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A B S T R A C T

The objective of this study is to develop and validate a comprehensive multi-objective optimization approach for 
energy management and trading in microgrids, with a particular focus on the integration of Distributed Energy 
Resources (DERs) and Electric Vehicles (EVs). As the demand for sustainable and smart energy solutions in-
creases, the development of robust Energy Management Systems (EMS) that optimize energy flows while 
ensuring efficiency, reliability, cost-effectiveness, and sustainability becomes crucial. In this work, we propose an 
advanced EMS that employs an enhanced Particle Swarm Optimization (PSO) technique to address the com-
plexities of optimal energy scheduling, cost minimization, revenue maximization, battery health preservation, 
and EV users satisfaction. Additionally, our EMS incorporates demand response (DR) mechanisms while 
considering dynamic pricing strategies to enhance operational efficiency and adaptability. This methodology is 
rigorously validated through a case study at the Green Energy Park (GEP) in Morocco, serving as a practical 
testbed for real-world applications. The results of this study demonstrate that the proposed EMS strategy can 
reduce net costs by up to 42 % compared to a baseline scenario while simultaneously optimizing renewable 
energy utilization and enhancing EV users’ satisfaction. The findings elucidate significant trade-offs and provide 
insights into the multi-dimensional decision-making processes essential for effective microgrid management. 
This research contributes to advancing the development of sustainable energy systems and offers a robust 
framework for future investigations focused on microgrid optimization.

Nomenclature
ACRONYMS
AC Alternative Current FL Flexible Loads
ATP Arrival-time-based Priority G2V Grid-to-Vehicle
ASAPSO PSO with Adaptive 

Simulated Annealing
GEP Green Energy Park

BESS Battery Energy Storage 
System

GSA Gravitational Search 
Algorithm
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BPSO Binary Particle Swarm 
Optimization

kW Kilowatts

CBMO Converged Barnacles 
Mating Optimizer

kWp Kilowatts-peak

CMDP Constrained Markov 
Decision Process

MAD Moroccan Dirhams

CCP Chance-Constrained 
Programming

MOPSO Multi-objective Particle 
Swarm Optimization
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(continued )

CL Critical Loads MPC Model Predictive Control
CPP Critical Peak Pricing NSGA Non-dominated Sorting 

Genetic Algorithm
DC Direct Current MOEA Multi-objective Evolutionary 

Algorithm
DERs Distributed Energy 

Resources
PSO Particle Swarm Optimization

DSM Demand-Side Management RTP Real-time Pricing
EDM Energy Demand 

Management
SBP SOC Based Priority

EMS Energy Management 
System

SOC State-of-Charge

ESS Energy Storage System ToU Time-of-Use
EVs Electrical Vehicles V2G Vehicle-to-Grid

1. Introduction

This first section presents the need for efficient energy management 
in microgrids, emphasizing the integration of Distributed Energy Re-
sources (DERs) and Electric Vehicles (EVs). It highlights the challenges 
of optimizing energy flows, managing battery health, and adapting to 
dynamic energy demands. The research proposes a novel Energy Man-
agement System (EMS) designed to address these challenges using 
advanced optimization techniques. The introduction also outlines the 
study’s objectives and summarizes the paper’s structure.

1.1. Background and motivations

As the global energy landscape transitions towards sustainability and 
decentralization, the demand for efficient energy management within 
microgrids has become increasingly urgent. EMS play a crucial role in 
optimizing the integration of DERs to ensure reliable, cost-effective, and 
sustainable operations in modern energy systems [1]. Microgrids, which 
can operate both in grid-connected and islanded modes, offer a practical 
solution to the challenges posed by the variability of renewable energy 
sources, such as solar and wind, and the unpredictable nature of loads, 
such as EVs [2]. By integrating DERs, microgrids can enhance the sta-
bility and resilience of energy systems. EMS in these systems manages 
load balancing, energy storage dispatch, and the overall coordination of 
energy networks to achieve key objectives such as cost reduction, 
improved grid quality, and maximized utilization of renewable energy 
resources [3].

1.2. Problem statement

The variable charging behaviors of EVs, coupled with fluctuating 
renewable energy generation, necessitate the development of robust 
EMS that can optimize the microgrid power flows. The integration of 
DERs and EVs into the power grid creates complex interactions between 
energy supply, demand, and storage, which need to be dynamically 
managed to ensure not supply reliability, economic dispatch and envi-
ronmental sustainability.

1.3. Research objectives and methodology

The motivation for this research stems from the need to address the 
challenges of integrating DERs and EVs while maximizing the benefits of 
renewable energy sources. By developing a flexible, scalable EMS for 
grid-connected microgrids, this paper aims to contribute to the decar-
bonization of the energy sector and enhance the overall efficiency and 
reliability of the power grid.

The main objective of this research is the development of an 
advanced EMS designed specifically for grid-connected microgrids, 
integrating DERs and EVs. Unlike some existing approaches, this work 
offers several key contributions: 

• The proposed EMS can handle various optimization targets, 
including minimizing grid import costs, optimizing net energy costs 
through feed-in tariffs, reducing battery degradation, and enhancing 
EV user satisfaction. Each of these targets has been simulated under 
real-world conditions, showing the EMS’s flexibility in adapting to 
multiple operational objectives.

• Our approach leverages real-time and forecasting data for both en-
ergy demand and supply management. This capability allows the 
EMS to make proactive decisions, enhancing operational efficiency.

• By incorporating demand response (DR) mechanisms, our EMS can 
dynamically adjust demand schedules and optimize energy dispatch 
in response to both dynamic tariffs and renewable generation 
availability to maximize the use of renewable energy, avoid grid 
congestion, and optimize cost savings for end-users.

• Our EMS has the ability to optimize energy trading between the 
microgrid components and the grid, strategically exporting energy 
during high-tariff periods.

• The proposed EMS incorporates strategies to minimize battery 
degradation by smoothing the battery’s charge and discharge cycles.

• Our comprehensive real-world case study incorporates six different 
scenarios, including a baseline (no optimization) as a reference, 
demonstrating the EMS’s adaptability and effectiveness across 
diverse operational goals. The findings provide valuable insights into 
the multi-dimensional decision-making process required for smart 
microgrid management.

1.4. Outlines of the paper

The structure of this paper is organized as follows: Section 2 provides 
a comprehensive literature review and discusses related works, high-
lighting existing EMS in microgrids and identifying research gaps 
addressed by this study. Section 3 presents the methodological frame-
work, detailing the architecture and design of the EMS for grid- 
connected microgrids. Section 4 describes the microgrid model, 
including the load, power grid, and DERs such as PV, BESS, and EVs. 
Section 5 formulates the multi-objective optimization problem, focusing 
on minimizing grid import costs, maximizing renewable energy utili-
zation, reducing battery degradation, and ensuring EV user satisfaction. 
Section 6 outlines the EMS algorithm design, emphasizing the enhanced 
Particle Swarm Optimization (PSO) technique for real-time, dynamic 
energy management. Section 7 presents a case study of the Green Energy 
Park (GEP) microgrid, where the EMS is validated under six different 
scenarios, demonstrating its effectiveness and adaptability. Finally, 
Section 8 summarizes the key findings and contributions of this research 
while suggesting potential future directions.

2. Literature review

A comprehensive analysis by Abbasi et al. [3] underscores the 
importance of EMS in managing the unpredictability of renewable en-
ergy generation and fluctuating demand, particularly in microgrids. 
Effective EMS solutions often involve advanced control strategies and 
real-time decision-making processes. Several approaches have been 
proposed to improve EMS in both grid-connected and islanded micro-
grids, including demand response (DR) mechanisms, energy storage 
system (ESS) control, and distributed generation management [4]. 
These strategies have proven to enhance the operational efficiency of 
microgrids by enabling flexible and dynamic responses to changing 
energy needs.

Despite these advancements, significant challenges remain in the 
development of reliable, cost-effective, and scalable EMS strategies that 
can be applied across diverse microgrid configurations. Various EMS 
control strategies, including centralized, decentralized, and distributed 
approaches, have been introduced in recent years, each offering distinct 
advantages and limitations depending on the scale and architecture of 
the microgrid [5]. Centralized EMS configurations rely on a central unit 
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to manage all DERs and energy flows, optimizing performance across the 
entire system [6]. However, this requires a sophisticated communication 
infrastructure, which may not be feasible for larger, more geographi-
cally distributed systems. In contrast, decentralized and distributed 
control methods allow local controllers to manage individual sub-
systems, improving flexibility and scalability [7]. However, these 
methods often struggle to achieve coordinated, system-wide optimiza-
tion, particularly in the face of fluctuating grid conditions [8].

The implementation of EMS in larger or more complex microgrids 
can be prohibitively expensive due to the high costs associated with 
communication, computational infrastructure, and ongoing mainte-
nance. Additionally, issues such as load forecasting, peak shaving, and 
real-time energy dispatch remain areas for further refinement, as EMS 
must contend with the inherent variability of renewable energy sources 
and dynamic demand patterns [9]. As the global shift towards decen-
tralized energy systems continues, addressing the challenges of scal-
ability and cost-effectiveness in EMS will be critical to ensuring that 
these strategies can be deployed effectively across a wide range of 
microgrid applications [3].

The integration of EVs into microgrids offers new opportunities to 
enhance EMS performance. The synergy between EV integration and 
EMS represents a significant advancement in microgrid optimization, 
allowing for more efficient use of renewable energy resources while 
reducing reliance on conventional energy sources [10].

Furthermore, switching from combustion engines toward EVs has 
gained significant interest as a viable solution, mainly driven by its 
promise to enhance energy security and reduce greenhouse gas emis-
sions for future energy systems [11]. Furthermore, EVs can contribute to 
the bidirectional flow of power to the grid [12]. This in turn has a sta-
bilizing impact on the grid, although the full potential of this strategy is 
not exploited when used to compensate for fluctuations [13].

EVs can be incorporated into the operational strategies of microgrids, 
as essential components of distributed energy. Consequently, many re-
searchers are interested in developing optimal strategies for managing 
the charging and discharging behavior of electric vehicles as part of 
microgrid scheduling. The authors of the article [14] have carried out a 
literature review of recent technical and economic aspects of electric 
vehicle charging management taking into account V2G. Another review 
study is presented in [15], exploring the issues, solutions, and challenges 
involved in integrating electric vehicles into energy demand manage-
ment (EDM). In particular, it discusses how to optimize this integration 
(EV-DSM) and to improve its efficiency. Authors in [16] analyze the 
interaction between microgrids and the electrification of transport. They 
outline the management strategies and challenges associated with 
microgrid and electric vehicle (EV) technologies.

Therefore, a growing number of researchers are investigating mul-
tiple strategies for the optimal scheduling of microgrids involving EVs. 
In the referenced study [17], the V2G scheduling problem is conceptu-
alized as a Constrained Markov Decision Process (CMDP) to optimize the 
overall operational costs of the microgrid. Considering the electric ve-
hicles as mobile storage, the study also envisages limiting the duration of 
the planned cycles to encourage active participation by EV users. The 
authors in [18], have developed a programmable model for a fleet of 
EVs, using the Minkowski sum, aimed at minimizing the random access 
of an EV to power system operation. In [19], an optimal energy sched-
uling method using multiple agents has been developed for microgrids. 
This approach aims to reduce the total costs associated with domestic 
energy consumption and electric vehicle charging, taking into account 
both market tariffs and battery degradation costs. In [20], the research 
presents an optimal scheduling model using chance-constraint pro-
gramming (CCP). Under various renewable energy uncertainties, the 
model integrates the charging properties of electric vehicles, demand 
response and carbon emissions. In [21], a stochastic operation model 
has been developed for a microgrid integrating renewable energies and 
EVs, using an uncentered transformation-based approach to optimize 
operating costs. The problem is solved with the Converged Barnacles 

Mating Optimizer (CBMO) algorithm, demonstrating its effectiveness in 
energy resource management.

Most of research studies have considered multiple objective func-
tions for optimizing microgrid dispatching results. Authors in [22], 
present a comprehensive review of multi-objective optimization algo-
rithms applied to a hybrid AC/DC microgrid powered by renewable 
energies. Moreover, the authors in [23] propose a multi-objective opti-
mization method for hybrid renewable energy systems for electric 
vehicle (EV) charging stations. The approach takes into account eco-
nomic aspects, reliability and seasonal fluctuations of both energy 
consumption and production. The performance of four algorithms, 
MOPSO, NSGA-II, NSGA-III and MOEA/D, has been analyzed. In [24], 
the authors have designed a multi-objective optimization model aimed 
at improving the economic and environmental performance of a 
microgrid comprising electric vehicles. This model was solved using the 
ASAPSO (Particle Swarm Optimization with Adaptive Simulated 
Annealing) algorithm. By regulating the charging and discharging cycles 
of the electric vehicles, the model reduced the operating costs and 
environmental impact of the microgrid, thus improving its sustainability 
and economic efficiency. In this research [25], a multi-objective opti-
mization algorithm coupled with the fuzzy membership function 
method is used to optimize the management of a microgrid integrating 
electric vehicles and a transferable load. The simulations in this study 
also demonstrate that the orderly management of electric vehicle 
charging and discharging, as well as the integration of transferable load, 
significantly improve the cost, efficiency, and security of the microgrid’s 
economic operations. In [26], the work develops a model for optimal 
energy scheduling within microgrids integrating electric vehicles, 
employing an enhanced variant multi-objective particle swarm optimi-
zation (EV-MOPSO). The model aims to meet the economic objectives of 
EV users, by minimizing battery charging and degradation costs, as well 
as reducing overall microgrid operating costs over the long term. In 
[27], an energy management model for microgrids has been introduced, 
using multi-objective optimization that incorporates plug-in EVs. The 
model controls battery charge levels to avoid overcharging and uses an 
improved gray wolf algorithm to optimize the balance between capacity 
exploitation and exploration. The objective is to reduce fuel costs, 
operating expenses, and environmental impact. In [28], they developed 
a goal-programming-based multi-objective optimization problem. This 
model takes into account the degradation of energy storage systems, 
including batteries and electric vehicles, as well as load and renewable 
energy management. To solve this model, the weighted sum and priority 
approach methods are applied.

As the number of EVs increases, the temporal and spatial aspects 
become more complex, adding to the complexity of the model. Conse-
quently, the use of advanced optimization algorithms becomes essential 
for solving large-scale, complex problems [29]. Intelligent optimization 
algorithms are largely used in microgrid programming. In [30], a par-
ticle swarm optimization (PSO) has been introduced to solve the EV 
charging and discharging strategies optimization problem, to minimize 
operating costs. By exploiting EV energy data and real-time microgrid 
pricing, this approach significantly reduced operational costs and load 
on microgrids. In [31], a model for optimized management of electric 
vehicle charging and power distribution in microgrids has been devel-
oped. A hybrid scheme, combining the GSA and PSO algorithms and 
named MGSAPSO, was proposed to improve load distribution. Its 
effectiveness has been confirmed by analyses of different vehicle and 
load scenarios. In [32], an optimized electric vehicle charging sched-
uling algorithm is developed using particle swarm optimization (PSO) to 
minimize costs while respecting charging station constraints. Compared 
with conventional methods such as ATP (arrival-time-based priority) 
and SBP (SOC-based priority) algorithms, this approach, tested in a 
microgrid scenario, proves more effective in reducing energy con-
sumption and charging costs. In [33], an optimal scheduling method for 
household microgrids using a multi-objective particle swarm algorithm 
is proposed. This model, involving variable electricity tariffs and the 
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mobility behavior of electric vehicle users, aims to reduce daily elec-
tricity costs and stabilize energy supply. The findings show that this 
strategy is effective in reducing household energy costs. Authors in 
[34–47,48,49] explored various methodologies and approaches for 
Microgrids energy management and EVs integration.

3. Methodological framework

3.1. Research scope

This section defines the scope of our research, focusing on the design 
and development of an EMS for a grid-connected microgrid that in-
tegrates DERs, Battery Energy Storage System BESS, Electric Vehicles 
EVs and other critical loads. As depicted in Fig. 1, the EMS’s main 
function is to orchestrate the microgrid’s energy flows efficiently among 
the different components, ensuring reliability, cost-effectiveness, and 
sustainability [50].

From a systemic perspective, the EMS functions as the central control 
unit within the microgrid, interacting with various components and 
utilizing both real-time and forecasted data to perform optimization, 
scheduling, and control tasks. As shown in Fig. 2, the EMS is designed to 
operate seamlessly within this environment, ensuring efficient energy 
management across all microgrid systems and components.

To perform the decision-making process, the EMS executes the 
following core functions: Forecasting, Optimization, Scheduling, and 
Control, as illustrated in Fig. 3. These functions ensure the efficient 
operation of the microgrid by managing the energy flows between 
generation, storage, and consumption based on historical, real-time and 
forecast data.

However, the scope of this paper is limited to the optimization and 
scheduling functions. Our research focuses on developing and evalu-
ating the optimization strategies that maximize economic and technical 
objectives, while ensuring a cost-effective energy dispatch and a well- 
managed interaction with the grid. Forecasting and Control function-
alities, though critical for the overall performance, fall outside the scope 
of this study and are assumed to be provided by external systems.

3.2. Proposed microgrid EMS architecture

As illustrated in Fig. 4, the EMS communicates directly with the 
microgrid’s monitoring system, enabling real-time data acquisition from 
a range of sensors, meters, and data sources. These data streams provide 
critical information on several key parameters and form the foundation 
for the EMS’s decision-making processes.

The EMS operates with a day-ahead forecasting and scheduling ho-
rizon, typically using a timestep of 5 to 15 min. This level of granularity 
enables the system to respond dynamically to changes in energy supply, 
demand, and market prices, maintaining optimal performance 
throughout the day. To manage real-time disturbances and un-
certainties, the control horizon can be governed by a Model Predictive 
Control (MPC) framework. MPC allows the EMS to make continuous 
adjustments to its control strategy, using the latest data to mitigate the 

impact of unexpected events and ensuring that the microgrid remains 
efficient and stable under varying conditions.

Additionally, the microgrid is assumed to maintain a grid-connected 
status, enabling energy imports and exports as needed, based on dy-
namic pricing and the availability of local resources. The integration of 
DERs such as solar PV systems and BESS is central to the EMS’s opera-
tion, with the potential for future integration of additional renewable 
energy sources. EVs are treated as flexible loads within this framework, 
with potential for bidirectional energy flow. However, in this study, EVs 
are primarily modeled as unidirectional flexible batteries, focusing on 
their role as energy consumers. The EMS also accounts for user prefer-
ences, particularly regarding EV charging profiles, to ensure that user 
satisfaction is balanced with overall system optimization.

4. Microgrid modeling

This section defines the power flows among the microgrid compo-
nents and provides the corresponding models, including loads, power 
grid, DERs such as PV, BESS, and EVs.

4.1. Power flows

After defining the various components of the microgrid and the core 
functions of the EMS, Fig. 5 visually illustrates the real-time power ex-
changes among the system’s agents. The figure uses arrows to represent 
the direction of power flow: 

• Bidirectional arrows: Indicate that power can flow in both directions 
between components.

• Unidirectional arrows: Indicate that power flows in only one 
direction.

The power transmitted between the different components at any 
given time slot t is denoted by Px2y

t , where x and y represent the source 
and destination of the power, respectively. The specific power ex-
changes within the microgrid are defined as follows: 

• Pp2l
t : Power transmitted from the PV system to the Loads at time 

slot t (in kW).
• Pp2b

t : Power transmitted from the PV system to the BESS at time slot t 
(in kW).

• Pp2g
t : Power transmitted from the PV system to the Grid at time slot t 

(in kW).
• Pb2l

t : Power transmitted from the BESS to the Loads at time slot t 
(in kW).

• Pb2g
t : Power transmitted from the BESS to the Grid at time slot t 

(in kW).
• Pg2l

t : Power transmitted from the Grid to the Loads at time slot 
(in kW).

Fig. 1. Schematic overview of a microgrid EMS.
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Fig. 2. A systemic representation of a microgrid EMS.

Fig. 3. EMS core functions and the paper’s research scope.

Fig. 4. Proposed microgrid EMS architecture.
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• Pg2b
t : Power transmitted from the Grid to the BESS at time slot t 

(in kW).

The balance of active powers in the microgrid will be set as a 
constraint for the optimization problem that is expressed as follows:

The total power generated by the PV system at time t (PPV
t ) must be 

equal to the sum of the power dispatched to the loads, the battery, and 
the grid: 

Pp2l
t + Pp2b

t + Pp2g
t = PPV

t (1) 

The total load demand at time t (PLoad
t ) must be satisfied by the power 

supplied from the PV system, the battery, and the grid: 

Pp2l
t + Pb2l

t + Pg2l
t = PEV

t + PCL
t = PLoad

t (2) 

Where: 

• PPV
t : The PV production during time slot t, measured in kW.

• PCL
t : The total power of the critical load during time slot t in kW.

• PEV
t : The total power of the flexible loads (EVs) during time slot t in 

kW.
• PLoad

t : The total load power during time slot t in kW.

4.2. Solar PV supply

In our microgrid model, the solar PV power, denominated PPV
t , cor-

responds to a forecast data model (dataset), and is considered as an input 
for the optimization model. The EMS should ensure a dispatch strategy 
of solar energy that improves metrics such as self-consumption and self- 
sufficiency. To minimize operational costs, including grid dependence 
and battery degradation, and maximize profits through grid feed-in 
tariffs, solar PV should be prioritized as the primary energy source in 
the load supply as its generated energy is free at the point of use.

From a long-term financial perspective, maximizing the use of solar 
energy is essential for quickly amortizing the solar PV system investment 
and increasing its profitability. By efficiently deploying solar PV energy 
to meet local demand and feeding excess energy back into the grid, the 
EMS not only reduces the daily electricity expenses and generates rev-
enues, but also shortens the payback period and enhances the financial 
viability of the microgrid [51].

The solar PV predicted data is assumed to be generated by a Fore-
casting module utilizing a machine learning or a physical model (Fig. 6) 
[52]. This model is trained on historical generation data and weather 
forecasts to predict the expected PV power output. The forecasting ho-
rizon is set to 24 h ahead, with a time resolution that can range between 
5 and 15 min. This granularity ensures that the EMS has accurate 

short-term predictions for efficient decision-making in scheduling and 
optimization processes, allowing it to better manage the variability of 
solar energy generation.

4.3. Loads

Electric loads in a microgrid system can be classified into two main 
categories: Critical Loads (CL) and Flexible Loads (FL) [53].

CL require a continuous and uninterrupted power supply, with no 
possibility for shedding or shifting across different timeslots. These loads 
are essential for maintaining core functions and are thus treated as fixed 
input datasets for the optimization problem, denominated PCL

t . For 
instance, in our model, the main microgrid’s loads—such as servers, 
HAVC systems, machinery, essential electronics, lighting, and security 
systems—are categorized as Critical Loads, given their non-negotiable 
demand for constant power.

FL, inversely, provide opportunities for optimization due to their 
inherent flexibility in terms of consumption time, duration, or power 
rate. These loads can be shifted or modulated to align better with the 
availability of renewable energy sources, fluctuations in grid tariffs, and 
the state of energy storage systems. In our model, electric vehicles (EVs) 
are considered Flexible Loads, as their charging schedules can be 
adjusted within a specified time window without compromising user 
requirements (Fig. 7).

Our optimization model will be designed to shift EV charging ac-
tivities across the tolerable time window. This involves aligning the 
flexible demand with periods of high solar PV generation, low grid 
tariffs, or favorable energy storage conditions. By doing so, the model 
aims to maximize the use of renewable energy, minimize costs associ-
ated with grid energy purchases, and reduce the strain on battery storage 

Fig. 5. Power exchange among the microgrid components.

Fig. 6. Solar PV short-term forecasting approaches.

Fig. 7. Load classification in the proposed microgrid.
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systems. Moreover, the model will incorporate user-defined preferences, 
such as the acceptable delay in charging completion and the desired 
final state of charge (SOC) for the EV. For example, if an EV user spec-
ifies a maximum allowable delay of 2h and a final SOC of 80 %, the 
model will optimize charging to meet these criteria while considering 
the availability of solar energy, the current grid conditions and the 
battery storage system state.

4.4. Main power grid

The grid in a microgrid system functions as a bidirectional energy 
source, enabling both the delivery of power to the microgrid (energy 
import) and the absorption of excess power generated by the microgrid 
(energy export). This bidirectional flow is governed by dynamic pricing, 
which reflects the fluctuations in electricity markets. Such fluctuations 
are managed through various pricing schemes, including Time-of-Use 
(ToU), Critical Peak Pricing (CPP), and Real-Time Pricing (RTP) [54] 
(Fig. 8).

Time-of-Use (ToU) pricing sets different rates for electricity 
depending on the time of day, encouraging energy consumption during 
off-peak periods when rates are lower. Critical Peak Pricing (CPP) im-
poses higher rates during periods of extreme demand, incentivizing 
reduced consumption during these times. Real-Time Pricing (RTP) offers 
prices that fluctuate in real-time based on current market conditions, 
providing the most responsive pricing scheme. These pricing mecha-
nisms are essential components of Demand Response (DR) and Demand- 
Side Management (DSM) programs, which aim to influence and opti-
mize energy consumption patterns by shifting or reducing energy usage 
in response to price signals [55].

In grid-connected microgrids, the ability to connect to or disconnect 
from the main grid is a crucial feature, allowing the microgrid to adapt 
to real-time conditions such as renewable energy availability, energy 
storage levels, and current grid prices. This flexibility enables the 
microgrid to import energy when prices are low and export energy when 
prices are high, optimizing financial performance. In addition to 
importing and exporting energy, the microgrid’s energy storage system 
(ESS) can also participate in dynamic energy transactions. The ESS can 
be charged from the grid during periods of low electricity prices, storing 
energy that can later be used to meet the microgrid’s demand or be sold 
back to the grid when prices rise. This capability allows the ESS to act as 
a financial buffer, taking advantage of price differentials to maximize 
economic returns [56].

From the supply side, our optimization model is designed to manage 
these complex interactions by minimizing the costs associated with en-
ergy imports, maximizing the profits from energy exports, and optimizing 
the transactions between the battery ESS and the power grid, all while 
considering the dynamic tariff rates under RTP, denominated cgrid

t . For 
instance, during periods of low grid prices, the model may prioritize 
charging the ESS from the grid to store inexpensive energy for later use. 
Conversely, when grid prices are high, the model might favor discharging 
the ESS to export energy to the grid, thereby generating revenue.

From the demand side, the model integrates a Demand-Response 
(DR) and a Demand-Side Management (DSM) strategies, adjusting the 
microgrid’s energy consumption patterns in response to pricing signals 
or grid conditions, while shifting the operation of Flexible Loads to times 
when energy is cheapest or when the grid is incentivized to absorb 
excess power, further enhancing the microgrid’s economic efficiency.

4.5. EV battery model

In a microgrid system, EVs have the potential to interact bidirec-
tionally with the grid through Grid-to-Vehicle (G2V) and Vehicle-to- 
Grid (V2G) mechanisms. These interactions allow EVs to not only 
absorb energy from the grid but also to discharge energy back into the 
grid when needed. However, in our model, EVs are treated solely as 
flexible batteries that absorb energy, without engaging in bidirectional 
energy flow.

In this context, we define the state of charge (SOC) of EV batteries as 
a function of several key factors: the charging power, the duration of the 
charging period, and the EV battery’s capacity. The SOC evolution is 
modeled by considering the binary operation status of the EVs—whether 
they are charging or not, to determine when and how much energy is 
being absorbed by the EVs at any given time.

The state of charge (SOC) of the vehicle’s battery is calculated as 
follows [57]: 

SOCEV
t+1 = SOCEV

t + PEV
t .

Δt
CEV

(3) 

Where: 

• SOCEV
t+1 : State-of-Charge of the EV battery during time slot ’t+1′.

• SOCEV
t : State-of-Charge of the EV battery during time slot ’t’.

• CEV : The nominal capacity of the EV battery in kWh.
• PEV

t : The charging power of the EV battery during time slot t in kW.
• Δt : The time slot in h.

With the charging station power being PEV , PEV
t is obtained by: 

PEV
t = PEV. SEV

t (4) 

Where SEV
t is a binary number, representing the decision variable to 

charge or not during the time slot t, represented by 1 for “charging” or 
0 for “not charging”.

To ensure that the charging process aligns with the technical limi-
tations of the system and the specific needs of the users, we incorporate 
operational constraints and user preferences through a set of in-
equalities. For instance, the EV battery protection is a major concern and 
is manifested by maintaining the State of Charge (SOC) within a safety 
range, as follows: 

SOCEV
min ≤ SOCEV

t ≤ SOCEV
max (5) 

Where: 

Fig. 8. Dynamic grid pricing schemes.
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• SOCEV
min : refers to the minimal EV State-of-Charge.

• SOCEV
max : refers to the maximal EV State-of-Charge.

Furthermore, to meet user satisfaction, the SOC of the EV after 
charging SOCEV

end+delay must be greater than or equal to the predefined 
value SOCEV

final set by the user. This constraint is represented by: 

SOCEV
final ≤ SOCEV

end+delay ≤ SOCEV
max (6) 

Where: 

• SOCEV
end+delay : The State-of-Charge of the EV at the end of the charging 

process, including any additional delay.
• SOCEV

final : The target State-of-Charge for the EV at the end of the 
charging process, as specified by the user.

4.6. Battery energy storage system (BESS)

4.6.1. BESS model
In microgrids, the primary function of a BESS is to manage real-time 

imbalances, called also mismatch, between supply and demand, thereby 
ensuring the regulation of frequency and voltage which is crucial for 
maintaining system stability [58]. Beyond this foundational role, BESS is 
also used to enhance microgrid autonomy and self-sufficiency by 
reducing reliance on the main grid. Furthermore, it serves as a backup 
system during power outages and blackouts, providing a reliable and 
secure energy supply when external power sources are unavailable [59]. 
In addition to these core functions, BESS can perform advanced appli-
cations such as providing ancillary services and participating in elec-
tricity markets. These services include frequency regulation, voltage 
support, and reserve power, all of which contribute to the overall effi-
ciency and reliability of the broader energy system. By participating in 
electricity markets, BESS can also generate revenue, enhancing the 
economic performance of the microgrid [60].

In our model, the status of the BESS is characterized by its State-of- 
charge (SOC), which is directly influenced by the energy it absorbs 
(charging) and releases (discharging) over time. The power dispatch 
strategy within the microgrid is designed to manage the SOC, charging 
power, and discharging power, while adhering to operational con-
straints and physical limitations of the battery system. This includes, 
among others, ensuring that the SOC remains within safe limits and that 
charging and discharging rates do not exceed the battery’s capacity or 
degrade its performance.

The charging and discharging of the battery determine the State of 
Charge (SOC) of the battery for each time slot as follows [61]: 

SOCBESS
t+1 = SOCBESS

t + PBESS,ch
t .

Δt ηBESS, ch

CBESS
(7) 

SOCBESS
t+1 = SOCBESS

t − PBESS, dis
t .

Δt ηBESS, dich

CBESS
(8) 

Where: 

• SOCBESS
t : State-of-charge of the BESS at time slot t.

• SOCBESS
t+1 : State-of-charge of the BESS at time slot t + 1.

• PBESS,ch
t : Power charging the BESS at time slot t in kW.

• PBESS,Dis
t : Power discharged from the BESS at time slot t in kW.

• ηBESS, ch: BESS charging efficiency.
• ηBESS, dich: BESS discharging efficiency.
• CBESS : Battery energy capacity in kWh.
• Δt : The time slot in h.

4.6.2. BESS constraints
To prevent overcharging and excessive discharging of the battery, 

the SOC should always be maintained within a specified range as follows 
[61]: 

SOCBESS
min ≤ SOCBESS

t ≤ SOCBESS
max (9) 

A safety measure is necessary regarding the charging and discharging 
powers, which must not exceed their respective maximum capacities. As 
illustrated in Fig. 5, on one hand, the microgrid battery is charged by the 
PV Pp2b

t and the grid Pg2b
t , and on the other hand, it supplies energy to the 

loads Pb2l
t and the grid Pb2g

t . Therefore, these safety constraints are 
expressed as follows: 

0 ≤ PBESS, ch
t = Pp2b

t + Pg2b
t ≤ PBESS, ch

max (10) 

0 ≤ PBESS, dich
t = Pb2l

t + Pb2g
t ≤ PBESS, dis

max (11) 

Where: 

• PBESS, ch
max : The maximum power that can be absorbed by the BESS 

during charging.
• PBESS, dis

max : The maximum power that can be delivered by the BESS 
during discharging.

Simultaneous charging and discharging operations are not possible 
for the battery. This implies that the battery cannot supply energy while 
undergoing charging. This could be expressed as follows: 

PBESS,ch
t . PBESS, dis

t = 0 (12) 

4.6.3. BESS-grid transactions and real-time battery costs
In our approach, the optimization model should maximize profit-

ability by strategically timing energy transactions with the main grid, 
taking advantage of dynamic pricing. As described in the previous sec-
tion, this involves charging the BESS when grid prices are low and dis-
charging when prices are high, thereby capitalizing on market 
opportunities to generate revenue.

Since the BESS can engage in energy transactions with the main grid 
under dynamic pricing conditions, the energy stored within the BESS is 
consequently subject to a variable cost. This variability arises from the 
fluctuating prices at which the energy was initially purchased or stored. 
As a result, the real-time dispatching strategy within the microgrid must 
continuously evaluate and compare the instantaneous costs associated 
with both grid-supplied energy and the energy stored in the BESS. This 
comparison is crucial when deciding how to meet the demand, partic-
ularly during periods when solar PV generation is absent or insufficient 
to fully satisfy the load.

cBESS
t denotes the price of the energy stored in the microgrid’s BESS at 

time t. It is calculated during the battery charging as follows [61]: 

cBESS
t+1 =

cBESS
t .EBESS

t + Pg2b
t . Δt . cgrid

t

EBESS
t+1

(13) 

Where: 

EBESS
t+1 = EBESS

t +
(
Pg2b

t +Pp2b
t

)
.Δt . ηBESS, ch (14) 

Where EBESS
t refers to the energy in kWh stored in the microgrid 

battery at time t.
To control the power exchange among the BESS and the main grid 

while ensuring a cost-effective interaction, we introduce the following 
threshold parameters to be fine-tuned for an enhanced economic 
dispatch: 
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• cBESS, sell: The threshold above which the energy stored in the 
microgrid’s BESS can be sold to the grid to generate revenue.

• cBESS, buy: The threshold below which the microgrid battery is allowed 
to purchase energy from the grid to charge.

These thresholds are calculated by the following formulas: 

cBESS, sell = βsell.max
{

cgrid
1 , cgrid

2 ,…, cgrid
Nslot

}
(15) 

cBESS, buy = βbuy.min
{

cgrid
1 , cgrid

2 ,…, cgrid
Nslot

}
(16) 

Where: 

• βsell: Controls the possibility of selling the energy stored in the 
microgrid’s BESS to the grid. It can range from 0 to 1. The smaller it 
is, the greater the possibility.

• βbuy: Controls the ability to purchase energy from the grid to charge 
the microgrid’s BESS. It can range from 0 to 1. The bigger it is, the 
greater the possibility.

4.6.4. Battery degradation costs
To ensure a cost-effective performance for both the short and long 

terms, our optimization model considers minimizing degradation costs 
associated with battery usage. This involves optimizing the frequency 
and depth of charge-discharge cycles to extend the battery’s lifespan and 
reduce maintenance expenses.

Battery degradation is affected by various parameters, and its asso-
ciated equivalent costs could be expressed as follows [62]: 

cBESS
deg =

Cinvest BESS

DOD . Ncycles . CBESS . ηBESS
(17) 

• Cinvest BESS: is the investment cost of the BESS (MAD).
• CBESS: is the capacity of the BESS (kWh).
• DOD: is the depth of discharge of the BESS.
• Ncycles: is the number of charge/discharge cycles of the BESS.
• ηBESS: denotes the average charging/discharging efficiency of the 

BESS.

5. Multi-objective optimization problem formulation

5.1. Optimization problem description

The optimal operation of microgrids involves balancing multiple, 
often competing, objectives across technical, economic, and environ-
mental dimensions. These include ensuring system reliability, achieving 
cost-effectiveness, and minimizing environmental impact, all while 
meeting energy demand and maintaining user satisfaction and comfort. 
Simultaneously optimizing all these aspects can be challenging due to 

their conflicting nature, making multi-objective optimization necessary 
to find an acceptable trade-off [63] (Fig. 9).

In this section, we formulate a multi-objective optimization problem 
that targets several key objectives: 

• O1. Reducing Operational Costs: This includes minimizing costs 
associated with grid imports and battery degradation. By optimizing 
when and how much energy is imported from the grid or stored in the 
BESS, the model aims to lower overall energy expenses while pre-
serving the longevity of the battery system.

• O2. Maximizing Profitability: The model seeks to enhance the 
financial performance of the microgrid by maximizing revenue from 
grid feed-in of surplus solar PV energy and BESS-to-grid trading. By 
strategically dispatching energy when grid prices are favorable, the 
microgrid can capitalize on dynamic pricing to boost profits.

• O3. Optimizing EV users’ satisfaction: The optimization also fo-
cuses on managing the charging schedule of electric vehicles (EVs) to 
maximize user satisfaction. This involves aligning charging times 
with user preferences, such as desired state of charge (SOC) levels 
and acceptable delays, while also considering the availability of 
renewable energy and grid tariffs.

While the primary focus of this optimization is on economic and 
operational efficiency, environmental performance is implicitly opti-
mized as well. By prioritizing the reduction of operational costs, the 
model naturally increases the use of low-carbon energy sources within 
the microgrid, such as solar and wind energies. Additionally, the effi-
cient use of batteries, which is a byproduct of cost optimization, helps to 
extend the lifetime of the BESS, further contributing to environmental 
sustainability.

Reliability, another critical aspect, is inherently maintained by the 
optimization process. The algorithm ensures that at every time slot, the 
available energy sources are optimally dispatched to meet the required 
demand, thus avoiding any load shortages. This guarantees that the 
microgrid remains reliable, providing a continuous and stable energy 
supply without compromising user comfort or system integrity.

5.2. Cost function

Using day-ahead forecasting algorithms of demand and generation, 
as well as electricity tariffs, it is possible to minimize the overall cost of 
electricity through the optimal planning of i) power dispatching among 
PV, battery, power grid, and loads (supply-side management) and ii) EV 
charging scheduling (demand-side management).

This cost should naturally encompass the total expense of purchasing 
electricity from the grid (short-term expenses) expressed by Fcost1, but 
needs also to consider the cost associated with the degradation of the 
microgrid battery energy storage system (long-term expenses) expressed 
by Fcost2, as well as the overall revenue from electricity sales to the grid 
(revenue generation through feed-in) expressed by Fcost3. Consequently, 
the net overall cost of electricity over the planning horizon is formulated 
as follows [61]: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fcost1 =
∑Nslot

t=1

[(
Pg2l

t + Pg2b
t

)
. Δt .cgrid, buy

t
]

Fcost2 =
∑Nslot

t=1

[(
Pp2b

t + Pg2b
t + Pb2g

t + Pb2l
t

)
. Δt .cBESS

deg

]

Fcost3 = −
∑Nslot

t=1

[(
Pp2g

t + Pb2g
t

)
. Δt .cgrid, sell

t
]

Fcost = Fcost1 + Fcost2 + Fcost3

(18) 

Where: 

Fig. 9. Microgrid multi-objective optimization targets.
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• cgrid, buy
t : The grid electricity tariff during time slot t, in which the EMS 

purchases electricity from the grid (MAD/kWh).
• cgrid, sell

t : The electricity price during time slot t, in which the EMS sells 
electricity to the grid (MAD/kWh).

• cBESS
deg : The equivalent cost of battery degradation (MAD/kWh).

5.3. EV user satisfaction function

The user’s satisfaction level with EV charging depends on the time at 
which the charging process concludes. The user is more content when, 
after connecting the electric vehicle, it continues to charge until the 
predetermined battery SOC level is reached. In practice, the user may 
tolerate a certain delay in completing the charge, making the EV more 
flexible in terms of charging. However, this tolerance is limited; if the 
delay becomes too significant, the user will be less satisfied. The user 
satisfaction indicator UEV,j for an EVj could therefore be determined as 
follows [61]: 

UEV,j =
dEV,j

Nslot −
(
tend,j + tdelay,j

) × 100 

Where: 

dEV,j =

{
0, if tplug,j ≤ tfSOC,j ≤ tend,j + tdelay,j

tfSoc,j −
(
tend,j + tdelay,j

)
, if tfSOC,j > tend,j + tdelay,j

(19) 

j represents the numerical identifier for electric vehicles; EVj. 

• tplug,j : The time slot for the EVj to be plugged-in.
• tend,j : The time slot in which the charging period ends for EVj.
• tdelay,j : The maximum tolerated time to complete the charging 

for EVj.
• tfSOC,j : The time slot in which the SOC achieves the value desired by 

the EVj’s user.
• tend,j : The last time slot in the scheduling horizon for EVj. 

Fsatisfaction =
1

NEV
×

∑NEV

j = 1
UEV,j (20) 

NEV stands for the total number of EVs involved in the scheduling 
process (Fig. 10).

5.4. Multi-objective function

The multi-objective optimization model of the EMS could be 
expressed as follows: 

⎧
⎨

⎩

min Fcost
minFsatisfaction

constraints to (5), (6), (9) − (12)
(21) 

The above multi-objective model can be transformed into a single- 
objective model through the following weighting method: 

minFtotal = α Fcost + (1 − α) Fsatisfaction (22) 

Where α is the user’s preference factor, ranging from 0 to 1, through 
which a user can easily strike a trade-off between electricity cost and 
satisfaction level. By employing the penalty function method, model 
(22) is transformed into an unconstrained and single-objective optimi-
zation model, simplifying the task: 

min Ffinal = Ftotal + P. Fviol (23) 

Where: 

• Ffinal: designates the final objective function.
• P: A very large positive number.
• Fviol : The overall value of the violation. 

Fviol =
∑NEV

i = 1

(
FEV,j

viol, 1 + FEV,j
viol,2

)

NEV

FEV,j
viol, 1 =

∑Nslot

i = 1
max

(
0, SOCEV,j

max − SOCEV,j
t , SOCEV,j

t − SOCEV,j
min

)

FEV,j
viol, 2 = max

(
0, SOCEV,j

tend+ tdelay
− SOCEV,j

max, SOCEV,j
final − SOCEV,j

tend+ tdelay

)

(24) 

Where: 

• FEV,j
viol, 1 : The value of the violation for constraint (5) for the EVj.

• FEV,j
viol, 2: The value of the violation for constraint (6) for the EVj

• Fviol : Takes into account only constraints (5) and (6), while other 
constraints are addressed by different methods.

6. EMS algorithm design

6.1. Particle swarm optimization (PSO) algorithm

Swarm Intelligence (SI) algorithms are inspired by the collective 
behavior of decentralized, self-organized systems, typically composed of 
a population of agents that interact locally with one another and their 

Fig. 10. Illustration of EV users’ satisfaction zones.
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environment [62]. Particle Swarm Optimization (PSO), a well-known 
method within the SI discipline, leverages this collective intelligence 
to solve optimization problems. The fundamental principle of PSO is to 
explore the solution space by iteratively testing multiple candidate so-
lutions, referred to as Particles.

Each particle i represents a potential solution to the optimization 
problem and has a position xi in a search space. The particles move with 
a velocity vi through the search space according to a set of rules gov-
erned by both random factors and the experiences of the particles. The 
movement is guided by two critical factors: Learning (cognitive factor) 
and Communication (social factor).

The learning or cognitive component reflects how each particle relies 
on its own best-known position, called pi

best (the best position visited by 
particle i). The communication or social component enables each par-
ticle to take into account the best position found by the entire popula-
tion, referred to as gbest (the best global position visited by all the 
swarm).

The swarm velocities and positions are updated according to the 
following rules: 
{

vi(k+1)=ω(k)vi(k)+c1 r1
[
pi

best(k)− xi(k)
]
+ c2 r2 [gbest(k)− xi(k) ]

xi(k+1)=xi(k)+vi(k+1)
(25) 

Where: 

• vi(k+1), vi(k): designate the velocities of particle i in iterations k +1 
and k.

• xi(k+1), xi(k): designate the positions of particle i in iterations k +1 
and k.

• ω(k) : designates the inertia weight of the particles for iteration k.
• c1 and c2 : are, respectively, cognitive, and social learning factors.
• r1 and r2: are two stochastic aleatory variables within the interval 

[0,1].
• pi

best and gbest : are, respectively, the best personal position of particle 
i and the best global position of the entire population.

Fig. 11 illustrates the generic PSO optimization flowchart. On the 
other hand, Fig. 12 offers a geometric representation of the algorithm’s 
convergence. It visually demonstrates how the particles (represented as 
points in the search space) move iteratively toward the optimal solution.

6.2. Binary particle swarm optimization (BPSO)

The Binary Particle Swarm Optimization (BPSO) algorithm is an 
adaptation of the standard PSO designed for binary optimization prob-
lems, where each particle makes binary decisions, such as choosing 
between "yes" or "no" or "true" or "false." Similar to the continuous 
version of PSO, BPSO updates both personal best positions pi

best and 
global best positions gbest during each iteration. However, the key 
distinction lies in how velocities are interpreted and updated.

In BPSO, particle velocities are treated as probabilities that a 
particular bit will change from 0 to 1. These velocities, unlike in the real- 
valued PSO, are constrained to the range [0, 1] to represent these 
probabilities accurately. To achieve this, a transformation function, 

Fig. 11. A generic flowchart of PSO algorithm.

Fig. 12. A geometric presentation of PSO optimization process.
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called Sigmoïde, is employed to convert the calculated real-valued ve-
locities into a probability range. Consequently, the velocities in BPSO 
are calculated as follows [64]: 

vʹ
i(k) = Sigmoïde (vi(k)) =

1
1 + exp (− vi(k))

(26) 

Thus, the particle position update is performed according to Eq. (27): 

xi (k) =
{

1 if r3 < Sigmoïde (vi(k))
0 else (27) 

Where r3 is a stochastic number ranging randomly within the in-
terval [0

6.3. Proposed EMS algorithm

In this section, we present an EMS optimization algorithm that was 
developed based on PSO (Fig. 14), with a position vector representing 
the decision variables defined as follows: 

Xi =

⎡

⎣

SEV,1

…

SEV,NEV

⎤

⎦ Where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SEV,1 =
[
SEV,1

tplug
, SEV,1

tplug +1
, …, SEV,1

tplug +delay

]

…
SEV,NEV =

[
SEV,NEV

tplug
, SEV,NEV

tplug +1
, …, SEV,NEV

tplug +delay

]

(28) 

Where SEV,j, denoting the charging status vector of vehicle j, is a bi-
nary vector of dimension dim

(
SEV,j

)
= tend,j + tdelay,j − tplug,j + 1. Thus, 

the decision/position matrix’s dimension of particle i is dim
(
Xi
)
= NEV 

× max
[
dim

(
SEV,1

)
, …, dim

(
SEV,NEV

)]
. The dimension of this vector is 

variable because it is linked to the time slots when the EVs are plugged- 
in and when they are unplugged (including delay times).

To address the challenges of multi-objective optimization in micro-
grid energy management, the following enhancements were introduced 
to the traditional Particle Swarm Optimization (PSO) framework: 

• Dynamic Inertia Weight Adjustment: A dynamic mechanism was 
implemented to balance exploration and exploitation. Higher inertia 
weight promotes exploration at the start, while a decreasing weight 
focuses on convergence near optimal solutions. This prevents pre-
mature convergence and ensures a well-distributed Pareto front, 
balancing conflicting objectives like cost minimization and renew-
able energy utilization.

• Multi-Objective Weighted Aggregation: Weights assigned to ob-
jectives (e.g., cost, battery health preservation, renewable utiliza-
tion) dynamically adapt to system priorities during optimization. 
This allows the framework to effectively manage varying real-time 
operational priorities, such as renewable usage during high genera-
tion or cost savings during peak hours.

• Penalty Function for Constraint Handling: A penalty-based 
mechanism was integrated into the fitness function to address vio-
lations of constraints, such as battery SOC limits, EV charging 
schedules, and grid import/export limits. This ensures feasible and 
practical solutions for real-world microgrid operations.

• Enhanced Solution Diversity: Particle initialization and velocity 
updates were modified to improve solution space diversity, avoiding 
local optima and ensuring robust exploration during the optimiza-
tion process.

• Parameter Tuning: Algorithm parameters (e.g., population size, 
maximum iterations, acceleration coefficients) were fine-tuned to 
match the specific characteristics of the studied microgrid, including 
its DERs and EV integration patterns. This tailoring enhances the PSO 
algorithm’s efficiency and accuracy in addressing the unique fea-
tures of the studied microgrid.

Step 1. Acquire the electricity price, the predicted profile of the 
microgrid load, and the forecasted PV generation throughout the 
scheduling horizon.
Step 2. Set EV users preference parameters, such as the preference 
factor α, tplug,j, tend,j, tdelay,j SOCEV,j

final for each EVj.
Step 3. Define the PSO parameters, such as the population size Npop, 
the maximum number of iterations k, the maximum inertia ωmax, the 
minimum inertia ωmin, and the learning factors c1, c2.
Step 4. Initialize the particle population:

1. Initialize the position vector Xi, the velocity vector Vi, and the best 
personal position vector Pi

best for the Npop particles.
2. Calculate the power sharing vectors Px2y =

[Pg2l; Pg2b; Pp2l; Pp2b; Pp2g; Pb2g; Pb2l] according to the electricity 
price (purchase and feed-in), the available PV power, BESS state, 
load level, among others. The power sharing vectors are of dimen-
sion Nslot each which designates the number of time slots in the 

planning horizon. For instance, Pg2l =
[
pg2l

1 ,…, pg2l
Nslot

]
. The procedure 

for calculating these vectors is shown in Fig. 13.
3. Evaluate the objective function according to (23).
4. Initialize the vector of the best global position gbest .

Step 5. Calculate the inertia weight at the iteration k according to 
the formula: 

ω(k) = ωmax − k ×
(ωmax − ωmin)

kmax
(29) 

Step 6. Perform the following steps for each particle in the 
population:

1. Update the velocity vector Vi according to (25).
2. Update the position vector Xi according to (27).
3. Calculate the corresponding power-sharing vector Px2y for each 

particle.
4. Evaluate the objective function according to (23).
5. Update the personal best position vector as follows: 

pi
best(k+ 1) =

{
xi (k + 1) if Ffinal[xi (k + 1)] < Ffinal

[
pi

best(k + 1)
]

pi
best(k) else

(30) 

6. Update the global best position vector as follows: 

gbest(k+1) = arg
{
min1≤i≤Npop Ffinal

[
pi

best(k+ 1)
] }

, k ∈ [0, kmax] (31) 

Step 7. Increment the iteration counter k by 1. Check if the k has 
reached the kmax. If it is the case, continue to step 8; If not, proceed to 
step 5.

Step 8. Calculate the electricity cost function, the user satisfaction 
function, and the microgrid indicators as follows:

1. Extract the vector from the best overall position (optimal EV 
charging profile).

2. Calculate the optimal power-sharing vectors Px2y.
3. Calculate the cost and the user satisfaction functions according to 

(16) and (18), respectively. Check if the simulation counter has 
reached the maximum NSim number. If yes, go back to step 4; 
Otherwise, continue to step 9.
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Step 9. Control the EVs charging operations according to the vector 
of the best final global position of particles gbest final. In each time slot, 
the power-sharing between loads, battery, renewable generation, 
and the power grid is determined by the method described in Fig. 13
(power dispatch strategy).

7. Case study: Green Energy Park

7.1. Living-lab description

The Green Energy Park (GEP), located in the Green City of Benguerir, 
Morocco, serves as a cutting-edge platform dedicated to R&D, innova-
tion, demonstration, testing, and training in the realm of green tech-
nologies. To evaluate realistic scenarios for the developed EMS 
algorithm, we considered GEP as a testbed platform.

In terms of power infrastructure, as illustrated in Fig. 15, GEP pro-
vides an ideal test environment for our EMS as it consists of a grid- 
connected microgrid featuring a 250 kWp PV power plant and a 100 
kWh Battery Energy Storage System (BESS). The microgrid supports 
critical indoor loads ranging from 20 to 200 kW. Additionally, the 
platform is equipped with an EV charging infrastructure, comprising 
three charging stations with a capacity of 22 kW each.

7.2. Input data and algorithm parameters

To validate the effectiveness of the proposed optimization algorithm, 
this section provides a detailed description of the simulations conducted. 
The algorithm was implemented within the MATLAB environment.

The scheduling horizon for the simulations spans 24 h, divided into 
10 min timeslots, meaning that Nslot = 144 and Δt = 0.16 h (10 mins). 
The following section presents the input data and microgrid parameters 
used in the simulations, including energy generation and consumption 
profiles of a typical day (Fig. 16), electricity prices (Fig. 17), BESS and 

Fig. 13. Proposed real-time power-sharing control strategy.

Fig. 14. Proposed microgrid EMS’s algorithm flowchart.
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Fig. 15. A panoramic view of Green Energy Park.

Fig. 16. Microgrid’s generation and consumption profiles of a typical day.

Fig. 17. Electricity prices under RTP scheme.
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EVs parameters (Table 1), EV users’ preferences (Table 2), and the PSO 
parameters (Table 3).

This setup ensures that the results reflect real-world operating con-
ditions of the microgrid, allowing for a robust analysis of how the al-
gorithm handles dynamic changes in energy supply, demand, and 
pricing.

7.3. Results and discussion

7.3.1. Scenarios description
To evaluate the developed optimization algorithm’s performance 

and effectiveness, various scenarios have been simulated, each consid-
ering different assumptions and optimization objectives, as illustrated in 
Table 4. The corresponding results of these simulations are presented 
and analyzed in the following sections.

7.3.2. Simulation results
Fig. 18 provides the results of power dispatching using a basic rule- 

based strategy (scenario 0). This baseline scenario serves as a reference 
for comparison with the following optimization scenarios. The dis-
patching follows pre-set rules for energy distribution among generation, 
storage, and load without any dynamic adjustments.

Additionally, Fig. 19 illustrates the charging power profiles of the 
electric vehicles (EVs) along with their corresponding state of charge 
(SOC) evolution, assuming no flexibility in charging. In this scenario, 
EVs charge continuously starting from the plug-in time, without 
consideration for time-varying grid tariffs, renewable energy availabil-
ity or BESS status.

Fig. 20 presents the optimization process of the PSO algorithm, 
considering 10 distinct swarm families (Nsim = 10), with each family 
consisting of a 100-particle population (Npop = 100) exploring the search 
space for 300 iterations (kmax = 300). This process 0visualizes the 
convergence behavior and the search for the optimal solution over the 
defined iterations.

For Scenario 1, Figs. 21 and 22 display the microgrid power dis-
patching and the EV scheduling strategies, respectively. In Figs. 23 and 
24, the load supply and the PV generation dispatching are shown, 
demonstrating how energy resources are allocated across the microgrid 
over time.

In Fig. 25, the charging and discharging cycles of the BESS are 
illustrated, along with the corresponding SOC fluctuations over time, 
while Fig. 26 displays the time-varying grid and battery energy prices. 
Fig. 27 provides a comparative analysis between the scenario 1 and the 
baseline scenario, focusing on the contribution of each energy source in 
meeting the demand. Table 5 gives the numerical results summary for all 
simulation scenarios.

7.3.3. Discussion & findings

a. Analysis of Scenario 0 (baseline)

In Scenario 0, the microgrid operates without any optimization, 
relying on a static, priority-based control strategy. The PV system 
directly supplies the load during the day, and any excess energy is stored 
in the BESS, which discharges throughout the night until the grid takes 

Table 1 
Microgrid parameters.

Parameter Value Unit

PPV
t Timeseries (Fig. 16) kW

PCL
t Timeseries (Fig. 16) kW

cgrid
t

Timeseries (Fig. 17) MAD/kWh
CBESS 100 kWh
ηBESS, ch 0.92 –
ηBESS, dich 0.92 –
PBESS, ch

max 100 kW
PBESS, dich

max 100 kW
csell 1.2 MAD/kWh
cbuy 0.7 MAD/kWh
SOCBESS

max 1 –
SOCBESS

min 0.15 –
SOCBESS

0 0.5 –
NEV 2 –
PEV 22 kW
CEV [77.4 68.5] kWh

Table 2 
EV users’ preferences.

Parameter Value(s) Unit

SOCEV
max [1 1] –

SOCEV
min [0.2 0.2] –

SOCEV
final [0.95 1] –

SOCEV
0 [0.4 0.3] –

tdelay [6 7] h
tend [19 18] h
tplug [8.5 9] h

Table 3 
PSO parameters.

Parameter Value(s)

Nsim 10
Npop 100
kmax 300
ωmin 0.9
ωmax 0.6
c1 2
c2 2

Table 4 
Simulation scenarios under various assumptions and optimization targets.

Optimization Targets Assumptions

Grid Import Cost 
Minimization

Feed-in Revenues 
Maximization

BESS Degradation 
Minimization

EV Users’ Satisfaction 
Maximization

Optimization 
Algorithm?

EV Charging 
Flexibility?

Grid 
Feed-in?

Scenario 
0 (Baseline)

– – – – No No No

Scenario 1 
(Fcost1)

✓ – – –
Yes Yes Yes

Scenario 2 
(Fcost1 +

Fcost2)
✓ ✓ - -

Scenario 3 
(Fcost3)

– – ✓ –

Scenario 4 
(Fsatisfaction)

– – – ✓

Scenario 5 
(FTotal)

✓ ✓ ✓ ✓
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over to meet the remaining demand (Fig. 18). There is no dynamic en-
ergy management, as the scenario does not account for time-varying 
electricity prices or demand response (DR) mechanisms. In Fig. 19, it 
is clear that the EVs do not exhibit any flexibility in their charging 

behavior. The charging process initiates immediately upon the EVs 
being plugged in.

This baseline scenario demonstrates the need for intelligent optimi-
zation to minimize operational costs while ensuring user satisfaction. 

Fig. 18. Power dispatching results for scenario 0.

Fig. 19. EV charging profile for scenario 0.

Fig. 20. PSO optimization process for scenario 1.
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b. Analysis of Scenario 1 (optimizing grid import costs)

It is clear in Fig. 20 how the EMS effectively reduces grid energy 
import by prioritizing the use of local DERs (reduced by over 42 % 
compared to Scenario 0). Beyond this, the EMS anticipates periods of 

higher electricity prices by purchasing and storing energy in the BESS 
during low-tariff time slots, which is later used during high-tariff periods 
to optimize cost savings. This strategy ensures minimal reliance on 
expensive grid energy during peak pricing.

Additionally, Fig. 21 highlights how the EMS harnesses the flexibility 

Fig. 21. Power dispatching results for scenario 1.

Fig. 22. EV charging profile for scenario 1.

Fig. 23. Load coverage for scenario 1.
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of EV charging by dynamically shifting EV charging throughout the time 
horizon based on the availability of PV power, the status of the BESS, 
and the fluctuations in electricity prices. This flexibility maximizes the 
use of renewable energy while ensuring that charging operations occur 

during optimal price periods, thus saving costs.
Figs. 22, 23, and 24 provide a more detailed analysis of real-time 

energy flows and interactions among the different microgrid compo-
nents. These figures validate that the EMS successfully adheres to the 

Fig. 24. PV generation dispatching for scenario 1.

Fig. 25. BESS charging, discharging and SOC profiles for scenario 1.

Fig. 26. Real-time grid and BESS prices for scenario 1.
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defined constraints related to real-time power balance (constraints 1 and 
2) and BESS operations (constraints 9, 10, 11, and 12), ensuring system 
stability and efficiency.

Fig. 25 illustrates the evolution of the stored energy price within the 
BESS over time. We can interpret this behavior because when the BESS is 
charged using grid energy, its associated energy cost rises due to the 
purchased electricity. However, as the BESS begins to charge using solar 
PV energy, the price of stored energy decreases, given that solar energy 
is considered free. 

c. Analysis of Scenario 2 (optimizing net costs)

Scenario 2 optimizes the Net Costs, incorporating both grid import 
costs and feed-in revenues. A significant advantage in this scenario is the 
introduction of energy trading with the grid. By enabling the EMS to 
charge the BESS during low-price periods and feed surplus energy back 
to the grid when prices are high, net costs drop to 151.05 MAD.

Feed-in revenues play a crucial role here, contributing − 115.14 
MAD, which offsets the grid import costs, making this scenario one of the 
most financially beneficial. Despite these gains, BESS degradation costs 
remain high (65.32 MAD), indicating that the system prioritizes short- 
term financial returns without considering long-term battery health. 
EV user satisfaction drops slightly to 71.39 %, reflecting some trade-offs 
between cost optimization and charging convenience. 

d. Analysis Scenario 3 (optimizing BESS degradation costs)

As this scenario targets the minimization of BESS degradation costs, 
the EMS adopts a conservative dispatch strategy, reducing the frequency 

of charge and discharge cycles to extend the battery’s lifespan. The re-
sults show a significant reduction in BESS degradation costs to 34.47 
MAD, the lowest across all scenarios.

However, this focus on preserving the battery comes at a cost: grid 
import costs increase slightly to 195.76 MAD, as the system avoids 
aggressive use of the BESS for arbitrage opportunities. While this strat-
egy effectively reduces operational wear and tear on the battery, it does 
not fully capitalize on potential cost-saving measures. EV satisfaction 
remains relatively high at 72.47 %, indicating that the EMS balances 
battery health with user needs effectively. 

e. Analysis of Scenario 4 (optimizing EV users’ satisfaction)

This scenario prioritizes EV User Satisfaction, focusing on optimizing 
charging time and ensuring that vehicles reach their desired state of 
charge (SOC) efficiently. By implementing demand-response mecha-
nisms, the EMS schedules EV charging sessions to align with favorable 
grid and microgrid conditions, minimizing delays while preventing load 
peaks.

The result is a high EV satisfaction level of 97.14 %, just below the 
baseline. Grid import costs are controlled at 211.26 MAD, demon-
strating that the system can still operate efficiently despite prioritizing 
user satisfaction. However, this scenario does not generate feed-in rev-
enues or significantly reduce BESS degradation costs, suggesting that the 
focus on user satisfaction may compromise some opportunities for cost 
savings or revenue generation. 

f. Analysis of Scenario 5 (finding a trade-off – multi-objective optimization)

Fig. 27. Comparison of costs and grid feed-in revenues across scenarios.

Table 5 
Numerical results summary for simulation scenarios.

Objective Function Scenario 0 - 
Baseline

Scenario 1 
-Optimizing Grid 
Import Costs

Scenario 2 - 
Optimizing Net 
Costs

Scenario 3 -Optimizing 
BESS Degradation Costs

Scenario 4 - Optimizing 
EV Users’ Satisfaction

Scenario 5 - Multi-objective 
Optimization (Trade-off)

Grid Import Costs 
(MAD) 287.0177 166.4483 261.2200 195.7608 211.2578 279.133

Grid Feed-in 
Revenues (MAD) 0 0 − 115.1427 0 0 − 140.8204

Grid 
Net Costs (MAD) 287.0177 166.4483 151.0471 195.7608 211.2578 153.3126

BESS Degradation 
Costs (MAD) 68.5630 50.6616 65.321 34.4674 60.5630 41.5681

EV Users’ 
Satisfaction Level 
(%)

100 % 73.47 % 71.39 % 72.47 % 97.14 % 89.79 %

A. Rochd et al.                                                                                                                                                                                                                                  Results in Engineering 25 (2025) 104400 

19 



This scenario presents a multi-objective optimization, aiming to 
balance grid import costs, feed-in revenues, BESS degradation, and EV 
user satisfaction. This scenario achieves the best overall performance 
across all KPIs. Grid import costs are moderate at 279.13 MAD, while 
feed-in revenues of − 140.82 MAD contribute significantly to offsetting 
net costs, resulting in a total grid net cost of 153.31 MAD.

BESS degradation costs are also controlled (41.57 MAD), reflecting a 
balanced use of the battery to optimize both short-term financial returns 
and long-term health. EV user satisfaction is 89.79 %, reflecting a good 
balance between cost-saving and user experience. This trade-off scenario 
effectively demonstrates the EMS’s ability to optimize multiple objec-
tives simultaneously, providing a comprehensive solution for real-world 
applications. 

g. Main Findings

From the scenario analysis section, and according to Figs. 27 and 28, 
several key insights and findings emerge: 

• Scenario 1 shows that optimizing for grid import costs leads to a 
significant reduction in energy expenditures, cutting grid reliance by 
over 42 % compared to the baseline. However, this comes at the 
expense of slightly lower EV satisfaction and continued BESS 
degradation.

• Scenario 2 leverages energy trading with the grid, producing a 
strategy that optimizes net costs by feeding excess PV energy into the 
grid. However, the introduction of feed-in tariffs can lead to negative 
feed-in revenues. Although this scenario offers short-term financial 
gains, long-term costs increase due to higher BESS degradation.

• Scenario 3 proves effective in minimizing BESS degradation, 
showing the trade-off between energy cost and BESS longevity. The 
reduction in battery cycling operations greatly extends the life of the 
battery but at the expense of slightly higher grid import costs and 
limited revenue opportunities.

• In Scenario 4, optimizing for EV user satisfaction improves the 
overall user experience by reducing charging delays and ensuring 
high SOC upon departure. This comes at a cost, as grid import in-
creases and battery wear accelerates, suggesting that prioritizing 
user satisfaction may impact energy efficiency.

• Scenario 5 demonstrates that a multi-objective optimization 
approach provides the best trade-offs, balancing grid import costs, 
BESS health, and EV satisfaction. This approach ensures that no 
single objective dominates the others, leading to an overall efficient, 
cost-effective, and user-friendly solution for microgrid operations.

The simulation results suggest that microgrid optimization should 
consider a multi-objective approach to ensure the best trade-offs be-
tween cost, BESS health, and EV user satisfaction. Each scenario pro-
vides insights into how specific optimization goals affect the overall 
performance of the system, and a balanced approach offers the most 
efficient and sustainable solution for long-term operations.

8. Conclusion & future works

This paper demonstrated the effectiveness of a multi-objective En-
ergy Management System (EMS) for microgrids, integrating Distributed 
Energy Resources (DERs), Battery Energy Storage Systems (BESS), and 
Electric Vehicles (EVs). Using the Green Energy Park in Morocco as a 
testbed, the research highlights the ability of the proposed system to 
optimize key objectives, including net cost minimization, battery 
degradation control, renewable energy maximization, and user 
satisfaction.

Through scenario analysis, the paper shows that the EMS can 
significantly reduce operational costs (up to 42 %) by optimizing the 
power flows between the microgrid and the main grid. Scenarios focused 
on net cost reduction, EV user satisfaction, and battery health preser-
vation revealed valuable trade-offs. For instance, while prioritizing cost 
reduction reduces grid dependence, it leads to higher battery degrada-
tion, and enhancing user satisfaction tends to increase grid imports and 
reduce efficiency. The multi-objective approach, however, offers a 
balanced solution, demonstrating that a holistic optimization strategy 
provides the best performance across different objectives.

The case study results validate the EMS’s adaptability and real-world 
applicability, demonstrating the potential of such systems in managing 
decentralized energy systems efficiently while balancing economic, 
technical,0 and environmental factors.

Future research should focus on integrating additional renewable 
energy sources, such as wind turbines and hydrogen plants, and devel-
oping real-time adaptive optimization to handle fluctuations in energy 
supply and demand. Incorporating Vehicle-to-Grid (V2G) capabilities 
will enable bidirectional energy flows, allowing EVs to contribute en-
ergy back to the grid. Long-term battery lifecycle management strategies 
are needed to optimize battery health and reduce replacement costs. 
Additionally, exploring decentralized control methods will enhance 
scalability for larger or interconnected microgrid systems. Strength-
ening cybersecurity measures and testing the EMS in different 
geographical contexts will further improve system robustness and 
adaptability.

Fig. 28. EV users’ satisfaction levels across scenarios.

A. Rochd et al.                                                                                                                                                                                                                                  Results in Engineering 25 (2025) 104400 

20 



CRediT authorship contribution statement

Abdelilah Rochd: Writing – original draft, Visualization, Method-
ology, Investigation, Conceptualization. Abdelhadi Raihani: Supervi-
sion, Methodology, Conceptualization. Oumaima Mahir: Writing – 
original draft, Investigation. Mohammed Kissaoui: Writing – review & 
editing, Supervision, Conceptualization. Mohamed Laamim: Valida-
tion, Software. Abir Lahmer: Writing – review & editing, Data curation. 
Bouthaina El-Barkouki: Writing – review & editing, Validation. 
Mouna El-Qasery: Writing – review & editing, Visualization. HongJian 
Sun: Writing – review & editing, Supervision. Josep M. Guerrero: 
Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 
Abdelilah ROCHD reports financial support, administrative support, 
equipment, drugs, or supplies, and statistical analysis were provided by 
Green Energy Park. Abdelilah ROCHD reports a relationship with Green 
Energy Park that includes: employment. Other authors declare that they 
have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to express their sincere gratitude to the Green 
Energy Park (IRESEN / UM6P) for providing the infrastructure and re-
sources necessary for the successful implementation and validation of 
this research. We are also deeply grateful to the Supervisors and Pro-
fessors who supported this work from ENSET Mohammedia - UH2C 
(Morocco), Durham University (UK) and Aalborg University (Denmark).

We would also like to acknowledge the valuable insights provided all 
the co-authors, which have significantly enriched the quality and rele-
vance of this work.

Finally, we extend our thanks to the reviewers and editorial team of 
Results in Engineering Journal for their constructive feedback, which has 
greatly improved the quality of this manuscript.

Data availability

Data will be made available on request.

References

[1] A. Kavousi-Fard, T. Niknam, H. Taherpoor, A. Abbasi, Multi-objective probabilistic 
reconfiguration considering uncertainty and multi-level load model, IET Sci. 
Measure. Technol. 9 (1) (2015) 44–55, https://doi.org/10.1049/iet- 
smt.2014.0083.

[2] R.H.A. Zubo, G. Mokryani, H.-S. Rajamani, J. Aghaei, T. Niknam, P. Pillai, 
Operation and planning of distribution networks with integration of renewable 
distributed generators considering uncertainties: a review, Renew. Sustain. Energy 
Rev. 72 (2017) 1177–1198, https://doi.org/10.1016/j.rser.2016.10.036.

[3] A.R. Abbasi, D. Baleanu, Recent developments of energy management strategies in 
microgrids: an updated and comprehensive review and classification, Energy 
Convers. Manage. 297 (2023) 117723, https://doi.org/10.1016/j. 
enconman.2023.117723.

[4] P. Sharma, H. Dutt Mathur, P. Mishra, R.C. Bansal, A critical and comparative 
review of energy management strategies for microgrids, Appl. Energy 327 (2022) 
120028, https://doi.org/10.1016/j.apenergy.2022.120028.

[5] S. Ahmad, M. Shafiullah, C.B. Ahmed, M. Alowaifeer, A review of microgrid energy 
management and control strategies, IEEE Access 11 (2023) 21729–21757, https:// 
doi.org/10.1109/ACCESS.2023.3248511.

[6] H.A. Muqeet, et al., Sustainable solutions for advanced energy management system 
of campus microgrids: model opportunities and future challenges, Sensors 22 (6) 
(2022) 2345, https://doi.org/10.3390/s22062345.

[7] S.L.L. Wynn, T. Boonraksa, P. Boonraksa, W. Pinthurat, B. Marungsri, 
Decentralized energy management system in microgrid considering uncertainty 
and demand response, Electronics 12 (1) (2023) 237, https://doi.org/10.3390/ 
electronics12010237.

[8] H. Shayeghi, E. Shahryari, M. Moradzadeh, P. Siano, A survey on microgrid energy 
management considering flexible energy sources, Energies 12 (11) (2019) 2156, 
https://doi.org/10.3390/en12112156. Jun.

[9] M. Shafiullah, et al., Review of recent developments in microgrid energy 
management strategies, Sustainability 14 (22) (2022) 14794, https://doi.org/ 
10.3390/su142214794.

[10] M.S. Alam, S.A. Arefifar, Energy management in power distribution systems: 
review, classification, limitations and challenges, IEEE Access 7 (2019) 
92979–93001, https://doi.org/10.1109/ACCESS.2019.2927303.

[11] M. Tran, D. Banister, J.D.K. Bishop, M.D. McCulloch, Realizing the electric-vehicle 
revolution, Nat. Clim. Chang. 2 (5) (2012) 328–333, https://doi.org/10.1038/ 
nclimate1429.

[12] K. Knezovic, S. Martinenas, P.B. Andersen, A. Zecchino, M. Marinelli, Enhancing 
the role of electric vehicles in the power grid: field validation of multiple ancillary 
services, IEEE Trans. Transp. Electr. 3 (1) (2017) 201–209, https://doi.org/ 
10.1109/TTE.2016.2616864.

[13] A. Nebel, C. Kruger, F. Merten, Vehicle to grid and demand side management - an 
assessment of different strategies for the integration of electric vehicles, in: IET 
Conference on Renewable Power Generation (RPG 2011), IET, Edinburgh, UK, 
2011, p. 143, https://doi.org/10.1049/cp.2011.0156. –143.

[14] P. Alaee, J. Bems, A. Anvari-Moghaddam, A review of the latest trends in technical 
and economic aspects of EV charging management, Energies 16 (9) (2023) 3669, 
https://doi.org/10.3390/en16093669. Apr.

[15] S. Mohanty, et al., Demand side management of electric vehicles in smart grids: a 
survey on strategies, challenges, modeling, and optimization, Energy Rep. 8 (2022) 
12466–12490, https://doi.org/10.1016/j.egyr.2022.09.023.

[16] X.E. Yu, Y. Xue, S. Sirouspour, A. Emadi, Microgrid and transportation 
electrification: a review, in: 2012 IEEE Transportation Electrification Conference 
and Expo (ITEC), IEEE, Dearborn, MI, USA, 2012, pp. 1–6, https://doi.org/ 
10.1109/ITEC.2012.6243464. Jun.

[17] Q. Huang, et al., A simulation-based primal-dual approach for constrained V2G 
scheduling in a microgrid of building, IEEE Trans. Autom. Sci. Eng. (2022).

[18] Z. Wu, Y. Zou, F. Zheng, N. Liang, Research on optimal scheduling strategy of 
microgrid considering electric vehicle access, Symmetry 15 (11) (2023) 1993, 
https://doi.org/10.3390/sym15111993. Oct.

[19] M.W. Khan, J. Wang, Multi-agents based optimal energy scheduling technique for 
electric vehicles aggregator in microgrids, Int. J. Electr. Power Energy Syst. 134 
(2022) 107346, https://doi.org/10.1016/j.ijepes.2021.107346.

[20] H. Wang, H. Xing, Y. Luo, W. Zhang, Optimal scheduling of micro-energy grid with 
integrated demand response based on chance-constrained programming, Int. J. 
Electr. Power Energy Syst. 144 (2023) 108602, https://doi.org/10.1016/j. 
ijepes.2022.108602.

[21] T. Hai, A.K. Alazzawi, J. Mohamad Zain, H. Oikawa, A stochastic optimal 
scheduling of distributed energy resources with electric vehicles based on 
microgrid considering electricity price, Sustain. Energy Technol. Assess. 55 (2023) 
102879, https://doi.org/10.1016/j.seta.2022.102879. Feb.

[22] C.A. Nallolla, V. P, D. Chittathuru, S. Padmanaban, Multi-objective optimization 
algorithms for a hybrid AC/DC microgrid using RES: a comprehensive review, 
Electronics 12 (4) (2023) 1062, https://doi.org/10.3390/electronics12041062. 
Feb.

[23] N.F. Alshammari, M.M. Samy, S. Barakat, Comprehensive analysis of multi- 
objective optimization algorithms for sustainable hybrid electric vehicle charging 
systems, Mathematics 11 (7) (2023) 1741, https://doi.org/10.3390/ 
math11071741. Apr.

[24] Y. Mei, B. Li, H. Wang, X. Wang, M. Negnevitsky, Multi-objective optimal 
scheduling of microgrid with electric vehicles, Energy Rep. 8 (2022) 4512–4524, 
https://doi.org/10.1016/j.egyr.2022.03.131.

[25] H. Hou, et al., Multi-objective economic dispatch of a microgrid considering 
electric vehicle and transferable load, Appl. Energy 262 (2020) 114489, https:// 
doi.org/10.1016/j.apenergy.2020.114489.

[26] A. Huang, Y. Mao, X. Chen, Y. Xu, S. Wu, A multi-timescale energy scheduling 
model for microgrid embedded with differentiated electric vehicle charging 
management strategies, Sustain. Cities Soc. 101 (2024) 105123, https://doi.org/ 
10.1016/j.scs.2023.105123. Feb.

[27] F. Jiao, Y. Zou, X. Zhang, R. Zou, Multi-objective optimal energy management of 
microgrids including plug-in electric vehicles with the vehicle to grid capability for 
energy resources scheduling, Proc. Inst. Mech. Eng. Part A: J. Power Energy 235 (3) 
(2021) 563–580, https://doi.org/10.1177/0957650920942998.

[28] A. Hussain, H.-M. Kim, Goal-programming-based multi-objective optimization in 
off-grid microgrids, Sustainability 12 (19) (2020) 8119, https://doi.org/10.3390/ 
su12198119. Oct.

[29] J. Soares, H. Morais, T. Sousa, Z. Vale, P. Faria, Day-ahead resource scheduling 
including demand response for electric vehicles, IEEE Trans. Smart Grid 4 (1) 
(2013) 596–605, https://doi.org/10.1109/TSG.2012.2235865.

[30] Z. Zheng, S. Yang, Particle swarm optimisation for scheduling electric vehicles with 
microgrids, in: 2020 IEEE Congress on Evolutionary Computation (CEC), IEEE, 
Glasgow, United Kingdom, 2020, pp. 1–7, https://doi.org/10.1109/ 
CEC48606.2020.9185853.

[31] X. Zhang, Z. Wang, Z. Lu, Multi-objective load dispatch for microgrid with electric 
vehicles using modified gravitational search and particle swarm optimization 
algorithm, Appl. Energy 306 (2022) 118018, https://doi.org/10.1016/j. 
apenergy.2021.118018.

[32] G.F. Savari, V. Krishnasamy, V. Sugavanam, K. Vakesan, Optimal charging 
scheduling of electric vehicles in micro grids using priority algorithms and particle 
swarm optimization, Mobile Netw. Appl. 24 (6) (2019) 1835–1847, https://doi. 
org/10.1007/s11036-019-01380-x.

A. Rochd et al.                                                                                                                                                                                                                                  Results in Engineering 25 (2025) 104400 

21 

https://doi.org/10.1049/iet-smt.2014.0083
https://doi.org/10.1049/iet-smt.2014.0083
https://doi.org/10.1016/j.rser.2016.10.036
https://doi.org/10.1016/j.enconman.2023.117723
https://doi.org/10.1016/j.enconman.2023.117723
https://doi.org/10.1016/j.apenergy.2022.120028
https://doi.org/10.1109/ACCESS.2023.3248511
https://doi.org/10.1109/ACCESS.2023.3248511
https://doi.org/10.3390/s22062345
https://doi.org/10.3390/electronics12010237
https://doi.org/10.3390/electronics12010237
https://doi.org/10.3390/en12112156
https://doi.org/10.3390/su142214794
https://doi.org/10.3390/su142214794
https://doi.org/10.1109/ACCESS.2019.2927303
https://doi.org/10.1038/nclimate1429
https://doi.org/10.1038/nclimate1429
https://doi.org/10.1109/TTE.2016.2616864
https://doi.org/10.1109/TTE.2016.2616864
https://doi.org/10.1049/cp.2011.0156
https://doi.org/10.3390/en16093669
https://doi.org/10.1016/j.egyr.2022.09.023
https://doi.org/10.1109/ITEC.2012.6243464
https://doi.org/10.1109/ITEC.2012.6243464
http://refhub.elsevier.com/S2590-1230(25)00480-3/sbref0017
http://refhub.elsevier.com/S2590-1230(25)00480-3/sbref0017
https://doi.org/10.3390/sym15111993
https://doi.org/10.1016/j.ijepes.2021.107346
https://doi.org/10.1016/j.ijepes.2022.108602
https://doi.org/10.1016/j.ijepes.2022.108602
https://doi.org/10.1016/j.seta.2022.102879
https://doi.org/10.3390/electronics12041062
https://doi.org/10.3390/math11071741
https://doi.org/10.3390/math11071741
https://doi.org/10.1016/j.egyr.2022.03.131
https://doi.org/10.1016/j.apenergy.2020.114489
https://doi.org/10.1016/j.apenergy.2020.114489
https://doi.org/10.1016/j.scs.2023.105123
https://doi.org/10.1016/j.scs.2023.105123
https://doi.org/10.1177/0957650920942998
https://doi.org/10.3390/su12198119
https://doi.org/10.3390/su12198119
https://doi.org/10.1109/TSG.2012.2235865
https://doi.org/10.1109/CEC48606.2020.9185853
https://doi.org/10.1109/CEC48606.2020.9185853
https://doi.org/10.1016/j.apenergy.2021.118018
https://doi.org/10.1016/j.apenergy.2021.118018
https://doi.org/10.1007/s11036-019-01380-x
https://doi.org/10.1007/s11036-019-01380-x


[33] Y. Huang, G. He, Z. Pu, Y. Zhang, Q. Luo, C. Ding, Multi-objective particle swarm 
optimization for optimal scheduling of household microgrids, Front. Energy Res. 
11 (2024) 1354869, https://doi.org/10.3389/fenrg.2023.1354869.

[34] A. Rochd, A. Benazzouz, I. Ait Abdelmoula, A. Raihani, A. Ghennioui, Z. Naimi, 
B. Ikken, Design and implementation of an AI-based & IoT-enabled home energy 
management system: a case study in Benguerir — Morocco, Energy Rep. 7 (5) 
(2021) 699–719, https://doi.org/10.1016/j.egyr.2021.07.084.

[35] B. El Barkouki, M. Laamim, A. Rochd, J.-w. Chang, A. Benazzouz, M. Ouassaid, 
M. Kang, H. Jeong, An economic dispatch for a shared energy storage system using 
MILP optimization: a case study of a Moroccan microgrid, Energies 16 (12) (2023) 
4601, https://doi.org/10.3390/en16124601.

[36] A. Rochd, M. Laamim, A. Benazzouz, M. Kissaoui, A. Raihani, J.M. Guerrero, Home 
energy management systems (HEMS) control strategies testing and validation: 
design of a laboratory setup for power hardware-in-the-loop (PHIL) considering 
multi-timescale co-simulation at the smart grids test lab, Morocco, in: 2023 12th 
International Conference on Renewable Energy Research and Applications 
(ICRERA), Oshawa, ON, Canada, 2023, pp. 359–364, https://doi.org/10.1109/ 
ICRERA59003.2023.10269415.

[37] O. Mahir, B. El Barkouki, A. Rochd, M. Laamim, H. Ghennioui, A comprehensive 
overview of microgrid planning with electrical vehicle integration, in: 2024 9th 
International Youth Conference on Energy (IYCE), Colmar, France, 2024, pp. 1–6, 
https://doi.org/10.1109/IYCE60333.2024.10634930.

[38] B. El Barkouki, O. Mahir, M. Laamim, A. Rochd, M. Ouassaid, H. Oufettoul, Energy 
efficiency and optimal operation of a residential microgrid based on demand side 
management strategy, in: 2024 9th International Youth Conference on Energy 
(IYCE), Colmar, France, 2024, pp. 1–6, https://doi.org/10.1109/ 
IYCE60333.2024.10634959.

[39] O. Mahir, A. Rochd, B. El Barkouki, H. El Ghennioui, A. Benazzouz, H. Oufettoul, 
Techno-economic comparison of lithium-ion, lead-acid, and vanadium-redox flow 
batteries for grid-scale applications: a case study of renewable energy microgrid 
planning with battery storage in Morocco, in: 2024 IEEE 22nd Mediterranean 
Electrotechnical Conference (MELECON), Porto, Portugal, 2024, pp. 407–411, 
https://doi.org/10.1109/MELECON56669.2024.10608705.

[40] Qasery, M.E., Mahir, O., Laamim, M., Rochd, A., Barkouki, B.E.L., Abbou, A. 
(2024). Approach to real-time simulation and hardware-in-the-loop for microgrid 
battery management systems. In: Motahhir, S., Bossoufi, B. (eds) Digital 
Technologies and Applications. ICDTA 2024. Lecture Notes in Networks and 
Systems, vol 1101. Springer, Cham. https://doi.org/10.1007/978-3-031-686 
75-7_35.

[41] Qasery, M.E., Barkouki, B.E.L., Laamim, M., Rochd, A., Mahir, O., Abbou, A. 
(2024). A comparative study of PSO and MILP optimization algorithms for 
economic dispatch in grid-tied microgrids. In: Motahhir, S., Bossoufi, B. Digital 
Technologies and Applications. ICDTA 2024. Lecture Notes in Networks and 
Systems, vol 1101. Springer, Cham. https://doi.org/10.1007/978-3-031-686 
75-7_34.

[42] Rahmouni, A., Yousfi, D., Bachiri, M., Bakhouya, M., Rochd, A. (2024). Fuzzy logic- 
based energy management system for an AC microgrid. In: Motahhir, S., Bossoufi, 
B. Digital Technologies and Applications. ICDTA 2024. Lecture Notes in Networks 
and Systems, vol 1101. Springer, Cham. https://doi.org/10.1007/978-3-031-686 
75-7_41.

[43] Laamim, M., Mahir, O., Barkouki, B.E.L., Rochd, A., Qasery, M.E., Fadili, A.E.L. 
(2024). Enhancing microgrid voltage stability through an advanced volt-VAR 
control strategy using hardware-in-the-loop simulations. In: Motahhir, S., Bossoufi, 
B. Digital Technologies and Applications. ICDTA 2024. Lecture Notes in Networks 
and Systems, vol 1101. Springer, Cham. https://doi.org/10.1007/978-3-031-686 
75-7_32.

[44] R. Abdelilah, H. Nouriddine, B. Moahmed, L. Mohamed, K. Mohammed, 
R. Abdelhadi, A. Amine, Towards smart EV charging: assessing the flexibility 
provision potential of electric vehicle charging stations for cost-effective grid 
responsiveness, IFAC-PapersOnLine 58 (13) (2024) 466–471, https://doi.org/ 
10.1016/j.ifacol.2024.07.526.

[45] A. Rochd, et al., Smart microgrids for agriculture: MG-FARM’s innovative approach 
to electrifying farms in North Africa - case studies of Morocco and Algeria, in: 2023 
IEEE PES/IAS Power Africa, Marrakech, Morocco, 2023, pp. 1–3, https://doi.org/ 
10.1109/PowerAfrica57932.2023.10363302.

[46] M. Laamim, A. Rochd, B. El Barkouki, A. Benazzouz, Green grid: pioneering the 
smart and suistainable microgrid solution in Africa: case study of Morocco, in: 

2023 IEEE PES/IAS Power Africa, Marrakech, Morocco, 2023, pp. 1–3, https://doi. 
org/10.1109/PowerAfrica57932.2023.10363156.

[47] A. Rochd, M. Laamim, A. Benazzouz, M. Kissaoui, A. Raihani, H. Sun, Public 
charging infrastructure for EVs: a comprehensive analysis of charging patterns & 
real-world insights—case study of Rabat City, Morocco, Energy Rep. 9 (9) (2023) 
216–234, https://doi.org/10.1016/j.egyr.2023.05.259.

[48] A. Satpathy, N. Nayak, N. Hannon, N.H. Nik Ali, A new real-time maximum power 
point tracking scheme for PV-based microgrid STABILITY using online DEEP ridge 
extreme learning machine algorithm, Results Eng. 20 (2023) 101590, https://doi. 
org/10.1016/j.rineng.2023.101590. ISSN 2590-1230.

[49] A. Satpathy, S. Dhar, P.K. Dash, R. Bisoi, N. Nayak, A new representation learning 
based maximum power operation towards improved energy management 
integration with DG controllers for photovoltaic generators using online deep 
exponentially expanded RVFLN algorithm, Appl. Soft Comput. 166 (2024) 112185, 
https://doi.org/10.1016/j.asoc.2024.112185. ISSN 1568-4946.

[50] Y. Zahraoui, I. Alhamrouni, S. Mekhilef, M.R. Basir Khan, M. Seyedmahmoudian, 
A. Stojcevski, B. Horan, Energy management system in microgrids: a 
comprehensive review, Sustainability 13 (19) (2021) 10492, https://doi.org/ 
10.3390/su131910492.

[51] V. Bertsch, J. Geldermann, T. Lühn, What drives the profitability of household PV 
investments, self-consumption and self-sufficiency? Appl. Energy 204 (2017) 1–15, 
https://doi.org/10.1016/j.apenergy.2017.06.055.

[52] S. Aslam, H. Herodotou, N. Ayub, S.M. Mohsin, Deep learning based techniques to 
enhance the performance of microgrids: a review, in: 2019 International 
Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 
2019, pp. 116–1165, https://doi.org/10.1109/FIT47737.2019.00031.

[53] A.R. Singh, L. Ding, D.K. Raju, L.P. Raghav, R.S. Kumar, A swarm intelligence 
approach for energy management of grid-connected microgrids with flexible load 
demand response, Int. J. Energy Res. 46 (4) (2022) 4301–4319, https://doi.org/ 
10.1002/er.7427.

[54] C. Huang, S. Sarkar, Dynamic pricing for distributed generation in smart grid, in: 
2013 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 2013, 
pp. 422–429, https://doi.org/10.1109/GreenTech.2013.71.

[55] S.M. Hakimi, S.M. Moghaddas-Tafreshi, Optimal planning of a smart microgrid 
including demand response and intermittent renewable energy resources, in: IEEE 
Transactions on Smart Grid 5, 2014, pp. 2889–2900, https://doi.org/10.1109/ 
TSG.2014.2320962.

[56] D. Andreotti, M. Spiller, A. Scrocca, F. Bovera, G. Rancilio, Modeling and analysis 
of BESS operations in electricity markets: prediction and strategies for day-ahead 
and continuous intra-day markets, Sustainability 16 (18) (2024) 7940, https://doi. 
org/10.3390/su16187940.

[57] S. Shao, M. Pipattanasomporn, S. Rahman, Development of physical-based demand 
response-enabled residential load models, IEEE Trans. Power Syst. 28 (2) (2013) 
607–614, https://doi.org/10.1109/TPWRS.2012.22082.

[58] M. Eskandari, A. Rajabi, A.V. Savkin, M.H. Moradi, Z.Y. Dong, Battery energy 
storage systems (BESSs) and the economy-dynamics of microgrids: review, 
analysis, and classification for standardization of BESSs applications, J. Energy 
Stor. 55 (2022) 105627, https://doi.org/10.1016/j.est.2022.105627.

[59] E. Zarate-Perez, C. Santos-Mejía, R. Sebastián, Reliability of autonomous solar- 
wind microgrids with battery energy storage system applied in the residential 
sector, Energy Rep. 9 (2023) 172–183.

[60] N. Padmanabhan, M. Ahmed, K. Bhattacharya, Battery energy storage systems in 
energy and reserve markets, IEEE Trans. Power Syst. 35 (1) (2020) 215–226, 
https://doi.org/10.1109/TPWRS.2019.2936131.

[61] Y. Zhang, P. Zeng, S. Li, C. Zang, H. Li, A novel multiobjective optimization 
algorithm for home energy management system in smart grid, Mathe. Probl. Eng. 
2015 (1) (2015) 807527, https://doi.org/10.1155/2015/807527.

[62] W. Su, J. Wang, J. Roh, Stochastic energy scheduling in microgrids with 
intermittent renewable energy resources, IEEE Trans. Smart Grid 5 (4) (2014) 
1876–1883, https://doi.org/10.1109/TSG.2013.2280645.

[63] A. Alzahrani, et al., A strategy for multi-objective energy optimization in smart grid 
considering renewable energy and batteries energy storage system, IEEE Access 11 
(2023) 33872–33886, https://doi.org/10.1109/ACCESS.2023.3263264.

[64] H. Nezamabadi-pour, M. Rostami-Shahrbabaki, M. Maghfoori-Farsangi, Binary 
particle swarm optimization: challenges and new solutions, CSI J. Comput. Sci. 
Eng. 6 (1) (2008) 21–32.

A. Rochd et al.                                                                                                                                                                                                                                  Results in Engineering 25 (2025) 104400 

22 

https://doi.org/10.3389/fenrg.2023.1354869
https://doi.org/10.1016/j.egyr.2021.07.084
https://doi.org/10.3390/en16124601
https://doi.org/10.1109/ICRERA59003.2023.10269415
https://doi.org/10.1109/ICRERA59003.2023.10269415
https://doi.org/10.1109/IYCE60333.2024.10634930
https://doi.org/10.1109/IYCE60333.2024.10634959
https://doi.org/10.1109/IYCE60333.2024.10634959
https://doi.org/10.1109/MELECON56669.2024.10608705
http://doi.org/10.1007/978-3-031-68675-7_35
http://doi.org/10.1007/978-3-031-68675-7_35
http://doi.org/10.1007/978-3-031-68675-7_34
http://doi.org/10.1007/978-3-031-68675-7_34
http://doi.org/10.1007/978-3-031-68675-7_41
http://doi.org/10.1007/978-3-031-68675-7_41
http://doi.org/10.1007/978-3-031-68675-7_32
http://doi.org/10.1007/978-3-031-68675-7_32
https://doi.org/10.1016/j.ifacol.2024.07.526
https://doi.org/10.1016/j.ifacol.2024.07.526
https://doi.org/10.1109/PowerAfrica57932.2023.10363156
https://doi.org/10.1109/PowerAfrica57932.2023.10363156
https://doi.org/10.1109/PowerAfrica57932.2023.10363156
https://doi.org/10.1109/PowerAfrica57932.2023.10363156
https://doi.org/10.1016/j.egyr.2023.05.259
https://doi.org/10.1016/j.rineng.2023.101590
https://doi.org/10.1016/j.rineng.2023.101590
https://doi.org/10.1016/j.asoc.2024.112185
https://doi.org/10.3390/su131910492
https://doi.org/10.3390/su131910492
https://doi.org/10.1016/j.apenergy.2017.06.055
https://doi.org/10.1109/FIT47737.2019.00031
https://doi.org/10.1002/er.7427
https://doi.org/10.1002/er.7427
https://doi.org/10.1109/GreenTech.2013.71
https://doi.org/10.1109/TSG.2014.2320962
https://doi.org/10.1109/TSG.2014.2320962
https://doi.org/10.3390/su16187940
https://doi.org/10.3390/su16187940
https://doi.org/10.1109/TPWRS.2012.22082
https://doi.org/10.1016/j.est.2022.105627
http://refhub.elsevier.com/S2590-1230(25)00480-3/sbref0057
http://refhub.elsevier.com/S2590-1230(25)00480-3/sbref0057
http://refhub.elsevier.com/S2590-1230(25)00480-3/sbref0057
https://doi.org/10.1109/TPWRS.2019.2936131
https://doi.org/10.1155/2015/807527
https://doi.org/10.1109/TSG.2013.2280645
https://doi.org/10.1109/ACCESS.2023.3263264
http://refhub.elsevier.com/S2590-1230(25)00480-3/sbref0063
http://refhub.elsevier.com/S2590-1230(25)00480-3/sbref0063
http://refhub.elsevier.com/S2590-1230(25)00480-3/sbref0063

	Swarm Intelligence-driven Multi-objective Optimization for Microgrid Energy Management and Trading considering DERs and EVs ...
	1 Introduction
	1.1 Background and motivations
	1.2 Problem statement
	1.3 Research objectives and methodology
	1.4 Outlines of the paper

	2 Literature review
	3 Methodological framework
	3.1 Research scope
	3.2 Proposed microgrid EMS architecture

	4 Microgrid modeling
	4.1 Power flows
	4.2 Solar PV supply
	4.3 Loads
	4.4 Main power grid
	4.5 EV battery model
	4.6 Battery energy storage system (BESS)
	4.6.1 BESS model
	4.6.2 BESS constraints
	4.6.3 BESS-grid transactions and real-time battery costs
	4.6.4 Battery degradation costs


	5 Multi-objective optimization problem formulation
	5.1 Optimization problem description
	5.2 Cost function
	5.3 EV user satisfaction function
	5.4 Multi-objective function

	6 EMS algorithm design
	6.1 Particle swarm optimization (PSO) algorithm
	6.2 Binary particle swarm optimization (BPSO)
	6.3 Proposed EMS algorithm

	7 Case study: Green Energy Park
	7.1 Living-lab description
	7.2 Input data and algorithm parameters
	7.3 Results and discussion
	7.3.1 Scenarios description
	7.3.2 Simulation results
	7.3.3 Discussion & findings


	8 Conclusion & future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


