated in the samewayas the original experiment.We regard assessing
test reproducibility as a problem to be solved by predictive inference. It is important to
emphasise that we primarily focus on the conclusion of the future test with respect to
the null hypothesis based on the actual data of the first test.We do not consider an exact
repetition in terms of the same value of the test statistic or the actual observations,
nor do we rely solely on the result of the first test as to whether the null hypothesis
was rejected or not. Inferring the reproducibility of the test result using actual data
seems logical because the strength of the first test’s conclusion depends on those data.
A prediction of the test result in a future test is more naturally reflected in the final
conclusion regarding the rejection or non-rejection of the null hypothesis. We should
note that we do not require the sample sizes to be the same for actual and future tests,
but this assumption is natural for reproducibility.

This paper employs the recently developed parametric predictive bootstrap (PP-
B) method to assess the reproducibility of parametric tests and compares it with the
nonparametric predictive bootstrap (NPI-B). Both methods are inherently predictive,
considering future observations to form a natural basis for assessing reproducibility
(RP), which is framed as a problem of prediction rather than estimation. The terms
PP-B-RP and NPI-B-RP refer to the reproducibility values derived from the PP-B
and NPI-B methods, respectively, and are discussed in Sect. 3. Before introducing
these methods, Sect. 2 provides an overview of a predictive approach to statistical
reproducibility, first introduced by Coolen and Binhimd [12] within the framework
of nonparametric predictive inference (NPI). This section highlights the advantages
of viewing reproducibility as a predictive problem rather than an estimation problem
and discusses key challenges associated with traditional approaches to reproducibility
assessment. The paper then explores the use of PP-B for parametric tests, comparing it
with NPI-B, which also employs predictive bootstrap techniques, in Sects. 4, 5, and 6.
Section7 compares these twomethods to the traditional NPI-RPmethod in the context
of the likelihood ratio test. The paper concludes in Sect. 8.
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2 Statistical Reproducibility: A New Perspective and Challenges

A new perspective on test reproducibility was introduced by Coolen and Binhimd [12]
within the framework of nonparametric predictive inference (NPI), a frequentist sta-
tistical method. They applied the NPI approach to assess reproducibility probability
(NPI-RP) for a variety of nonparametric tests, including the sign test, Wilcoxon’s
signed-rank test, and the two-sample rank-sum test. This method uses the test result
for a predicted future sample that is the same size as the original sample, which reflects
the essence of reproducibility. The NPI approach is explicitly predictive, focusing on
future observations, and makes minimal assumptions about the data, which leads to
imprecision that can be quantified by the use of lower and upper probabilities. The
NPI-RP framework views reproducibility from the perspective of prediction rather
than estimation, which sets it apart from the more traditional power-based approach to
reproducibility. This framework offers reproducibility probabilities for both the rejec-
tion and non-rejection of the null hypothesis, which is significant since much of the
focus is typically on tests that lead to rejection, especially in fields like clinical trials
where significant effects often lead to new treatments. However, we believe that repro-
ducibility should also be considered for tests that do not reject the null hypothesis in
order to provide a more complete picture of test reliability. The NPI approach has been
extended to other nonparametric tests, including the quantile test and the precedence
test [11].

The core idea of the NPI-RP approach is to consider all possible orderings of future
observations among the data observations. It takes into account the different ways that
future data could be arranged among the original data, with each arrangement having
an equal chance of occurring. These future observations are grouped into intervals, and
while we don’t know the exact values of the future data for each possible ordering, we
can predict how many observations will fall within each interval. Importantly, there
are no further assumptions placed on the future data-each data point can take any
value within its designated interval. By examining all possible arrangements of future
data, the NPI-RP approach allows us to compare the conclusions of tests applied to
these future datasets with the conclusion of the original test. The proportion of future
tests that lead to the same conclusion as the original test is then used to determine the
reproducibility probability.

However, the NPI-RP approach becomes computationally expensive for large
datasets. For example, with just a sample size of 15, the number of possible future
arrangements of the data can become prohibitively large, requiring the calculation
of an enormous number of potential orderings to derive reproducibility probabilities.
To address this issue, Coolen and Marques [14] proposed a sampling methodology.
Instead of calculating every possible ordering, they suggest randomly sampling future
data arrangements. This method satisfies the conditions of simple random sampling
(SRS), where each future arrangement has an equal probability of being selected, and
each selection is independent of the others. By using a sufficiently large number of
samples, the differences between samplingwith andwithout replacement become neg-
ligible, making this approach computationally feasible. The sampling process involves
selecting a vector of integers that corresponds to the ranks of the ordered data obser-
vations. The future data is then simulated based on these sampled ranks, which allows
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the reproducibility probability to be estimated without the need to examine all possible
arrangements.

Another approach to improving computational efficiency was proposed by Coolen
and Binhimd [13], who introduced an NPI-based bootstrap method. This method
estimates reproducibility probability by generating future data samples through
resampling, thereby simplifying the calculation of reproducibility values for vari-
ous nonparametric tests. Further details on this bootstrap method will be discussed in
Sect. 3.3.

3 BootstrapMethods

3.1 Classical BootstrapMethods

The bootstrap method, introduced by Bradley Efron in 1977 and detailed in a 1979
Annals of Statistics paper [8, 23], uses resampling techniques to quantify uncertainty
in sample estimates. Known for its straightforward implementation and effectiveness,
it provides researchers with a valuable alternative to complex derivations when no
analytical solution is available [25]. By leveraging computational power, the bootstrap
method assesses the statistical accuracy of complex procedures and is widely used for
hypothesis testing due to its simplicity. Chernick [7] discusses applications of the
method in areas such as hypothesis testing, confidence intervals, regression, and time
series analysis. Various adaptations, including double, smooth, and Bayesian versions,
have also emerged [4, 16, 40]. These methods apply to diverse data types, such as
real [29], right-censored [1], and ordinal data [6].

The standard bootstrap method, introduced by Efron [25], is a nonparametric
approach that resamples from the original data set to quantify uncertainty in sample
estimates. Efron’s Bootstrap (EB) involves repeatedly resampling with replacement
from the original observations, giving each observation an equal chance of being
selected during the resampling process [32]. With minimal mathematical assump-
tions, the EB method is easy to implement using statistical software, making it highly
popular in applied statistics. Importantly, EB does not assume any specific data distri-
bution [28, 37]. In contrast, parametric bootstrap (PB) assumes that the data follow a
known distribution with unknown parameters. This method involves drawing samples
from the assumed distribution using estimated parameters rather than resampling from
the original data. The main idea of the PB method is to estimate the parameters of the
presumed distribution based on the observed data, then generate multiple PB samples
from this distribution using the estimated parameters [28, 33].While this approach can
include observations not present in the original sample, it requires knowledge of the
data distribution; if the assumed model is incorrect, results may be misleading. Unlike
PB, the EB method makes no distributional assumptions and includes all observations
from the original sample, with ties in the data being preserved. Thus, PB is more
suitable when there is prior knowledge of the population’s distribution.

The rest of the section describes two bootstrap methods: parametric predictive
bootstrap (PP-B) [2] and nonparametric predictive inference bootstrap (NPI-B) [13].
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Both focus on predictive inference, but NPI-B does not assume a specific distribution
for the data, whereas PP-B requires distributional assumptions.

3.2 Parametric Predictive Bootstrap (PP-B)

This section provides a brief overview of the basic concept of the PP-B method for
real-valued data. For details about the method and its implementation, we refer the
reader to Aldawsari [2]. The PP-B method involves sampling a single observation
from an assumed distribution with estimated parameters based on an original data set
of size n. This observation is then added to the data, and the process is repeated with
n + 1 observations. In order to sample the second observation, we re-estimate the
distribution parameters with the new observation added to the data. Continuing this
process to sample m further values in the same way, each observation adding to the
data and re-estimating the parameters before sampling the next one. The PP-B includes
only the m sampled observations, so it excludes the n original data observations. The
PP-B algorithm for one-dimensional real-valued data is as follows:

1. We have a random sample consisting of n observations x1, x2, . . . , xn from a known
distribution F(x; θ), with parameter θ .

2. The parameter θ of the assumed distribution is estimated by θ̂ from the available
data, usingmaximum likelihood estimation (MLE) or any other estimationmethod.

3. Sample one future observation x∗
1 randomly from the fitted distribution F(x; θ̂ ).

4. Add x∗
1 to the data giving data set (x1, x2, . . . , xn, x∗

1 ); increase n to n + 1.
5. Repeat Steps 2-4, nowwith n+1 data, to obtain a further future value. This process

continues until m observations have been sampled in total, with each one added
to the data and the parameters re-estimated before sampling the next observation.
These sampled observations x∗

1 , x
∗
2 , . . . , x

∗
m form a PP-B sample of size m.

6. Repeat Steps 2-5 to obtain B of PP-B samples of size m.

3.3 Nonparametric Predictive Inference Bootstrap (NPI-B)

Coolen and Binhimd [13] presented a nonparametric predictive bootstrap technique
rooted in a frequentist approach known as NPI. The NPI (nonparametric predictive
inference)method has evolved over the last two decades to address various applications
and statistical challenges involving different types of data. NPI is a statistical technique
based onHill’s assumption A(n) thatmakes inferences on a future observation based on
past data observations [9, 10]. Hill [30] introduced the assumption A(n) for prediction
of one future observation Xn+1 with no prior knowledge about the underlying distri-
bution. Suppose that x1, . . . , xn are the observed data corresponding to real-valued
and exchangeable random quantities X1, . . . , Xn . Let x(1) < x(2) < . . . < x(n) be the
ordered observations and define x(0) = −∞ and x(n+1) = +∞ for ease of notation.
The assumption A(n) states that the future observation Xn+1 is equally likely to fall in
any open interval (x(i−1), x(i)), i = 1, . . . , n + 1. These intervals were created by the
previous n observations between consecutive order statistics of the given sample.

The assumption A(n) itself is not sufficient to derive precise probabilities for any
event of interest, but it can be used to derive bounds (lower and upper) of probabilities,
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which are called imprecise probabilities. The NPI approach is introduced by Coolen
and Augustin [3, 15] which uses lower and upper probabilities for events of interest
considering future observations based on Hill’s assumption. The lower probability is
the maximum lower bound for the precise probability for the event and denoted by
P(·). The upper probability is the minimum upper bound for the event and denoted
by P(·).

Sequential application of the assumptions A(n), . . . , A(n+m−1) can be used to gener-
alise NPI form ≥ 1 future real-valued observations based on n real data observations.
These assumptions imply that all

(n+m
n

)
possible different orderings of the m future

observations among the n data observations are equally likely to appear, with no further
assumptions made on where future observations will be within any of these intervals
(x(i−1), x(i)) [14].

Coolen and Binhimd [13] introduced a predictive bootstrap method based on NPI,
called nonparametric predictive inference bootstrap (NPI-B). The NPI-B method
involves creating n + 1 intervals between the n ordered observations of the origi-
nal data and then selecting one of these intervals randomly. The first observation is
drawn uniformly from the selected interval, which is then added to the original data,
resulting in n + 1 observations. This creates a partition consisting of n + 2 intervals,
from which the second observation is sampled. The process continues until m obser-
vations are drawn, wherem is predefined. Thesem observations constitute one NPI-B
sample (which, of course, does not include the n original data observations). In NPI-B,
all possible orderings of the new observations among the past observations are equally
likely to occur. NPI-B’s sampling method, which involves drawing each observation
from the intervals in the partition created by combining the n original observations
together with all previously drawn observations belonging to the same bootstrap sam-
ple, leads to more variation in bootstrap samples than Efron and parametric bootstrap
samples.

It is worth mentioning that one observation is sampled uniformly from each chosen
interval when applying NPI-B. However, it cannot be sampled uniformly from an
open-ended interval, e.g., data defined on the whole real line lead to the first and
last intervals in the form of (−∞, x(1)) and (x(n),+∞). Coolen and Binhimd [13]
suggest using the tail of a Normal distribution for real-valued data and the tail of an
Exponential distribution for non-negative real-valued data. It is important to note that
the conditional tail distribution is only used to sample an observation from open-ended
intervals; otherwise, the observation is sampled uniformly from finite intervals. The
NPI-B algorithm for real-valued data on finite and infinite intervals is as follows:

1. Create n + 1 intervals between the n ordered observations
(x(0), x(1)), (x(1), x(2)), . . . , (x(n−1), x(n)), (x(n), x(n+1)), where x(0) and x(n+1)
are the end points of the possible data range.

2. Select one of the n+1 intervals randomly, each with equal probability, and sample
one future observation uniformly from this selected interval.

(a) We sample the future value uniformly for any finite interval.
(b) For the case with data on the whole real line (−∞,+∞): If the chosen interval

is (−∞, x(1)) or (x(n),+∞), we sample the future value from the tail ofNormal
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distribution with mean μ = x(1)+x(n)

2 and standard deviation σ = x(n)−μ

�−1( n
n+1 )

,

where �−1 indicates the inverse function of a standard normal cumulative
distribution function.

(c) For the case with data on the (0,+∞): If the chosen interval is (x(n),+∞),
we sample the future value from the tail of Exponential distribution with rate
λ = ln(n+1)

x(n)
.

3. Add this sampled observation x∗
1 to the data; increase n to n + 1.

4. Repeat Steps 1-3, now with n + 1 data, to obtain a further future value. This is
continued to samplem future observations from the intervals in the partition created
by combining the n original observations with all previously drawn observations
that belong to the bootstrap sample. These m drawn observations (x∗

1 , x
∗
2 , . . . , x

∗
m)

form one NPI-B sample of size m.
5. Repeat Steps 2-4 to obtain B of NPI-B samples of size m.

3.4 Classical vs Predictive BootstrapMethods

The method for sampling observations in NPI-B, where each observation is drawn
from the intervals created by combining the n original observations with all previously
drawn observations belonging to the same bootstrap sample, results in more variation
in bootstrap samples than in EB and PB. PP-B’s sampling method, which adds the
sampled observations to the data set and estimates the parameter before sampling the
next observation, also causes more variation in the bootstrap samples than the EB and
PB samples. All observations are sampled based on the original data only in the EB and
PB methods. The EB method relies on a resampling process with replacements from
the original data set, where each value of the original data set has the same probability
of being selected by random during the resampling process [24]. In the PB method,
the data are assumed to come from a known distribution with unknown parameters.
The parameters of the assumed distribution are estimated using the available data, then
observations are sampled from the assumed distribution with the estimated parameters
to obtain PB sample [28]. Bootstrap samples in PP-B, NPI-B, and PB do not restrict
themselves to already observed values, whereas in EB samples, all observations are
included in the original sample.

4 Bootstrap-RP for the One-Sample t-test

The one-sample t-test is a statistical test used to determine if the mean of a population
differs from a specified value. Given a random sample X1, X2, . . . , Xn ∼ N (μ, σ 2)

from a normal population with unknown variance σ 2, the hypotheses of interest are
H0 : μ = μ0 against Ha : μ �= μ0, μ > μ0, or μ < μ0, depending on the test
direction [26]. If the sample is normally distributed, the test statistic under the null
hypothesis is:

T = x̄ − μ0

s/
√
n

∼ tn−1
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where tn−1 is the t-distribution with n − 1 degrees of freedom, and x̄ are s2 are the
sample mean and variance. The null hypothesis H0 is rejected at significance level α
in favour of the two-sided alternative Ha : μ �= μ0 if |T | > t (1−α/2)

n−1 , where t (1−α/2)
n−1

is the (1 − α/2) percentile of the t-distribution with n − 1 degrees of freedom. For a
one-sided upper-tailed test Ha : μ > μ0, we reject H0 if T > t (1−α)

n−1 ; for a one-sided

lower-tailed test Ha : μ < μ0, we reject H0 if T < t (α)
n−1.

This section studies the reproducibility probability (RP) of the one-sample t-test
using the bootstrap method. We apply both the PP-B and NPI-B methods to assess
RP and compare their performance. Since test reproducibility is a predictive inference
problem, the explicitly predictive nature of these methods provides an appropriate
framework for inferring RP. Simulation studies are conducted to compare the two
bootstrap methods for evaluating the RP of the one-sample t-test, as follows:

1. Apply the one-sample t-test to the original sample X of size n to obtain the value
of the test statistic, then decide whether or not the null hypothesis is rejected based
on this test value.

2. Draw a bootstrap sample of size n from the sample X and apply the same test to
obtain the decision of this test.

3. Perform Step 2 in total B times and record the test result each time whether the
null hypothesis is rejected or not.

4. The estimate of the RP is the ratio of B times in which the original sample and the
bootstrap samples have the same conclusion.

5. Perform all these steps N times to obtain RP values for both rejection and non-
rejection cases of the null hypothesis.

The one sided one-sample t-test is considered, H0 : μ = μ0 versus Ha : μ > μ0,
with level of significance α = 0.10. We simulate N = 50 samples of size n = 5 under
both H0 and Ha . The data are generated from the Normal distribution with a mean
of 0 under H0 and a mean of 0.5 under Ha , both with a standard deviation of 1. All
values of RP were determined based on the PP-B and NPI-B methods as described
above using B = 1000 bootstrap samples. For each N = 50 sample, the observed
test statistic and Bootstrap-RP were calculated. The same data sets for each sample
are used to compute the RP value of the one-sample t-test based on the two bootstrap
methods. It is important to emphasise that the bootstrap samples for each method have
the same size as the original sample. Figure1 presents the results of RP values using
the two bootstrap methods under H0 and Ha for samples of size n = 5.

We first examine the relationship between Bootstrap-RP and the test statistic for
the one-sample t-test in the simulations. The values of RP for the two methods tend
to increase when the test statistic moves away from the test thresholds, as expected,
regardless of the decision on H0. The worst-case scenario gives an RP of about 0.5
when the original test statistic is close to the test threshold. Without further informa-
tion, one would expect a repeat experiment to produce a second test statistic whose
value is equally likely to be larger or smaller than the original test statistic, and there-
fore, the same conclusion would be reached with a probability of 0.5. A repetition
of an experiment that had an original test statistic far away from the test threshold is
likely to produce a second test statistic that is also far away from the test threshold.
Therefore, the RP values tend to increase when the test statistic moves away from
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Fig. 1 Simulations under H0 and Ha : values of PP-B-RP and NPI-B-RP for one-sample t-test, where n = 5

the test thresholds. Simulation studies show that RP values based on PP-B have less
variability than NPI-B because of the parametric model assumed for PP-B. There is
a clear fluctuation observed in the values of RP based on NPI-B because this boot-
strap method does not assume a parametric model, and the sample size is quite small.
The fluctuation of RP values based on NPI-B is more visible when simulations are
conducted under Ha due to more cases of test statistics close to the test threshold.

We also compare PP-B-RP and NPI-B-RP in both cases when the null hypothesis
is rejected and not rejected. It is obvious that the PP-B-RP tends to be higher in cases
of rejection (red cases in the figures) than in cases of non-rejection (blue cases) when
the test statistic is close to the test threshold. Conversely, NPI-B-RP tends to be lower
in the case of rejection than in non-rejection when the test statistic is close to the test
threshold. The RP is computed by generating B bootstrap samples from the original
sample and then applying the one-sample t-test for each bootstrap sample. Thereafter,
the ratio of the B times that have the same decision as the original sample is the
RP value. In general, PP-B has a smaller variance compared to NPI-B due to the
assumption of a parametric model in PP-B. In the case of non-rejection, the PP-B-RP
tends to be lower due to the computed test statistic from PP-B samples tending to lie
in the rejection region. This occurs because PP-B samples lead to larger test statistic
values than NPI-B samples due to a smaller variance value in the denominator. Hence,
we obtain more cases that reject H0 due to a test statistic value being larger than the
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Fig. 2 Simulations under H0 and Ha : values of PP-B-RP andNPI-B-RP for one-sample t-test, where n = 15

test threshold. As a result, the PP-B-RP value tends to be lower in the case of non-
rejection compared to NPI-B-RP. In contrast, PP-B-RP tends to be higher in the case
of rejection than NPI-B-RP. It is the same reason in the case of non-rejection, where
we obtain more cases of the same decision of an original sample that does reject H0.

Additionally, we analyse the impact of increasing sample size on the patterns of
Bootstrap-RP values. The results of RP values based on the two bootstrap methods for
samples of size n = 15 under H0 and Ha are presented in Fig. 2. As the sample size
increases, the Bootstrap-RP value becomes closer to 0.5 when the observed test statis-
tics are close to the test threshold in both cases of rejection and non-rejection. Also,
the fluctuation in NPI-B-RP values is decreased when the sample size increases. The
power of the test is positively correlatedwith sample size, whichmeans a larger sample
size gives greater power. It is because a larger sample size narrows the distribution of
the test statistic, so the false null hypothesis can be distinguishedmore clearly from the
true null hypothesis. For simulations under Ha , increasing sample size leads to more
cases rejecting H0, which simply results from the test becoming more powerful with
a larger sample size. The pattern of RP values based on the two bootstrap methods
changes when simulations are performed under the alternative hypothesis, resulting
from changes in the observed test statistics with respect to the test threshold. Table 1
presents four samples close to the test threshold that reject and do not reject H0 with
sample sizes n = 5 and n = 15 for simulations under both the null and alternative
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Table 1 Simulation under H0 and Ha : values of RP of one-sample t-test using PP-B and NPI-B methods
with four observed samples of sizes n = 5 and n = 15

Sample Test statistic n Test threshold H0 PP-B-RP NPI-B-RP

(a) Under H0

1 1.588 5 1.533 R 0.613 0.528

2 1.551 R 0.589 0.441

3 1.221 NR 0.497 0.648

4 1.153 NR 0.525 0.645

1 1.382 15 1.345 R 0.536 0.508

2 1.377 R 0.533 0.483

3 1.333 NR 0.481 0.494

4 1.226 NR 0.478 0.546

(b) Under Ha

1 1.705 5 1.533 R 0.656 0.543

2 1.689 R 0.675 0.528

3 1.516 NR 0.442 0.563

4 1.449 NR 0.453 0.553

1 1.435 15 1.345 R 0.555 0.490

2 1.378 R 0.541 0.402

3 1.176 NR 0.529 0.567

4 1.126 NR 0.521 0.553

hypotheses. This table includes the observed test statistics, test thresholds, PP-B-RP
and NPI-B-RP. In the case of rejection, the PP-B-RP values tend to be higher than the
NPI-B-RP values. Conversely, the values of PP-B-RP seem to be lower compared to
the NPI-B-RP values in non-rejection cases. However, increasing n tends to reduce
the differences between PP-B-RP and NPI-B-RP.

5 Bootstrap-RP for the Two-Sample t-test andWelch’s t-test

The two-sample t-test is commonly used to compare the means of two populations and
is one of the most widely used statistical hypothesis tests. Known as the pooled vari-
ance t-test, it is applied when both samples meet the assumptions of normality, equal
variances, and independence, as it is a parametric test [44]. Given two independent
random samples, X1, X2, . . . , Xn ∼ N (μ1, σ

2) and Y1,Y2, . . . ,Ym ∼ N (μ2, σ
2),

with unknown common variance σ 2, the hypotheses of interest are: H0 : μ1 = μ2
against Ha : μ1 �= μ2, μ1 > μ2, or μ1 < μ2, depending on the test direction.

Under the assumption of equal variances and normality, the test statistic is:

T = x̄ − ȳ
√
s2p

( 1
n + 1

m

) ∼ tn+m−2
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where tn+m−2 is the Student’s t-distribution with n + m − 2 degrees of freedom, and
x̄, ȳ, s21 , s

2
2 are the means and variances of the two samples. The pooled variance is

defined as:

s2p = (n − 1)s21 + (m − 1)s22
n + m − 2

For a one-sided upper tail test H0 : μ1 = μ2 versus Ha : μ1 > μ2, we reject H0

if T > t (1−α)
n+m−2, where t

(1−α)
n+m−2 is the (1 − α)-th percentile of the t-distribution with

n + m − 2 degrees of freedom. For a one-sided lower tail test Ha : μ1 < μ2, we
reject H0 if T < t (α)

n+m−2. For the two-sided test Ha : μ1 �= μ2, we reject H0 if

|T | > t (1−α/2)
n+m−2 .

Welch introduced a version of the t-test for situations where the variances of two
samples are significantly different [42]. Welch’s t-test (also known as the unequal
variance t-test) is suitable for comparing the means of two populations with unequal
variances, assuming the samples are normally distributed. Let X1, X2, . . . , Xn ∼
N (μ1, σ

2
1 ) andY1,Y2, . . . ,Ym ∼ N (μ2, σ

2
2 )be two independent samples fromnormal

populations with unequal variances. The test statistic is:

T = x̄ − ȳ
√

s21
n + s22

m

∼ tv

where the degrees of freedom v are approximated by:

v = (s21/n + s22/m)2

(
s21
n

)2

/(n − 1) +
(

s22
m

)2

/(m − 1)

Unlike the Student’s t-test, which assumes equal variances and estimates a pooled
variance, Welch’s t-test accounts for unequal variances. The degrees of freedom for
Welch’s test are typically smaller than those for the Student’s t-test, making it more
conservative [22].

The null hypothesis H0 is rejected in favour of the one-sided upper tail test Ha :
μ1 > μ2 at significance level α if T > t (1−α)

v , where t (1−α)
v is the (1−α)-th percentile

of the Student’s t-distribution with v degrees of freedom. For the one-sided lower tail
test Ha : μ1 < μ2, reject H0 if T < t (α)

v . For the two-sided test Ha : μ1 �= μ2, reject
H0 if |T | > t (1−α/2)

v .
In this section, we examine the reproducibility (RP) of the two-sample t-test under

the assumption of equal variances for both samples and compare it to Welch’s t-test
when the variances differ. While Student’s t-test and Welch’s t-test yield the same t-
value, degrees of freedom, and p-valuewhen sample sizes and variances are equal [21],
differences in variances and/or sample sizes lead to variations in these metrics. The
key distinction that led to the development of Welch’s t-test is its accommodation of
unequal variances and sample sizes. In such cases, the t-value remains the same, but
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the degrees of freedom and p-value differ. While Welch’s t-test can be extended to
more than two samples [43], we focus on the two-sample case with equal sample sizes.
To evaluate the performance of the two bootstrap methods for RP in the two-sample
t-test, we conduct simulation studies as follows:

1. Apply the t-test on the two original samples with equal sample sizes n, X and
Y to obtain the value of the test statistic, then draw a conclusion about the null
hypothesis for this test, whether it is rejected or not.

2. Draw a bootstrap sample of size n from sample X and a bootstrap sample of size
n from sample Y . Apply the two-sample t-test to these two bootstrapped samples
to obtain the test conclusion.

3. Perform Step 2 in total B times and record the test outcome each time whether or
not the null hypothesis is rejected.

4. The ratio of B times that the two original samples and these two bootstrap samples
have the same conclusion is the estimate of the RP.

5. Perform all these steps N times to obtain RP values for both rejection and non-
rejection cases of the null hypothesis.

We first investigate the RP for the two-sample t-test when the variances of the two
normally distributed populations are assumed to be equal. The two-sided two-sample
t-test is considered, H0 : μ1 = μ2 versus Ha : μ1 �= μ2, and level of significance
α = 0.10.We simulate two samples of size n = 5 under H0 in total N = 50 times. The
data are generated for the two original samples from the sameNormal distributionwith
mean 2 and standard deviation 1. The RP value for the two-sample t-test is computed
based on the two bootstrap methods as demonstrated above using B = 1000 bootstrap
samples. The observed test statistic and Bootstrap-RP were determined for each of
N = 50 samples. Also, we study the impact of increasing sample size to n = 20 on
Bootstrap-RP values for the two-sample t-test. It is important to emphasise that the
same data sets are used to compute the RP values for the two-sample t-test based on
PP-B and NPI-B. The results of RP values based on the PP-B and NPI-B methods
with samples of size n = 5, 20 under H0 are presented in Fig. 3.

The values of RP for both methods tend to increase as the test statistic moves away
from the test thresholds, regardless of the decision on H0. It is expected and rational,
as discussed in Sect. 4. Increasing the size of samples leads to PP-B-RP and NPI-B-RP
becoming close to 0.5 in both cases of rejection and non-rejection when the observed
test statistics are close to the test thresholds. Also, the values of NPI-B-RP fluctuate
narrowly as the sample size increases. These results happen with increasing the size of
samples due to the decrease in the variability of the bootstrap samples and the increase
in the power of the test. Simulation studies show that values of PP-B-RP have less
variability than NPI-B-RP values, mainly when the sample size is small, due to the
parametric model assumed for PP-B.

There is a tendency for PP-B-RP to be higher in cases of rejection than in non-
rejection,whereasNPI-B-RP seems to be lower in cases of rejection thannon-rejection.
The reason for this is that the sample variance is included in the denominator of the
test statistic for the two-sample t-test. The variance of PP-B is generally less than
NPI-B due to the assumption of a parametric model in PP-B. For the upper tail test,
PP-B samples lead to larger test statistic values than NPI-B samples due to a smaller
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Fig. 3 Simulations under H0: values of PP-B-RP and NPI-B-RP for two-sample t-test, where n = 5, 20

variance value in the denominator. Therefore, the PP-B-RP tends to be lower in non-
rejection cases due to the computed test statistic from PP-B samples tending to lie in
the rejection region. Conversely, PP-B-RP tends to be higher in the case of rejection
than NPI-B-RP because we obtain more cases that reject H0. It is similar to what
was discussed in Sect. 4 for the upper tail one-sample t-test. We can observe a similar
impact on patterns of RP values based on PP-B and NPI-B for the lower tail test. It
is important to note that the lower tail two-sample t-test has negative values, which
implies that PP-B samples lead to smaller test statistic values compared to NPI-B
samples. Hence, we obtain a similar result to the upper tail test for PP-B-RP and
NPI-B-RP.

Now, we consider the RP of the two-sample t-test when both samples are normally
distributed with unequal variances. The procedure for determining the RP of Welch’s
t-test follows the same steps as for the two-sample t-test, except that we draw two
original samples from Normal distributions with different standard deviations. Two
samples of size n are simulated from two Normal distributions with different standard
deviations,σ1 = 1 andσ2 = 2, but bothwithmean 2.A critical value of the test statistic
forWelch’s t-test is computed using the degrees of freedomwhich are randomvariables
dependent on the size and variance of the sample. Therefore, we use the p-value for
better visualization of figures rather than the critical value because each simulated
sample has a different critical value even though all samples have the same size. The
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Fig. 4 Simulations under H0: values of PP-B-RP and NPI-B-RP for Welch’s t-test, where n = 5, 20

p-values and critical values are two different approaches that lead to the same result
regarding whether the null hypothesis is rejected or not. Figure4 shows the results
of RP values for Welch’s t-test using the two bootstrap methods with samples of size
n = 5, 20 under H0.

The values ofRP for bothmethods tend to increasewith increasing distance between
the observed p-value and the test threshold, whatever the H0 decision. We observe
similar results as for the two samples with the Student’s t-test presented before in
this section. The parametric model assumed for PP-B results in lower variability of
PP-B-RP values than NPI-B-RP values, especially when the sample size is small.
The PP-B-RP seems to be greater in rejection cases than in non-rejection. In contrast,
NPI-B-RP tends to be lower in the case of rejection compared to non-rejection. As the
sample size increases, PP-B-RP and NPI-B-RP become closer to 0.5 in both cases of
rejection and non-rejection when the observed p-value is close to the test threshold.
The fluctuation in NPI-B-RP values is reduced with the increasing size of samples.

6 Bootstrap-RP for the F-test

The F-test for equality of variances tests the null hypothesis that the variances of
two normal samples are equal. It is based on the ratio of the two sample variances,
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hence known as the F-ratio test. The F-test assumes normality for both samples and
when this assumption is in doubt, alternative tests for variance comparison should
be used [31]. Like the two-sample t-test and Welch’s t-test, the F-test requires nor-
mality. Let X1, X2, . . . , Xn ∼ N (μ1, σ

2
1 ) and Y1,Y2, . . . , Ym ∼ N (μ2, σ

2
2 ) be two

independent random samples from normal populations. The hypotheses are:

H0 : σ 2
1 = σ 2

2 versus Ha : σ 2
1 �= σ 2

2 , Ha : σ 2
1 > σ 2

2 , Ha : σ 2
1 < σ 2

2

The test statistic is F = s21/s
2
2 ∼ Fn−1,m−1, where Fn−1,m−1 is the F-distribution

with n−1 andm−1 degrees of freedom. For a two-sided test, reject H0 at significance
level α if F < F (α/2)

n−1,m−1 or F > F (1−α/2)
n−1,m−1. For one-sided tests, reject H0 if F >

F (1−α)
n−1,m−1 for Ha : σ 2

1 > σ 2
2 , and if F < F (α)

n−1,m−1 for Ha : σ 2
1 < σ 2

2 .
This section studies the RP of the F-test using two bootstrap methods. The two-

sample t-test requires random sampling from two normal populations with equal
variances, while Welch’s t-test applies to unequal variances. The F-test assesses the
assumption of equal variances between two normal populations, guiding the choice
between a two-sample t-test andWelch’s t-test. A normal data distribution is necessary
for these parametric tests. The two-sided F-test is considered, H0 : σ 2

1 = σ 2
2 versus

Ha : σ 2
1 �= σ 2

2 , and the level of significance is α = 0.10. Simulation studies are
conducted to evaluate the performance of the two bootstrap methods for RP of the
F-test by following the same steps as for the two-sample t-test in Sect. 5. We simulate
two samples of size n = 5 under both H0 and Ha a total of N = 50 times. Under
H0, we generate data for the two original samples from the same normal distribution
with a mean of 0 and a standard deviation of 1. Under Ha , we generate data from the
two normal distributions with different standard deviations, σ1 = 1 and σ2 = 1.5,
but both with the same mean of 0. For each of the N = 50 samples, the observed
test statistic and Bootstrap-RP were determined. It is important to note that the same
data sets are used to compute the RP values for the F-test based on the two bootstrap
methods, each with B = 1000 bootstrap samples. Additionally, the bootstrap samples
for each method are the same size as the original sample. Figure5 shows the results
of RP values using PP-B and NPI-B methods under H0 and Ha for samples of size
n = 5.

The Bootstrap-RP values tend to be higher at the lower test threshold for both
rejection and non-rejection cases, as the impact of the F-test follows an F-distribution
with small degrees of freedom. The simulations were performed by sampling under
the alternative hypothesis due to more cases of test statistics being close to the lower
test threshold. This helps us observe how the bootstrap methods perform for the RP
of the F-test as test statistics become closer to the lower test threshold. The PP-B-RP
becomes close to 0.5 in both cases of rejection and non-rejection when the observed
test statistics are very close to the lower test threshold. The NPI-B-RP is substantially
below 0.5 in some cases of non-rejection when test statistics are very close to the
lower test threshold. The parametric model assumed for PP-B reduces the variability
of RP values, as shown in simulation studies. The RP value based on NPI-B fluctuates
clearly because a parametric model is not assumed in this bootstrap method.
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Fig. 5 Simulations under H0 and Ha : values of PP-B-RP and NPI-B-RP for F-test, where n = 5

A larger sample size is considered to study the effect of increased sample size on
Bootstrap-RPvalues for the F-ratio test. Figure6 presents the results ofRPvalues using
the PP-B and NPI-B methods for samples of size n = 30 under H0 and Ha . As the
size of the samples increases, the pattern of RP values changes under both the null and
alternative hypotheses. We observe a change in the pattern of the RP values obtained
through simulations under H0 as the impact of the F-test follows F-distribution with
larger degrees of freedom. Increasing the size of the samples leads to an increase in the
power of the test, soweobtainmore cases rejecting H0 when simulations are performed
by sampling under the alternative hypothesis. Simulations under Ha show changes in
the pattern of the RP values due to changes in the observed test statistics in relation to
the test threshold, as well as the effects of the F-test following the F-distribution with
larger degrees of freedom. It is noteworthy that the variability of NPI-B-RP values is
not reduced by increasing the size of the samples. Figure7 presents additional results
for the NPI-B-RP of the F-test, indicating substantial fluctuations even as sample sizes
increase (n = 40, 60, 80, 120, 140). The NPI-B method exhibits greater variability
than the PP-Bmethod, as it does not rely on a parametric model. As a result, NPI-B-RP
fluctuations for the F-test do not decrease with larger sample sizes, as the test statistic
is merely the ratio of two sample variances.
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Fig. 6 Simulations under H0 and Ha : values of PP-B-RP and NPI-B-RP for F-test, where n = 30

7 NPI-RP and Bootstrap-RP for the Likelihood Ratio Test

In this section, we study the RP of the likelihood ratio tests using the bootstrap method
to compare it with the NPI-RP. The reproducibility probability of a test based on the
NPI approach (NPI-RP) considers the test result for a predicted future sample of the
same size as the original sample. Thismethod is described in detail in Sect. 2. The exact
NPI lower and upper reproducibility can only be computed for small data sets. Coolen
and Marques [14] propose an alternative computational method to approximate NPI-
RP for larger sample sizes via sampling of future orderings instead of considering all
different possible orderings. They introduced sampling of orderings for the likelihood
ratio test to overcome computational difficulties. In our work, we do not compute
lower and upper reproducibility probabilities for the tests because it is hard to derive
the minimum and maximum values of some test statistics, such as the test statistic
of the t-test, which depend on both the sample mean and variance. However, we can
construct the confidence interval for the single value of Bootstrap-RP using formula
p̂ ± z(1−α/2)

√
p̂(1 − p̂)/n, where the proportion p̂ is the predictied Bootstrap-RP

value. Here, we investigate whether or not the Bootstrap-RP tends to provide a value
within the lower and upper NPI-RP.

Coolen and Marques [14] introduced sampling of future orderings for likelihood
ratio tests with the test criterion in terms of the sample mean. The likelihood ratio
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Fig. 7 Simulations under H0: values of NPI-B-RP for F-test

test in the following test criterion involves the mean of the observed values. The null
hypothesis H0 is considered with a one-sided alternative hypothesis, H0 : μ ≤ μ0 vs
Ha : μ > μ0, leading to the test criterion, H0 being rejected if and only if

1

n

n∑

i=1

xi > c (1)
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where c is dependent on the significance level of the test and the assumed statistical
model.

We cannot derive a precise value for the mean of a specific ordering Oj of the
n future observations in the NPI approach because we do not assume precise values
within the intervals (x(i−1), x(i)). Therefore, the maximum lower bound andminimum
upper bound for the mean corresponding to Oj can only be derived, which are denoted
by m j and m j , respectively. These are derived as follows

m j = 1

n

n+1∑

i=1

s ji x(i−1) (2)

m j = 1

n

n+1∑

i=1

s ji x(i) (3)

Suppose that the original data sample of size n led to the rejection of H0, so its
mean exceeds c. In this case, the test result is reproduced if the future sample also
rejects H0. This occurs certainly for ordering Oj if m j > c, while it certainly does
not occur ifm j ≤ c. However, we are unable to decide whether or not the original test
result is reproduced if m j ≤ c < m j . The NPI lower and upper probabilities for test
reproducibility are derived for the case that the original data reject H0 as

RP =
(
n + m

n

)−1∑

j

1{m j > c} (4)

RP =
(
n + m

n

)−1∑

j

1{m j > c} (5)

where j = 1, . . . ,
(n+m

n

)
and 1{A} is the indicator function which is equal to 1 if A is

true and 0 else.
The same arguments apply when the original data do not lead to the rejection of the

H0, allowing us to derive the NPI lower and upper probabilities for test reproducibility
as

RP =
(
n + m

n

)−1∑

j

1{m j ≤ c} (6)

RP =
(
n + m

n

)−1∑

j

1{m j ≤ c} (7)

The decision rule may be expressed with the test criterion in terms of the sample
mean X for the likelihood ratio test as test criterion (1),which rejects the null hypothesis
for a significance level α if

X > q(1−α) (8)
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where q(1−α) is the (1 − α) quantile of X . It is well known that for independent and
identically distributed Xi ∼ N (μ, σ 2), i = 1, . . . , n, the distribution of the mean is
X ∼ N (μ, σ 2/

√
n).

We consider likelihood ratio tests for the mean value underlying the Normal pop-
ulation. For distributions with infinite range, we have to define bounds of possible
values for the future observations, which we denote by x(0) = L and x(n+1) = R. It is
obvious that we must assume values L < x(1) and x(n) < R such that the observations
are within this range [L, R], where L and R can depend on the actual data observa-
tions. For n data observations x1 < x2 < . . . < xn , the lower and upper limits may be
defined as L = x(1) − x(n)−x(1)

n−1 and R = x(n) + x(n)−x(1)
n−1 .

We simulated N = 50 samples of size n = 25 from the Normal distribution
with mean 2 and standard deviation 3 under H0. We approximate NPI-RP for larger
sample sizes via sampling of orderings instead of considering all different possible
orderings. To achieve reasonable results, Coolen and Marques [14] suggest that the
number of orderings sampled should be at least 2000. Considering the number of
orderings sampled equal to 2000, the upper and lower RP for each of N = 50 samples
were calculated based on the decision rule given in (8) with the level of significance
α = 0.10. The NPI lower and upper reproducibility probabilities are calculated for
rejection cases using Equations (4) and (5). In the case of non-rejection, we compute
the NPI lower and upper reproducibility probabilities using Equations (6) and (7). We
investigate whether or not the Bootstrap-RP methods tend to provide values that fall
within the lower and upperNPI-RP for the likelihood ratio test. TheRP for each of N =
50 samples was computed based on the PP-B and NPI-B methods using B = 1000
bootstrap samples. For each simulated sample, we compute RP values based on the
bootstrap method and repeat the procedure 100 times, so we obtain RP1, . . . , RP100.
Then, we examine whether these values are between the corresponding lower and
upper NPI-RP results. The same simulated samples are used to compute the RP values
of the likelihood ratio test based on different bootstrap methods and NPI-RP. The
observed likelihood ratio statistic, Bootstrap-RP, and NPI-RP were determined for
each of the N = 50 samples.

Figure 8 presents RP values using different bootstrap methods and NPI-RP under
H0 for samples of size n = 25. The minimum, mean and maximum values of 100
Bootstrap-RP for each simulated sample are computed. The boxplots of RP are dis-
played for both rejections and non-rejections based on the mean of PP-B-RP and
NPI-B-RP, as well as the lower and upper NPI-RP. We found 90% of PP-B-RP values
and 88% of NPI-B-RP values are included in the bounds of NPI-RP. We conclude
that both PP-B-RP and NPI-B-RP results are consistent with NPI-RP because most
of these values are located in the corresponding NPI-RP boundaries. The PP-B-RP
and NPI-B-RP are in line with NPI-RP in terms of investigating test reproducibility
as a prediction problem rather than an estimation problem. Further simulations were
performed under Ha , which led to similar results as the case presented under H0.

The two-sided for the likelihood ratio test, H0 : μ = μ0 vs Ha : μ �= μ0, may
be implemented in a similar procedure. The test criterion based on sample mean is to
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Fig. 8 Simulations under H0: values of PP-B-RP, NPI-B-RP, and NPI-RP for likelihood ratio test, where
n = 25

reject the null hypothesis at a significant level if

X < q(α/2) ∨ X > q(1−α/2) (9)

where q(α/2) and q(1−α/2) are the (α/2) and (1 − α/2) quantile of X .
Theminimum upper bound andmaximum lower bound for themean corresponding

to Oj remain unchanged as in Equations (2) and (3), respectively. In the case of a two-
sided test, the NPI lower and upper probabilities are different because they need to
account for the two rejection regions. If the original data reject H0, then the lower and
upper RPs are derived as follows.

RP =
(
n + m

n

)−1∑

j

1{m j > q(1−α/2) ∨ m j < q(α/2)} (10)

RP =
(
n + m

n

)−1∑

j

1{m j > q(1−α/2) ∨ m j < q(α/2)} (11)
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Fig. 9 Simulations under H0: values of PP-B-RP, NPI-B-RP, and NPI-RP for likelihood ratio test, where
n = 25

If the original data does not lead to rejecting the null hypothesis, we have

RP =
(
n + m

n

)−1∑

j

1{m j > q(α/2) ∧ m j < q(1−α/2)} (12)

RP =
(
n + m

n

)−1∑

j

1{m j > q(α/2) ∧ m j < q(1−α/2)} (13)

We have simulated N = 50 samples of size n = 25 from the Normal distribution
with mean 2 and standard deviation 3 under H0. For each case, we compute the lower
and upper RPs for the two-sided test based on the decision rule given in (9) with the
significance level α = 0.10 by considering the number of orderings sampled equal
to 2000. The lower and upper reproducibility probabilities of the NPI are computed
for rejection cases using Equations (10) and (11). In the case of non-rejection, we
calculate the NPI lower and upper reproducibility probabilities based on Equations
(12) and (13). The same simulated samples are used to compute the RP values based
on the bootstrap and NPI methods. We compute RP values for the two-sided test based
on the bootstrap method and repeat the procedure 100 times for each simulated sample
as we did with the one-sided test. Figure9 shows RP values for the likelihood ratio test
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with the two-sided alternative using different bootstrap methods and NPI-RP under
H0 for samples of size n = 25. For each simulated sample, the minimum, mean, and
maximum Bootstrap-RP values are computed. The boxplots of RP are shown in both
cases of rejection and non-rejection based on the mean of PP-B-RP and NPI-B-RP,
along with the lower and upper NPI-RP. All values of PP-B-RP and NPI-B-RP are
included in the bounds of NPI-RP, indicating that these bootstrap methods align with
the reproducibility probability based on the NPI approach. Further simulations were
performed under Ha , yielding results similar to those of the case presented under H0.

8 Conclusions and FutureWorks

In this paper, we present the PP-B method for the reproducibility of some parametric
tests. We also provide a comparison through simulation studies with a similar pre-
dictive bootstrap method for test reproducibility, NPI-B. Test reproducibility is more
naturally considered a prediction problem than an estimation problem. The explicit
predictive nature of PP-B and NPI-B, which consider future observations, aligns well
with the nature of test reproducibility. The reproducibility of tests has been studied
using the PP-B and NPI-B methods via simulation studies. The RP values obtained
with PP-B have less variability than those obtained with NPI-B, as a result of using an
assumed parametric model for PP-B. Increasing sample size reduces the fluctuation
of NPI-B-RP values because bootstrap samples become less variable and the power
of the test increases. However, the variability of NPI-B-RP values for the F-test is not
reduced with increasing sample sizes because the test statistic for the F-test is calcu-
lated using only the ratio of two sample variances. We consider PP-B and NPI-B for
the reproducibility of some parametric tests, but they can be applied to a wide range
of parametric statistical tests.

The use of the bootstrap to predict RP avoids the hard calculations of the lower and
upper boundaries in NPI-RP, and it offers a flexible approach when considering large
sample sizes. The Bootstrap-RP uses the point estimate to present the RP instead of
the lower and upper values of NPI-RP, but we can construct the confidence interval
for the single value of Bootstrap-RP. We explore whether the RP values using PP-
B and NPI-B tend to be between the lower and upper NPI-RP for the likelihood
ratio test. The predicted values of PP-B-RP and NPI-B-RP for the likelihood ratio
test are mostly included within the bounds of NPI-RP, indicating that these bootstrap
methods are consistent with the NPI-RP approach. The PP-B-RP, NPI-B-RP, and
NPI-RP consider test reproducibility from a predictive standpoint, which provides an
appropriate formulation for inferring the RP of a test. It seems logical and natural
to study the RP of a test with the same sample sizes and significance level as in the
actual test. Senn [38] discussed how circumstances in the real world may vary among
different tests, including sample sizes. The bootstrap method for the reproducibility of
tests can be extended to consider future sample sizes that differ from the data sample
size or to use varying levels of statistical significance. However, employing the same
sample sizes and significance levels as in the actual test is logical from the perspective
of theoretical reproducibility, particularly within a frequentist statistical framework.
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