
Towards Open-World Object-based Anomaly
Detection via Self-Supervised Outlier Synthesis

Brian K. S. Isaac-Medina⋆, Yona Falinie A. Gaus⋆,
Neelanjan Bhowmik⋆, Toby P. Breckon⋆,†

Department of {⋆Computer Science, †Engineering}, Durham University, UK

Abstract. Object detection is a pivotal task in computer vision that
has received significant attention in previous years. Nonetheless, the ca-
pability of a detector to localise objects out of the training distribu-
tion remains unexplored. Whilst recent approaches in object-level out-of-
distribution (OoD) detection heavily rely on class labels, such approaches
contradict truly open-world scenarios where the class distribution is of-
ten unknown. In this context, anomaly detection focuses on detecting un-
seen instances rather than classifying detections as OoD. This work aims
to bridge this gap by leveraging an open-world object detector and an
OoD detector via virtual outlier synthesis. This is achieved by using the
detector backbone features to first learn object pseudo-classes via self-
supervision. These pseudo-classes serve as the basis for class-conditional
virtual outlier sampling of anomalous features that are classified by an
OoD head. Our approach empowers our overall object detector archi-
tecture to learn anomaly-aware feature representations without relying
on class labels, hence enabling truly open-world object anomaly detec-
tion. Empirical validation of our approach demonstrates its effectiveness
across diverse datasets encompassing various imaging modalities (visible,
infrared, and X-ray). Moreover, our method establishes state-of-the-art
performance on object-level anomaly detection, achieving an average re-
call score improvement of over 5.4% for natural images and 23.5% for a
security X-ray dataset compared to the current approaches. In addition,
our method detects anomalies in datasets where current approaches fail.
Code available at https://github.com/KostadinovShalon/oln-ssos.

1 Introduction

Anomaly detection plays a crucial role in identifying deviations from the norm
in various applications such as industrial inspection [12,30,47] and video surveil-
lance [17,32,37,38]. In general, anomaly detection addresses an aspect of the open
set problem in computer vision - whilst normality in terms of the appearance
and behaviour of objects within the scene can be bounded, conversely, the set of
possible anomalous occurrences is unbounded. Anomalous events rarely occur as
compared to normal activities, which in itself results in the commonplace dataset
challenge of anomaly detection - the availability of abnormal (anomalous) sam-
ples is limited in both volume and variety. This in itself leads to a naturally
imbalanced dataset distribution for any real-world anomaly detection problem.
A common approach is to learn a model of the normal (non-anomalous) data
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Fig. 1: Exemplar of in-distribution (green) and out-of-distribution (red) objects from
across four diverse benchmark datasets with various imaging modalities.

distribution from the abundance of normal sample training data available and
then detect anomalies as outliers in a semi-supervised manner [2, 3, 47].

In this context, out-of-distribution (OoD) detection identifies instances from
unknown (unseen) classes by training only on in-distribution data. For instance,
works of [28, 34] approach OoD detection by measuring the joint probability of
a sample coming from one of the training classes using the free energy of the
sample, subsequently identifying never-seen-before (outlier) objects. Whilst this
approach has proven effective, its application within the object detection frame-
work faces the challenge of localising unseen object categories. For example, a
self-driving vehicle may encounter wild animals [15], an X-ray security screen-
ing system may identify prohibited items [2] or unknown vehicles in surveillance
systems [17] (Fig. 1). These anomalous variations can vary from the visually
obvious to the very subtle in the object [3] and, while current OoD approaches
can classify them as anomalies, the detector must first localise them within the
image. This challenge serves as motivation for this work, differentiating object-
based anomaly detection from out-of-distribution detection by defining it as the
joint task of localising unseen objects and identifying them as anomalous.

This work proposes an object-based anomaly detection framework that lever-
ages an open-world object detector (OWOD), which localises unseen objects
without prior class supervision. Whilst classic object detectors [6, 46, 61] are
focused on detecting objects from a set of known categories, open world ob-
ject detectors [20, 26, 73] naturally capture both known and unknown objects.
However, the lack of classification in such OWOD subsequently disables the
use of secondary class-based OoD detectors. To overcome this challenge, our
method learns object pseudo-labels in a self-supervised manner consisting of al-
ternating deep feature clustering and neural network-based prediction similar
to DeepCluster [7]. We cluster the object features from the detector backbone,
pooled by a RoIAlign layer [21], before each training epoch such that the result-
ing assignments from the clustering are used as ground truth labels to train a
classifier head. Following the virtual outlier synthesis (VOS) methodology [15],
class-conditional Gaussian distributions are subsequently learnt in the object
feature space, which are used to sample virtual outliers from low-likelihood re-
gions. Both in-distribution objects and virtual outliers are finally used to train
a normal vs. abnormal classifier head. Since virtual outliers are sampled from
the pseudo-label object distribution, we call this approach as Self-Supervised
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Outlier Synthesis (SSOS). To the best of our knowledge, we are the first to use
self-supervised pseudo-classification on object instances for energy-based OoD
detection, enabling object-level class-agnostic anomaly detection. As we use the
object localisation network (OLN) [26] as our OWOD, we denote our method
as OLN-SSOS. We evaluate over a diverse set of imaging modalities and ap-
plications, successfully detecting anomalous instances across a wide variety of
contexts. In summary, our main contributions are:
– the first class-agnostic, end-to-end object-based anomaly detection

architecture that learns object pseudo-labels to fit class-conditional Gaus-
sian distributions in the object feature space of an OWOD, thus enabling
energy-based OoD detection; our approach uses self-supervised outlier syn-
thesis (SSOS) to identify anomalies not in the training set.

– state-of-the-art anomaly detection performance across four diverse
benchmark datasets, namely BDD100K/COCO [68], LTDImaging [42],
SIXRay10 [39] and DBF6 [1], and competitive performance on the
VOC/COCO [16, 33] benchmark. Our method achieves an average recall im-
provement of 5.4% for the BDD100k/COCO, 23.5% for DBF6, and establishes
the state-of-the-art for SIXRay10 and LTDImaging, where current OoD ap-
proaches fail. In addition, it achieves an average recall of 17.8% (vs. 20.6%
using VOS [15]) without class supervision.

– qualitative analysis illustrating that our architecture can jointly localise
previously unseen objects within an image and classify them as anomalous,
whilst other methods only identify OoD objects that are similar to the in-
distribution dataset and can hence be localised by the class-based object de-
tector (e.g ., animals and vehicles are present in the training and test datasets
as super-classes, with a subset of intra-class anomalous instances therein).

– supporting ablation studies illustrating the impact of our methodological
design choices, such as the number of clusters or the use of instance masks.

2 Literature Review

The terminology of anomaly detection, outlier detection and out-of-distribution
(OoD) detection are largely used interchangeably in the literature to describe
tasks whereby the primary goal is to model the norm of a given problem domain
and hence detect (outlier) deviations from that model. In general, anomaly (or
outlier) detection (Sec. 2.1) operates under the assumption that data sample
availability is highly biased towards normal classes whilst inadequate distribu-
tion coverage exists for other (abnormal) classes which may be unbounded in
nature [17]. By contrast, OoD detection (Sec. 2.2) leverages a closed set problem
whereby in-distribution samples belong to one of a predefined set of class labels,
and hence outliers are objects that do not fit into any of those category labels.

2.1 Anomaly Detection

The approaches for detecting anomalies in images fall into three main categories:
feature embedding, reconstruction-based, and streaming-based approaches.
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Within feature embedding techniques, well-known methods include memory bank
[10,11,30,47], knowledge distillation [4,12,53], normalising flow networks [19,50,
69], and one-class classification strategies [51,52,67,70]. Among these, the mem-
ory bank approach, exemplified by PatchCore [47], followed by SPADE [10],
Padim [11], and CFA [30], stands out for their effectiveness. These methods ex-
tract features from all normal images and store them in a memory bank. During
testing, image features are matched against the normal features stored in the
memory. However, the effectiveness of these methods heavily relies on the com-
pleteness of the memory, which requires a vast collection of normal images to
fully capture the normal pattern. Additionally, the size of the memory is often
tied to the size of the dataset or the dimensions of the images, rendering these
approaches impractical for scenarios involving large or high-resolution datasets.

Reconstruction-based methods address anomaly detection at pixel level by
typically employing autoencoders [5,36,56] or generators [2,66,71] to encode and
decode the input normal images, indirectly learning the distribution of normal
images through the process of reconstruction. While these algorithms deliver
good results, they encounter difficulties with objects of complex textures and
structures. Consequently, they are prone to reconstruction errors, compromising
their ability to differentiate between normal and anomalous instances.

Temporal streaming-based approaches are mostly applied in video clips [24,
35, 40, 41, 43, 52] where the task primarily involves detecting unusual events or
behaviours within normal events. This is primarily achieved by analysing object
trajectories [31, 48, 49] and motion characteristics [35, 41, 45, 62]. For instance,
Roy et al. [48, 49] incorporate deep autoencoders to model the trajectories of
normal events, subsequently identifying any abnormal trajectories as outliers.
On the other hand, the work of [35] introduces an optical flow loss as a motion
constraint during training. In contrast, the works of [41, 45] focus on learning
motion by predicting the optical flow of the current frame. Additionally, the
works of [17, 62] use optical flow information to guide frame prediction, where
motion knowledge is used to discriminate between normal and abnormal frames.

2.2 OoD Detection

Earlier works on out-of-distribution detection (OoD) focus on the use of gener-
ative models as a means to model the in-distribution data classes [18,29,57,60].
Whilst such methods give satisfactory performance, this often drops off with in-
creased dataset diversity and image fidelity resulting in the more recent advent
of feature-based synthetic outlier generation techniques in the OoD space.

Du et al. [15] introduce virtual outlier synthesis (VOS) for OoD, employ-
ing inlier features to fit class-conditional Gaussian distributions and sampling
OoD features from low likelihood regions of these distributions. Under a sim-
ilar approach, [14]incorporate unknown-aware knowledge from auxiliary videos
to effectively improve the performance of distinguishing OoD objects. Kumar
et al. [28] argue that synthesising outlier features from class-wise low-likelihood
regions does not ensure that these features will not overlap other class high
likelihood regions. Therefore, they use an invertible normalising flow taking all
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in-distribution objects into a common feature space where outliers are sampled,
improving over the decision boundary between in-distribution and OoD objects.

Whilst prior work [14, 15, 28] concentrates on feature-based OoD object de-
tectors, [63] leverages the backbone of an object detector network, identifying
that residual convolutional layers with batch normalisation are the most ef-
fective layers for identifying OoD samples. Another notable work [13] slightly
deviates from this previous approach of using class-conditional Gaussian distri-
butions [14, 15, 28], by utilizing von Mises-Fisher (vMF) distributions to shape
the learned representation for detecting OoD objects.

Similar to our approach, the works of [20, 25, 26, 72] use OWOD to identify
both known and unknown classes by training on pseudo-labelled unknown ob-
jects while continuously acquiring updated annotations for new unseen classes.
For instance, Gupta et al. [20] introduce a Transformer-based framework with
multi-scale self-attention to discriminate between (open-set) objects and back-
ground. Wu et al. [65] incorporates a two-stage object detector to classify objects
into different unknown classes, while Zhao et al. [72] use a more traditional ap-
proach (selective search) to correct the auto-labelled first-stage region-proposals
and subsequently classify unknown instances into new classes.

Whilst these approaches exhibit good unknown object detection performance
to subsequently identify anomaly/OoD occurrences, most of the aforementioned
methods present several notable challenges. First, detecting abnormalities rely
heavily on suitable access to real outlier data samples [32,37,38,58], or a complex
generative process to synthesise such samples [24,35,40,41,43,52]. In real-world
scenarios, anomalies can vary from the visually obvious (e.g. person dressed
as a clown) [8] to the very subtle (e.g. descending fog or mist due to adverse
weather condition) [42]. Second, all the aforementioned work explicitly relies
upon existing object-wise class labels in order to detect out-of-distribution oc-
currences [13–15, 28]. This contrasts sharply with reality, where unknown (un-
labelled) object classes will naturally occur and anomaly occurrences will be a
rarity. As a result, incorporating a class-agnostic OWOD is a crucial step towards
building reliable object-wise anomaly detection for real-world scenarios.

3 Methodology

Our method consists of the combination of three architectures for different
tasks that jointly enable class-agnostic object-based anomaly detection. First,
an OWOD is used to detect all possible objects within the scene (Sec. 3.1);
subsequently, an unsupervised classifier head learns to cluster object categories
by pooling features from the backbone of the OWOD (Sec. 3.2); and finally,
a self-supervised outlier synthesis module produces a set of virtual outliers by
sampling low-likelihood regions from the feature space using the learned pseudo-
labels (Sec. 3.3). The overall architecture is illustrated in Fig. 2.
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Fig. 2: Our proposed architecture for open-world anomaly detection combines the
object localisation network (OLN), unsupervised pseudo-classification (UPC) and
anomaly detection via self-supervised outlier synthesis (SSOS).

3.1 Class-agnostic Open-world Object Detection

In order to detect anomalies, a detector capable of localising objects belonging
to unknown classes not available during training is needed. To this end, we
adopt the object localisation network (OLN) architecture [26] to predict the
maximal number of objects within an image. Different from standard detection,
the OWOD localise all possible objects in an image in a class-agnostic manner.

As depicted in Fig. 2, the OLN consists of a region proposal network (RPN)
[46], a bounding box regression head and an optional mask branch. In this con-
text, given an input image x, a 2D feature map f = ψ(x) is extracted by a back-
bone network ψ. Subsequently, the RPN predicts a set of N proposal bounding
boxes P = {pi}Ni=1 , pi ∈ R4. Each object candidate pi is parameterised by a
point, usually the top-left corner, and the bounding box width and height. In a
departure from the classical RPN design introduced in Faster R-CNN [46] that
classifies region proposals as foreground or background, the RPN in OLN re-
gresses the centreness [59] ci of the bounding box with the maximal overlapping
ground truth bounding box as a measurement of proposal quality. Additionally,
the parameters of valid proposals, i.e., those with an intersection over union
(IoU) greater than a threshold, are also regressed. L1 Losses are used for the
centreness and the box parameters. The RPN loss is:

LRPN =
1

N

N∑

i

L1Loss(ci, ĉi) + 1objL1Loss(pi, p̂i) , (1)

where 1obj is 1 if the proposal is matched against a ground truth (0 otherwise).
Next, the proposal features ui are extracted from f using RoIAlign [21]. These
features are subsequently fed into a shared network g (later used at different
stages) producing an object representation vi = g(ui) ∈ Rd. Similarly to the
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RPN, a bounding box branch regresses the box quality bi and the bounding box
parameters p using L1 losses. The bounding box loss is:

Lbbox =
1

Nv

Nv∑

i

L1Loss(bi, b̂i) + L1Loss(pi, p̂i) , (2)

where Nv is the number of valid proposals and the box quality bi is given by the
IoU with the ground truth. An optional mask branch is added, consisting of the
same mask head as in Mask R-CNN [21] and a mask scoring network [23] that
predicts a mask quality score mi. The mask loss Lmask is hence the sum of the
Mask R-CNN and Mask Scoring mask losses. During inference, the prediction
score is calculated as si =

√
cibi, or si = 3

√
cibimi if the mask branch is used.

3.2 Unsupervised Pseudo Classification

As it will be discussed in Sec. 3.3, OoD driven object-wise anomaly detection
relies on the categorical distribution of the ground truth object classes at train-
ing time. However, given that our open-world object detector is class-agnostic,
ground truth class labels are not available. For this reason, we perform Unsuper-
vised Pseudo Classification (UPC) following the DeepCluster [7] methodology of
learning pseudo-classes from underlying deep feature representations. In this re-
gard, the UPC strategy consists of clustering a set of M feature vectors fi ∈ Rd

into k classes, using the resulting pseudo-labels to train a classifier network.
Clustering is performed several times during the training process such that the
clusters are re-assigned to accommodate more recently learned representations.

While DeepCluster is implemented for image classification networks, we im-
plement UPC by clustering object features from the backbone using a RoIAlign
layer. Feature clustering is performed before each epoch via K-means trained on
ground truth objects. Let Z = {zij} , zij = RoIAlign(ψ(xi), yij) be the set of the
feature representations of all ground truth bounding boxes yij from all training
images xi. K-means clustering is performed on Z into K clusters, producing
a set of cluster centres w1, . . . ,wK . Subsequently, each ground truth bounding
box is assigned a pseudo-label after each epoch t such that:

l
(t)
ij = argmin

k
d(zij ,wk) , (3)

where l(t)ij is the bounding box bij label after t epochs and d is the L2 distance.
Finally, a multi-layer perception (MLP) predicts the pseudo-class logits fk for
each object and Cross Entropy is used as the pseudo-classification loss Lpcls .

3.3 Self-Supervised Outlier Synthesis

Ground truth object features and their corresponding pseudo-labels (Sec. 3.2)
are used to obtain class-conditional Gaussian distributions that can be used
for self-supervised outlier synthesis (SSOS), thus enabling decision boundaries
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between inliers and outliers. We implement the virtual outlier synthesis (VOS)
technique by Du et al . [15], where the class-conditional Gaussians are formed
from the penultimate layer features (after the shared head, Fig. 2).

A normal distribution for each object pseudo-class is constructed by having
a mean µk and a tied covariance Σ given by:

µk =
1

Nk

Nk∑

i:λi=k

vij (4)

Σ =
1

N

∑

k

Nk∑

i:λi=k

(vij − µk)(vij − µk)
⊤ . (5)

Subsequently, virtual outliers ṽ are sampled from the normal distributions such
that their probabilities are less than a value ϵ. Since ϵ is unknown, an approxi-
mation is carried out by sampling several features from N (µk,Σ) and taking the
less likely sample as an outlier. To differentiate between normal and anomalous
objects, the free energy is used as a confidence measurement, which is given by:

E(bij) = − log

K∑

k=1

exp(fkwk) , (6)

where fk are the pseudo-class logits of an object bij and wk are learned weights
assigning greater importance to some classes, following Du et al. [15]. A greater
energy indicates a more anomalous object, whereas a lower energy score suggests
an object conforming to the norm. From this energy, an MLP ϕ is used to
predict an uncertainty score λij = ϕ(E(bij)), such that normal data has greater
λij values than outliers. During inference time, anomalies are detected by the
predicted energy of objects detected by the OLN. With this strategy, SSOS
regularises the feature representations of in-distribution objects to be compact,
identifying anomalous objects by being far from all category clusters. Binary
Cross Entropy is used for the classification of normal vs. anomaly, such that:

Lanomaly =
1

Nn +No

(
Nn∑

i

log (ϕ(E(bij))) +

No∑

i

log (1− ϕ(E(ṽi)))

)
, (7)

where Nn is the number of normal data feature vectors and No is the number
of outliers. The final loss function of our approach is thus given by:

LOLN-SSOS = LRPN + Lbbox + Lmask + αLpcls + βLanomaly . (8)

Feature Flow Synthesis (FFS) [28], a recent approach for outlier synthesis,
uses a normalising flow function f that maps the complex in-distribution features
into a simpler space for feature synthesis. We also explore using this technique
in our method, and call this variant OLN-FFS. Specifically, f : Rd → Rd is a
sequence of invertible bijective functions with parameters θ that transforms the
object features vi into a feature space ξi = f(vi) such that p(ξi) ∼ N (0, I).
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Virtual outliers ξ̃ are sampled from this space and projected back to the object
feature space via ṽ = f−1(ξ̃). During training, the log-likelihood of recovering
vi from f is maximised by adding the negative log-likelihood loss:

Lnll =
1

N

N∑

1

− log(pθ(vi)) , (9)

where pθ is the posterior likelihood and is given by pθ(vi) = p(f(vi))|det Jf,v|,
such that Jf,vi is the Jacobian matrix of f with respect to vi. This loss is added
to Eq. (8) to form the OLN-FFS loss:

LOLN-FFS = LOLN-SSOS + γLnll . (10)

4 Experimental Setup

We evaluate OLN-SSOS and OLN-FFS on diverse datasets (Sec. 4.1) to show the
effectiveness in detecting unseen anomaly objects. Sec. 4.2 reviews the perfor-
mance metrics to evaluate our approach against the baseline methods and finally
Sec. 4.3 gives an overview of our implementation details for reproducibility.

4.1 Datasets

In order to perform anomaly detection, datasets without object anomalies must
be used for training. We evaluate diverse datasets from various image modali-
ties (visible, infrared and X-ray). Following OoD works [13, 15, 28], we use the
PASCAL-VOC 2007 and 2012 [16] datasets with 20 object categories and
the Berkeley DeepDrive (BDD100K) [68] dataset with 10 categories as ID
while the OoD test sets consist on subsets of the MS-COCO [33] validation par-
tition removing images containing in-distribution instances. To demonstrate the
efficacy of our method in actual application scenarios, we also train our model on
two X-ray security imagery datasets, SIXray10 [39], a publicly available security
inspection X-ray image with 5 object class labels and Durham Baggage Full
Image (DBF6) [2] datasets containing 6 object class labels, and apply a leave-
one-out contraband item anomaly detection formulation (‘firearms’ in SIXRay10,
‘firearms’ + ‘firearm parts’ in DBF6) to construct the in-distribution/OoD train-
ing and testing data partitions. Finally, we also use the publicly available Long-
term Thermal Drift (LTD) [42] dataset, similarly applying a leave-one-out
strategy (vehicle). A summary of the composition of these dataset formulations
is presented in Supplementary Material.

4.2 Evaluation Metrics

OoD detectors focus on evaluating how accurately the predicted detections in
the OoD dataset are flagged as outliers while keeping the in-distribution dataset
detections with low false positive anomalies. However, this approach does not
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account for the anomalies recall. Motivated by this, we report class-agnostic
MS-COCO [33] detection metrics to investigate the localisation performance.
Since our method leverages an open-world detector, only the single-class average
recall (AR) metrics are reported, specifically AR@10 (10 detections), AR@100
(100 detections), AR@S (small objects), AR@M (medium objects) and AR@L
(large objects). Following convention, OoD detection performance is reported
considering detections with an uncertainty score below a threshold such that 95%
of in-distribution detected objects are above it (i.e., they are flagged as normal).
Following Du et al. [15], only in-distribution detections with a confidence score
greater than an optimum threshold (that maximises the F1 score) are considered.

4.3 Implementation details

The OWOD sub-network of OLN-SSOS and OLN-FFS is implemented following
the original OLN architecture [26], i.e., a Faster-RCNN [46] (or Mask RCNN [21]
for instance segmentation) detector with a ResNet-50 [22] backbone pre-trained
on the ImageNet [27] and with no classification heads. In this sense, all ground
truth class labels are ignored in order to account for learned pseudo-classes.
UPC is carried out before each epoch using the ground truth object features
extracted from the backbone (Sec. 3.2) using a RoIAlign layer with a 3 × 3
output size and 256 channels. These features are flattened, creating a 2, 304
vector representation of each bounding box. Pseudo-labels are obtained using the
mini-batch k-means implementation of Sculley [55], using the resulting cluster
centres as initialisation for the next epoch re-clustering. These pseudo-labels are
used as ground truth classes to train the pseudo-label classifier (no background
class is added), with a loss weight of 1 (α in Eq. (8)). The corresponding SSOS
and FFS implementations follow the original settings, such that the anomaly
classification module in Fig. 2 consist of a two-layer MLP with a ReLU activation
and 512 hidden dimensions. We use a loss weight of 0.1 (β in Eq. (8)). OLN-
FFS models use an nll loss weight of 1× 10−4 (γ in Eq. (10)). For OLN-SSOS,
outliers are chosen as the least confident out of 10, 000 class-conditional samples,
while for OLN-FFS the samples are reduced to 300. We investigate the impact
of the number of pseudo-labels, as well as the number of outlier samples in the
ablation studies. Since DBF6 is the only dataset with available instance masks,
we include variants using OLN-Mask [26]. We homogenise all implementations
under the MMDetection [9] framework (VOS and FFS are implemented using
Detectron2 [64]). The training regime is detailed in Supplementary Material.

Our proposed methods are compared against object-based OoD detectors
SIREN [13], VOS [15] and FFS [28]. SIREN and VOS use a ResNet-50 backbone
while FFS is trained with a RegNetX-50 [44]. For VOC and BDD in-distribution
datasets, the original settings are used for the baselines. For DBF6, SIXRay10
and LTDImaging, all baseline methods are trained using similar configurations
as in VOS, i.e., minimum image size of 800 (except for LTDImaging, which is
trained using an image size of 384), 10, 000 samples for virtual outlier synthesis
and similar training recipe consisting of 18 epochs with a learning rate of 0.02
decaying by a factor of 10 in epochs 12 and 16. Following the original works,
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Table 1: Anomaly detection metrics for PASCAL VOC and BDD datasets.

In-distribution Test Set COCO OoD Test Set
Method AR@1 AR@10 AR@100 AR@S AR@M AR@L AR@1 AR@10 AR@100 AR@S AR@M AR@L

P
A

SC
A

L
-V

O
C SIREN [13] 23.9 56.5 59.7 37.3 52.5 68.6 9.0 19.2 19.9 4.5 8.8 35.2

VOS [15] 23.8 56.3 59.5 37.0 52.2 68.6 9.8 20.0 20.6 4.1 9.7 36.3
FFS [28] 24.7 58.1 60.9 36.2 54.3 70.0 9.8 19.2 19.6 4.6 9.9 33.8
OLN-SSOS (Ours) 14.6 48.9 60.7 44.3 57.6 66.1 4.3 11.1 14.8 2.5 12.2 21.8
OLN-FFS (Ours) 14.9 49.6 61.3 44.0 58.4 66.7 3.2 11.2 17.8 3.9 19.2 22.1

B
D

D

SIREN [13] 4.6 32.3 51.8 37.6 63.2 85.6 3.0 9.2 10.5 3.7 7.2 19.6
VOS [15] 4.6 32.3 51.7 37.5 63.2 85.4 2.6 8.6 9.9 3.4 7.0 18.4
FFS [28] 4.5 31.9 51.4 37.6 62.6 84.4 3.0 9.0 10.3 3.5 6.9 19.4
OLN-SSOS (Ours) 4.7 27.9 45.9 29.6 59.7 83.4 0.5 1.6 3.5 3.0 6.0 1.4
OLN-FFS (Ours) 4.6 27.0 44.1 27.8 57.8 81.7 1.6 6.0 15.9 4.4 17.1 24.4

outlier synthesis starts at epoch 12 for VOS and FFS. All experiments (our
approach and the baselines) are trained using a single NVIDIA 2080Ti GPU.

5 Results

Tabs. 1 to 3 compare our method with state-of-the art OoD object detectors
SIREN [13], VOS [15] and FFS [28]. While these methods are evaluated using
the area under the receiver operating characteristic (AUROC) and the false
positive rate at 95% in-distribution recall (FPR95), we instead report AR to
assess detection performance (Sec. 4.2). Only in-distribution data is used during
all training.

Tab. 1 presents the anomaly detection performance when training on the
VOC and BDD100k datasets. Our method exhibits a great performance for
the in-distribution PASCAL-VOC dataset despite being trained without class
supervision (AR@100=61.3% vs. 60.9% for FFS) and a competitive OoD detec-
tion, with AR@100=17.8% compared with 20.6% for VOS. We highlight that
our method does not use class labels, making it essentially unsupervised in this
aspect, and further remark on the importance of such a class-agnostic focus
for a technique where the prior class distribution is a strong prior that en-
ables energy-based OoD detection [15]. Learning class distribution without class
supervision is challenging given the intra-class variability (i.e., there are sev-
eral modalities of the person class). Considering that VOC dataset is highly
unbalanced, with several person instances, our method achieves a competitive
performance. Similar in-distribution performance is observed on the BDD100k
dataset. However, our approach significantly outperforms the baseline for OoD
detection, with a maximum AR@100 of 15.9% (OLN-FFS) vs. 10.5% for the best
baseline method (SIREN). This indicates that our approach achieves stronger
OoD detection performance while maintaining moderately high accuracy in the
original in-distribution object detection task. Furthermore, while the original im-
plementation of FFS has greater FPR95 and AUROC metrics [28], this does not
translate into localising anomalies, as evidenced by its low AR, especially for the
BDD100k dataset that contains less classes than VOC. Our method overcomes
this issue by sampling outliers from pseudo-class features with a normalising flow
function, effectively detecting and localising anomalies, thus achieving stronger
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Fig. 3: The qualitative results exemplify the effectiveness of our proposed approaches
(OLN-SSOS/OLN-FFS) in detecting OoD/anomalous objects (in red bounding boxes).

Fig. 4: Qualitative results obtained from the DBF6 dataset utilising OLN-SSOS Mask.

OoD detection performance. Qualitative results are presented in Fig. 3, with FFS
chosen as the baseline since it obtains better metrics overall. It is observed that
the baseline struggles to localise objects, while our method correctly localises and
detects anomalies. Further qualitative results are included in the Supplementary
Material.

Tab. 2 presents the results on the DBF6 dataset. We report detection perfor-
mance in both bounding box and mask detection, demonstrating the extension
of our approach capability to instance segmentation. Our method achieves signif-
icantly superior results on the OoD test set without affecting the in-distribution
performance. We highlight that incorporating mask features effectively enhances
OoD detection results (AR@10=55.1%, AR@100=58.9%). Qualitative results in
Figs. 3 and 4 show that our method detects firearm and firearm parts as anoma-
lies. Other electronics (tablets) are also detected, which are not present in the
training set, underscoring the benefits of integrating mask features in SSOS.

Tab. 3 shows the results for SIXRay10 and LTDImaging. Here it is ob-
served that while the baseline methods can perform in-distribution detection,
they catastrophically fail to perform anomaly detection, with 0% AR. On the
other hand, our approach offers in-distribution and OoD detection capabili-
ties. For instance, OLN-SSOS achieves competitive in-distribution metrics, with
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Table 2: Anomaly detection metrics for the DBF6 dataset.

In-distribution Test Set OoD Test Set
Method AR@1 AR@10 AR@100 AR@S AR@M AR@L AR@1 AR@10 AR@100 AR@S AR@M AR@L
SIREN [13] 47.4 56.3 56.4 17.8 45.8 86.3 29.0 35.1 35.1 0.0 35.2 34.0
VOS [15] 43.9 54.3 54.4 17.6 44.4 82.7 23.5 32.8 32.8 0.0 31.7 49.1
FFS [28] 49.0 56.5 56.5 14.2 45.7 87.5 30.0 35.4 35.4 0.0 35.1 41.4
OLN-SSOS Box(Ours) 27.7 44.2 49.1 15.2 37.0 81.9 29.4 46.1 48.8 0.0 48.3 57.4
OLN-FFS Box (Ours) 29.2 45.8 51.5 16.6 40.1 83.1 15.6 35.9 46.3 0.0 46.0 51.4
OLN-SSOS Mask (Ours) 31.3 47.0 52.0 17.0 38.9 87.3 34.1 55.1 58.9 0.0 59.0 58.6
OLN-FFS Mask (Ours) 32.8 50.3 54.8 22.2 42.1 88.9 21.7 47.9 57.2 10.0 57.0 62.1

Table 3: Anomaly detection metrics for the SIXRay10 and LTDImaging datasets.

In-distribution Test Set OoD Test Set
Method AR@1 AR@10 AR@100 AR@S AR@M AR@L AR@1 AR@10 AR@100 AR@S AR@M AR@L

SI
X

R
ay

10

SIREN [13] 47.8 63.3 63.7 10.0 62.8 64.7 0.8 0.8 0.8 0.0 0.0 0.9
VOS [15] 48.2 63.6 63.6 0.0 62.2 65.0 0.0 0.1 0.1 0.0 0.0 0.2
FFS [28] 49.2 65.4 65.4 60.0 65.1 65.8 0.8 0.8 0.8 0.0 0.0 1.0
OLN-SSOS (Ours) 28.0 49.2 55.2 70.0 56.4 54.4 10.7 25.8 35.3 55.0 34.2 35.3
OLN-FFS (Ours) 29.8 50.4 55.1 30.0 55.3 55.1 12.1 27.3 35.6 40.0 32.0 36.0

LT
D

Im
ag

in
g SIREN [13] 5.9 34.2 52.5 51.6 75.1 - 0.0 0.0 0.0 0.0 0.0 0.0

VOS [15] 6.0 34.3 52.5 51.6 75.1 - 0.0 0.0 0.0 0.0 0.0 0.0
FFS [28] 6.0 34.2 52.5 51.6 75.6 - 0.0 0.0 0.0 0.0 0.0 0.0
OLN-SSOS (Ours) 3.6 15.5 17.8 15.7 70.9 - 0.0 12.2 18.2 0.0 17.6 62.9
OLN-FFS (Ours) 3.9 16.8 19.4 17.3 70.5 - 4.2 12.3 12.8 2.6 9.2 50.2

AR@100=55.2% vs. 65.4% of FFS, while having an OoD AR@100 of 35.6%. Sim-
ilarly, while our methods have a significant drop in in-distribution performance
on the LTDImaging dataset, they show great OoD detection, with an AR@100
up to 18.2%. Ablation studies (Sec. 5.1) show that the number of pseudo-labels
may impact the performance, thus explaining the drop in in-distribution detec-
tion. Qualitative results in Fig. 3 show that the baseline methods cannot detect
the objects since they are trained to only detect in-distribution objects.

Finally, the results in Tabs. 1 and 3 show superior OoD performance of
OLN-FFS against OLN-SSOS for the VOC/COCO, BDD/COCO and SIXRay10
datasets, results on the DBF6 and LTDImaging show a drop in performance
when using FFS. In this context, the work of [54] shows that invertible mapping,
as in FFS, helps in forming high likelihood regions based on high-level object
features. The OoD instances in DBF6 and LTDImaging are significantly different
from the in-distribution classes such that these datasets might require stronger
low-level features discrimination in order to achieve improved anomaly detection.

5.1 Ablation Studies

Fig. 5 shows the effect of varying the hyperparameters in OLN-SSOS. We present
AR@10 and AR@100 metrics when varying the sampling size for SSOS and the
number of pseudo-labels. Fig. 5a shows the effect of the outlier sampling size for
the VOC/COCO dataset, ranging from 50 to 10, 000. A peak in performance is
observed for 300 samples, identifying the boundary region between normal and
abnormal samples. While relatively good performance is obtained for all other
sampling sizes, it is crucial to identify the optimum choice for each dataset.
Figs. 5b to 5d show the effect of changing the number of pseudo-labels for the
DBF6, SIXRay10 and LTDImaging datasets. In general, the higher numbers of
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(a) (b) (c) (d)

Fig. 5: Ablation Studies

pseudo-labels have a positive impact on performance (similar to DeepCluster [7]).
This suggests the UPC may capture different modalities of data, indicating that
over-segmentation helps in anomaly detection. In addition, this offers greater
flexibility when designing OoD detectors since we are not tied by the number of
ground truth classes. On the other hand, Fig. 5d shows a decrease in performance
for a higher number of pseudo-classes on the LTDImaging dataset. Differently
from the rest of the datasets, LTDImaging only contains three in-distribution
classes (person, motorcycle and bicycle) with low inter-class variability, indicat-
ing that using several pseudo-classes might cause overfitting. Overall, the num-
ber of pseudo-classes must follow a detailed analysis of the dataset to achieve
maximal performance. More ablations are available in the Supp. Material.

6 Conclusion

In this work, we introduce OLN-SSOS, an end-to-end open-world object-based
anomaly detection, operating without class supervision to localise unseen anoma-
lies within the training sets. Our method utilises an open-world object detec-
tor that learns object pseudo-labels, fitting object features into pseudo-class-
conditional Gaussians to synthesise outliers from low-likelihood regions, enabling
a better decision boundary between inliers and outliers during inference. We
demonstrate the superiority of our approach over baseline methods, which solely
rely on existing class-wise data for training in-distribution data.

Furthermore, we evaluate OLN-SSOS detection performance across different
imaging modalities to assess its versatility. Our results reveal that while baseline
approaches can detect in-distribution data, they struggle with anomaly detec-
tion, particularly in test sets where the anomalies are significantly different from
the training classes. Conversely, our approach demonstrates its capability by
extending to different imaging modalities (X-ray, infrared), showing improved
performance in anomaly detection. This provides valuable insights into the gen-
eralisation capability of our proposed approach across varying imagery char-
acteristics. Additionally, we extend our method to instance segmentation. The
quantitative results illustrate the significant impact of using mask information,
yielding better performance in detecting unseen anomalies while still maintain-
ing moderately high in-distribution detection, showcasing the extension of our
approach in instance segmentation.
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A Dataset Details

This work uses five different datasets for anomaly detection. While these datasets
are focused on object detection and instance segmentation, we can adapt them
for our anomaly detection task. The details for the dataset splits and their statis-
tics are described next.

A.1 PASCAL-VOC 2007/12 and BDD100k

We use the PASCAL-VOC 2007/12 [16] dataset as in-distribution (normal)
data, containing 20 normal object categories (person, bird, cat, cow, dog, horse,
sheep, airplane, bicycle, boat, bus, car, motorcycle, train, bottle, chair, dining
table, potted plant, couch and tv). The training partition has 16,551 images and
47,223 objects, while the test set has 4,952 images and 14,997 objects. Addition-
ally, we also use the BDD100K [68] dataset as the in-distribution data. This
dataset consists of 69,863 images and 1,273,707 objects in the training set and
10,000 images and 185,945 object annotations in the test set, spanning across
10 normal classes (pedestrian, rider, car, truck, bus, train, motorcycle, bicycle,
traffic light and traffic sign). For both datasets, MS-COCO is used as the OoD
dataset removing the images with overlapping in-distribution objects. In this re-
gard, the COCO test partition without VOC objects consists of 930 images and
2,824 annotations, while the COCO test set without BDD100k in-distribution
data has 1,880 images and 8,980 object instances. We use the annotation files
provided by Du et al. [15].

A.2 Durham Baggage Full Image (DBF6)

The DBF6 [2] is an X-ray security imagery dataset containing 6 object classes
(firearm, firearm part, laptop, camera, knife and ceramic knife). The experiments
involving this dataset use an in-distribution training partition without firearms
and firearm parts containing 4,588 images and 5,396 objects, an in-distribution
testing set with 1,114 images and 1,340 objects, and an OoD test partition of
692 images and 692 objects (with one single firearm/firearm part per image).
The DBF6 dataset is the only dataset with manually annotated instance seg-
mentation masks.
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A.3 SIXRay10

The SIXRay [39] dataset consists of 1,059,231 X-ray images with 6 prohibited
items (gun, knife, wrench, pliers, scissors and hammer), although it only has
5 annotated classes (hammer is not annotated). In this dataset, we consider
the gun as an anomaly and trained on the other classes. We use the SIXRay10
subset, containing 10,000 images, resulting in a training partition with 7,496
normal images and 11,116 objects, and a testing in-distribution partition of 988
images and 1,422 anomaly instances. The OoD test set consists of 352 images
with 553 anomalies (guns).

A.4 LTDImaging

Finally, the LTDImaging [42] is an infrared video-surveillance dataset with four
classes (person, bicycle, motorcycle and vehicle). We train on a week’s worth of
data considering the vehicle class as an anomaly, giving a training set of 10,108
images and 50,924 objects. For testing, we use a one-day partition (outside the
training week) without vehicles, giving a total of 1,570 images and 12,214 objects.
For testing OoD detection, we use data from the same training week containing
only vehicles (since their occurrence is small compared with the other classes),
having a test set of 284 images and 298 objects.

B Pseudo-code

The pseudo-code for training OLN-SSOS/FFS is given in Algorithm 1, while the
inference pipeline is described in Algorithm 2.

C Training Regime

We train our models using the MMDetection [9] framework, with slight varia-
tions for each dataset. For all of our datasets, except BDD100K, we initialize
our models with the OLN [26] pre-trained on the VOC dataset, as per the orig-
inal implementation (see [26] for the details). Since some classes in VOC are
considered anomalies for the BDD100K experiment, we trained an OLN on the
BDD100k dataset and used it to initialize the BDD100K experiments. For all
the experiments except the LTDImaging, we resize the images to have a maxi-
mum side length of 1,333 pixels and variable minimum side length to allow for
multi-scale training. Since LTDImaging images come from the same camera, we
kept the same image size for training and testing, i.e., 384 × 288 pixels. For all
the experiments, random horizontal flip is used during training and 0-padding
is added so the images are exactly divisible by 32.

For all our experiments, OLN-SSOS and OLN-FFS are trained for 8 epochs
with an initial learning rate of 0.001 with a linear warmup for the first 100
iterations, decaying by a factor of 10 after epoch 4. All our training is carried out
using stochastic gradient descent with a weight decay of 1 × 10−4. Considering



Anomaly Detection via Self-Supervised Outlier Synthesis - Supp 3

Algorithm 1: OLN-SSOS/FFS Train Pipeline.

Data: Input images {x}Ni=1, ground truth {yij}N,Ni
i=1,j=1, where Ni is the

number of objects in xi, pseudo-labels K and OLN-SSOS model M .

begin
Randomly initialise the pseudo-label centres p← N (0, I)

foreach epoch do
Ground truth boxes clustering
fts ← List /* Object features list */
for i← 1 to N do

fi = M.Backbone(xi)
for j ← 1 to Ni do

zij = RoIAlign(fi, yij)
fts.append(zij)

Initialise kmeans with p.
kmeans = MiniBatchKMeans(initial = p)
kmeans.fit(fts)
p = kmeans.centres
c = kmeans.labels/* Assigned pseudolabels */

Model Training
for i← 1 to N do

Extract image features
fi ←M.Backbone(xi)
Get Proposals
Pi ←M.RPN (fi)
Pool proposal features
ui ← RoIAlign(fi, Pi)
vi ←M.g(ui) /* Object features. g: Shared head in Fig. 2

*/
Predict Pseudo-classes
li ← MLP(vi)

Outlier Synthesis
Ṽ ← List
Σ ← Cov({vi}, {li})/* From Eq. (5) */
for k ← 1 to K do
V(k) ← {vi|∀(vi, li), li = k}
µk ← Mean(V(k)) /* From Eq. (4) */
Gk ← N (µk,Σ)
Sample virtual outliers
ṽk ← {ṽj |p(ṽj ∼ Gk) < ϵ}
Ṽ.append(ṽk)

Get Energies
Ei ← Energy({vi}) /* Normal energies, from Eq. (6) */
Ẽ ← Energy(Ṽ) /* Abnormal energies, from Eq. (6) */
Predict uncertainty score using the anomaly MLP ϕ
λi ← ϕ(Ei)
λ̃← ϕ(Ẽ)

Get loss values from Eqs. (1), (2) and (7). For FFS, use Eq. (9).
For mask versions, use the error functions from Mask R-CNN [21]
and Mask Scoring [23]
L = LRPN + Lbbox + Lmask + αLpcls + βLanomaly + γLnll
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Algorithm 2: OLN-SSOS/FFS Inference Pipeline.
Data: Input image {x} and OLN-SSOS model M .

begin
Extract image features
f ←M.Backbone(x)
Get Proposals
P ←M.RPN (f)
Pool proposal features
u← RoIAlign(f , P )
v←M.g(u) /* Object features. g: Shared head in Fig. 2 */

Get object energies
E ← Energy(v) /* From Eq. (6) */
Predict uncertainty score using the anomaly MLP ϕ
λ← ϕ(E)
All objects below a threshold uncertainty score are anomalies.

the pertaining time of OLN, our models are trained for a similar number of
epochs as in VOS [15] (in total, we train for 16 epochs while VOS is trained
for ∼ 18 epochs). All our models are trained with a batch size of 2 except for
LTDImaging, which uses a batch size of 64. Pseudo-class training starts from
the beginning, reclustering before each epoch.

D Analysis of learned pseudo-classes

Figs. 6 to 10 show a t-SNE [S1] projection of the object features, clustered
by their learned pseudo-classes. It is seen in Fig. 6 that the VOC dataset is
not properly clustered when using only a few pseudo-labels. For instance, for
pseudo-labels k = 5 and k = 10, no significant difference can be observed among
the pseudo-labels, specially when clustering people instances. Although some
semantic separation can be observed between vehicles and people, there is still
some confusion for k = 10. On the other hand, when using a large number of
pseudo-classes, such as k = 100, it is seen that the learned labels dive the ob-
jects into more semantically meaningful clusters, such as animals (green), seated
people (purple) or indoor objects (red). However, this clustering is still chal-
lenging and it demonstrates why our method does not match the state of the
art for this dataset. A similar trend is observed in Fig. 7 for the BDD dataset,
although the pseudo-labels cluster the objects better for smaller k compared
with VOC. Pseudo-clusters for the DBF6 dataset is shown in Fig. 8. Given the
more balanced distribution of categories, clusters seem to capture semantically
similar objects, even for a small number of pseudo classes. It is also observed
that our method seems to differentiate between different orientations of knives,
while keeping all laptops in a similar class. Additional results for X-Ray imagery
is presented for the SIXRay10 dataset in Fig. 9, showing that while some ob-
jects might look similar (scissors and tweezers), they can still be separated into
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VOC Pseudo-class Distribution
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Fig. 6: Learned pseudo-labels for the VOC dataset.
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Fig. 7: Learned pseudo-labels for the BDD dataset.
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DBF6 Pseudo-class Distribution
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Fig. 8: Learned pseudo-labels for the DBF6 dataset.
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SIXRay10 Pseudo-class Distribution
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Fig. 9: Learned pseudo-labels for the SIXRay10 dataset.

different classes with no class training. Finally, Fig. 10 shows the pseudo-label
analysis for the LTDImaging dataset. While some semantic separation can be
observed (for instance, people in similar poses are clustered together), the low
object variability makes it difficult to separate them into meaningful clusters,
meaning that over-segmentation might negatively impact the performance, as
seen in Fig. 5.

E Comparison against other open-world detectors

While OLN-SSOS focuses on localising objects and labelling them as anomalies,
our goal can be seen as similar to OW-DETR [20] and PROB [73]. Therefore, we
include a comparison of our approach against such open-world object detectors
in Tab. 1. We compare PROB with the best results for each dataset in our work
(excluding BDD). Unknown recall at 0.5 IoU (UR0.5) and COCO AR@100 are
reported. Both metrics are for 100 detections (PROB uses 100 object queries).
A similar trend is observed, i.e., it performs better in VOC/COCO (our method
being competitive) but our method is superior in the other tasks. It is worth
noting that PROB also uses class supervision to detect unknown classes. Specif-
ically, an unknown object is detected if they have a high objectness score but a
low known class probability. Also, our evaluation results trend mirror the single
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LTDImaging Pseudo-class Distribution
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Fig. 10: Learned pseudo-labels for the LTDImaging dataset.

Table 1: PROB [73] vs Ours.

VOC/COCO DBF6 SIXRay10 LTD
UR0.5 AR@100 UR0.5 AR@100 UR0.5 AR@100 UR0.5 AR@100

PROB 53.2 34.0 26.9 6.2 57.5 13.0 3.29 1.0
Ours 40.4 17.8 90.5 48.8 92.4 35.6 38.6 18.2

task for OW-DETR/PROB. These results further showcase the ability of our
method for anomaly detection and localisation without class supervision.

F Further Ablations

Figs. 11 to 15 show further ablation studies for varying sampling sizes. In par-
ticular, Fig. 11 show the average recall for different sampling sizes and different
numbers of pseudo-classes; Figs. 12 and 13 show the ablations for the OoD sam-
pling size for DBF6 Box and DBF6 Mask; and Figs. 14 and 15 show the ablations
for SXIRay10 and LTDImaging. While the best results for VOC/COCO are ob-
tained for a sampling size of 300 images and with 100 pseudo-classes, being the
reason why we used this sampling size in our experiments, this might not be the
same for different datasets, therefore indicating that a proper evaluation must
be carried out for each dataset.
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Fig. 11: Ablations for VOC/COCO. Maximum performance is achieved for k = 100
and 300 samplings for virtual outlier synthesis.
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Fig. 12: Ablations for DBF6 (Box).
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Fig. 13: Ablations for DBF6 (Mask).
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Fig. 14: Ablations for SIXRay10.
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Fig. 15: Ablations for LTDImaging.
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FFS OLN-SSOS OLN-FFS

Fig. 16: Qualitative results for VOC/COCO. It is observed that while OLN-SSOS gets
more objects, OLN-FFS can get objects with more quality. In some instances. OLN-
FFS misses objects of interest. It is also observed that FFS only detect objects closer
to the training set, like animals or a cap (similar to a human head).

G Qualitative Results

Figs. 16 to 20 show more qualitative results for the bounding box models (only
the baseline FFS [28] is included). Fig. 21 shows additional qualitative results
for our mask models.
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FFS OLN-SSOS OLN-FFS

Fig. 17: Qualitative results for BDD/COCO. Similar to VOC/COCO, OLN-FFS gets
less objects but with more quality (see the last row). In this example, FFS gets less
images since it has fewer training classes.
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FFS OLN-SSOS OLN-FFS

Fig. 18: Qualitative results for DBF6 (Box). While FFS has a relative good perfor-
mance, it sometimes misses objects like the firearm in the second row. Additionally,
OLN-FFS detects other anomalies that are not in the test set, like the tablet in the
fourth row. There are some cases where none of the models can detect the anomaly,
like the fifth row.
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FFS OLN-SSOS OLN-FFS

Fig. 19: Qualitative results for SIXRay10. In all of the examples, FFS misses the
anomaly, while OLN-SSOS and OLN-FFS get most of the anomalies.
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FFS OLN-SSOS OLN-FFS

Fig. 20: Qualitative results for LTDImaging. Similar to SIXRay10, FFS misses almost
all the anomalies. It can be seen that OLN-FFS detects more anomalies than OLN-
SSOS, although they both fail in some instances (last row).
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OLN-SSOS OLN-FFS

Fig. 21: Qualitative results for DBF6 (Mask). No baseline is presented since there is
no baseline for instance segmentation. In all of the examples, it can be noted that both
methodologies get the correct segmentation mask, with the exception of the missed
gun for OLN-SSOS in the second row.
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