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Abstract We develop a theory for thermal convection in a double porosity material of Brinkman–Forchheimer
type when there is a single temperature. The saturating fluid is one of Kelvin–Voigt type, and the equation for
the temperature is one due to C.I. Christov. It is shown that the global nonlinear stability threshold coincides
with the linear stability one. A thoroughly analytical discussion of both linear instability analysis and global
nonlinear energy stability is provided. Numerical results show that the relative permeability and Brinkman
viscosity between the macro and micro pores are key parameters which play a dominant role in determining
the critical Rayleigh number for the onset of convective motions.

Keywords Bidispersive porous media · Brinkman–Forchheimer convection · Linear and nonlinear stability ·
Kelvin–Voigt equations · Christov heat law

1 Introduction

There has been a significant research activity on flows in porous materials which possess a double porosity
structure. These materials have relatively large pores, known as macro pores, but additionally, the solid skeleton
has cracks which give rise to a microporosity structure.

The increase in the research activity is driven by the many applications such as to landslides, see e.g.
Borja et al. [1], Scotto di Santolo and Evangelista [2]; to chemical engineering issues, see Enterria et al. [3],
Huang et al. [4], Ly et al. [5]; to self heating/ignition in piles of coal, see Hooman and Maas [6]; and to oil
reservoir recovery, see Olusola et al. [7]. In addition, there are many applications in areas associated with
water resources, for example, in soil drainage and dealing with storm runoff, see e.g. Haws et al. [8]; and
accessibility of clean drinking water from an aquifer, Love et al. [9], Simmons et al. [10], Ghasemizadeh
et al. [11], Fretwell et al. [12]. A particularly novel use is that of Professor Marina Bergen Jensen who has
developed large scale use of a double porosity filter for polluted groundwater, see Jensen et al. [13], University
of Copenhagen report [14]. A further area where double porosity materials are important is in renewable
energy and the creation of electricity and desalinized water by means of a solar pond, see e.g. Kumaravel et
al. [15], Tawalbeh et al. [16], Yuvaperiyasamy et al. [17]. We also mention that double porosity is believed to

F. Franchi · R. Nibbi
Department of Mathematics, University of Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
E-mail: roberta.nibbi@unibo.it

F. Franchi
E-mail: franca.franchi@unibo.it

B. Straughan
Department of Mathematics, University of Durham, Stockton Road, DH1 3LE Durham, UK
E-mail: brian.straughan@durham.ac.uk

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00161-025-01372-1&domain=pdf


   36 Page 2 of 15 F. Franchi et al.

be important in convection mechanisms in magma in a volcano, see e.g. Bagdassarov and Fradkov [18], De
Campos et al. [19], De Campos et al. [20]. For the last class of problem the fluid is likely to be non-Newtonian,
and so we here allow the saturating fluid to be a viscoelastic one of Kelvin–Voigt type, see Oskolkov [21],
Sukacheva [22]. Viscoelastic flows in bidisperse porous media are the subject of much modern research, see
e.g. De et al. [23], Ibezim et al. [24].

Theories of fluid flow in double porosity materials, also known as bidisperse materials, were developed
by Nield and Kuznetsov [25,26] and by Nield [27], see also Nield and Bejan [28]. The fundamental work of
Nield and Kuznetsov [25] produced a theory capable of encompassing thermal convection in a bidispersive
porous material. Thermal effects are very important because they may produce thermal stresses which in turn
induce cracking in the solid skeleton, leading to the production of micro pores, see Gelet et al. [29], Kim and
Hosseini [30]. See also Rees et al. [31], where a hot fluid is injected into a cold porous skeleton. Indeed, the
parameters of the equations describing porous media flows often have to take into account the fact that there
are different length scales operating within them, see e.g. Wang et al. [32], Ogden et al. [33]. Porosities in two
different length scales represent one of the many facets of fluid flow in porous media.

The theory of Nield and Kuznetsov [25] introduces independent fields of velocity, pressure and temperature
U f
i , p f and T f , in the macro pores, and U p

i , pp and T p, in the micro pores. For many applications it is
reasonable to adopt a single temperature T , in both the macro and micro pores and this approach has been
successfully embraced by Capone et al. [34], Capone et al. [35], Capone et al. [36], Franchi et al. [37,38],
Gentile and Straughan [39], Straughan and Barletta [40] and Straughan [41,42]. However, the articles just
listed largely employ a Darcy theory for both the macro and micro phases, whereas the original theory of Nield
and Kuznetsov [25] used a Brinkman theory. There are many instances where a Brinkman theory is desirable,
see e.g. Barletta et al. [43], Nield [44], Rees [45]. It must also be noted that Fried and Gurtin [46] argue that
when flow dimensions are small, then length scale effects are paramount; this strongly suggests the use of the
Brinkman theory. However, recent works on flow in micro channels suggest that the pressure drop against flow
rate is not adequately represented by a linear relationship, see e.g. Christov et al. [47], Wang and Christov
[48], Christov [49], Wang et al. [50]. Hence, we here additionally employ the Forchheimer theory both in the
macro and micro pores.

Our main concern in this paper is to investigate in depth the classical Rayleigh-Bénard convection problem
in a horizontal layer uniformly heated from below for a general theory governing a bidisperse Brinkman–
Forchheimer porous medium, in the presence of a single temperature T .

We underline that, to achieve our goal, we employ a Boussinesq approximation in the buoyancy force terms
in both the macro and micro phase equations. It is worth to remember that the Boussinesq approximation,
allowing the gravity effects to involve linear functions of the temperature, is discussed at length in the articles
by Barletta [51,52], Nield and Barletta [53], and general multi-constituent porous media flows as models in
continuum mechanics are presented in Allen [54].

The outline of the paper is as follows. The mathematical formulation of the convection problem is set
up in Sect. 2: more precisely, in the first subsection, we present the boundary value problem for the general
bidisperse Brinkman–Forchheimer porous material, but allowing for different essential coefficients in the macro
and micro pores. Then, in the second subsection, after determining the basic steady conduction solution, in
whose stability we are interested, we establish the boundary value problem for the dimensionless perturbation
system. In Sect. 3, as a first step, working with its linearized version and aimed to determine the linear instability
boundary, we establish the strong form of the so called principle of exchange of stabilities, i.e. convection can
occur only through steady motions, and consequently the linear and nonlinear stability thresholds are shown
to be the same. Next, we perform a detailed linear stability analysis towards the determination of the critical
Rayleigh number. It is a priori evident that the nonlinear Forchheimer terms do not affect this analysis. In
Sect. 4, we introduce the energy method to investigate also the global stability of the conduction solution.
Finally, in Sect. 5 we complete the analytical discussion with numerical developments, which enhance the key
role of some relevant parameters on the critical Rayleigh number.
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2 Bénard convection in a bidisperse Brinkman–Forchheimer porous medium

2.1 Governing equations

To begin, we remember that the macro and micro porosities are usually denoted by φ and ε, so that the
expressions ε(1 − φ) and ε1 = (1 − ε)(1 − φ) stand for the fractions of the volume occupied by the micro
pores and the solid matrix, respectively.

As usual in bidispersive contexts, the fluid velocities involved in the macro and micro pores are interpreted
as the pore-averaged velocities, herein denoted by U f

i and U p
i , which are related to the actual velocities V f

i

and V p
i , through the relations U f

i = φV f
i and U p

i = ε(1 − φ)V p
i .

The continuity equations reduce to the solenoidality constraints forU f
i and U p

i . The momentum equations
follow the prescription of Nield and Kuznetsov [25], but we allow the fluid to be a viscoelastic one of Kelvin–
Voigt order zero type, see e.g. Oskolkov [21], Oskolkov and Shadiev [55], Sukacheva [22,56], Sviridyuk and
Shipilov [57], Sviridyuk and Kazak [58]. A fluid of Kelvin–Voigt order zero is also known as a Navier–Stokes–
Voigt fluid, or an Oskolkov fluid, and in addition to the inertia acceleration term includes a term involving the
Laplacian of the acceleration. The momentum equations also allow for Brinkman–Forchheimer porous effects,
and employ a Boussinesq approximation in their buoyancy terms and include interaction transfer terms. For
the energy balance equation for T , we modify the appropriate equation employed by Gentile and Straughan
[39] and follow Christov [59] who suggests a modification to the classical heat equation which involves higher
gradients of temperature and heat flux, arguing that such effects are likely to be of importance in microfluid
situations. Such an equation is also employed by Kaya and Celebi [60] and Kaya [61] who analyse non-
isothermal flow in a fluid which is governed by a system of Navier–Stokes–Voigt equations which contains
not only a Kelvin–Voigt term for the velocity field, but also one for the temperature field.

Standard indicial notation is used throughout, in compliance with the Einstein summation convention, with
the subscript , i denoting ∂/∂xi and � being the 3D Laplacian operator.

In the interests of clarity we briefly review the ideas behind a Navier–Stokes–Voigt fluid. For an incom-
pressible viscous fluid with velocity vi and pressure p, the Navier–Stokes–Voigt equations are, with zero body
force,

vi,t + v jvi, j − λ�vi,t = − 1

ρ
p,i + ν�vi ,

vi,i = 0.

(1)

This system was investigated with respect to existence and regularity of the solution by Oskolkov [62]. As
Oskolkov and Shadiev [63] point out, Ladyzhenskaya [64] suggested this modification of the Navier–Stokes
equations due to the fact that the term −λ�vi,t would have good regularization properties. One may ask how
does this relate to the momentum balance equation

ρv̇i = σi j, j , (2)

where σi j is the Cauchy stress and the dot denotes the material derivative. One theory is that the Cauchy stress
could be given by the constitutive equation

σi j = −pδi j + 2μdi j + 2λdi j,t . (3)

However, as Damázio et al. [65] point out, di j,t is not an objective derivative. Pavlovskii [66] gives convincing
arguments to support employing a similar equation when modelling the flow of water containing a weak
solution of polymer. He suggests instead of (3) the relation

σi j = −pδi j + 2μdi j + 2λ
Ddi j
Dt

, (4)

i.e. replace the partial time derivative of di j by the material derivative. However, this derivative is still
not objective. Earlier, Beard and Walters [67] argued one could model the physically important case of “an
elastico-viscous liquid that is mobile and not highly elastic" with a constitutive theory like

σi j = −pδi j + 2μdi j + 2λ
Ddi j
Dt

, (5)
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where D/Dt is an objective derivative, and they chose an Oldroyd derivative. The model presented by Beard
and Walters [67] is now known as a Walters’ B fluid. It is pertinent to draw attention to the fact that the question
of objective derivatives and their compatibility with continuum thermodynamics has recently been investigated
in detail in the fluid mechanics scenario and in the case of fluid saturated porous media by Morro [68,69] and
by Giorgi and Morro [70]. Straughan [71] has investigated the use of a theory like (5) in various hydrodynamic
stability problems and has shown that the choice of objective derivative plays an important role. However,
Straughan [72] investigates such theories for flow in porous media and for linear instability analyses often (3)
is adequate. Indeed, if the co-rotational objective derivative is employed then (3) may well be sufficient for a
nonlinear energy stability analysis.

In this article we employ essentially (3) for flow in a bidisperse porous medium. However, we incorpo-
rate nonlinear effects via a traditionally accepted route of including Forchheimer terms. Hence, the relevant
equations for our model read as follows

ρ0c
f
a U

f
i,t − κ̂ f �U f

i,t = μ̃ f �U f
i − F̃1|U f |U f

i − μ

K f
U f
i

− ζ(U f
i −U p

i ) − p f
,i + ρ0αgT ki ,

U f
i,i = 0 ,

ρ0c
p
aU

p
i,t − κ̂p�U p

i,t = μ̃p�U p
i − F̃2|Up|U p

i − μ

Kp
U p
i

− ζ(U p
i −U f

i ) − pp
,i + ρ0αgT ki ,

U p
i,i =0 ,

(ρc)mT, t − ζ̂�T,t + (ρc) f
[
U f
i + (ρc)rU

p
i

]
T, i = κm�T ,

(6)

where μ and ζ are the dynamic viscosity and coefficient for the momentum transfer between the macro
and micro phases; μ̃ f , μ̃p, K f , Kp, F̃1, F̃2, p f and pp are the Brinkman viscosities, the permeabilities,
the Forchheimer coefficients and the pressures in the macro and micro pores, respectively; g is the gravity
constant, k = (0, 0, 1), ρ0 and α are the reference density and the coefficient of thermal expansion in the
fluid, arising from the Boussinesq approximation see Franchi et al. [73], Barletta [52]. Additionally, (ρc)m =
[ε1(ρc)s +φ(ρc) f + ε(1 −φ)(ρc)p], the terms (ρc)s , (ρc) f and (ρc)p standing for the heat capacities of the

solid skeleton and of the fluid in the macro and micro pores and (ρc)r = (ρc)p
(ρc) f

, being for the relative heat

capacity. We observe that, under the hypothesis (ρc)r = 1, we have (ρc)m = ε1(ρc)s +[φ + ε(1 −φ)](ρc) f ,
see e.g. Franchi et al. [37]. Moreover, if κs , κ f and κp denote the thermal conductivities of the solid and of the
fluid in the macro and micro pores, let κm = [ε1κs +φκ f +ε(1−φ)κp]. The terms in the momentum equations
having coefficient κ̂ f , κ̂p are Kelvin–Voigt terms and κ̂ f , κ̂p are the Kelvin–Voigt coefficients. Likewise, ζ̂
in the temperature equation is a Kelvin-Voigt coefficient for the temperature field. The inertia terms contain
coefficients c f

a , cpa which are acceleration coefficients for the macro phase and the micro phase. This coefficients
are discussed in section 1.5 of Nield and Bejan [28] in the single porosity case and by Straughan [41] for the
bidisperse situation. The Forchheimer coefficients F1, F2 are discussed in section 1.5 of Nield and Bejan [28]
who indicate that they have form

F1 = ρ0c
f
F√
K

, F2 = ρ0c
p
F√
K

,

where c f
F , cpF are drag coefficients for the macro and micro phases. The effect of the Forchheimer term on

convection in a single porosity situation is analysed in depth by Rees [74,75]. Equations (6) hold in the
horizontal layer � = R

2 × {0 < z < d}, for all t > 0, and are subject to the boundary conditions

U f
i = U p

i = 0 , on z = 0 , d ;
T = TL , on z = 0 ; T = TU , on z = d ,

(7)

where TL and TU are constant, with TL > TU .
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2.2 Basic steady conduction solution and dimensionless perturbation equations

The steady conduction solution of system (6)–(7) in whose stability we are interested herein is one with

Ū f
i = Ū p

i = 0 , T̄ = −βz + TL , (8)

where β = (TL − TU )

d
> 0 is the adverse temperature gradient.

As a consequence, from (6)1 and (6)3, the steady pressures p̄ f and p̄ p have form

p̄ f (z) = p̄ p(z) = −ρ0gαβ
z2

2
+ ρ0gαTLz ,

selecting both pressure scales to vanish at z = 0.
Following the standard perturbation technique, we introduce the perturbation functions u f

i , u p
i , θ, π f and

π p, such that

U f
i = Ū f

i + u f
i , U p

i = Ū p
i + u p

i , T = T̄ + θ ,

p f (z) = p̄ f (z) + π f , pp(z) = p̄ p(z) + π p ,

to be replaced in system (6) to yield the nonlinear perturbation system.
Up to this point, as in [25], we have envisaged different heat capacities for the fluid in the macro and micro

pores. However, for our model we have considered only one temperature field, and hence it turns out to be
highly probable that (ρc)r = 1. Therefore, we focus on this simplified background. Instead, the possibility of
different heat conductivities is preserved.

The nonlinear perturbation system therefore has form

ρ0c
f
a u

f
i,t − κ̂ f �u f

i,t = μ̃ f �u f
i − F̃1|u f |u f

i − μ

K f
u f
i

− ζ(u f
i − u p

i ) − π
f

,i + ρ0αgθki ,

u f
i,i = 0 ,

ρ0c
p
a u

p
i,t − κ̂p�u p

i,t = μ̃p�u p
i − F̃2|up|u p

i − μ

Kp
u p
i

− ζ(u p
i − u f

i ) − π
p
,i + ρ0αgθki ,

u p
i,i = 0 ,

(ρc)mθ, t − ζ̂�θ,t + (ρc) f (u
f
i + u p

i )θ, i = β(ρc) f (w
f + w p) + κm�θ ,

(9)

where w f = u f
3 and w p = u p

3 . The associated boundary conditions become

u f
i = u p

i = 0 , θ = 0 , on z = 0 , d , (10)

and (u f
i , u p

i , θ, π f , π p) are assumed to have an (x, y)-dependence consistent with one that has a repetitive
shape tiling the plane, such as typical hexagonal convection cell forms found in real life, see Chandrasekhar
[76, pages 43–52].

To better highlight the role of the different involved effects within the model, we proceed with a convenient
dimensionless process, according to the following scalings

x = x∗ d , t = t∗ τ , τ = (ρc)md2

κm
,

u f
i = u f ∗

i U , u p
i = u p∗

i U , U = κm

(ρc) f d
,

π f = π f ∗ P , π p = π p∗ P , P = μdU

K f
,
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θ = θ∗ T � , T � = βU (ρc) f d2

κm
,

and non-dimensional inertia and Kelvin–Voigt coefficients,

J1 = ρ0c
f
a K f κm

μ(ρc)md2 , J2 = ρ0c
f
p K f κm

μ(ρc)md2 , J3 = ζ̂

(ρc)md2 ,

λ f = κ̂ f K f κm

μ(ρc)md4 , λp = κ̂pK f κm

μ(ρc)md4 .

As a consequence, the following non-dimensional parameters λ, μ̃r , ξ, Kr , f1 and f2, representing the
Brinkman coefficient in the macro pores, the relative Brinkman viscosity, the transfer coefficient, the rela-
tive permeability and the Forchheimer coefficients in the macro and micro pores, arise and are defined as

λ = μ̃ f K f

μd2 , μ̃r = μ̃p

μ̃ f
, ξ = ζK f

μ
,

Kr = K f

K p
, f1 = K f F̃1 U

μ
, f2 = K f F̃2 U

μ
.

(11)

Finally, the Rayleigh number for our theory is given by

R = ρ0αgβd2(ρc) f K f

μκm
. (12)

With these scalings and dropping all *-superscripts, the dimensionless form of (9) becomes

J1u
f
i,t − λ f �u f

i,t = λ�u f
i − f1|u f |u f

i − u f
i − ξ(u f

i − u p
i ) − π

f
,i + Rθki ,

u f
i,i = 0 ,

J2u
p
i,t − λp�u p

i,t = λμ̃r�u p
i − f2|up|u p

i − Kru
p
i − ξ(u p

i − u f
i ) − π

p
,i + Rθki ,

u p
i,i = 0 ,

θ, t −J3�θ,t + (u f
i + u p

i )θ, i = w f + w p + �θ .

(13)

Its domain is now the horizontal layer R2 ×{0 < z < 1}, with t > 0. Obviously, the boundary conditions are

u f
i = u p

i = 0 , θ = 0 , on z = 0 , 1 (14)

together with the requirement that the perturbations field satisfies a plane tiling periodicity in x and y. In what

follows, we preferably work on the period cell V =
[

0,
2π

ax

]
×

[
0,

2π

ay

]
× (0, 1), t > 0, where a, such that

a2 = a2
x + a2

y , is the wavenumber.

3 Exchange of stabilities and linear instability analysis

To find the linear instability threshold, we firstly linearize (13), i.e. we discard the Forchheimer terms and the
nonlinear convective term, and we look for perturbations accounting for a separate dependence on t of form
eσ t , σ = σr + iσi playing the role of the complex growth rate. This yields the system

J1σu
f
i − σλ f �u f

i = λ�u f
i − u f

i − ξ(u f
i − u p

i ) − π
f

,i + Rθki ,

u f
i,i = 0 ,

J2σu
p
i − σλp�u p

i = λμ̃r�u p
i − Kru

p
i − ξ(u p

i − u f
i ) − π

p
,i + Rθki ,

u p
i,i = 0 ,

σθ − σ J3�θ = w f + w p + �θ .

(15)
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The boundary conditions are (14) together with the periodicity in (x, y).
We need to prove that σ is real, which means that our model satisfies the principle of exchange of stabilities

in its strong form. To this aim, without any misunderstanding, let now (·, ·) and ‖ · ‖ denote the inner product
and the norm on the complex Hilbert space L2(V ) and use the notation � for the complex conjugate of a
perturbation field. Multiply (15)1 by u f �

i , (15)3 by u p �
i and (15)5 by θ� and then integrate over V the resulting

equations.
After use of standard identities, integration by parts and taking into account the solenoidality and boundary

conditions, this procedure leads to

J1σ‖u f ‖2 + σλ f ‖∇u f ‖2

− R(θ, w f �) = −λ‖∇u f ‖2 − (1 + ξ)‖u f ‖2 + ξ(u p
i , u f �

i ) ,

J2σ‖up‖2 + σλp‖∇up‖2

− R(θ, w p �) = −λμ̃r‖∇up‖2 − (Kr + ξ)‖up‖2 + ξ(u f
i , u p �

i ) ,

σ‖θ‖2 + σ J3‖∇θ‖2 = −‖∇θ‖2 + (w f , θ�) + (w p, θ�) .

(16)

Next, upon forming a suitable combination among (16)1, (16)2 and R(16)3 and rearranging, we obtain

Rσ‖θ‖2 + Rσ J3‖∇θ‖2 + J1σ‖u f ‖2 + σλ f ‖∇u f ‖2

+ J2σ‖up‖2 + σλp‖∇up‖2

= −R‖∇θ‖2 − λ(‖∇u f ‖2 + μ̃r‖∇up‖2)

− (1 + ξ)‖u f ‖2 − (Kr + ξ)‖up‖2 + ξ [(u p
i , u f �

i ) + (u f
i , u p �

i )]
+ R[(θ, w f �) + (w f , θ�) + (θ, w p �) + (w p, θ�)] .

(17)

The right hand side of (17) is real, and hence taking the imaginary part of (17), it follows that

σi
{
R‖θ‖2 + RJ3‖∇θ‖2 + J1‖u f ‖2

+ λ f ‖∇u f ‖2 + J2‖up‖2 + λp‖∇up‖2} = 0 .

This yields σi = 0, namely oscillatory convection can not arise and exchange of stabilities is thus proven. As a
consequence, the marginal states are characterized by σ = 0 and hence the linear instability boundary is found
by writing σ = 0 in (15), since convection occurs for steady motions. This is very important since it means
linear instability theory has completely captured the physics of the onset of thermal convection. Therefore, to
find the critical Rayleigh number, we remove the π f and π p terms, by applying the double curl operator of
(15)1 and (15)3 and then retain only the third components of the resulting equations. This leaves one to solve
the stationary system

−λ�2w f + (1 + ξ)�w f − ξ�w p − R��θ = 0 ,

−λμ̃r�
2w p + (Kr + ξ)�w p − ξ�w f − R��θ = 0 ,

�θ + w f + w p = 0 ,

(18)

where �∗ is the horizontal Laplacian, i.e. �∗ = ∂2

∂x2 + ∂2

∂y2 . The boundary conditions are

w f = w p = θ = 0 , on z = 0 , 1,

under the periodicity assumption in x, y of periods
2π

ax
and

2π

ay
, respectively.

One now employs the Fourier normal modes technique in (18) writing w f = W f (z)h(x, y), with similar
forms for w p and θ , where h(x, y), is a suitable planform which tiles the plane and satisfies the condition
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��h = −a2h, for a wavenumber a, see Chandrasekhar [76, pages 43–52]. Upon using these forms for w f , w p

and θ in (18), one has to solve the eigenvalue problem

λ(D2 − a2)2W f − (1 + ξ)(D2 − a2)W f + ξ(D2 − a2)W p = Ra2� ,

λμ̃r (D
2 − a2)2W p − (Kr + ξ)(D2 − a2)W p + ξ(D2 − a2)W f = Ra2� ,

(D2 − a2)� + W f + W p = 0 ,

(19)

where D = d/dz, and the boundary conditions are

W f = W p = � = 0 , on z = 0 , 1 . (20)

One requires two extra boundary conditions for W f and W p. These depend on what sort of surface one has.
If the surfaces z = 0 and z = 1 are fixed, then it is necessary to add

DW f = DW p = 0 on z = 0 , 1 (21)

whereas, when the surfaces are stress-free, one adds

D2W f = D2W p = 0 on z = 0 , 1 (22)

together with an analogous condition on �.
We here employ (22) which allows an analytical solution of the eigenvalue problem. Since we seek an

instability threshold one selects W f (z) = Ŵ f sin(nπ z), n ∈ N, with constant amplitude Ŵ f , and analogous
representations for W p(z) and �(z).

Thus, (19) leads to

λ�2
nŴ

f + (1 + ξ)�nŴ
f − ξ�nŴ

p = Ra2�̂ ,

λμ̃r�
2
nŴ

p + (Kr + ξ)�nŴ
p − ξ�nŴ

f = Ra2�̂ ,

�n�̂ = Ŵ f + Ŵ p ,

where �n = n2π2 + a2.
Then, one reduces the calculation of the Rayleigh number to

R(n2, a2) = �2
n

a2

[
λ2μ̃r�

2
n + λ�n (μ̃r (1 + ξ) + Kr + ξ) + Kr + ξ + ξKr

]

(4ξ + 1 + Kr + λ(1 + μ̃r )�n)
. (23)

To find the critical Rayleigh number for the onset of thermal instabilities in our bidispersive porous setting,
one must minimize R2 in n2 and a2. A direct calculation shows ∂R/∂n2 ≥ 0 and so we may take n2 = 1. The
critical Rayleigh number calculation then reduces to the minimization of R = R(a2) in a2, where

R(a2) = �2

a2

[
λ2μ̃r�

2 + λ� (μ̃r (1 + ξ) + Kr + ξ) + Kr + ξ + ξKr
]

(4ξ + 1 + Kr + λ(1 + μ̃r )�)
(24)

with � = π2 + a2.

Remark 1 The mathematical analysis of section 3 can be shown to also hold with the boundary conditions of
Celli and Kuznetsov [77], who model rough boundary conditions for flows in an incompressible fluid. On the
macroscopic scale, where the macro and micro pores touch a (smooth) rigid boundary, the actual boundary
of the pores will always possess a (random) roughness. Thus, one could argue that in porous media flow the
boundary conditions of Celli and Kuznetsov [77] should be usefully employed. To use them in the case of
equations (13), the boundary conditions (14) are replaced by

w f = w p = θ = 0 , on z = 0 , 1 ,

∂u f
j

∂z
= − α√

K f
u f
j ,

∂u p
j

∂z
= − α√

Kp
u p
j on z = 0 , j = 1, 2 ,

∂u f
j

∂z
= α√

K f
u f
j ,

∂u p
j

∂z
= α√

Kp
u p
j on z = 1 , j = 1, 2 .
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The coefficient α in the above conditions depends on the fluid, the porous material, and the bounding interface,
cf. Beavers and Joseph [78], Saffman [79], Payne and Straughan [80].

Of course the expressions (23) and (24) for the Rayleigh number will be different and require numerical
calculations.

Remark 2 If we consider thermosolutal convection when the fluid is heated from below and the layer is also
salted from below then exchange of stabilities will not hold. In that case one will obtain oscillatory convection
for certain parameter ranges. The Kelvin–Voigt coefficients for the macro and micro phases as well as the
equivalent one for the temperature field will play a major role and lead to substantial lowering of the critical
Rayleigh number threshold for the onset of convective motion in the fluid saturated layer.

4 Global nonlinear stability

The threshold found by minimizing (24) yields an instability curve. However, it yields no information on
nonlinear stability. For completeness of results we perform a fully nonlinear stability analysis. From the fully
nonlinear perturbation system (13) we multiply (13)1 by u f

i , we multiply (13)3 by u p
i and we multiply (13)5

by θ and then integrate the resulting equations over the period cell V . After some integration by parts and use
of our boundary conditions, we arrive at the equations

d

dt

( J1

2
‖u f ‖2 + λ f

2
‖∇u f ‖2

)
= −λ‖∇u f ‖2 − ‖u f ‖2 − f1‖u f ‖3

3

− ξ(u f
i , u f

i − u p
i ) + R(θ, w f ) ,

d

dt

( J2

2
‖up‖2 + λp

2
‖∇up‖2

)
= −λμ̃r‖∇up‖2 − Kr‖up‖2 − f2‖up‖3

3

+ ξ(u p
i , u f

i − u p
i ) + R(θ, w p) ,

d

dt

(1

2
‖θ‖2 + J3

2
‖∇θ‖2

)
= [(w f , θ) + (w p, θ)] − ‖∇θ‖2 ,

(25)

where ‖ · ‖3 denotes the norm on L3(V ).
Define now θ̂ = R1/2θ and then we replace θ by θ̂ in equations (25). We then add the three resulting

equations to obtain

dE

dt
= R1/2 I − D − E3 , (26)

where

E = J1

2
‖u f ‖2 + λ f

2
‖∇u f ‖2 + J2

2
‖up‖2 + λp

2
‖∇up‖2 + 1

2
‖θ̂‖2 + J3

2
‖∇ θ̂‖2, (27)

and

I = 2[(w f , θ̂ ) + (w p, θ̂ )] , (28)

and

D = ‖∇ θ̂‖2 + λ(‖∇u f ‖2 + μ̃r‖∇up‖2)

+ ‖u f ‖2 + Kr‖up‖2 + ξ‖u f − up‖2 .
(29)

with additionally

E3 = f1‖u f ‖3
3 + f2‖up‖3

3. (30)

Define now the threshold RE as

1

RE
= max

H
I

D , (31)
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where H is the space of admissible perturbations, i.e. consisting of H1(V )-divergence free functions u f
i and

u p
i and H1(V ) functions θ̂ , satisfying the homogeneous boundary conditions (14) on z = 0 , 1.

From (26) one may obtain

dE

dt
≤ −D

(
1 − R1/2

RE

)
− E3 . (32)

For R1/2 < RE , we put κ = (1 − R1/2/RE ) > 0; thus integration of (32), after use of the Poincaré inequality,
allows us to find the estimate for a constant b > 0

E(t) +
∫ t

0
e−bκ(t−s)E3(s) d s ≤ E(0)e−bκt . (33)

Consequently, ‖u f ‖, ‖∇u f ‖, ‖up‖, ‖∇up‖, ‖θ̂‖, ‖∇ θ̂‖ decay to zero exponentially in time. We conclude
that the condition R1/2 < RE guarantees the global (i.e. for all initial data) nonlinear stability of the steady
conduction state under investigation.

Finally, in order to determine the critical Rayleigh number RE , by solving the variational problem (31), we
need to derive the Euler-Lagrange equations. Let now η f (x) and ηp(x) be the associated Lagrange multipliers.
One may show that the related Euler-Lagrange equations have form

RE θ̂ki + λ�u f
i − u f

i − ξ(u f
i − u p

i ) = η
f
, i ,

RE θ̂ki + λμ̃r�u p
i − Kru

p
i − ξ(u p

i − u f
i ) = η

p
, i ,

�θ̂ + REw f + REw p = 0 .

(34)

Upon inspection bearing in mind the definition of θ̂ , we see that equations (34) are just equivalent to perturbation
equations (13) without the time derivative terms and the nonlinear convective term. This completes the picture:
the nonlinear critical Rayleigh threshold is just the same as the one of the linear instability analysis. Hence,
the key physics of the onset of thermal convection is fully captured by the linear instability theory.

5 Numerical results and conclusions

In this section we report our critical values of the Rayleigh number and wavenumber which are found by
numerically minimizing R(a2) in a2 in equation (24).

Before reporting on numerical results we observe that the parameters λ, Kr and ξ are not present in I in
(28) whereas they appear linearly in the dissipative term D. Since R−1

E is defined by max I/D we expect the
parameters λ, Kr and ξ to each lead to increased values of the Rayleigh number R, i.e. we expect each to have
a stabilizing influence on the onset of convection. This is indeed what we witness numerically.

Furthermore, from (24) we may observe some asymptotic results, all of which we have verified numerically.
As λ → ∞ we see from (24) that R/λ → �3/2a2 and so a2

cri t = π2/2 and R/λ → 27π4/8, where acrit
denotes the critical value of a for instability. When λ = 0 then

R → �2

a2

(Kr + ξ + ξKr )

(4ξ + 1 + Kr )

and so

R → 4π2 (Kr + ξ + ξKr )

(4ξ + 1 + Kr )

with a2
cri t = π2, as found in Gentile and Straughan [39]. For λ << 1 we may differentiate (24) with respect

to a2 and then perform an asymptotic analysis, expanding a2 in powers of λ. In this case we find

a2 = π2 − X1 + O(λ2),
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Table 1 Critical Rayleigh and wave numbers for various values of Kr . Here λ = 18.471, ξ = 1.3578 × 10−1.

Ra a2 Kr μ̃r

389.01 9.60 10 10−6

752.41 9.36 20 10−6

1096.80 9.15 30 10−6

4166.51 7.49 150 10−6

7110.07 6.29 400 10−6

9524.49 5.56 1000 10−6

402.30 9.29 10 10−3

764.89 9.21 20 10−3

1108.52 9.05 30 10−3

4122.50 7.48 150 10−3

7112.34 6.28 400 10−3

9525.10 5.56 1000 10−3

514.85 7.75 10 10−2

872.79 8.23 20 10−2

1210.74 8.35 30 10−2

4175.74 7.38 150 10−2

7132.66 6.27 400 10−2

9530.52 5.56 1000 10−2

where

X1 = −2π4(1 + 4ξ + 4ξKr + 8ξ2 + K 2
r )

(Kr + ξ + ξKr )(1 + 4ξ + Kr )
.

As λ varies from 0 to ∞ we expect to see a2 vary from π2 to π2/2 for all values of Kr and ξ , and this is what
we see numerically.

Numerical results are given in Tables 1, 2. We have computed results for various combinations of λ, Kr
and ξ , and the tables displayed represent only a few of our computations.

In their study of convection in a bidisperse material with only Darcy theory in the micropores and no inertia
terms Gentile and Straughan [81] report values of the relative permeability in the range Kr = 25, . . . , 2322.
They employ water as the saturating fluid and this has a dynamic viscosity of 8.9 × 10−4 Pa s at 25◦C.
However, a viscoelastic fluid usually has a dynamic viscosity much higher. For example, from the website
Engineeringtoolbox.com the oils SAE 10, 20, 30, 40, 50 have dynamic viscosities of 0.079, 0.170, 0.310, 0.430,
0.630 Pa s at 20◦C. Thus, we calculate values of the parameters based upon such an oil. The macropermeability
may be calculated from the Carmen - Kozeny relation, Chen [82], Nield [83], and this is

K f = d2
f

172.8

φ3

(1 − φ)2 .

We suppose the porous media is based on 5 mm glass beads and so d f = 5 × 10−3m, and we take the porosity
value φ = 0.972 of the open cell rigid foam of Givler and Altobelli [84]. This yields a value of K f as

K f = 1.6946 × 10−4 m2. (35)

Givler and Altobelli [84] deduce from experiments that the relation between μ and μ̃ f lies in the range
μ = 5.1μ̃ f to μ = 10.9μ̃ f . Then from (11) we calculate λ as λ = μ̃ f K f /μd2, and for a layer of 1 cm depth
we find

λ = 18.471. (36)

The interaction coefficient ζ is determined by Hooman et al. [85] as 63.3 Ps s m−2 and from (11) we calculate
ξ = ζK f /μ and then for an SAE 10 oil we determine

ξ = 0.13578. (37)
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Table 2 Critical Rayleigh and wave numbers for various values of Kr . Here λ = 18.471, ξ = 1.3578 × 10−1

Ra a2 Kr μ̃r

1456.31 5.58 10 10−1

1775.54 5.98 20 10−1

2073.28 6.24 30 10−1

3952.74 6.75 110 10−1

4660.31 6.69 150 10−1

7325.95 6.10 400 10−1

9583.50 5.53 1000 10−1

6192.78 4.98 10 1
6297.92 5.02 20 1
6399.22 5.06 30 1
7383.40 5.31 150 1
8637.99 5.41 400 1
10012.71 5.32 1000 1
1.10852×104 4.94 10 10
1.10889×104 4.95 20 10
1.10925×104 4.95 30 10
1.11344×104 4.95 150 10
1.12120×104 4.97 400 10
1.13589×104 4.99 1000 10

Thus, equipped with the values of λ and ξ from (36) and (37) we minimize R in (24). The values of R are
calculated for a range of relative permeabilities Kr . To use (24) we also need a value for μ̃r = μ̃p/μ̃ f . There
are two schools of thought on the relative Brinkman viscosity values. One is that μ̃p will be much smaller than
μ̃ f because Brinkman theory will likely be more valid in the macro pores. However, Fried and Gurtin [46]
argue that in a microfluidic situation higher velocity gradients will be important. This suggests the Brinkman
term in the micropores should be important as compared to that in the macropores. Therefore, we compute
critical Rayleigh and wave numbers for various values of μ̃r .

In Tables 1, 2, λ = 18.471, ξ = 0.13578. We allow Kr to vary from 10 to 1000. Table 1 shows Rayleigh
and wavenumber values for μ̃r = 10−6, 10−3, 10−2, whereas in Table 2 μ̃r = 0.1, 1, 10.

For the small values of μ̃r in Table 1 there is a large variation in both critical Rayleigh number and
critical wavenumber. In Table 1 the critical Rayleigh number always increases with increasing Kr as predicted.
However, the critical wavenumber decreases in each case. Since the wavenumber is inversely proportional to
the aspect ratio of the convection cell (width to depth) this means that increasing Kr leads to wider convection
cells. Thus, increasing Kr leads to a greater stability before convection commences and the cells are wider
once it does. The pattern of behaviour of the Rayleigh number is the same in Table 2, but the increase is much
less as Kr increases, as μ̃r likewise increases. We have also computed with μ̃r = 100 and 1000. In the former
case R increases monotonically from 1.20740 × 104 when Kr = 10 to 1.20782 × 104 when Kr = 1000. The
equivalent wavenumber squared increases very slowly from 4.94 50 4.95 over the same range. For the second
case where μ̃r = 1000 we find R = 1.21831 × 104 over the whole range and a2 = 4.95. However, in Table
2 the wavenumber increases very slowly with increasing Kr when μ̃r = 10. But, in the cases μ̃r = 0.1, 1 the
wavenumber squared increases in value from that when Kr = 10 to a maximum when Kr = 110 and thereafter
decreases again when μ̃r = 0.1. There is similar behaviour when μ̃r = 1, but the maximum is achieved when
Kr = 400.

We believe the results presented here show that there is a need for the model for bidisperse convection with
Brinkman effects and inertia effects in the macro and micro pores, especially when considering viscoelastic
fluids. It would be very useful to have experimental values of the relation between the dynamic viscosity μ
and the micropore Brinkman viscosity μ̃p, in the vein of the results of Altobelli [84]. If theoretical estimates
for this relationship were available this would also be very useful, in the same way as Rees [86,87] calculates
theoretically parameter values for a monodisperse porous model under a local non-thermal equilibrium frame.

Summarizing, the theory of a bidisperse porous medium, accounting for Brinkman-Forchheimer effects
and inertia and Kelvin–Voigt effects in both the macro and micro pores, is employed to generalize the clas-
sical Bénard convection problem in a horizontal layer, uniformly heated from below. The role of the relative
parameters μ̃r , Kr , ξ and λ is highlighted and play a strategic role in determining when thermal convective
motion may occur. We have shown the key result that the linear instability threshold is just the same as the
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global nonlinear stability one. This means that linear instability theory captures fully the physics of the onset
of thermal convection and subcritical instabilities do not arise.

Interestingly, the result of coincidence of the linear instability boundary and the global nonlinear stability
boundary holds even in the case where one, at the micro level, argues for rough boundaries of a porous medium:
in this case, one introduces novel Saffman type boundary conditions for the vertical gradients of the horizontal
components of the velocities, as in the recent work of Celli and Kuznetsov [77].
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