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Abstract: This study examines the application of low-cost 1D LiDAR sensors in drone-based
stockpile volume estimation, with a focus on indoor environments. Three approaches were
experimentally investigated: (i) a multi-drone system equipped with static, downward-
facing 1D LiDAR sensors combined with an adaptive formation control algorithm; (ii) a
single drone with a static, downward-facing 1D LiDAR following a zigzag trajectory; and
(iii) a single drone with an actuated 1D LiDAR in an oscillatory fashion to enhance scanning
coverage while following a shorter trajectory. The adaptive formation control algorithm,
newly developed in this study, synchronises the drones’ waypoint arrivals and facilitates
smooth transitions between dynamic formation shapes. Real-world experiments conducted
in a motion-tracking indoor facility confirmed the effectiveness of all three approaches in
accurately completing scanning tasks, as per intended waypoints allocation. A trapezoidal
prism stockpile was scanned, and the volume estimation accuracy of each approach was
compared. The multi-drone system achieved an average volumetric error of 1.3%, similar
to the single drone with a static sensor, but with less than half the flight time. Meanwhile,
the actuated LiDAR system required shorter paths but experienced a higher volumetric
error of 4.4%, primarily due to surface reconstruction outliers and common LiDAR bias
when scanning at non-vertical angles.

Keywords: stockpile modelling; volume estimation; drones; swarms; formation control;
indoor missions; confined spaces; 1D LiDAR

1. Introduction
In recent years, the landscape of geospatial analysis and environmental management

has witnessed a transformative shift, driven by the rapid advancements in autonomous
unmanned aerial vehicles (UAVs), commonly known as drones. These flying platforms
not only allow novel aerospace endeavours [1–9], but also have entered various sectors
including agriculture [10], forestry [11], and waste management [12], offering innovative
solutions to longstanding challenges. Notably, drones have emerged as an effective means
of stockpile volume estimation [13–17], a critical activity in industries such as mining [18,19],
construction [20,21], and agriculture [10].

The domain of stockpile volume estimation has typically relied on established tra-
ditional methods like Terrestrial Laser Scanning (TLS) and Global Navigation Satellite
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Systems (GNSSs), as industry standards. In fact, TLS has become a prime choice in indus-
try due to its straightforward operation and the sub-centimetre accuracy it can achieve.
However, it is often viewed as an expensive approach, especially when surveying large
and complex surfaces. This is because it necessitates frequent repositioning of the sensors
to minimise occlusion thereby ensuring sufficient data collection, a process that potentially
poses personnel risks in hard-to-reach or dangerous environments. On the other hand,
GNSS surveying involves the collection of singular points around and over the area of
interest, and the accuracy of the modelled surfaces is typically enhanced as more points
are collected. However, it requires surveyors to navigate and climb stockpiles to position
the GNSS receiver(s) over the measurement points, a procedure that is dependent on the
suitability of the inspection environment. Despite the costs associated with both methods
that make them less ideal for frequent surveys or smaller operations, they have retained
their position as industry standards. For more details on these methods, the reader is
referred to the review work [13].

Recognising the previous challenges of danger and cost, there has been a significant
shift towards integrating UAV technology into stockpile volume estimation tasks. This
approach builds on the potential advantages that UAVs can offer including efficiency, safety,
and accuracy. In fact, over the past decade, drone photogrammetry has asserted itself as a
reliable and efficient method for stockpile volume estimation in outdoor environments. This
technique has been validated through numerous studies, showcasing acceptable accuracy
and offering significant improvements over traditional methods [14,22–25]. Notably, most
studies have reported volumetric errors in the range of ≈ 0–3% when compared to results
from TLS, GNSS, or actual known volumes [13]. However, the drone solution does not come
without its challenges: the accuracy of volume estimation using drone photogrammetry can
be significantly influenced by various factors, including the quality of captured images [26],
the grid size utilised in 3D surface generation [27], ground control point (GCP) placement,
and the flight altitude of the drone [28].

Despite the significant progress in stockpile volume estimation within outdoor/open
environments, the domain of indoor stockpile volume estimation remains relatively un-
derexplored whilst presenting several unique challenges. In particular, current methods
often struggle in confined spaces, where issues such as poor visibility, dust, and uneven
terrain increase the complexity of the stockpile inspection and volume estimation process.
In these circumstances, Light Detection and Ranging (LiDAR) technology emerges as a
better choice over image-based methods. In fact, LiDAR sensors (which employ a laser to
measure distances and create detailed 3D models) have found applications across diverse
fields including agriculture [29] and mining [30], and recent studies have started to apply
them for the stockpile volume estimation application, exploring various platforms ranging
from aerial [31] to rail-mounted [32] systems. In fact, LiDAR emerges as a better choice
over image-based methods, particularly in dusty and dark environments where visibility
issues can severely impact the effectiveness of photogrammetric methods [33], as is often
the case in indoor environments.

In this study, we demonstrate indoor stockpile scanning with 1D LiDAR sensors while
using a new adaptable multi-drone formation control to achieve the desired formation. This
multi-drone approach merges the efficiencies of using individual drones into a cohesive,
collaborative unit, optimising the coverage of the designated area while ensuring cost-
effectiveness, fault tolerance, and reliability. Moreover, implementing a multi-agent drone
system allows for the deployment of micro drones, which can inspect areas with minimal
environmental impact due to their smaller size. This feature is particularly advantageous if
a drone is lost or collides with an object, as the smaller batteries reduce the risk of significant
damage or explosions. Here, we consider and experimentally assess previously proposed
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approaches, including indoor stockpile scanning with a single drone equipped with an
actuated 1D LiDAR [34], a concept that has so far only been validated through computer
simulations, as well as the typical approach of utilising a single drone with a vertical 1D
LiDAR navigating a zigzag path pattern [17]. We show that by using 1D LiDAR scanners,
we can achieve acceptable accuracy while maintaining low cost and weight.

The current study presents the first experimental assessment of the different possible
1D LiDAR drone-based approaches to the application at hand and hence offers the scientific
community as well as practitioners valuable insights. Scientifically, this work develops a
novel adaptive multi-drone formation control and path planning algorithm suitable for
micro drones, offers an informative comparative analysis based on experimental assess-
ment for the different drone-based scanning approaches under similar conditions, and
investigates the accuracy of the estimated volume from each method. For practitioners,
this paper experimentally demonstrates the implementation of newly developed scanning
techniques for indoor stockpile volume estimation, evaluates and compares the different
low-cost LiDAR-based approaches, and provides detailed methodologies and results that
practitioners can implement and adapt to their own operations. To put more focus on
the novel aspects of the current work, this study represents the first experimental evalu-
ation of various drone-based scanning methods in a controlled environment, enhancing
the reliability of comparisons. This research uniquely investigates small and multi-drone
approaches for stockpile volume estimation. Unlike previous studies that focus on out-
door settings using heavier and costlier 2D and 3D LiDAR systems [31,35,36], this work
showcases how lightweight 1D LiDAR sensors can achieve acceptable coverage whilst
retaining cost-effectiveness. In fact, the methods demonstrated in this research effectively
compete with the traditional, more expensive systems, marking a useful contribution to
the field. Moreover, while a single drone equipped with a gimballed or 3D LiDAR might
provide a robust solution, such systems are often heavy and require larger drones, which
pose safety concerns in indoor environments. As highlighted earlier, micro drones typically
cannot carry such payloads or sustain long-duration missions due to battery limitations.
By leveraging a multi-drone system with lightweight 1D LiDAR sensors, our approach en-
sures complete coverage of large indoor environments while maintaining cost-effectiveness
and safety. In addition to providing redundancy and operational flexibility, this method
minimizes the risks associated with larger, more complex systems, making it a practical
and scalable solution for indoor stockpile volume estimation.

While safety concerns regarding drones in industrial indoor environments are valid,
their benefits in confined space inspections and stockpile measurements are significant.
A drone named Elios 3 [37], for example, has been successfully deployed in hazardous
settings like cement plants, improving safety, efficiency, and accuracy where manual
methods are impractical. Modern drones also incorporate safety features like protective
cages, aligning with our approach. Just as drone-based outdoor mapping evolved into an
industry standard, indoor applications are following a similar trend. While commercial
solutions exist, they remain costly, and our research seeks to explore a more affordable
alternative, making drone-based indoor stockpile measurement a practical and necessary
innovation rather than a passing trend.

The subsequent sections of this paper are structured as follows: Section 2 presents
the 1D LiDAR drone-based approaches considered for indoor stockpile volume estimation
missions, particularly emphasising the multi-drone solution, including formation control
and path planning. This is followed by Section 3, which demonstrates the experimental
work involved, detailing the setup, the point cloud generation process, the single-point
LiDAR scanner, the reference stockpile configuration, and the data collection methodology.
In Section 4, we detail the study’s findings, including the analysis of the performance of
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the proposed approaches. Finally, Section 5, summarises the conclusions and future work
recommended from our investigation.

2. 1D LiDAR Drone-Borne Approaches for Stockpile Volume Estimation
2.1. Overview

Building upon insights gathered from our previous studies [17,34,38], we recognise
that a solo or a multi-drone system equipped with a single 1D LiDAR sensor can, with the
aid of an external localisation system, achieve an acceptable level of accuracy in volume
estimation that is comparable to estimates obtained from the more sophisticated and
more expensive 2D/3D LiDAR sensors. Leveraging the lightweight characteristics of 1D
LiDAR sensors, they can be integrated into micro drones, hence not only enabling better
feasibility but also significantly enhancing safety within geometrically constrained indoor
environments as opposed to deploying larger drones. That said, it should be noted that
the use of micro drones also brings across the challenge of restricted battery capacity for
comprehensive coverage.

The approaches examined in this study vary based on different factors. The first
factor considered in this study is the number of platforms, i.e., compare the performance
indexes when multi-drone and single-drone approaches are employed. The second factor
is the trajectory shape and how it affects the coverage performance while ensuring the
best comparable setting for each approach. The third factor is the type of 1D LiDAR used,
specifically whether the 1D LiDAR is static and facing downward toward the ground or
actuated/oscillating, and how this affects the accuracy of the reconstructed stockpile. The
following sub-sections will introduce the employment of multi-drone agents with static 1D
LiDAR, discuss scanning using a single drone equipped with an actuated 1D LiDAR, and
highlight the use of a single drone with a static 1D LiDAR.

2.2. Multi-Drone Agents with Static 1D LiDAR Sensors

In the first approach considered here, we propose a dynamic formation control algo-
rithm characterised by robustness in formation shapes and waypoints tracking. The core
idea of this developed algorithm is to synchronise the arrival time of the multiple drones
at their corresponding locations, ensuring a coordinated and simultaneous arrival. The
algorithm starts with computing the path length for each drone from its current position to
its next desired position at the next waypoint and identifies the longest path length. This
evaluation of the longest path length, together with the knowledge of the maximum veloc-
ity permitted, enables an estimation of travel duration that would be used to synchronise
the speed of all drones to ensure they simultaneously reach the desired formation shape at
the next waypoint. In other words, the drone with the longest distance to its next desired
position will move at maximum speed, while the one with the shortest distance will move
at minimum speed, and both would have the same travel duration.

The target position for each drone is determined by combining the desired waypoint
with the desired formation shape at that waypoint. In the initial phase of the dynamic
formation control algorithm, the task is to determine the target positions Ptarget ∈ R3

(where R3 represents three-dimensional space) for each drone i at every waypoint Wk ∈ R3

using the desired formation shape Hk ∈ R3. As such, mathematically, the target position
for each drone i can be represented as:

Ptarget
i = Hk,i + Wk, (1)

where Hk,i is the ith drone position in the formation topology associated with the waypoint
Wk. The formation topologies are characterised by a set of relative values to the first drone
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with i = 1. Then, the Euclidean distance or path length d between the initial position Pinitial

and the target position Ptarget for each drone i in a multi-dimensional space is calculated as:

di =
∥∥∥Ptarget

i − Pinitial
i

∥∥∥
2
, (2)

where ∥ .∥ is the 2-norm or Euclidean norm, and Ptarget
i and Pinitial

i represent the target and
initial positions of the ith drone, respectively. The maximum path length, dmax ∈ R, which
we use to harmonise the speed of all drones, is then determined as:

dmax = max(d1, d2, · · · , dm), (3)

where m is the number of drones within the swarm. The travel duration, T, required for all
drones to reach their next target position while forming the desired shape is then given by:

T =
dmax

vmax
, (4)

where vmax is the maximum desired velocity, set by the user. Subsequently, the position of
each drone Pi at any given time t during the transition can be modelled as:

Pi(t) = Pinitial
i +

(
t
T

)
·
(

Ptarget
i − Pinitial

i

)
. (5)

Next, we present a numerical demonstration to illustrate the efficiency and robustness
of the developed dynamic/adaptive formation control algorithm. In this demonstra-
tion, we consider a scenario involving three drones (hence, m = 3) navigating through
three waypoints defined in the 3D coordinate space: W1 = {0, 5, 0}, W2 = {5, 5, 0}, and
W3 = {5, 0, 0}. Initially, all drones are positioned at the origin. The formation topologies
are defined as:

Hk
i=1:3 =

Hk
1

Hk
2

Hk
3

, (6)

and, for our current numerical example, can be written as:

Hk=1
i=1:3 =

0 0 0
1 −1 0
2 −2 0

, Hk=2
i=1:3 =

 0 0 0
−1 −1 0
−2 −2 0

, Hk=3
i=1:3 =

 0 0 0
−1 0 0
−2 0 0

. (7)

Each row in H presents the 3D relative position of a drone, with the first row describing
the reference drone’s position. Moreover, the Z-values are set to zero to facilitate a 2D
representation, avoiding potential confusion that might arise from a 3D demonstration.
Note that, here, we have set the maximum velocity to vmax = 0.1 m/s, with path updates
occurring at a frequency of 10 Hz. This maximum velocity was chosen because the tests are
typically conducted in a small indoor area using micro drones, and the lower maximum
speed hence ensures precise control and manoeuvrability within the confined space, min-
imising the risk of collisions. Moreover, the path update frequency of 10 Hz was selected
based on real-world testing, as it provided stable and reliable data transfer for controlling
the drones by sending the desired positions at a rate that ensures smooth movement.

To assess the algorithm’s performance, we introduce a metric, Perror
i (t), which calcu-

lates the difference between the ith drone current and target positions at any time instant t.
Hence, it is defined as:

Perror
i (t) =

∥∥∥Ptarget
i − Pi(t)

∥∥∥
2
. (8)
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Furthermore, we define another metric, Ferror(t), to assess the formation shape over
time. This metric compares the current inter-drone distances with the distances dictated by
the desired formation, where the current distances vector, Fcurrent(t) ∈ R3, and the target
distance vector, Ftarget ∈ R3, are computed as follows:

Perror
i (t) =

∥∥∥Ptarget
i − Pi(t)

∥∥∥
2
, (9)

Ftarget =
[
Hk

i=2 − Hk
i=1, Hk

i=3 − Hk
i=2, Hk

i=1 − Hk
i=3

]
. (10)

As such, the formation shape error, Ferror(t), is then computed as the mean absolute
difference between Fcurrent(t) and Ftarget, and is given by:

Ferror(t) =
1
m∑

∣∣Fcurrent(t)− Ftarget∣∣, (11)

where | .| denotes the absolute value. Finally, to demonstrate that the developed forma-
tion algorithm ensures consistency and smooth transitions between different formation
shapes, we evaluate the relative distance, drelative

i (t) ∈ R, between each drone’s current
position, Pi(t), and the desired position of drone 1 at time t in the planned path by the
algorithm, using:

drelative
i (t) = ∥Pi(t)− P1(t)∥2. (12)

The numerical demonstration results are shown in Figure 1. Figure 1a shows the
journey of the three drones/agents, initiating from the origin and gradually adopting
the target formation shape en route to the first waypoint. Subsequently, they manoeuvre
to the next waypoint, seamlessly transitioning into the subsequent formation shape. As
such, this figure serves as a visual demonstration of the algorithm’s ability to enable linear
transitions between different formation shapes while navigating from one waypoint to
another, effectively demonstrating the dynamic formation shape-changing capability of the
algorithm. Figure 1b shows the Perror metric for each drone, demonstrating the positional
error over time and highlighting the synchronisation in the arrivals at the waypoints.
Complementing this, Figure 1c presents the formation error metric Ferror, showcasing a
marked reduction as the drones approach the next waypoints. Finally, Figure 1d illustrates
the smooth variation in the drelative

i metric, confirming the formation consistency and
ensuring smooth transitions between different formation shapes.

The demonstration in Figure 1 showcased that the developed algorithm allows for
smooth transitions between different formation shapes, minimising the time required for
formation adjustments and ensuring a seamless and fluid movement of the swarm. Here,
it should be noted that the algorithm proposed in this study is designed to be highly
adaptable and independent of specific factors such as the stockpile geometry, workspace
conditions, and drone performance. Moreover, the proposed approach extends beyond the
current study as the proposed formation control lays the groundwork for possible future
enhancements, such as incorporating obstacle avoidance systems that allow one drone to
detect and communicate to the entire formation, updating their paths accordingly. Finally,
in cases where a drone is lost or fails, the formation control algorithm can adapt the topology
in real time, redistributing the remaining drones to ensure continued optimal coverage.
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waypoints. (b) Position error, 𝑃error, over time for each drone, showing synchronised arrivals at 
waypoints. (c) Reduction in formation error, 𝐹error, as the drones get nearer to the waypoints. (d) 
Relative position, 𝑑relative, between each drone’s current position and the desired position of drone 1 over 
time, demonstrating the algorithm’s ability to maintain consistent formations during transitions. 

2.3. Single Drone with an Actuated 1D LiDAR Sensor 

To compare the new multi-drone approach with previously demonstrated methods, 
we consider the 1D-actuated LiDAR approach developed by Alsayed and Nabawy [34]. 
This approach was extensively tested through simulations but had not been experimen-
tally evaluated. As such, in this paper, we will assess and test this method experimentally. 
In brief, the approach utilises a micro servo motor fitted on a small drone to actuate the 
1D LiDAR in an oscillatory fashion about one axis, as illustrated in Figure 2. The servo 
motor oscillation is within ±90° in a plane perpendicular to the drone’s forward motion. 
Unlike the multi-drone approach, which requires coverage of many desired points to en-
sure acceptable stockpile reconstruction quality, this approach benefits from the actuation 
of the LiDAR to significantly enhance the scanning coverage. Consequently, only four 
waypoints, located at the corners of the desired area to be scanned, are deemed sufficient 
for the drone to follow. For a full explanation of the approach, the reader is referred to 
[34] for details. 

Figure 1. (a) Paths of the three drones starting from origin, illustrating formation transitions between
waypoints. (b) Position error, Perror, over time for each drone, showing synchronised arrivals at
waypoints. (c) Reduction in formation error, Ferror, as the drones get nearer to the waypoints.
(d) Relative position, drelative

i , between each drone’s current position and the desired position of
drone 1 over time, demonstrating the algorithm’s ability to maintain consistent formations during
transitions.

2.3. Single Drone with an Actuated 1D LiDAR Sensor

To compare the new multi-drone approach with previously demonstrated methods,
we consider the 1D-actuated LiDAR approach developed by Alsayed and Nabawy [34].
This approach was extensively tested through simulations but had not been experimentally
evaluated. As such, in this paper, we will assess and test this method experimentally.
In brief, the approach utilises a micro servo motor fitted on a small drone to actuate the
1D LiDAR in an oscillatory fashion about one axis, as illustrated in Figure 2. The servo
motor oscillation is within ±90◦ in a plane perpendicular to the drone’s forward motion.
Unlike the multi-drone approach, which requires coverage of many desired points to ensure
acceptable stockpile reconstruction quality, this approach benefits from the actuation of the
LiDAR to significantly enhance the scanning coverage. Consequently, only four waypoints,
located at the corners of the desired area to be scanned, are deemed sufficient for the drone
to follow. For a full explanation of the approach, the reader is referred to [34] for details.
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by the actuated LiDAR. However, on the positive side, this approach offers a low-cost 
solution for stockpile volume estimation within confined spaces. Figure 3 shows a visual 
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lect data. 
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the data harvested through the Time-of-Flight (ToF) sensor (1D LiDAR) is processed via 
transformation. This stage, known as point cloud registration, involves converting data 
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Figure 2. A schematic illustration of the actuated 1D LiDAR approach.

2.4. Single Drone with Static 1D LiDAR Sensor

The third approach considered in this paper is the most traditional drone-based
approach. It was first developed and presented to address the stockpile volume estimation
application in [17]. This approach employs the same scanning method as the multi-agent
approach, utilising a single-point static LiDAR facing the ground. However, unlike the
multi-drone approach, where multiple drones cover the area of interest within a single
round, this approach requires the drone to follow a zigzag pattern path to ensure sufficient
coverage of the area to be scanned. This is mainly due to the use of a single drone and the
static nature of the LiDAR sensor, which lacks the enhanced scanning coverage provided by
the actuated LiDAR. However, on the positive side, this approach offers a low-cost solution
for stockpile volume estimation within confined spaces. Figure 3 shows a visual illustration
of the approach, depicting a drone with a 1D LiDAR facing the ground to collect data.
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Figure 3. A schematic illustration of a single drone with a static 1D LiDAR following a zigzag trajectory.

2.5. Point Cloud Generation and Registration

Once a surveying mission is finished, to create a representation of the surveyed area,
the data harvested through the Time-of-Flight (ToF) sensor (1D LiDAR) is processed via
transformation. This stage, known as point cloud registration, involves converting data
from the drone’s individual local coordinate frame, L, to a single global reference frame, G.
This mathematical transformation of the point cloud data is given by:

PCG = R × PL + T, (13)

where PCG ∈ R3×1 denotes the registered point cloud represented within the ground frame;
R ∈ R3×3 is a rotation matrix from the local coordinate frame, L, to the global reference
frame, G; T ∈ R3×1 is the translation vector that represents the drone/LiDAR position in
the global frame; and PL ∈ R3×1 denotes the measured range in the drone/LiDAR 3D
coordinate local frame, defined as PL = [0, 0,−rL] when employing a static 1D LiDAR,



Aerospace 2025, 12, 189 9 of 24

and as PL = [0,−rL cos(γ), −rL sin(γ)], where γ represents the angular displacement
measured from the servo motor’s vertical position when considering an actuated 1D LiDAR.
Here, rL is the measurement derived from the onboard rangefinder, indicating the distance
beneath the drone, hence the negative sign, which accounts for the downward orientation
of the rangefinder.

The rotation matrix R was constructed utilising the drone’s dynamics during naviga-
tion (the drone’s roll, pitch, and yaw angles) gathered from the data of the motion tracking
system (for a full definition of the rotation matrix, the reader is referred to our previous
works [17,34]). Consequently, each point PL is mapped to its corresponding global position
using the drone’s global position in the translation vector T, which is extracted from the
data acquired through the motion tracking system.

To generate a stockpile surface from the point cloud (PCG), a MATLAB script was
developed. This script creates a mesh grid based on the scanned area X by Y, and uses
cubic interpolation via the ’griddata’ function to create a surface passing through the point
cloud. To determine the volume beneath this 3D surface, the trapezoidal rule was applied.
Hence, the volume is calculated using the following formula:

Vstockpile =
α−1

∑
A=1

β−1

∑
B=1

1
4

∆X∆Y
(

ZAB + ZA(B+1) + Z(A+1)B + Z(A+1)(B+1)

)
, (14)

where Vstockpile represents the total volume and ∆X and ∆Y are the grid sizes in the X
and Y directions, respectively. The term Zij represents the height value at the grid cell (A,
B). The double summation is performed over all A and B indices, with A ranging from
1 to α and B ranging from 1 to β, where α and β are the maximum indices in the X and
Y directions, respectively. This covers all grid cells within a defined area. Note that ∆X
and ∆Y were set to 0.05 m following a sensitivity analysis, which demonstrated that using
smaller grid sizes does not affect the accuracy of the obtained results.

It is important to mention that LiDAR data can suffer issues such as noise and bias
errors. However, this study only employs 1D LiDAR sensors, which are generally less
affected by noise and bias compared to 2D and 3D systems, due to their simpler design [39].
Additionally, LiDAR measurements can be influenced by the material properties of the
scanned surfaces—such as reflectivity and texture—which may further affect accuracy. To
mitigate these effects, calibration and pretests were performed to eliminate and correct any
potential bias arising from material characteristics. Notably, for the case of the actuated
1D LiDAR approach, tests were also conducted with the drone positioned stationery to
check the preciseness of the data collection process. During these tests, the servo motor
oscillated, demonstrating the generation of a robust dataset with high correlation across
the oscillation cycles. Furthermore, to eliminate any potential source for bias, preliminary
flights of all drone platforms were performed over a flat surface. These flights enabled the
comparison of the LiDAR readings to the motion tracking system altitude readings, hence
ensuring the elimination of any potential biases. We did observe some residual noise in
the generated point clouds, particularly in the actuated approach when using the servo
motor; therefore, we applied MATLAB’s point cloud denoise function (pcdenoise) from the
Computer Vision Toolbox in MATLAB R2023b to further enhance the results.

3. Experimental Work
3.1. Setup for Multi-Drone Agents and Single-Drone with Static 1D LiDAR Sensors

To compare the performance of the discussed three approaches in Section 2, we
conducted an experimental investigation in a netted drone flight test enclosure at the
University of Manchester’s School of Engineering (Figure 4). Within this enclosure, an
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advanced VICON motion tracking system, known for its precision in 3D tracking (Vicon
Motion Systems Ltd, Oxford, UK [40]), was installed. This system utilised 18 cameras
positioned at different heights to capture data, and these captured data were processed
using a Vicon-supplied PC through its proprietary software, Tracker 3.10.
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For the experiments, we employed Crazyflie 2.1 drones (Bitcraze, Malmö, Sweden [41]),
known for their lightweight (27 g) and compact, open-source design, Figure 5. These drones
can enable a maximum flight duration of approximately 7 min. Hence, at a flight speed
of 1 m/s, the drone can cover a distance of over 400 m within this time frame, which is
more than sufficient for the experimental tests conducted. However, the drone can easily
be replaced with one that has a larger battery capacity if the task requires extended flight
time. The drones were equipped with a flow deck for enhanced stability, which also uses
an integrated 1D LiDAR sensor to collect surface data beneath the drone [42]. Note that the
experimental tests conducted by Kilberg et al. demonstrated that this integrated LiDAR
provides highly accurate results, with plots comparing the ground truth to the sensor
data [43]. These data, hence, serve as the foundational element in scanning ground struc-
tures and stockpiles. Therefore, a 3D surface can be generated, and the volume underneath
the surface can be estimated. Operations were directed from a ground station laptop, which
communicated with the multiple drones via a radio dongle and accessed real-time drone
positioning data through a Robot Operating System (ROS) package, “vicon_bridge [44]”,
facilitating the interface with the Vicon system, Figure 6.
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For our tests, a custom-developed Python 3.10 code (provided in Supplementary
Material) was written utilising the Crazyflie Python library [45] and operated in the
following sequence:

• Initialisation of dedicated log files for each drone, cataloguing timestamp, position
and orientation (sourced from the VICON system), desired positions, and depth range;

• ROS node activation to launch VICON data reception, which is simultaneously
recorded in the log file via a distinct thread;

• Establishing connectivity with drones and updating the drones’ position estimator
with their current positions from the VICON system;

• Execution of a closed-loop function, operating at 10 Hz, which constantly feeds the
desired trajectory from the formation control to the drone’s desired position function
in the Crazyflie Python library. Concurrently, it updates the drone position estimator
using the VICON data.

It is important to highlight that initially, the drone’s Z-position (altitude) did not
update within the Python code described above due to issues with the Kalman filter. The
Kalman filter fuses data from the multiple drone sensors to determine its precise location.
However, in this case, the filter gave excessive weight to the depth sensor readings, rather
than the VICON data for altitude adjustments. Such weighting led to compromised stability,
causing erratic altitude shifts. In many instances, these unpredictable variations resulted
in crashes, especially when the drone flew over objects and edges that represent sudden
changes in the depth distance beneath it. To mitigate this issue, we modified the firmware
of the Crazyflie drone to exclude the rangefinder’s influence on altitude adjustments. This
ensured that the rangefinder’s data were not incorporated into the position estimation
process within the Kalman filter.

3.2. Setup for the Single Drone with the Actuated 1D LiDAR Sensor

In this section, we explain the setup developed to realise the approach employing a
single drone with an actuated 1D LiDAR sensor (Figure 7). Note that given the small size
and limited payload capacity of the Crazyflie micro drone, carrying the fully actuated 1D
LiDAR setup onboard was not feasible. Therefore, the actuated approach was tested on a
different drone named Parrot, and the main system components are as follows:



Aerospace 2025, 12, 189 12 of 24

• TFMini LiDAR Sensor (Benewake, Beijing, China): To measure distances ranging from
30 cm to 12 m;

• Servo Motor SG90 (Tower Pro, Taipei, Taiwan): A lightweight motor, offering about
180 degrees oscillation (90 degrees in either direction) to actuate the TFMini
LiDAR sensor;

• PWM Servo Motor Driver (AZDelivery, Deggendorf, Germany): To ensure smooth
and efficient servo motor operation;

• Raspberry Pi 3 Model B+ (Raspberry Pi Foundation, Cambridge, UK): Serves as a
central control unit, managing the motion of the servo motor, running the LiDAR
sensor, and handling the acquisition and storage of the servo angle and LiDAR data;

• PiJuice HAT (PiSupply, London, UK): A portable power platform powering both the
Raspberry Pi unit and the sensor array;

• Parrot Bebop 2 Drone (Parrot, Paris, France): the aerial vehicle carrying the payload,
equipped with four markers for monitoring its positional and orientational data using
the VICON system.

In our experiment, we programmed the drone’s flight mission to navigate towards
specific waypoints located at the corners of the designated area, utilising a custom Python
script that leveraged the capabilities of the pyparrot.Bebop library [46]. This Python script
was integrated with the ROS communication framework to track and log the drone’s
real-time position and orientation. The LiDAR distance measurements and corresponding
servo motor angles were all recorded and stored in the Raspberry Pi system for later point
cloud registration.
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Figure 7. Illustration of the actuated 1D LiDAR setup, showcasing the integration of a Raspberry
Pi and TFMini LiDAR sensor mounted on a servo motor, all attached to a Parrot Bebop 2 drone,
equipped with markers for motion tracking. The figure includes a schematic representation for clearer
visualisation of the actuated 1D LiDAR system.

3.3. Reference Stockpile

The stockpile used in the current work as a demonstrative sample for evaluating
our scanning approaches is the trapezoidal prism stockpile shown in Figure 8a. This
shape has been chosen so that the actual volume can be determined easily using a precise
measurement method, providing a basis for comparison and validation. Moreover, this
stockpile shape is representative of stockpile shapes being typically considered in the
literature [14,47]. We marked the shape’s corners with markers, as shown in Figure 8a,
and acquired measurements directly from the motion tracking system. This is besides
using additional testing with a 1D LiDAR mounted on a stick to collect dense data for the
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stockpile. The reconstructed surface is presented in Figure 8b, where the stockpile volume
evaluation was 3 m3.
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3.4. Data Collection

For the multi-drone experiments conducted, our reference stockpile was scanned using
either two or three drones in formation leveraging the multi-agent adaptive formation
control system. Figure 9 illustrates the scanning direction, desired waypoints, Wk, and
formation shapes, Hk, at each waypoint. While the trajectory adopted here is not optimized
for specific objective(s), it provides a uniform full coverage of the desired area without
overlapping, similar to laying out a grid with a specific distance s, ensuring that all grid
intersections are covered. The waypoints were placed at the corners of the area, while the
formation shapes were designed to be a function of the drone number m and the width
of the area, denoted as W in the figure. The formation shapes, as shown in the figure, are
defined as follows:

H1,i = [s·(i − 1) , 0)] for i ∈ {1, 2, . . . , m}, (15)

H2,i = [s·(i − 1),−s·(i − 1)] for i ∈ {1, 2, . . . , m}, (16)

H3,i = [−s·(i − 1),−s·(i − 1)] for i ∈ {1, 2, . . . , m}, (17)

H4,i = [−s·(i − 1) , 0)] for i ∈ {1, 2, . . . , m}, (18)

s =
W

(2m − 1)
(19)

For the single-drone approach with a static 1D LiDAR, the drone was programmed to
traverse a zigzag path over the stockpiles, almost covering the same grid with the specified
distance s. This decision was intentional to ensure that the single-drone approach is using
the closest possible trajectory to the multi-drone approach, hence ensuring a fair compar-
ative analysis. While this trajectory choice is expected to lead to similar coverage when
generating the point clouds from both approaches, this will also have consequences on other
mission metrics, e.g., mission duration, which will be discussed later. Figures 10a and 10c
show the desired trajectories for using swarms of two and three drones, respectively, while
Figure 10b,d show the closest possible comparable trajectories when applying a single
drone using zigzag paths. That said, for the single-drone approach with the actuated
1D LiDAR, only four points at the corners of the area are set as waypoints (Figure 10e)
due to the superior scanning coverage, obtained from actuation, when compared to the
other approaches.
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Figure 10. Desired trajectories for each applied approach. (a) The desired trajectories for the multi-
agent system with two drones, and (b) a comparative trajectory to (a) when using a single drone.
(c) The desired trajectories for the multi-agent system with three drones, and (d) a comparative
trajectory to (c) when using a single drone. (e) The trajectory for a single drone with an actuated 1D
LiDAR. The points A1–A4, B1–B4, and C1–C4 represent the waypoints for Drone 1, Drone 2, and
Drone 3, respectively.

In conducting this data collection exercise, we chose two distinct altitudes for the
drone flights: 1.5 m and 2 m. This decision was informed by the peak height of the stockpile,
which was just below 1 m (i.e., 0.92 m). Lastly, and as explained previously, we ensured
safety and precision during the indoor scans by capping the maximum drone speed to
0.1 m/s. This precaution ensured safe and controlled scanning within the confined indoor
environment, minimising potential risks while optimising data accuracy. While the drones
are set to fly in straight lines, at low speeds or due to wind disturbances, some oscillations
and trim variations are expected. To address this, the 3D transformation matrix described
in Section 2.5 registers the LiDAR data from the drone frame to the ground frame by
incorporating the drone’s position and orientation in space. This approach compensates for
any deviations from ideal rectilinear motion.
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4. Results and Discussion
4.1. Flight Test Performance

In this subsection, we present the actual flight trajectories achieved, demonstrating the
successful execution of the flight missions. Figure 11 illustrates the desired and recorded
real 3D flight paths, confirming that the tracking system, communication setup, and control
codes functioned as required. These drones initiated their flight with a take-off, performed
the scanning mission at an altitude of 1.5 m, and completed the process with a successful
landing. To demonstrate the new adaptive formation control algorithm proposed in this
paper, Supplementary Videos (Videos S1 and S2) are provided, demonstrating two/three
drones whilst conducting their scanning missions.
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in (a,b) are obtained using Equation (18), and then used to design the zigzag path shown in (c,d).

Due to the complexity of flying multiple drones in a simultaneous fashion, three dis-
tinct metrics were employed to assess the formation performance (as discussed previously):
the positional error metric

(
Perror

i (t)
)
, which measures the difference between drone i’s

current and target positions at time t; the formation error metric (Ferror(t)), which evaluates
the formation shape over time by comparing the current inter-drone distances with those of
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the desired formation at the next waypoint; and the relative distance (drelative(t)), between
each drone’s current position (Pi(t)) and the desired position of drone 1 at a time t within
the planned trajectory. Figure 12 presents these metrics for the case shown in Figure 11b,
exhibiting a notable pattern in the first two metrics where a surge in formation error—
occurring during transitions in formation shape—gradually tapers as the drones advance
towards the waypoint. This pattern of spike-and-decay in the error graph indicates the
system’s ability to minimise both trajectory and formation errors simultaneously. Moreover,
the third metric (drelative(t)) shows consistency and smooth transitions between different
formation shapes.
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Figure 12. Performance metrics for the formation system based on experimental measurements,
illustrating the simultaneous reduction in both trajectory error (Perror) and formation error (Ferror) as
shown in (a,b), respectively; and consistency between different formation shapes as shown by the
metric d relative in (c).

Figure 13 shows the positional error
(

Perror
i (t)

)
for the single-drone approaches,

demonstrating the difference between the drone’s current position and the next desired
waypoint. Note that Figure 13a represents the case shown in Figure 11d for a single drone
following a zigzag path, whereas Figure 13b represents the case shown in Figure 11e for a
single drone equipped with the actuated 1D LiDAR.
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4.2. Point Cloud Registration and Stockpile Reconstruction

The visualisation of the point cloud registration and the 3D reconstructions are shown
in Figure 14 for the reference stockpile shown in Figure 8a obtained through the various
approaches considered: (a) two drones in formation, (b) three drones in formation, (c) a
single drone navigating a conventional zigzag path, (d) a single drone following a denser
zigzag path, and (e) a single drone equipped with the actuated 1D LiDAR system. The
black scatters in the figure illustrate the point clouds (PCG) obtained from the LiDAR data
transformed into the global frame, and the 3D reconstructed surfaces are obtained from
these registered point clouds. As expected, the employed drones with static 1D LiDAR,
either operating alone or in formation, generated comparable point clouds, as indicated by
the reconstructed surfaces in Figure 14a–d. The employed drones with static 1D LiDAR,
either operating alone or in formation, generated comparable point clouds. That said, the
employment of a drone equipped with an actuated LiDAR not only increased the density
of the data captured but also fostered a comprehensive visualisation of the point cloud.
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Next, we explore the volume estimation error. The estimated volumes obtained
from the different drone approaches investigated, measured in cubic meters (m3), and
their respective deviation errors as percentages from the evaluated reference volume are
presented in Table 1. The deviation percentage error is calculated from:

Error [%] =
Estimated Volume − Reference Volume

Reference Volume
× 100 (20)
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Table 1. Comparison of the reconstructed volumes and error values compared to the reference volume
from the stockpiles mapping approaches considered in this study.

Methods Altitude at 1.5 m Altitude at 2.0 m

Volume
[m3]

Error
[%]

Volume
[m3]

Error
[%]

Multi-Drone (2 Drones) 3.03 1.0 3.08 2.7

Multi-Drone (3 Drones) 3.01 0.3 3.04 1.3

Single Drone (Zigzag Path) 3.05 1.7 3.08 2.7

Single Drone (Finer Zigzag Path) 2.98 −0.7 3.03 1.0

Single Drone (Actuated 1D LiDAR) 3.11 3.7 3.15 5.0

Reference Volume [m3] 3.0

The results illustrate that the approaches leveraging a formation of two or three drones,
or a single drone following zigzag paths, can generate a promising average volumetric
error margin of 1.6%. That said, the conducted tests using the two drones, and the first
zigzag path led to a slightly higher estimated volume, hence a larger error, in comparison
with the conducted tests using three drones and the second zigzag path. It is expected
that employing a finer trajectory and/or increasing the number of drone agents within
the formation will allow better coverage and increase the density of the point clouds
registered. This, in turn, is expected to improve the estimation of the volume, particularly
when considering more irregular stockpile shapes. That said, there can be a limit to the
improvement achieved as a much denser point cloud does not always guarantee better
outcomes. This is, in fact, demonstrated here from the servo-actuated 1D LiDAR approach,
which displayed the highest volumetric error rate of 4.7%. This is mainly due to the
generation of a point cloud with a significant number of outlier points and common LiDAR
bias when scanning at non-vertical angles [48], as illustrated in Figure 14e, which led to the
overestimated volume, and the highest volumetric error percentage.

Our findings also reveal that increasing the altitude from 1.5 m to 2.0 m led to an
increase in the estimated volume. This slight inflation is mainly attributed to object detec-
tion occurring further away from the centre of the Field of View (FOV), as illustrated in
Figure 15. Therefore, future implementation of a narrower FOV sensor could potentially
enhance the accuracy. That said, for larger objects, the effect of false recorded ranges shown
in Figure 15 becomes less significant compared to the object size. Additionally, there is a
tendency for increased volumetric errors when estimating the volumes of smaller piles, as
discussed in [13].
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4.3. Comparative Analysis with a Second Object: Rectangular Prism Stockpile

In addition to the previously scanned stockpile, an additional scanning mission was
conducted on a second reference object with a rectangular prism shape, as shown in
Figure 16a. This object was chosen to provide a contrasting geometry to the trapezoidal
prism tested earlier. Given its smaller size and sharper edges, this experiment aimed to
assess the impact of scanning such challenging objects on our method which relies on a
low-cost 1D LiDAR and inherently produces less detailed point clouds. Similar to the first
object, the corners were marked with tracking markers, and ground-truth measurements
were acquired directly from the motion-tracking system. The reconstructed surface of
the rectangular prism stockpile is presented in Figure 16b, with an evaluated volume of
1.33 m3.
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Figure 16. (a) Second reference stockpile used for scanning demonstrations. (b) Visualisation of the
3D reconstruction of the reference stockpile shape with the shape’s corners being represented as black
dots. The colour gradient indicates height variations.

For this stockpile, it was not feasible to use the multi-drone approach due to the
relatively small size of the object, as it has a top-projected area of 1.8 m × 0.8 m. Instead,
the following single-drone approaches were tested: (a) a drone following a zigzag path
with a 0.25 m line gap, (b) a drone following a denser zigzag path with a 0.20 m line gap,
and (c) a drone equipped with an actuated 1D LiDAR system. All tests were conducted at a
1.5 m altitude, and the point cloud registration and 3D reconstructions obtained through
each approach are illustrated in Figure 17.
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Figure 17. Illustration of the registered point clouds (PCG), shown in black scatters, and the 3D
reconstructed shapes, shown in colour gradient, for the stockpile displayed in Figure 16, while
employing (a) a single drone navigating a zigzag path, (b) a single drone following a denser zigzag
path, and (c) a solitary drone equipped with the actuated 1D LiDAR system. The colour gradient
indicates varying heights.

The estimated volumes obtained from the different single-drone approaches investi-
gated along with their respective volumetric errors were 1.64 m3 for the zigzag path (23%
volumetric error), 1.87 m3 for the denser zigzag path (40% volumetric error), and 1.71 m3

for the actuated 1D LiDAR system (28% volumetric error). Remarkably, the approaches
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that provide a more refined reconstruction of the shape also resulted in higher volumetric
error. These higher estimated volumetric errors are likely due to the challenges associated
with reconstructing the sharp edges of the rectangular box shape, which can potentially
add extra volume, and the tendency for increased volumetric errors when estimating the
volumes of smaller piles, as discussed earlier. Moreover, the FOV of the ToF sensor leads to
object detection occurring further away from the centre, as shown in Figure 18. The amount
of outliers around the sharp edges is relatively large compared to the object size, which
could lead to a smaller volumetric error when scanning larger objects. This aligns with
previous studies [49–51], which have shown that LiDAR-based volume estimations are
more prone to errors when scanning smaller objects with sharp edges due to point cloud
sparsity and interpolation challenges.
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Figure 18. A schematic representation highlighting potential inaccuracies in point cloud collection
due to the use of a wider FOV sensor, which makes it difficult to reconstruct sharp edges, leading to
an increase in the estimated volume. The blue dots show the actual shape corners from the side view.

4.4. Comparative Analysis of the Proposed Approaches

There is a close resemblance between the stockpile volume estimation figures obtained
from the multi-drone scanning and those from the single drone when following analogous
zigzag trajectories. This is expected as the same drone and sensor, and almost the same
trajectory, were used in these experiments. In fact, the small difference in the shape of the
trajectory (between the multi- and single-drone experiments; see Figure 10) is the main
cause for the small difference in the obtained stockpile volume estimates. That said, when
comparing these approaches, there are other metrics to consider including the mission
duration and cost. As shown in Figure 10, when illustrating the desired trajectories for
each approach, in the multi-drone system, the longest distance was for drone 1 measuring
8 m (hence, for our set maximum velocity value, this means a flight duration of around
80 s). This distance remained consistent whether two or three drones were used. However,
when applying the single drone with zigzag trajectories, the trajectory distance increased
to 14 m (around 140 s), and further to 20 m (around 200 s) when using a finer zigzag
path. When using the single drone with the actuated 1D LiDAR, the desired distance was
10 m (around 100 s). Clearly, the multi-drone approach leads to shorter mission durations,
compared to the single-drone approaches which need longer trajectories and hence flight
time to complete the mission. Note that the Crazyflie 2.1 drone has around seven minutes
of maximum flight time. Therefore, in other scenarios, this may dictate the need for a larger
battery and hence a larger drone to complete the mission.

On the other hand, the initial investment cost in a multi-drone approach is higher,
with the cost increasing as the number of agents increases. In the case of this work, a single
Crazyflie 2.1 with the flow deck costs around GBP 220, while the Parrot drone with the
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actuated 1D LiDAR system costs around GBP 500 (prices based on 2023 UK market figures).
Note that the number of agents within a system will depend on the targeted scanning
accuracy required for a given area to be inspected. That said, if the system is intended for
frequent use, then this initial investment becomes more justified. However, it is infeasible
to estimate the exact time required to amortise this initial investment, as it depends on
factors such as usage frequency, operational costs, and specific inspection demands. Finally,
the multi-drone approach also offers the unique benefit of redundancy, i.e., if one agent
fails to complete the mission, then the other drones can be reconfigured to accomplish the
scanning mission. This is attractive for scanning missions in unknown spaces, particularly
where the chances of collision with various obstacles are high.

All in all, the choice to use any of the approaches presented is a user decision based
on several factors, including location, time, and cost constraints. To facilitate this decision,
Table 2 presents a comparative analysis highlighting the main advantages and disadvan-
tages of the three tested stockpile volume estimation methods presented in this paper.

Table 2. Comparison of the advantages and disadvantages of the three main existing stockpile
mapping techniques.

Approaches Advantages Disadvantages

Multi-drone agents with static 1D LiDAR

• Fast scanning • High initial cost
• Applicable using micro drones • Coordination complexity

• Provides redundancy • Point cloud resolution relies on the
number of agents

Single drone with static 1D LiDAR

• Low initial cost • Slow scanning

• Applicable using micro drones
• May require larger battery or

mid-operation replacement

• Ease of operation • Point cloud resolution relies on the
number of trajectory waypoints

Single drone with an actuated 1D LiDAR
• Fast scanning • Data outliers and noise
• Enriched point cloud • Mechanical complexity
• Enhanced scanning of angles

5. Final Comments
5.1. Outcomes

In this study, we aimed to assess and compare the accuracy and efficacy of employing
different drone-based approaches that employ low-cost 1D-LiDAR scanning sensors for
point cloud registration and stockpile reconstruction. Our key accomplishments can be
outlined as follows:

• A new adaptive formation control approach was developed for drone formation
and trajectory tracking, ensuring smooth transitions between formation shapes by
dynamically adjusting the drones’ velocities;

• Experimental tests were performed to scan an example stockpile within an indoor
environment using multi-drone systems consisting of Crazyflie micro drones, demon-
strating successful deployment of the proposed formation algorithm in a real experi-
mental test, achieving an average deviation of 0.23% between the desired and actual
paths of each drone within the formation;

• In comparison, the stockpile was also scanned using a solitary drone with either a
static or actuated 1D LiDAR (with the latter approach being previously proposed
based on simulation assessments, but we experimentally demonstrate its efficacy in
this work);

• Successful approach integration was achieved through the development of Python
codes to control the drones, seamlessly merging the data of the motion tracking



Aerospace 2025, 12, 189 22 of 24

system through ROS communication, and the developed codes have been provided in
Supplementary Materials, Code S1;

• In terms of volumetric estimation of the reference trapezoidal prism stockpile consid-
ered in this study, whilst using the Crazyflie micro drones, a formation of two or three
drones, or a single drone following closely similar zigzag paths, generated similar
results with a promising average volumetric error margin of 1.3%. On the other hand,
the servo-actuated 1D LiDAR approach showed a higher volumetric average error
rate of 4.4% due to the significant number of outlier points and common LiDAR bias
when scanning at non-vertical angles;

• For the second scanned shape, a smaller rectangular prism, the volumetric error
increased dramatically due to challenges in reconstructing sharp edges and the impact
of the ToF sensor’s FOV on object detection;

• In terms of flight time, the multi-drone approach and the single drone with the actuated
1D LiDAR approach significantly reduce mission duration compared to a single drone
with a static sensor following a zigzag pattern trajectory. While deploying multiple
drones increases the initial investment cost, it provides redundancy to the system and
is beneficial in scenarios where a larger area needs to be scanned, which a single drone
is expected not to be able to fully cover due to battery limitations. Meanwhile, the
single drone with the actuated 1D LiDAR approach seems to offer a balance between
flight time and cost. However, it has some limitations, such as mechanical complexity,
data outliers, and noise, which lead to an increase in the estimated volumetric error.

5.2. Future Work

Future research directions that we believe will further refine the current methodologies
and expand the scope of this research include the following:

• Develop an automated approach for waypoints and formation topologies selection to
provide an optimised coverage of the desired area;

• Investigate adaptive path optimization techniques for the multi-agent system, particu-
larly for larger stockpile areas, to improve efficiency while maintaining coordinated
flight and uniform coverage;

• Test the proposed multi-drone approach in conjunction with the dynamic forma-
tion strategy in large stockpile storages, where active collision avoidance would
be essential;

• Integrate a leader–follower multi-agent system, providing the leader drone with
enhanced capabilities, such as obstacle detection, and facilitating real-time information
sharing with follower drones to further optimise operations;

• Integrate narrow FOV sensors within micro drones, as this would promise more accu-
rate data acquisition by minimising errors and enhancing the fine details reconstruction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/aerospace12030189/s1, Videos S1 and S2: Multi-drone scanning
operation with two and three agents utilising the proposed adaptive formation control; Code S1:
Experimental formation control codes.
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