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A B S T R A C T

In this paper, we study an ordinary differential equation with a degenerate global attractor at
the origin, to which we add a white noise with a small parameter that regulates its intensity.
Under general conditions, for any fixed intensity, as time tends to infinity, the solution of
this stochastic dynamics converges exponentially fast in total variation distance to a unique
equilibrium distribution. We suitably accelerate the random dynamics and show that the
preceding convergence is gradual, that is, the function that associates to each fixed 𝑡 ≥ 0 the
total variation distance between the accelerated random dynamics at time 𝑡 and its equilibrium
distribution converges, as the noise intensity tends to zero, to a decreasing function with values
in (0, 1). Moreover, we prove that this limit function for each fixed 𝑡 ≥ 0 corresponds to the
total variation distance between the marginal, at time 𝑡, of a stochastic differential equation that
comes down from infinity and its corresponding equilibrium distribution. This completes the
classification of all possible behaviors of the total variation distance between the time marginal
of the aforementioned stochastic dynamics and its invariant measure for one dimensional well-
behaved convex potentials. In addition, there is no cut-off phenomenon for this one-parameter
family of random processes and asymptotics of the mixing times are derived.

1. Introduction

The study of random dynamical systems and their convergence to equilibrium is one of the most studied subject in probability
theory and mathematical physics with a vast literature such as stochastic control [1], slow–fast systems [2], small noise limit [3–6],
small noise asymptotics for invariant densities [4,7–9], sharp estimates on transit and exit times [10], couplings and quantitative
contraction rates for Langevin dynamics [11–13], convergence to equilibrium in Fokker–Planck equations [14–16], random
attractors for stochastic dissipative systems [17], numerical computations of geometric ergodicity [18,19], multi-scale analysis,
ergodicity and exponential loss of memory of the initial condition [20–22], regularity for Lyapunov exponents [23], metastability
and large deviations [24,25], optimal transport [26], etc.

The goal of this paper is the study of the convergence to equilibrium in the so-called zero-noise limit for a family of stochastic
small random perturbations of a given one-dimensional dynamical system. We consider an ordinary differential equation with a
degenerate (non-hyperbolic) global attractor at the origin. Under appropriate conditions on the dynamics, as time increases, for any
initial condition the solution of this differential equation tends to the origin polynomially fast. We then consider a perturbation of
the deterministic dynamics by a Brownian motion of small intensity. This random dynamics possesses a unique invariant probability
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measure and for any initial condition, the solution converges in the total variation distance to such invariant probability measure
s times increases. We prove that the convergence occurs gradually, that is, when the strength of the noise (𝜀) tends to zero, with a
uitable scaling of time (𝑎𝜀, 𝜀 > 0), the function that associates to each fixed 𝑡 ≥ 0 the total variation distance between the marginal

of the random dynamics at time 𝑎𝜖𝑡 and its equilibrium tends, as 𝜀 → 0, to a decreasing function with values in the open interval
(0, 1), see also Definition 1.5 below. This fact, with the help of Proposition 1.9 implies no cut-off phenomenon in the context of
andom processes.

1.1. The degenerate Langevin dynamics

In this subsection, we specify the degenerate Langevin dynamics that we consider in this paper. Here we say that a Langevin
dynamics is degenerate when its vector field possesses a degenerate fixed (critical) point.

The Langevin dynamics was introduced by P. Langevin in 1908 in his seminal article [27]. It is perhaps one of the most popular
models in molecular systems. For details on its history and phenomenological treatment, we refer to [28,29] and the references
therein.

Let 𝜀 ∈ (0, 1] be the parameter that controls the intensity of the noise and let 𝑋𝜀(𝑥) ∶= (

𝑋𝜀
𝑡 (𝑥), 𝑡 ≥ 0

)

be the unique strong solution
of the one-dimensional Stochastic Differential Equation (for short SDE)

{

d𝑋𝜀
𝑡 = −𝑉 ′(𝑋𝜀

𝑡 )d𝑡 +
√

𝜀d𝐵𝑡 for 𝑡 ≥ 0,
𝑋𝜀

0 = 𝑥,
(1.1)

where 𝑥 ∈ R is a deterministic initial condition, 𝐵 ∶=
(

𝐵𝑡, 𝑡 ≥ 0
)

is a one-dimensional standard Brownian motion defined on a
probability space (𝛺 , ,P) and 𝑉 ∶ R → [0,∞) is a given function that will be referred to as the potential. In order to avoid
technicalities and since we want to be able to use Itô’s formula, we assume the following conditions for 𝑉 .

Hypothesis 1.1 (Regularity). We assume that the potential 𝑉 is a twice continuously differentiable, convex and even function with
𝑉 (0) = 0.

Since for the dynamics (1.1) we only consider from the potential 𝑉 its derivative 𝑉 ′, the value of 𝑉 at 0 is not crucial and it
is only imposed in Hypothesis 1.1 to fix a unique potential once given its derivative. Moreover, since 𝑉 is even and differentiable,
we have 𝑉 ′(0) = 0. We recall that 0 is a degenerate fixed point when 𝑉 ′′(0) = 0. In what follows, we assume the following local
ehavior at 0.

Hypothesis 1.2 (Local Behavior at the Origin). There exist positive constants 𝐶0 and 𝛼 such that

lim
𝜆→0

sup
|𝑧|≤1

|

|

|

|

𝑉 ′(𝜆𝑧)
𝜆1+𝛼

− 𝐶0|𝑧|
1+𝛼sgn(𝑧)

|

|

|

|

= 0, where sgn(𝑧) ∶= 𝑧 |𝑧|−11{𝑧≠0}. (1.2)

Remark 1.3. An intuition for Hypothesis 1.2 is to think of it as a generalization of the behavior of the monomial potential
0 ∶ R → [0,∞) given by 𝑉0(𝑥) ∶= |𝑥|2+𝛼 with 𝛼 > 0 to smooth potentials 𝑉 ∶ R → [0,∞) with leading behavior at the origin

given by 𝐶0|𝑥|
2+𝛼 and suitable 𝐶0 > 0 as described in (1.2). That is, 𝑉 (𝑥) = 𝐶0|𝑥|

2+𝛼 + o(|𝑥|2+𝛼) as 𝑥 → 0. For instance, for the case
𝑉 (𝑥) = |𝑥|2+𝛼 , 𝑥 ∈ R, we have 𝑉 ′(𝜆𝑧)

𝜆1+𝛼
= (2 +𝛼)|𝑧|1+𝛼sgn(𝑧) for 𝑧 ∈ R and 𝜆 ≠ 0, and hence Condition (1.2) is satisfied with 𝐶0 ∶= 2 +𝛼.

Roughly speaking, the local behavior of the potential at the origin captured in (1.2) controls the convergence to equilibrium
in (1.1). In fact, the convex potential 𝑉 drives the trajectories of (1.1) to the origin and the convergence to equilibrium depends on
he intensity of the noise and the strength of drift determined by the potential. See Section 2.1 for further heuristics.

We also point out that Hypothesis 1.2 is equivalent to
lim
𝜆→0

sup
|𝑧|≤𝐾

|

|

|

|

𝑉 ′(𝜆𝑧)
𝜆1+𝛼

− 𝐶0|𝑧|
1+𝛼sgn(𝑧)

|

|

|

|

= 0 for any 𝐾 > 0.

Finally, in order to control the growth of 𝑉 ′ around infinity and to ensure that (1.1) has a unique invariant probability measure,
we assume the following growth condition.

Hypothesis 1.4 (Growth at Infinity). There exist 𝑐0, 𝑅0 ∈ (0,∞), and 𝛽 ∈ (−1,∞) such that

𝑉 ′(𝑧) ≥ 𝑐0𝑧
1+𝛽 for all 𝑧 ≥ 𝑅0.

An interesting example, which satisfies Hypotheses 1.1, 1.2 and 1.4, is the one-well potential 𝑉 (𝑧) = |𝑧|2+𝛼 , 𝑧 ∈ R for some
 > 0. When 𝛼 = 0, we have that (1.1) corresponds to the Ornstein–Uhlenbeck process which exhibits profile cut-off for 𝑥 ≠ 0
nd it does not when 𝑥 = 0, for further details see [30,31]. For 𝛼 > 0 we have 𝑉 ′(0) = 𝑉 ′′(0) = 0 and hence Theorem 2.1 in [31]

cannot be applied. In fact, in the degenerate case, for any initial condition the convergence to equilibrium is gradual, in the sense
f Definition 1.5 below, which implies no cut-off. This is in stark contrast with the Ornstein–Uhlenbeck process and it is natural

from the dynamical point of view, since the fixed point changes from hyperbolic to non-hyperbolic (degenerate). For instance, the
qualitative behavior of hyperbolic systems and degenerate systems are very different, the former are structurally stable whereas
2 



G. Barrera et al.

a
w
q

f
s

g

c

T

t

Stochastic Processes and their Applications 184 (2025) 104601 
the latter are not. In the hyperbolic attracting case, it is shown in Theorem 2.2 in [31] that profile cut-off phenomenon holds true
nd the proof relies on the Hartman–Grobman theorem, which breaks down at degenerate points. In the present degenerate setting,
e introduce a time space scaling and obtain gradual convergence to equilibrium, see Theorem 1.7 below. Moreover, there is a
ualitative change of behavior in the model: the cut-off phenomenon is not present in this setting, see Corollary 1.10 below. We

also give asymptotics for the mixing times in (1.14) in Corollary 1.10.
Another example which underlies our motivation to study this type of model is the so-called Ginzburg–Landau potential. More

precisely, for a given 𝜂 ∈ R the Ginzburg–Landau potential 𝑉𝜂 ∶ R → R is defined by

𝑉𝜂(𝑥) ∶ = cosh(𝑥) − 1
2
𝜂 𝑥2 = 1 + (1 − 𝜂)𝑥2

2!
+ 𝑥4

4!
+ 𝑥6

6!
+⋯ for any 𝑥 ∈ R.

Note that 𝑉 ′
𝜂 (0) = 0 for all 𝜂 ∈ R. Moreover, for 𝜂 ≤ 1, we have that 𝑉𝜂 is convex and 𝑉 ′′

𝜂 (𝑥) ≥ (1 −𝜂) for all 𝑥 ∈ R with 𝑉 ′′
𝜂 (0) = 1 −𝜂. For

𝜂 < 1, 𝑉𝜂 is coercive and hence Theorem 2.1 in [31] applies, yielding the cut-off phenomenon (abrupt convergence) to equilibrium
or (1.1). For 𝜂 > 1, 𝑉𝜂 is no longer convex and has the classical double-well shape used in models which exhibit metastability,
ee [24,25,32–34]. We point out that metastable models do not exhibit cut-off phenomenon, see [35,36]. Finally, at the critical

value 𝜂 = 1, up to a translation, the potential 𝑉1 satisfies Hypotheses 1.1, 1.2 and 1.4. Therefore, Theorem 1.7 below yields gradual
convergence to equilibrium for (1.1) when the potential is 𝑉1.

With the present result, we improve the classification of the behaviors of the total variation distance between the marginal 𝑋𝜀
𝑡

iven in (1.1) and its invariant measure for one dimensional smooth convex potentials 𝑉 . More precisely, provided the convex
potential 𝑉 satisfies regularity conditions, such as it grows at infinity and is well-behaved at the origin, then we can classify the
convergence to equilibrium as follows.

(1) Cut-off phenomenon. This occurs when the fixed point of the deterministic dynamics associated to (1.1) is hyperbolic,
i.e., 𝑉 ′′(0) > 0, see Theorem 2.1 in [31].

(2) Gradual convergence to equilibrium. This occurs when the fixed point of the deterministic dynamics associated to (1.1) is
degenerate, i.e., 𝑉 ′′(0) = 0, see Theorem 1.7 below.

When the potential 𝑉 is not convex and possesses finitely many (hyperbolic) stable equilibria, it is well-known that metastability
phenomenon occurs, see [24,25,32–34].

By Hypothesis 1.1 the SDE (1.1) has a unique strong solution, see Theorem 3.5 in [37, p. 58] or Theorem 10.2.2 in [38, p. 255].
Hence, 𝑋𝜀(𝑥) is a well-defined stochastic process on the probability space (𝛺 , ,P). Furthermore, Lemma 2.1 below yields that (1.1)
is exponentially ergodic in total variation distance with a unique invariant probability measure 𝜇𝜀 given by

𝜇𝜀(d𝑧) = 𝑒−
2
𝜀 𝑉 (𝑧)

𝐶𝜀
d𝑧 with 𝐶𝜀 ∶= ∫R

𝑒−
2
𝜀 𝑉 (𝑦) d𝑦.

1.2. Results

In this section, before we state the main results of the paper, we recall the definition of the total variation distance and fix some
onventions.

In the sequel, we adopt the convention that sgn(0)∞ = 0 and since 𝜀 ∈ (0, 1], for simplicity we write 𝜀 → 0 instead of 𝜀 → 0+.
We point out that for any 𝑥 ∈ R and 𝑡 > 0, the marginal 𝑋𝜀

𝑡 (𝑥) is absolutely continuous with respect to the Lebesgue measure on R.
hen we measure the distance between the law of 𝑋𝜀

𝑡 (𝑥) and its limiting distribution 𝜇𝜀 by the total variation distance, defined by

dTV(𝜈1, 𝜈2) ∶= sup
𝐹∈

|𝜈1(𝐹 ) − 𝜈2(𝐹 )|

for any 𝜈1 and 𝜈2 probability measures in the same measurable space (𝛺 , ). For convenience, we do not distinguish a random
variable 𝑋1 and its law P𝑋1

as an argument of dTV. In other words, for random variables 𝑋1 and 𝑋2 and probability measure 𝜇 we
write dTV(𝑋1, 𝑋2) in place of dTV(P𝑋1

,P𝑋2
) and write dTV(𝑋1, 𝜇) instead of dTV(P𝑋1

, 𝜇). For further details on the total variation
distance, we refer to [20, Ch. 2] or [39, Sec. 3.3].

To state our main result, we introduce the following definition.

Definition 1.5 (Gradual Convergence). For each 𝜀 ∈ (0, 1], let𝑋𝜀 = (𝑋𝜀
𝑡 , 𝑡 ≥ 0) be a stochastic process with unique invariant probability

measure 𝜇𝜀, and fix a deterministic 𝑎𝜀 > 0. We say that the family of stochastic processes (𝑋𝜀, 𝜀 ∈ (0, 1]) exhibits gradual convergence
o equilibrium at scale (𝑎𝜀, 𝜀 > 0) with respect to the total variation distance as 𝜀 → 0, when the map 𝑑𝜀 ∶ (0,∞) → [0, 1] defined by

𝑑𝜀(𝑡) ∶= dTV(𝑋𝜀
𝑎𝜀𝑡
, 𝜇𝜀), 𝑡 ≥ 0,

converges as 𝜀 tends to zero to a function 𝑑0 ∶ (0,∞) → (0, 1) in the sense that for almost all 𝑡 > 0

lim
𝜀→0

𝑑𝜀(𝑡) = 𝑑0(𝑡).

We say that the family of stochastic processes (𝑋𝜀, 𝜀 ∈ (0, 1]) exhibits gradual convergence to equilibrium with respect to the total
variation distance or simply exhibits gradual convergence when there is a scale (𝑎𝜀, 𝜀 > 0) for which the family of stochastic processes
(𝑋𝜀, 𝜀 ∈ (0, 1]) exhibits gradual convergence to equilibrium at scale (𝑎𝜀, 𝜀 > 0) with respect to the total variation distance as 𝜀 → 0.
3 
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Remark 1.6. We point out that gradual convergence and cut-off do not form a dichotomy. Indeed, in principle, one could have a
process with a unique invariant measure that converges after scaling to a profile function 𝑓 such that

𝑓 (𝑡) ∶=
⎧

⎪

⎨

⎪

⎩

1 if 0 ≤ 𝑡 ≤ 1,
1
2 if 𝑡 ∈ (1, 2],
0 if 𝑡 > 2.

(1.3)

The above profile function is not compatible with gradual convergence, where we require 𝑓 (𝑡) ∈ (0, 1) for all 𝑡 > 0 nor it is compatible
with cut-off, as the function does not drop abruptly to 0, since reaches a plateau with value 1

2 for 𝑡 ∈ (1, 2]. One example for this would
be to consider two decks of cards, one red, one black. Assume that the shuffling for the black deck of cards converges to equilibrium
after scaling at the deterministic time 1 and that the shuffling for the red one, converges to equilibrium at the deterministic time
2. If we select the deck of cards according to the outcome of a fair coin toss, red deck if the coin lands ‘‘heads’’ and the black deck
if the coin lands ‘‘tails’’. This process will exhibit convergence to a profile (1.3) which is not gradual not cut-off. We point out that
discontinuous profile functions may arise in which one still retains gradual convergence, see for instance [40].

The main result of this paper whose proof is given in Section 2 is the following.

Theorem 1.7. Assume that Hypotheses 1.1, 1.2 and 1.4 hold true. For 𝜀 ∈ (0, 1] and 𝑥 ∈ R, let 𝑋𝜀(𝑥) be the unique strong solution
f (1.1) and denote by 𝜇𝜀 its unique invariant probability measure. Define the scaling parameter

𝑎𝜀 ∶= 𝜀−
𝛼

2+𝛼 , where 𝛼 > 0 is given in 𝐻 𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 1.2 (1.4)

Then for any 𝑡 > 0 it follows that

lim
𝜀→0

dTV

(

𝑋𝜀
𝑡𝑎𝜀

(𝑥), 𝜇𝜀
)

= dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝜈) ∈ (0, 1), (1.5)

where 𝑌𝑡(sgn(𝑥)∞) ∶= lim𝑟→∞ 𝑌𝑡(sgn(𝑥)𝑟) and for 𝑟 > 0, (𝑌𝑡(sgn(𝑥)𝑟), 𝑡 ≥ 0) is the strong solution of the SDE
{

d𝑌𝑡 = −𝐶0|𝑌𝑡|
1+𝛼sgn(𝑌𝑡)d𝑡 + d𝑊𝑡 for 𝑡 > 0,

𝑌0 = sgn(𝑥)𝑟, (1.6)

(𝑊𝑡, 𝑡 ≥ 0) is a standard Brownian motion, 𝜈 is the unique invariant probability measure for (1.6), and the constant 𝐶0 is defined in
Hypothesis 1.2. Moreover, the map

𝑡 ↦ dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝜈) is continuous and strictly decreasing. (1.7)

The computation of the scaling (1.4) is given in Section 2.3.
We point out that 𝑌𝑡(sgn(𝑥)∞) comes down from infinity, that is, 𝑌𝑡(sgn(𝑥)∞) ∈ R for any 𝑡 > 0. It is not surprising that an equation

in the form of (1.6) should ‘‘come down from infinity’’ and should admit a continuous Markovian extension. Since we did not find a
reference with a full proof of this result, we have devoted Appendix A to explain this in detail. The continuous Markovian extension
of the SDE (1.6) to R ∶= R ∪ {±∞} is done in detail using basic ODE/probabilistic techniques in Appendix A and here we only
outline the main steps. First, based on a monotonic comparison, which follows from the synchronous coupling, and uniform second
moment bounds for 𝑥 ∈ R, the SDE (1.6) can be extended to R, see Appendix A.1. Then because ±∞ are entrance boundaries for the
dynamics in R, the extended family (𝑌 (𝑥) ∶= (𝑌𝑡(𝑥), 𝑡 ≥ 0), 𝑥 ∈ R) is Markovian, see Appendix A.2. The rigorous definition of (1.6)
is given in Proposition 2.5 below. Moreover, Theorem 1.7 actually provides the essentially unique scale (𝑎𝜀, 𝜀 ∈ (0, 1]) that captures
the convergence to equilibrium. In fact, since by the Chapman–Kolmogorov equation, the map 𝑡↦ dTV

(

𝑋𝜀
𝑡 (𝑥), 𝜇𝜀

)

is non-increasing,
any sequence (𝑡𝜀, 𝜀 ∈ (0, 1]) for which

lim
𝜀→0

dTV

(

𝑋𝜀
𝑡𝜀
(𝑥), 𝜇𝜀

)

= dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝜈)

must satisfy

lim
𝜀→0

𝑡𝜀
𝑎𝜀

= 𝑡. (1.8)

Indeed, assume that lim sup𝜀→0
𝑡𝜀
𝑎𝜀
> 𝑡 + 𝛿 for some 𝛿 > 0, then by (1.5) and (1.7)

lim inf
𝜀→0

dTV

(

𝑋𝜀
𝑡𝜀
(𝑥), 𝜇𝜀

)

≤ lim inf
𝜀→0

dTV

(

𝑋𝜀
(𝑡+𝛿)𝑎𝜀

(𝑥), 𝜇𝜀
)

= dTV
(

𝑌𝑡+𝛿(sgn(𝑥)∞), 𝜈) < dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝜈) .

Similarly, if lim inf𝜀→0
𝑡𝜀
𝑎𝜀
< 𝑡 − 𝛿 for some 𝛿 ∈ (0, 𝑡), then

lim inf
𝜀→0

dTV

(

𝑋𝜀
𝑡𝜀
(𝑥), 𝜇𝜀

)

≥ lim inf
𝜀→0

dTV

(

𝑋𝜀
(𝑡−𝛿)𝑎𝜀

(𝑥), 𝜇𝜀
)

= dTV
(

𝑌𝑡−𝛿(sgn(𝑥)∞), 𝜈) > dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝜈) .

We now fix a (rough) notion of abrupt convergence to equilibrium, the cut-off phenomenon. For further details, see Definition 1.8
in [41] and also [35].
4 
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Definition 1.8 (Cut-off Phenomenon). For each 𝜀 ∈ (0, 1], let 𝑋𝜀 = (𝑋𝜀
𝑡 , 𝑡 ≥ 0) be a stochastic process with unique invariant probability

measure 𝜇𝜀 and deterministic 𝑡𝜀 > 0. We say that the one-parameter family of stochastic processes (𝑋𝜀, 𝜀 ∈ (0, 1]) exhibits cut-off
with respect to the total variation distance at scale (𝑡𝜀, 𝜀 ∈ (0, 1]) when 𝑡𝜀 → ∞ as 𝜀 → 0 and

lim
𝜀→0

dTV

(

𝑋𝜀
𝛿 𝑡𝜀 , 𝜇

𝜀
)

=

{

1 for 𝛿 ∈ (0, 1),
0 for 𝛿 ∈ (1,∞).

(1.9)

We say that the family of stochastic processes (𝑋𝜀, 𝜀 ∈ (0, 1]) exhibits cut-off with respect to the total variation distance or simply exhibits
cut-off if there is a scale (𝑡𝜀, 𝜀 ∈ (0, 1]) such that 𝑡𝜀 → ∞ and (1.9) holds true.

Similar arguments leading to (1.8) allows one to obtain that the scale in the cut-off phenomenon is essentially unique, see
lso [42].

Roughly speaking, one generally expects that a one-parameter family of well-mixing stochastic processes will exhibit abrupt
convergence of the marginals to the equilibrium distribution as a function of the parameter. This is known in the literature as the
cut-off phenomenon introduced by [43] in the context of card shuffling. Actually, the notion of cut-off applies to a wide range of
random models. In the discrete setting, the cut-off phenomenon has been proved for many different models such as Markovian
huffling cards and random transpositions [43–48], random walks on the hypercube [49,50], birth and death chains [35,36], sparse
arkov chains [51], Glauber dynamics [52], SSEP dynamics [53], SEP in the circle [54,55], random walks in random regular

raphs [56], Ornstein–Uhlenbeck processes [30,57–59], mean field zero-range process [60], averaging processes [61], sampling
chains and processes [62–64], star transpositions [65], etc. There are relatively few examples of Markov processes, taking values
in continuous state-spaces for which the cut-off phenomenon has been studied, such processes include linear and nonlinear SDEs
riven by small Lévy noise [31,41,57,66–70], Dyson–Ornstein–Uhlenbeck process [71], the biased adjacent walk on the simplex [72],

Brownian motion on families of compact Riemannian manifolds [73].
No cut-off: A classical example of a Markov dynamics that does not exhibit cut-off phenomenon is the random walk on the circle

𝑛, see Example 18.5 in [50, Ch.18, p.253] or [74, Thm. 2.2.1, p.55]. Numerical results yields that the cut-off phenomenon does
not occur for the entropy in the sense of information theory, see [75]. It has been also proved that the ‘‘insect Markov chain’’ does
not have cut-off, see [76]. Moreover, it has been showed the absence of cut-off for several classes of trees, including spherically
symmetric trees, Galton–Watson trees of a fixed height, and sequences of random trees converging to the Brownian CRT, see [77,78].
More recently, it is shown that the TASEP in the coexistence line does not have cut-off, see [79], and that there is no cut-off for
parse chains, see Corollary 4 in [80].

By the Chapman–Kolmogorov equation, for any 𝑥 ∈ R and 𝜀 ∈ (0, 1] it follows that the map

𝑡 ↦ 𝑑𝜀𝑡 (𝑥) ∶= dTV(𝑋𝜀
𝑡 (𝑥), 𝜇𝜀) is non-increasing. (1.10)

By ergodicity, see Lemma 2.1 below, lim𝑡→∞ 𝑑𝜀𝑡 (𝑥) = 0. This allows us to define for any 𝑥 ∈ R, 𝜀 ∈ (0, 1), and 𝜂 ∈ (0, 1), the 𝜂-mixing
time for the process (𝑋𝜀

𝑡 (𝑥), 𝑡 ≥ 0) by

𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂) ∶= inf {𝑡 ≥ 0 ∶ 𝑑𝜀𝑡 (𝑥) ≤ 𝜂}.

That is, one seeks the time required by the process 𝑋𝜀(𝑥) for the total variation distance to its invariant measure 𝜇𝜀 to be equal to
or smaller than a prescribed error 𝜂.

The phenomenon of cut-off can be detected with the help of the notion of mixing times, see for instance [56,81] or Chapter 18
of [50]. Following Equation (18.3) in [50], the cut-off phenomenon is equivalent to the following relation between mixing times

lim
𝜀→0

𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂)

𝜏𝜀,𝑥
𝗆𝗂𝗑

(1 − 𝜂) = 1 for all 𝜂 ∈ (0, 1).

Due to its natural relevance, it has been extensively studied in many stochastic models, see for instance [50,52,81–88] and the
references therein.

The following proposition provides a rather general technique to prove no cut-off in ergodic systems. For convenience we keep
the notation and parameters that are proper to our model, but we emphasize that the result can be seen as a method for proving
no-cut-off valid for any stochastic process satisfying the hypotheses in Proposition 1.9 below. In rough terms, it states that if there
xists a non-trivial behavior for a suitable scale, then there is no cut-off for any scale.

Proposition 1.9 (No Cut-Off and Mixing Times Asymptotics). Let 𝑥 ∈ R be given and assume that the scale (𝑎𝜀 = 𝑎𝜀(𝑥), 𝜀 ∈ (0, 1]) satisfies

(i) lim𝜀→0 𝑎𝜀 = ∞.
(ii) For any 𝑡 > 0

0 < lim inf
𝜀→0

𝑑𝜀𝑎𝜀𝑡(𝑥) ≤ lim sup
𝜀→0

𝑑𝜀𝑎𝜀𝑡(𝑥) < 1. (1.11)

Then there is no cut-off for the family (𝑋𝜀(𝑥), 𝜀 ∈ (0, 1]) as 𝜀 tends to zero. In addition, if the following limit exists

lim
𝜀→0

𝑑𝜀𝑎𝜀𝑡(𝑥) = 𝐺𝑥(𝑡) ∈ (0, 1) (1.12)

and the map 𝑡 ↦ 𝐺𝑥(𝑡) is continuous and strictly decreasing then, for any 𝜂 ∈ (0, 1),

lim
𝜀→0

𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂)
𝑎𝜀

= inf {𝑡 > 0 ∶ 𝐺𝑥(𝑡) ≤ 𝜂}. (1.13)
5 
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The following result, which establishes the gradual convergence to equilibrium of the family defined in (1.1) is a consequence
f Theorem 1.7 and Proposition 1.9.

Corollary 1.10 (No Cut-Off Phenomenon). With the assumptions and notations of Theorem 1.7, for any 𝑥 ∈ R, the family of processes
(𝑋𝜀(𝑥), 𝜀 ∈ (0, 1]) does not exhibit cut-off as 𝜀 → 0. In addition,

lim
𝜀→0

𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂)
𝑎𝜀

= inf {𝑡 ≥ 0 ∶ dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝜈) ≤ 𝜂}. (1.14)

Proof. By Theorem 1.7 and Proposition 1.9 we obtain Corollary 1.10. Indeed, by (1.4) and (1.5) we obtain that the scale function
(𝑎𝜀, 𝜀 ∈ (0, 1]) given in Theorem 1.7 satisfies conditions (i) and (ii) of Proposition 1.9 with

𝐺𝑥(𝑡) = lim
𝜀→0

𝑑𝜀𝑎𝜀𝑡(𝑥) = lim
𝜀→0

dTV(𝑋𝜀
𝑡 (𝑥), 𝜇𝜀) = dTV

(

𝑌𝑡(sgn(𝑥)∞), 𝜈) ∈ (0, 1). (1.15)

Therefore, the family of processes (𝑋𝜀(𝑥), 𝜀 ∈ (0, 1]) does not exhibit cut-off as 𝜀→ 0. To obtain (1.14) it suffices to combine (1.13)
with (1.15) and to note, by (1.7), that the map 𝑡 ↦ 𝐺𝑥(𝑡) is continuous and strictly decreasing. □

Structure of the paper. In Section 2 we explain the proof of Theorem 1.7 and in Section 3 we complete the outline of the proof
of Theorem 1.7. The Appendix is divided in four sections. Appendix A proves that the process defined in (1.6) admits a continuous
Markovian extension to R. Appendix B is devoted to the proof of uniform bounds for the entrance on compact sets, a crucial estimate
to control the coupling rate of the process with the equilibrium measure. In Appendix C we give the proofs of the convergence of
the invariant measures for the processes 𝑋𝜀(𝑥) after suitable scaling. Appendix D contains results of technical nature that we collect
o make the presentation more self-contained.

2. Proof of Theorem 1.7

This section is divided in five parts. Firstly, we give an heuristic argument for (1.5). Secondly, we examine, for fixed 𝜀 ∈ (0, 1],
convergence to the unique invariant measure of 𝑋𝜀

𝑡 (𝑥) as 𝑡 → ∞. Thirdly, we perform a scale analysis to deduce (𝑎𝜀, 𝜀 ∈ (0, 1]).
Fourthly, we introduce a localization argument which allows us to simplify the potential 𝑉 under analysis. Finally, we state the key
results used in the proof of (1.5).

2.1. Heuristics

Assume that 𝑉 satisfies Hypotheses 1.1, 1.2 and 1.4. Let 𝜑(𝑥) ∶= (

𝜑𝑡(𝑥), 𝑡 ≥ 0
)

be the solution of the Ordinary Differential Equation
(for short ODE)

{

d𝜑𝑡 = −𝑉 ′(𝜑𝑡)d𝑡 for 𝑡 ≥ 0,
𝜑0 = 𝑥.

(2.1)

The intuitive reason to consider (2.1) is that, with high probability, at early stages of the random evolution (1.1), the process stays
close to the deterministic evolution (2.1). By the contracting nature of the random evolution (1.1), which follows from the convexity
of 𝑉 (Hypothesis 1.1) and its growth condition at infinity (Hypothesis 1.4), for every 𝑥 ≠ 0 the noise gets dissipated and the process
s driven to zero, falling back into the stream of the deterministic evolution. For this reason, (2.1) is actually a good approximation

of (1.1) for a long period of time and for large times, what matters is the behavior of 𝑉 at zero. Moreover, Hypothesis 1.2 ensures
the drift in (2.1) can be approximated at the origin, 𝑉 ′(𝑧) ∼ 𝐶0 |𝑧|

1+𝛼 sgn(𝑧), and the properly rescaled process should converge to
(sgn(𝑥)∞) as 𝜀 → 0, where 𝑌 (𝑥) = (

𝑌𝑡(𝑥), 𝑡 ≥ 0
)

is the unique strong solution of the following SDE
{

d𝑌𝑡 = −𝐶0|𝑌𝑡|
1+𝛼sgn(𝑌𝑡)d𝑡 + d𝑊𝑡 for 𝑡 ≥ 0,

𝑌0 = 𝑥.
(2.2)

The exact scale and validity of the replacement of (1.1) by (2.2) is not immediate and is explained in the remainder this section.

2.2. The invariant probability measure

By the next lemma, (1.1) admits a unique invariant probability measure 𝜇𝜀.

Lemma 2.1 (Exponential Ergodicity). Assume 𝑉 satisfies Hypotheses 1.1 and 1.4. Let 𝜀 ∈ (0, 1] be fixed and for each 𝑥 ∈ R let 𝑋𝜀(𝑥) be
the unique strong solution of (1.1). Then there exists a unique probability measure 𝜇𝜀 such that for any 𝑐 > 0 there are positive constants
𝐶1 = 𝐶1(𝑐 , 𝜀) and 𝐶2 = 𝐶2(𝑐 , 𝜀) for which

dTV(𝑋𝜀
𝑡 (𝑥), 𝜇𝜀) ≤ 𝐶1𝑒

−𝐶2𝑡
(

𝑒𝑐|𝑥| + ∫R
𝑒𝑐|𝑦|𝜇𝜀(d𝑦)

)

for all 𝑥 ∈ R, 𝑡 ≥ 0. (2.3)

Furthermore, 𝜇𝜀 is absolutely continuous with respect to the Lebesgue measure on R and its density 𝜌𝜀 ∶ R → (0,∞) is given by

𝜌𝜀(𝑥) = 𝑒−
2
𝜀 𝑉 (𝑥)

𝐶𝜀
with 𝐶𝜀 ∶= ∫R

𝑒−
2
𝜀 𝑉 (𝑦) d𝑦. (2.4)

The proof of Lemma 2.1 is given in Appendix D.
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2.3. Scale analysis

In this section we clarify the scaling factor in (1.4) and the need to consider 𝑌𝑡(sgn(𝑥)∞) ∶= lim𝑟→∞ 𝑌𝑡(sgn(𝑥)𝑟) given in
Theorem 1.7. Define, for 𝑡 ≥ 0,

𝜀,𝑥
𝑡 ∶=

𝑋𝜀
𝑎𝜀𝑡

(𝑥)

𝑏𝜀
(2.5)

and let us determine the time and space scaling parameters 𝑎𝜀 > 0 and 𝑏𝜀 > 0. By Itô’s formula the stochastic process (𝜀,𝑥
𝑡 , 𝑡 ≥ 0)

has the same law as (𝑌 𝜀𝑡 (𝑥𝑏
−1
𝜀 ), 𝑡 ≥ 0), where 𝑌 𝜀(𝑦) ∶= (𝑌 𝜀𝑡 (𝑦), 𝑡 ≥ 0) is the unique strong solution of the following SDE

{

d𝑌 𝜀𝑡 = − 𝑎𝜀
𝑏𝜀
𝑉 ′(𝑏𝜀𝑌 𝜀𝑡 )d𝑡 +

√

𝜀𝑎𝜀
𝑏𝜀

d𝐵𝑡 for 𝑡 ≥ 0,
𝑌 𝜀0 = 𝑦.

(2.6)

In what follows, we shall refer to the process 𝑌 𝜀(𝑦) as the rescaled process, since it arises from the rescaling of the process 𝑋𝜀. Note
hat, by Hypothesis 1.2, if 𝑏𝜀 → 0 as 𝜀 → 0 then for any 𝑧 ∈ R

𝑎𝜀
𝑏𝜀
𝑉 ′(𝑏𝜀𝑧) ∼ 𝐶0

𝑎𝜀
𝑏𝜀

|

|

𝑏𝜀𝑧||
1+𝛼 sgn(𝑧) = 𝐶0𝑎𝜀𝑏

𝛼
𝜀 |𝑧|

1+𝛼 sgn(𝑧). (2.7)

Therefore, to obtain a non-trivial limit for 𝜀,𝑥
𝑡 we remove the scaling factors of (2.6) by defining the pair 𝑎𝜀 and 𝑏𝜀 to be the solution

f the system
{

√

𝜀𝑎𝜀
𝑏𝜀

= 1,
𝑎𝜀𝑏𝛼𝜀 = 1.

(2.8)

The solution of (2.8) is given by

𝑎𝜀 = 𝜀−
𝛼

2+𝛼 and 𝑏𝜀 = 𝜀
1

2+𝛼 . (2.9)

Condition (2.8) sets the scale analysis to a fixed magnitude of the noise (𝜀𝑎𝜀 = 𝑏2𝜀) and a constant strength of the velocity field at the
origin (𝑎𝜀𝑏𝛼𝜀 = 1). By (2.7) and (2.8) the dynamics of (2.6) converges to the dynamics (2.2) on compact intervals as 𝜀 → 0. However,
or any initial condition 𝑥 ≠ 0 of (1.1), the family of processes we consider after scaling, (𝜀,𝑥

𝑡 , 𝑡 ≥ 0), have initial condition 𝑥𝑏−1𝜀 ,
which diverges as 𝜀 → 0. Therefore, the zero-noise limit of (2.6) requires a rigorous analysis at infinity.

2.4. Coupling near the origin

In this section we show that the problem in Theorem 1.7 is local. That is, we prove that one may replace 𝑉 ′ in (1.1) with the
derivative of a suitable function 𝑉 that is well behaved at a neighborhood of the origin and satisfies mild growth conditions. More
precisely, let 𝑥 be the initial condition of (1.1). In the sequel, we consider a convex potential 𝑉 = 𝑉𝑥 that satisfies

𝑉 (𝑧) = 𝑉 (𝑧) for any 𝑧 with |𝑧| ≤ 𝐿, (2.10)

where 𝐿 > 0 is such that 𝐿2 ≥ 1 + |𝑥|2. Additionally, we assume the following growth condition.

Hypothesis 2.2 (Polynomial Growth at Infinity). There exist positive constants 𝑐, 𝐶 and 𝑅 such that

𝑉 ′(𝑧) ≥ 𝑐 𝑧1+𝛼 for 𝑧 ≥ 𝑅 (G1)

and such that

|𝑉 ′(𝑧)| ≤ 𝐶 𝑒𝑧2 for |𝑧| ≥ 𝑅, (G2)

where 𝛼 > 0 is given in Hypothesis 1.2.

Furthermore, note that 𝑉 satisfies Hypotheses 1.1 and 1.2. The existence of 𝑉 is guaranteed by Lemma D.1 in Appendix D.
For each 𝜀 ∈ (0, 1] and 𝑥 ∈ R we consider the unique strong solution 𝑋𝜀(𝑥) ∶= (𝑋𝜀

𝑡 (𝑥))𝑡≥0 of the SDE
{

d𝑋𝜀
𝑡 = −𝑉 ′(𝑋𝜀

𝑡 )d𝑡 +
√

𝜀d𝐵𝑡 for 𝑡 ≥ 0,
𝑋𝜀

0 = 𝑥.
(2.11)

Since 𝑉 is a convex function, Theorem 3.5 in [37, p. 58] yields that the SDE (2.11) has a unique strong solution. Furthermore,
Lemma 2.1 implies that (2.11) possesses a unique invariant probability measure 𝜇𝜀. Recall that 𝜇𝜀 is the unique invariant probability
measure for (1.1) and for any 𝑡 ≥ 0 let

𝑑𝜀𝑡 (𝑥) ∶= dTV
(

𝑋𝜀
𝑡 (𝑥), 𝜇𝜀

)

and 𝑑𝜀𝑡 (𝑥) ∶= dTV(𝑋𝜀
𝑡 (𝑥), ̃𝜇𝜀). (2.12)

The next lemma yields that 𝑑𝜀𝑎𝜀𝑡(𝑥) and 𝑑𝜀𝑎𝜀𝑡(𝑥) are asymptotically equivalent in the following precise sense.

Lemma 2.3 (Localization and Replacement of Potentials). For all 𝑥 ∈ R and 𝑡 ≥ 0 it follows that

lim
𝜀→0

|𝑑𝜀𝑎𝜀𝑡(𝑥) − 𝑑
𝜀
𝑎𝜀𝑡

(𝑥)| = 0,
where (𝑎𝜀, 𝜀 ∈ [0, 1)) is defined in (1.4).
7 
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The proof of Lemma 2.3 is given in Section 3.2. By Lemma 2.3 it is enough to show Theorem 1.7 under Hypotheses 1.1, 1.2 and
2.2.

2.5. Bound via limit replacements

From this point onwards, we assume that 𝑉 satisfies Hypotheses 1.1, 1.2 and 2.2.
Due to the scale invariance of the total variation distance (dTV(𝑐 𝑋 , 𝑐 𝑌 ) = dTV(𝑋 , 𝑌 ) for any 𝑐 ≠ 0 and any pair of random

variables 𝑋 and 𝑌 , see for instance Lemma A.1 in [70]) the distance 𝑑𝜀𝑎𝜀𝑡(𝑥) in (2.12) can be expressed in terms of 𝑌 𝜀𝑡 and 𝜈𝜀, a
‘scalar multiple’’ of 𝜇𝜀. For convenience, we denote by 𝑋𝜀

∞ a random variable with the law 𝜇𝜀 and by 𝑌∞ a random variable with
aw 𝜈 which is the unique invariant probability measure for (1.6). With this notation, we have that 𝜈𝜀 is the law of 𝑌 𝜀∞ ∶= 𝑏−1𝜀 𝑋𝜀

∞
and therefore

𝑑𝜀𝑎𝜀𝑡(𝑥) = dTV(𝑋𝜀
𝑎𝜀𝑡

(𝑥), 𝑋𝜀
∞) = dTV

(

𝑏−1𝜀 𝑋𝜀
𝑎𝜀𝑡

(𝑥), 𝑏−1𝜀 𝑋𝜀
∞

)

= dTV
(

𝜀,𝑥
𝑡 , 𝑌 𝜀∞

)

, (2.13)

where 𝜀,𝑥
𝑡 is given in (2.5). Now, by the triangle inequality we have

𝑑𝜀𝑎𝜀𝑡(𝑥) ≤ dTV
(

𝜀,𝑥
𝑡 , 𝑌𝑡(sgn(𝑥)∞)

)

+ dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝑌∞
)

+ dTV
(

𝑌∞, 𝑌 𝜀∞
)

. (2.14)

We stress that 𝑌𝑡(sgn(𝑥)∞) is well-defined as we show in Proposition 2.5 below. Informally, the idea is that the drift dominates the
noise and is strong enough to ensure that the process comes down from infinity. The triangle inequality also implies that

dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝑌∞
)

≤ dTV
(

𝑌𝑡(sgn(𝑥)∞),𝜀,𝑥
𝑡

)

+ 𝑑𝜀𝑎𝜀𝑡(𝑥) + dTV
(

𝑌 𝜀∞, 𝑌∞
)

. (2.15)

Combining (2.14) and (2.15) we obtain the following key estimate that we state as a lemma.

Lemma 2.4 (Decoupling Inequality). Assume Hypotheses 1.1, 1.2 and 2.2 hold true. Then for any 𝑥 ∈ R, 𝜀 > 0 and 𝑡 ≥ 0 it follows that

|𝑑𝜀𝑎𝜀𝑡(𝑥) − dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝑌∞
)

| ≤ dTV
(

𝜀,𝑥
𝑡 , 𝑌𝑡(sgn(𝑥)∞)

)

+ dTV
(

𝑌 𝜀∞, 𝑌∞
)

. (2.16)

The following proposition states that the right-hand side of (2.16) tends to zero as 𝜀 → 0.

Proposition 2.5. Assume Hypotheses 1.1, 1.2 and 2.2 hold true. Then the following holds true:

(1) Continuous Markovian extension: The real valued process defined by (2.2) admits a continuous Markovian extension to R ∶= R∪ {±∞}.
(2) Convergence for fixed marginal: For all 𝑥 ∈ R and 𝑡 > 0 it follows that

lim
𝜀→0

dTV
(

𝑌𝑡(sgn(𝑥)∞),𝜀,𝑥
𝑡

)

= 0, (2.17)

where (𝜀,𝑥
𝑡 , 𝑡 ≥ 0) is defined in (2.5).

(3) Convergence of invariant measures: Let 𝑌∞ and 𝑌 𝜀∞ denote random variables distributed according to the unique invariant distributions
of the dynamics given by (2.2) and (2.6), respectively. The following limit holds true

lim
𝜀→0

dTV
(

𝑌∞, 𝑌 𝜀∞
)

= 0. (2.18)

The proof of Proposition 2.5 is given in Section 3.3. To complete the proof of (1.5) we rely on the following proposition.

Proposition 2.6. For all 𝑡 > 0 and 𝑥 ∈ R

0 < dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝑌∞
)

< 1. (2.19)

The proof of Proposition 2.6 is given in Section 3.4.
Now, we are ready to prove Theorem 1.7, which is a consequence of what we have already stated up to here.

Proof of Theorem 1.7. Inequality (2.16) with the help of (2.17), (2.18) implies that

lim
𝜀→0

𝑑𝜀𝑎𝜀𝑡(𝑥) = dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝑌∞
)

.

In addition, (2.19) implies (1.5). The proof of (1.7) is given in Lemma D.4 in Appendix D. □

3. Proofs: details

In this section, we give the proof of Proposition 1.9 and complete the proofs of the statements in Section 2. To be more precise,
in Section 3.1 we prove Proposition 1.9, the proof of Lemma 2.3 is given in Section 3.2, the proof of Proposition 2.5 is given in
Section 3.3 and the proof of Proposition 2.6 is given in Section 3.4.
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3.1. Proof of Proposition 1.9

To prove that there is no cut-off phenomenon, by Definition 1.8, we need to show that for any scale (𝑡𝜀, 𝜀 ∈ [0, 1]) with
lim𝜀→0 𝑡𝜀 = ∞ the condition (1.9) does not hold. Let (𝑡𝜀, 𝜀 ∈ (0, 1]) be such that lim𝜀→0 𝑡𝜀 = ∞. First, we assume that

lim sup
𝜀→0

𝑡𝜀
𝑎𝜀

<∞, (3.1)

that is, there are constants 𝐶1 > 0 and 𝜀0 ∈ (0, 1] such that 𝑡𝜀 ≤ 𝐶1𝑎𝜀 for any 𝜀 ∈ (0, 𝜀0]. By (1.10), for any 𝛿 > 0 and 𝜀 ∈ (0, 𝜀0] we
ave 𝑑𝜀𝛿 𝐶1𝑎𝜀 (𝑥) ≤ 𝑑𝜀𝛿 𝑡𝜀 (𝑥). Therefore, by (1.11), for 𝛿 > 1 we have

0 < lim inf
𝜀→0

𝑑𝜀𝛿 𝐶1𝑎𝜀 (𝑥) ≤ lim inf
𝜀→0

𝑑𝜀𝛿 𝑡𝜀 (𝑥).

Hence, condition (1.9) fails at the scale (𝑡𝜀, 𝜀 ∈ (0, 1]) for the family (𝑋𝜀(𝑥), 𝜀 ∈ (0, 1]).
If (3.1) fails, then there exists a sequence (𝜀𝑘, 𝑘 ∈ N) such that 𝜀𝑘 → 0 as 𝑘 → ∞ and

lim sup
𝑘→∞

𝑡𝜀𝑘
𝑎𝜀𝑘

= ∞.

In particular, there exists 𝑘0 ∈ N such that 𝑎𝜀𝑘 ≤ 𝑡𝜀𝑘 for all 𝑘 ≥ 𝑘0. By (1.10) and (1.11), for 0 < 𝛿 < 1 we have

lim sup
𝑘→∞

𝑑𝜀𝑘𝛿 𝑡𝜀𝑘 (𝑥) ≤ lim sup
𝑘→∞

𝑑𝜀𝑘𝛿 𝑎𝜀𝑘 (𝑥) ≤ lim sup
𝜀→0

𝑑𝜀𝛿 𝑎𝜀 (𝑥) < 1.

Hence, by Definition 1.8 there is no cut-off at the scale (𝑡𝜀, 𝜀 ∈ (0, 1]) for the family (𝑋𝜀(𝑥), 𝜀 ∈ (0, 1]). Since (𝑡𝜀, 𝜀 ∈ (0, 1]) is any
function with lim𝜀→0 𝑡𝜀 = ∞, it follows that there is no cut-off phenomenon for the family (𝑋𝜀(𝑥), 𝜀 ∈ (0, 1]).

We now prove (1.13). By assumption (1.12) for any 𝑡 > 0 we have

lim
𝜀→0

𝑑𝜀𝑎𝜀𝑡(𝑥) = 𝐺𝑥(𝑡) ∈ (0, 1). (3.2)

Moreover, the map 𝑡↦ 𝐺𝑥(𝑡) is continuous and strictly decreasing. Now, for each 𝜂 ∈ (0, 1) we define 𝐻𝑥(𝜂) ∶= inf {𝑡 ≥ 0 ∶ 𝐺𝑥(𝑡) ≤ 𝜂}.
To prove (1.13) we show that

lim sup
𝜀→0

𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂)
𝑎𝜀

≤ 𝐻𝑥(𝜂) and (3.3)

lim inf
𝜀→0

𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂)
𝑎𝜀

≥ 𝐻𝑥(𝜂). (3.4)

To prove (3.3), let 𝛾∗ ∈ (0, 𝜂) be fixed and let 𝑡∗ ∶= 𝑡∗(𝜂 − 𝛾∗, 𝑥) > 0 be such that 𝐺𝑥(𝑡∗) = 𝜂 − 𝛾∗, and 𝐺𝑥(𝑡) > 𝜂 − 𝛾∗ for all 𝑡 < 𝑡∗.
By (3.2) there is 𝜀∗ ∶= 𝜀∗(𝜂 , 𝛾∗, 𝑥) > 0 such that

− 𝛾∗ < dTV

(

𝑋𝜀
𝑡∗ 𝑎𝜀

(𝑥), 𝜇𝜀
)

− 𝐺𝑥(𝑡∗) < 𝛾∗ for all 𝜀 ∈ (0, 𝜀∗),

which implies that dTV

(

𝑋𝜀
𝑡∗ 𝑎𝜀

(𝑥), 𝜇𝜀
)

< 𝜂 for all 𝜀 ∈ (0, 𝜀∗). Therefore, 𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂) ≤ 𝑡∗ 𝑎𝜀 for all 𝜀 ∈ (0, 𝜀∗), which yields

lim sup
𝜀→0

𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂)
𝑎𝜀

≤ 𝑡∗ = 𝑡∗(𝜂 − 𝛾∗, 𝑥).

Since 𝛾∗ ∈ (0, 𝜂) is arbitrary and 𝑡↦ 𝐺𝑥(𝑡) is continuous and strictly decreasing we obtain that

lim sup
𝜀→0

𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂)
𝑎𝜀

≤ lim
𝛾∗→0

𝑡∗(𝜂 − 𝛾∗, 𝑥) = 𝐻𝑥(𝜂).

To prove (3.4), let 𝛾∗ ∈ (0, 1 − 𝜂) be fixed and let 𝑡∗ = 𝑡∗(𝜂+ 𝛾∗, 𝑥) > 0 be such that 𝐺𝑥(𝑡∗) = 𝜂+ 𝛾∗ and 𝐺𝑥(𝑡∗) > 𝜂+ 𝛾∗ for all 𝑡 < 𝑡∗.
By (3.2) there is 𝜀∗ ∶= 𝜀∗(𝜂 , 𝛾∗, 𝑥) > 0 such that

dTV

(

𝑋𝜀
𝑡∗ 𝑎𝜀

(𝑥), 𝜇𝜀
)

> 𝜂 for all 𝜀 ∈ (0, 𝜀∗).

Therefore, 𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂) ≥ 𝑡∗ 𝑎𝜀 for all 𝜀 ∈ (0, 𝜀∗), which implies

lim inf
𝜀→0

𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂)
𝑎𝜀

≥ 𝑡∗ = 𝑡∗(𝜂 + 𝛾∗, 𝑥).

Therefore

lim inf
𝜀→0

𝜏𝜀,𝑥
𝗆𝗂𝗑

(𝜂)
𝑎𝜀

≥ lim
𝛾∗→0

𝑡∗(𝜂 + 𝛾∗, 𝑥) = 𝐻𝑥(𝜂).

This completes the proof of (1.13). □

3.2. Proof of Lemma 2.3

By the triangle inequality for the total variation distance we have that

𝑑𝜀𝑎𝜀𝑡(𝑥) ≤ dTV(𝑋𝜀
𝑎𝜀𝑡

(𝑥), 𝑋𝜀
𝑎𝜀𝑡

(𝑥)) + 𝑑𝜀𝑎𝜀𝑡(𝑥) + dTV(𝜇𝜀, 𝜇𝜀). (3.5)
9 
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Similarly,

𝑑𝜀𝑎𝜀𝑡(𝑥) ≤ dTV(𝑋𝜀
𝑎𝜀𝑡

(𝑥), 𝑋𝜀
𝑎𝜀𝑡

(𝑥)) + 𝑑𝜀𝑎𝜀𝑡(𝑥) + dTV(𝜇𝜀, ̃𝜇𝜀). (3.6)

By (3.5) and (3.6) we obtain
|

|

|

𝑑𝜀𝑎𝜀𝑡(𝑥) − 𝑑
𝜀
𝑎𝜀𝑡

(𝑥)||
|

≤ dTV(𝑋𝜀
𝑎𝜀𝑡

(𝑥), 𝑋𝜀
𝑎𝜀𝑡

(𝑥)) + dTV(𝜇𝜀, ̃𝜇𝜀) for all 𝑡 ≥ 0. (3.7)

By Lemma 3.1 below and Eq. (C.2) from Lemma C.1 in Appendix C, we deduce that the right-hand side of (3.7) tends to zero as
𝜀→ 0 and thereby conclude the proof of Lemma 2.3. □

Lemma 3.1 (Convergence of the Drift-Modified Process Close to the Origin). For any 𝑥 ∈ R and 𝑡 ≥ 0 the following limit holds

lim
𝜀→0

dTV(𝑋𝜀
𝑎𝜀𝑡

(𝑥), 𝑋𝜀
𝑎𝜀𝑡

(𝑥)) = 0,

where (𝑎𝜀, 𝜀 ∈ [0, 1)) is defined in (1.4).

Proof. The proof follows the steps given in the proof of Proposition 4.1, item (ii), of [31]. Recall the definition of 𝑉 given in (2.10).
In particular, note that 𝐿 = 𝐿𝑥 is chosen such that 𝐿2 ≥ |𝑥|2 + 1. Let 𝜀 ∈ (0, 1] be fixed. The variational formulation of the total
variation distance yields dTV(𝑋𝜀

𝑎𝜀𝑡
(𝑥), 𝑋𝜀

𝑎𝜀𝑡
(𝑥)) ≤ Q(𝑋𝜀

𝑎𝜀𝑡
(𝑥) ≠ 𝑋𝜀

𝑎𝜀𝑡
(𝑥)) for any coupling Q of the random variables 𝑋𝜀

𝑎𝜀𝑡
(𝑥) and 𝑋𝜀

𝑎𝜀𝑡
(𝑥).

oreover, as |𝑥| < 𝐿 for the synchronous coupling P (where processes are driven by the same noise), we have 𝑋𝜀
𝑠 (𝑥) = 𝑋𝜀

𝑠 (𝑥) for
≤ 𝑠 < ̃𝜏𝜀(𝑥), where 𝜏𝜀(𝑥) ∶= inf {𝑠 ≥ 0 ∶ |𝑋𝜀

𝑠 (𝑥)| > 𝐿}. Therefore,

dTV(𝑋𝜀
𝑎𝜀𝑡

(𝑥), 𝑋𝜀
𝑎𝜀𝑡

(𝑥)) ≤ P(𝜏𝜀(𝑥) ≤ 𝑎𝜀𝑡) for any 𝑡 ≥ 0. (3.8)

Note that

P
(

𝜏𝜀(𝑥) ≥ 𝑎𝜀𝑡
)

= P

(

sup
0≤𝑠≤𝑎𝜀𝑡

|𝑋𝜀
𝑠 (𝑥)| ≤ 𝐿

)

. (3.9)

Since 𝑉 is a smooth, convex, and even function, Itô’s formula yields P-almost surely that

|𝑋𝜀
𝑡 (𝑥)|

2
= |𝑥|2 − 2∫

𝑡

0
𝑋𝜀
𝑠 (𝑥)𝑉

′(𝑋𝜀
𝑠 (𝑥))d𝑠 + 𝜀𝑡 +𝑀

𝜀
𝑡 (𝑥)

≤ |𝑥|2 + 𝜀𝑡 +𝑀𝜀
𝑡 (𝑥) for all 𝑡 ≥ 0,

(3.10)

where 𝑀𝜀
𝑡 (𝑥) ∶= 2√𝜀 ∫ 𝑡0 𝑋𝜀

𝑠 (𝑥)d𝐵𝑠, 𝑡 ≥ 0. By a localization procedure, it follows that

E[|𝑋𝜀
𝑡 (𝑥)|

2
] ≤ |𝑥|2 + 𝜀𝑡 for all 𝑡 ≥ 0 (3.11)

and hence (𝑀𝜀
𝑡 (𝑥), 𝑡 ≥ 0) is a true martingale. By (2.9) we have 𝜀𝑎𝜀 = 𝜀

2
2+𝛼 , which tends to zero as 𝜀 → 0. Then for any 𝑡 > 0 fixed

there exists 𝜀0 = 𝜀0(𝑡, 𝛼) > 0 such that 1 − 𝜀𝑎𝜀𝑡 > 1∕2 for all 𝜀 ∈ (0, 𝜀0). By (3.10) for any 𝜀 ∈ (0, 𝜀0) we have

P

(

sup
0≤𝑠≤𝑎𝜀𝑡

|𝑋𝜀
𝑠 (𝑥)| ≥ 𝐿

)

= P

(

sup
0≤𝑠≤𝑎𝜀𝑡

|𝑋𝜀
𝑠 (𝑥)|

2
≥ 𝐿2

)

≤ P

(

sup
0≤𝑠≤𝑎𝜀𝑡

|𝑀𝜀
𝑠 (𝑥)| ≥ 𝐿2 − |𝑥|2 − 𝜀𝑎𝜀𝑡

)

≤ P

(

sup
0≤𝑠≤𝑎𝜀𝑡

|𝑀𝜀
𝑠 (𝑥)| ≥ 1∕2

)

= P

(

sup
0≤𝑠≤𝑎𝜀𝑡

|𝑀𝜀
𝑠 (𝑥)|

2
≥ 1∕4

)

,

where for the last inequality we used that |𝑥|2 + 1 < 𝐿2 and 1 − 𝜀𝑎𝜀𝑡 > 1∕2. Now, by Doob’s submartingale inequality, Itô’s isometry
and (3.11) we have for all 𝜀 ∈ (0, 𝜀0)

P

(

sup
0≤𝑠≤𝑎𝜀𝑡

|𝑋𝜀
𝑠 (𝑥)| ≥ 𝐿

)

≤ P

(

sup
0≤𝑠≤𝑎𝜀𝑡

|𝑀𝜀
𝑠 (𝑥)|

2
≥ 1∕4

)

≤ 4E[|𝑀𝜀
𝑎𝜀𝑡

(𝑥)|
2
]

= 16𝜀∫
𝑎𝜀𝑡

0
E[|𝑋𝜀

𝑠 (𝑥)|
2
]d𝑠 ≤ 16|𝑥|2𝜀𝑎𝜀𝑡 + 8𝜀2𝑎2𝜀𝑡2.

(3.12)

By (3.8), (3.9) and (3.12) we deduce

dTV(𝑋𝜀
𝑎𝜀𝑡

(𝑥), 𝑋𝜀
𝑎𝜀𝑡

(𝑥)) ≤ 16|𝑥|2𝜀𝑎𝜀𝑡 + 8𝜀2𝑎2𝜀𝑡2 for any 𝑡 ≥ 0,

which implies the statement as 𝜀 → 0. □

3.3. Proof of Proposition 2.5

The proof of Proposition 2.5 is divided in three parts, one for each claim of the proposition. To ease the exposition, we only give
here the main steps of the proofs and postpone the technical details to Appendix.
10 



G. Barrera et al.

h

t
c

s

𝑌

Stochastic Processes and their Applications 184 (2025) 104601 
3.3.1. Continuous Markovian extension
The continuous Markovian extension of the SDE (2.2) is done in three steps. Their proofs are given in detail in Appendix A and

ere we only outline the main steps. First, based on a monotonic coupling and uniform moment bounds for 𝑥 ∈ R, SDE (2.2) can be
extended to R, see Appendix A.1. Second, because ±∞ are exit boundaries for the dynamics in R, the extended family (𝑌 (𝑥), 𝑥 ∈ R)
is Markovian, see Appendix A.2. Finally, in Appendix A.3 we show that the extension is continuous in the sense that

lim
𝑥→±∞

dTV
(

𝑌𝑡(𝑥), 𝑌𝑡(±∞)
)

= 0. (3.13)

3.3.2. Convergence for fixed marginal
In this section we show the limit (2.17). For simplicity, we consider only the case when the initial condition 𝑥 in (1.1) is positive,

he case when 𝑥 is negative can be treated by an analogous argument, while the case 𝑥 = 0 is easier as no scaling of the initial
ondition is required and (2.17) follows from the uniform convergence of the velocity fields, see (3.16) below. To ease notation and

clarify the limit procedures, we denote by 𝐹0, 𝐹𝜀 the velocity fields of (2.2) and (2.6), respectively. That is, for any 𝜀 ∈ [0, 1] and
𝑧 ∈ R we define

𝐹0(𝑧) ∶= −𝐶0 |𝑧|
1+𝛼 sgn(𝑧) and 𝐹𝜀(𝑧) ∶= −𝑎𝜀

𝑏𝜀
𝑉 ′(𝑏𝜀𝑧) = −𝑉

′(𝑏𝜀𝑧)
𝑏1+𝛼𝜀

. (3.14)

To ease notation, denote by 𝑌 0(𝑥) the solution of (2.2). With this, (𝑌 𝜀(𝑥), 𝜀 ∈ [0, 1]) solves
{

d𝑌𝑡 = 𝐹𝜀(𝑌𝑡)d𝑡 + d𝐵𝑡 for 𝑡 ≥ 0,
𝑌0 = 𝑥.

(3.15)

In what follows, we consider uniform bounds for 𝑌 𝜀(𝑥) with 𝜀 ∈ [0, 1] and we will take the limit of such processes as 𝜀 → 0. First,
since 𝑏𝜀 → 0 as 𝜀 → 0, Hypothesis 1.2 yields for all 𝐾 > 0

lim
𝜀→0

sup
|𝑧|≤𝐾

|

|

𝐹𝜀(𝑧) − 𝐹0(𝑧)|| = 0. (3.16)

Also, by Proposition A.3 it follows that, almost surely, for any 𝜀 ∈ [0, 1], the limit

𝑌 𝜀𝑡 (∞) ∶= lim
𝑥→∞

𝑌 𝜀𝑡 (𝑥)

exists and is finite for 𝑡 > 0. Next, by Lemma A.5 for all 𝑡 > 0 and 𝜀 ∈ [0, 1],
lim
𝑥→∞

dTV
(

𝑌 𝜀𝑡 (𝑥), 𝑌 𝜀𝑡 (∞)
)

= 0. (3.17)

Now, we fix 𝜂 > 0. By the uniform behavior at infinity, see Proposition B.1, it follows that for any 𝑎 > 0, there are 𝑏 > 0 and 𝛿 ∈ (0, 𝑡)
uch that

sup
𝜀∈[0,1]

P
(

𝑌 𝜀𝛿 (∞) ∉ [𝑎, 𝑏]) ≤ 𝜂∕8. (3.18)

By (3.17), we may choose 𝑎 > 0 large enough so that

sup
𝑥≥𝑎

dTV
(

𝑌 0
𝑡 (𝑥), 𝑌 0

𝑡 (∞)
)

≤ 𝜂∕4. (3.19)

Now, given 𝑎, 𝑏 and 𝛿 ∈ (0, 𝑡) we claim that there is 𝜀0 = 𝜀(𝜂) > 0 for which

sup
0≤𝜀≤𝜀0

sup
𝑥∈[𝑎,𝑏]

dTV
(

𝑌 0
𝑡−𝛿(𝑥), 𝑌 𝜀𝑡−𝛿(𝑥)

)

≤ 𝜂∕4. (3.20)

The proof of (3.20) is given in Appendix B.2.
Now, let 𝑥𝜀 ∶= 𝑥𝑏−1𝜀 and define 𝜇𝜀𝛿 to be the synchronous coupling (both SDEs are driven with the same noise) of 𝑌 0

𝛿 (∞) and
𝜀
𝛿 (𝑥𝜀). We write 𝜇𝜀𝛿 (𝐴, 𝐵) ∶= P(𝑌 0

𝛿 (∞) ∈ 𝐴, 𝑌 𝜀𝛿 (𝑥𝜀) ∈ 𝐵) for any 𝐴, 𝐵 Borelian subsets of R. We may choose 𝑎 > 0 for which (3.19)
holds, then we choose 𝑏 > 𝑎 and 𝛿 ∈ (0, 𝑡) such that (3.18) and (3.20) also hold true. With these choices, it follows that for any
𝜀 ∈ [0, 1]

𝜇𝜀𝛿 (R
2 ⧵ [𝑎, 𝑏]2) ≤ P

(

𝑌 0
𝛿 (∞) ∉ [𝑎, 𝑏]) + P

(

𝑌 𝜀𝛿 (∞) ∉ [𝑎, 𝑏]) ≤ 𝜂∕4.

The disintegration inequality, see Proposition D.2, and the triangle inequality for the total variation distance imply that for each
𝑥 > 0 and 𝑡 > 0 there is 𝜀0 > 0 such that for 𝜀 ∈ [0, 𝜀0] we choose 𝑎 > 0, 𝑏 > 𝑎 and 𝛿 ∈ (0, 𝑡) for which (3.18), (3.19), and (3.20) hold
true and therefore

dTV
(

𝑌 0
𝑡 (∞), 𝑌 𝜀𝑡 (𝑥𝜀)

)

≤ ∫R2
dTV

(

𝑌 0
𝑡−𝛿(𝑥), 𝑌 𝜀𝑡−𝛿(𝑦)

)

𝜇𝜀𝛿 (d𝑥, d𝑦)

≤ 𝜇𝜀𝛿 (R
2 ⧵ [𝑎, 𝑏]2) + ∫[𝑎,𝑏]2

dTV
(

𝑌 0
𝑡−𝛿(𝑥), 𝑌 𝜀𝑡−𝛿(𝑦)

)

𝜇𝜀𝛿 (d𝑥, d𝑦)

≤ 𝜂∕4 + ∫[𝑎,𝑏]2
dTV

(

𝑌 0
𝑡−𝛿(𝑥), 𝑌 0

𝑡−𝛿(∞)
)

𝜇𝜀𝛿 (d𝑥, d𝑦)

+ ∫[𝑎,𝑏]2
dTV

(

𝑌 0
𝑡−𝛿(∞), 𝑌 0

𝑡−𝛿(𝑦)
)

𝜇𝜀𝛿 (d𝑥, d𝑦) + ∫[𝑎,𝑏]2
dTV

(

𝑌 0
𝑡−𝛿(𝑦), 𝑌 𝜀𝑡−𝛿(𝑦)

)

𝜇𝜀𝛿 (d𝑥, d𝑦)

≤ 𝜂∕4 + 𝜂∕4 + 𝜂∕4 + 𝜂∕4 = 𝜂 .
11 
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Recall (2.5) and observe that dTV
(

𝑌𝑡(sgn(𝑥)∞),𝜀,𝑥
𝑡

)

= dTV
(

𝑌 0
𝑡 (∞), 𝑌 𝜀𝑡 (𝑥𝜀)

)

. Since 𝜂 > 0 is arbitrary, the proof of (2.17) is
omplete. □

3.3.3. Convergence of invariant measures
Recall the notation introduced above (2.13), that is, 𝑌∞

𝑑
= 𝜈 and 𝑋𝜀

∞
𝑑
= 𝜇𝜀, where 𝑑

= denotes equality in the distribution sense.
By Lemma 2.1 it follows that

𝜈(d𝑧) = 𝐶−1 exp
(

−2𝑉0(𝑧)
)

d𝑧, (3.21)

where 𝐶 is a normalization constant, 𝑉0(𝑧) ∶= (2 +𝛼)−1𝐶0|𝑧|
2+𝛼 with 𝛼 and 𝐶0 defined in Hypothesis 1.2. Similarly, 𝜇𝜀 is the density

of 𝑋𝜀
∞ and it is given by

𝜇𝜀(d𝑧) = 𝐶−1
𝜀 exp

(

−2
𝑉 (𝑧)
𝜀

)

d𝑧.

By the change of variable theorem, with (𝑏𝜀, 𝜀 ∈ [0, 1)) as defined in (2.9), the density of 𝑌 𝜀∞ = 𝑋𝜀∞
𝑏𝜀

is given by

𝑏𝜀𝐶
−1
𝜀 exp

(

−2
𝑉 (𝑏𝜀𝑧)
𝜀

)

d𝑧. (3.22)

By (3.21), (3.22), and Scheffé’s lemma ([39, Lemma 3.3.2, p.95]), to conclude the proof of (2.18), it suffices to show

lim
𝜀→0

𝑏𝜀
𝐶𝜀
𝑒−2

𝑉 (𝑏𝜀𝑧)
𝜀 = 1

𝐶
𝑒−2𝑉0(𝑧) for any 𝑧 ∈ R. (3.23)

The proof of (3.23) is given in Lemmas C.2 and C.3 in Appendix C.

3.4. Strict inequalities for the rescaled process

In this section we show

0 < dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝑌∞
)

< 1 for any 𝑡 > 0.

First, we prove the upper bound and then we show the lower bound.
The upper bound. We first note that for any 𝑡 > 0, 𝑥 ∈ R, the marginal 𝑌𝑡(𝑥) has full support in R, see Proposition D.3 in Appendix D
for a proof. By Proposition 2.5 the family (𝑌 (𝑥), 𝑥 ∈ R) is Markovian, and hence, by semigroup property, 𝑌𝑡(∞) is equal in law to
𝑌𝑡∕2(𝑌𝑡∕2(∞)) for any 𝑡 > 0. Since P(𝑌𝑡∕2(∞) ∈ R) = 1 it follows by our previous discussion that 𝑌𝑡(∞) with law 𝜈𝑡 possesses a
continuous density 𝜌𝑡 ∶ R → (0,∞), that is 𝜈𝑡(d𝑥) = 𝜌𝑡(𝑥)d𝑥. Furthermore, the invariant distribution of 𝑌 corresponding to the
random variable 𝑌∞ has explicit density function 𝜌 ∶ R → (0,∞), which is given in (3.21). To conclude that dTV(𝑌𝑡(∞), 𝑌∞) < 1 we
ote that

dTV(𝑌𝑡(∞), 𝑌∞) = 1 − ∫R
min{𝜌𝑡(𝑧), 𝜌(𝑧)} d𝑧 < 1. (3.24)

The lower bound: injective evolution map. To prove the lower bound, we first define the evolution map on the space of measures.
Let  be the space of probability measures on R that are absolutely continuous with respect to the Lebesgue measure on R and let
𝐶𝑏(R) be the set of bounded continuous functions on R. For each 𝜇 ∈  and 𝑡 ≥ 0 let 𝜑 = 𝜑(𝜇 , 𝑡) be the measure such that for every
𝑓 ∈ 𝐶𝑏(R)

∫ 𝑓 (𝑥)d𝜑(𝑥) ∶= ∫ E[𝑓 (𝑌𝑡(𝑥))]d𝜇(𝑥).

By Proposition D.3 we have that 𝜑(𝜇 , 𝑡) ∈  for all 𝜇 ∈  and 𝑡 > 0. For fixed time 𝑡 > 0, the evolution map is injective in the sense
that

if 𝜇 , 𝜇′ ∈  and 𝜇 ≠ 𝜇′ then for all 𝑡 ≥ 0 𝜑(𝜇 , 𝑡) ≠ 𝜑(𝜇′, 𝑡). (3.25)

Moreover, since the dynamics is uniquely ergodic, see Lemma 2.1, for all 𝑡 > 0 the map 𝜇 ↦ 𝜑(𝜇 , 𝑡) admits a unique fixed point,
that is, there is a unique 𝜈 ∈  such that

𝜑(𝜈 , 𝑡) = 𝜈 for any 𝑡 ≥ 0. (3.26)

Recall that we denote the law of 𝑌∞ by 𝜈. By Propositions 2.5 and D.3 it follows that for all 𝛿 > 0 the law of 𝑌𝛿(sgn(𝑥)∞) denoted
by 𝜇∞𝛿 belongs to  . By the Markov property of the extended process, see Proposition 2.5, we have for any 𝛿 ∈ (0, 𝑡)

𝜇∞𝑡 = 𝜑(𝜇∞𝛿 , 𝑡 − 𝛿). (3.27)

Let 𝑡 > 0 be fixed. We observe that there exists 𝛿 ∈ (0, 𝑡) such that 𝜇∞𝛿 ≠ 𝜈. By (3.25), (3.26) and (3.27) it follows that
𝜇∞𝑡 = 𝜑(𝜇∞𝛿 , 𝑡 − 𝛿) ≠ 𝜑(𝜈 , 𝑡 − 𝛿) = 𝜈 and hence

0 < dTV
(

𝜇∞𝑡 , 𝜈
)

= dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝑌∞
)

.
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Appendix A. The continuous Markovian extension: details

In this section we prove that the SDEs defined in (2.2) and (2.6), or equivalently in (3.15), with state space
R may be extended to R ∶= R ∪ {±∞}. Furthermore, we show that this extension is Markovian and that the family of transition

kernels associated to it is continuous with respect to the initial condition, in the sense of (3.13).
The main reason for this appendix is to provide a full proof of the continuous Markovian extension of SDE (3.15). The methods

we employ here are of a probabilistic and path-wise nature offering an alternative to the classical analytical techniques of generators
and resolvents presented in [89, p.366 ff], [90],[91, Chap. 17], [92]. More specifically, we apply martingale convergence methods
and 𝐿2-bounds, which can be found in [93, Chap. 5] together with standard methods for ODEs and SDEs which can be found in [94,
Thm. 1] and [95, Thm. 1.1].

For the extension, we consider R endowed with the Borel 𝜎-algebra associated to the metric 𝑑∞ ∶ R × R → R+ defined by

𝑑∞(𝑥1, 𝑥2) ∶= |

|

ar ct an(𝑥1) − ar ct an(𝑥2)|| ,
where ar ct an ∶ R → R is the continuous function defined by

ar ct an(𝑣) ∶=
⎧

⎪

⎨

⎪

⎩

−𝜋∕2 for 𝑣 = −∞,
∫ 𝑣0

1
1+𝑢2 d𝑢 for 𝑣 ∈ R,

𝜋∕2 for 𝑣 = ∞.
Let 𝑌 𝜀(𝑥) = (𝑌 𝜀𝑡 (𝑥), 𝑡 ≥ 0) be the unique strong solution of (3.15). For 𝑥 ∈ R let 𝑃 𝜀𝑥 be the law induced by 𝑌 𝜀(𝑥) on the space of
eal valued continuous functions (𝐶 ,) and let 𝑃

𝜀
𝑥 be its law on the space of R-valued continuous functions (𝐶 ,). To complete the

xtension we define 𝑃
𝜀
𝑥 for 𝑥 ∈ {−∞,∞} as the law on (𝐶 ,) induced by 𝑌 𝜀(∞) and 𝑌 𝜀(−∞) where for all 𝑡 ≥ 0

𝑌 𝜀𝑡 (∞) ∶= lim
𝑥→∞

𝑌 𝜀𝑡 (𝑥) and 𝑌 𝜀𝑡 (−∞) ∶= lim
𝑥→−∞

𝑌 𝜀𝑡 (𝑥). (A.1)

The above extension is well-defined since, by the comparison lemma for SDEs, see [95, Thm. 1.1],

𝑥 ≤ 𝑥′ ⇒ P(𝑌 𝜀𝑡 (𝑥) ≤ 𝑌 𝜀𝑡 (𝑥
′) ∀𝑡 ≥ 0) = 1. (A.2)

This section is divided into three subsections. In Appendix A.1 we prove trajectory properties of the above extension. In Appendix A.2
we prove that the extension is Markovian. Finally, in Appendix A.3 we prove that the extension is continuous with respect to the
initial condition.
13 
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A.1. Coming down from infinity

We next explain when a solution to an SDE comes down from infinity. This is based on entrance conditions at the boundary for
ODEs. In fact, as we shall see in Lemma A.2, for all 𝑡 > 0, 𝜀 ∈ [0, 1], the family (𝑌 𝜀𝑡 (𝑥), 𝑥 ∈ R) satisfies a uniform 𝐿2 bound and so
are a.s. finite for all positive times. This section is organized as follows: First, we prove an entrance condition for ODEs. Then we
show the uniform bounds in 𝐿2. Finally, we define what is meant by the integral form of the solution when the initial condition is
±∞. We include an explanation of these standard techniques for completeness and to prepare for specific results we will need.

A.1.1. Entrance condition for ODEs
Let

L ∶=
{

𝐺 ∶ R → R| 𝐺 is locally Lipschitz and − ∞ < ∫

∞

𝑅

1
𝐺(𝑢)

d𝑢 < 0 for some 𝑅 > 0
}

(A.3)

be the space of velocity fields in which we are interested in.

Lemma A.1 (Descent from Infinity). Given any fixed 𝐺 ∈ L and any 𝑥 ∈ R, let 𝜓(𝑥) ∶= (𝜓𝑡(𝑥), 𝑡 ≥ 0) be the unique solution of the
ifferential equation

{

d
d𝑡𝜓𝑡 = 𝐺(𝜓𝑡) for 𝑡 ≥ 0,
𝜓0 = 𝑥.

Then for all 𝑡 > 0, the limit 𝜓𝑡(∞) ∶= lim𝑥→∞ 𝜓𝑡(𝑥) is well-defined and finite.

Proof. By the comparison lemma for ODEs we have

∀ 𝑡 ≥ 0, 𝑥1, 𝑥2 ∈ R, 𝑥1 ≤ 𝑥2 ⇒ 𝜓𝑡(𝑥1) ≤ 𝜓𝑡(𝑥2). (A.4)

Therefore, the limit 𝜓𝑡(∞) ∶= lim𝑥→∞ 𝜓𝑡(𝑥) is well-defined but may be infinite. In the sequel, we show that 𝜓𝑡(∞) <∞ for any 𝑡 > 0.
Since 𝐺 is locally Lipschitz and satisfies (A.3), 𝐺(𝑥) < 0 for all 𝑥 ≥ 𝑅. Fix 𝑇 > 0 and let 𝐿 ∶= 𝜓𝑇 (𝑅). By uniqueness of solutions, the
map 𝑡 ↦ 𝜓𝑡(𝑅) is decreasing and for all 𝑥 ≥ 𝐿 𝐺(𝑥) < 0. Let 𝐹𝐿,𝑅 ∶ [𝐿, 𝑅] → [0, 𝑇 ] be such that 𝐹𝐿,𝑅(𝜓𝑡(𝑅)) = 𝑡 for all 𝑡 ∈ [0, 𝑇 ] and
note that 𝐹 ′

𝐿,𝑅(𝑢) = 1∕𝐺(𝑢). Since 𝐹𝐿,𝑅(𝑅) = 0 and 𝐹𝐿,𝑅(𝐿) = 𝑇 , we obtain

− 𝑇 = ∫

𝑅

𝐿
𝐹 ′
𝐿,𝑅(𝑢)d𝑢 = ∫

𝑅

𝐿

1
𝐺(𝑢)

d𝑢. (A.5)

Now let 𝐹𝐿 ∶ [𝐿,∞] → [𝐹𝐿(∞), 0] be given by 𝐹𝐿(𝑥) ∶= ∫ 𝑥𝐿
1

𝐺(𝑢)d𝑢 for 𝑥 ∈ [𝐿,∞), and set 𝐹𝐿(∞) ∶= lim𝑥→∞ 𝐹𝐿(𝑥). By (A.3) and (A.5),
𝐹𝐿(∞) ∈ (−∞, 0). By (A.4), for any 𝑥 ∈ [𝑅,∞), 𝑡 ≤ 𝑇 , we have 𝜓𝑡(𝑥) ≥ 𝐿 and d

d𝑡𝐹𝐿(𝜓𝑡(𝑥)) = 1. We thereby, conclude that

𝐹𝐿(𝜓𝑡(𝑥)) = 𝑡 + 𝐹𝐿(𝑥), 𝑡 ∈ [0, 𝑇 ]. (A.6)

Again by (A.4) and the continuity of 𝐹𝐿, we can take the limit 𝑥 → ∞ in (A.6) to obtain

𝐹𝐿(𝜓𝑡(∞)) = 𝑡 + 𝐹𝐿(∞), 𝑡 ∈ [0, 𝑇 ]. (A.7)

Therefore 𝜓𝑡(∞) <∞ for any 𝑡 > 0. □

We may now define the extended ODE. By Lemma A.1 𝜓(∞) ∶= (𝜓𝑡(∞), 𝑡 ≥ 0) solves
{

d
d𝑡𝜓𝑡 = 𝐺(𝜓𝑡) for 𝑡 > 0,
𝜓0 = ∞, (A.8)

in the sense that 𝜓0(∞) = ∞, and for any 𝑡0 > 0, the following integral relation holds

𝜓𝑡(∞) = 𝜓𝑡0 (∞) + ∫

𝑡

𝑡0
𝐺(𝜓𝑠(∞))d𝑠 for all 𝑡 ≥ 𝑡0. (A.9)

Eq. (A.9) is a consequence of the Fundamental Theorem of Calculus. Indeed, by (A.7), for any 𝑠 ≥ 𝑡0, 𝜓𝑠(∞) ∶= 𝐹−1
𝐿 (𝑠 + 𝐹𝐿(∞)) ∈ R

and taking derivatives on both sides of (A.7), we obtain
d
d𝑠
𝜓𝑠(∞) = 1

𝐹 ′
𝐿(𝜓𝑠(∞))

= 𝐺(𝜓𝑠(∞)). □

A.1.2. Uniform 𝐿2 bounds
In what follows, we prove a second moment bound for any fixed 𝑡 > 0 for (𝑌 𝜀𝑡 (𝑥), 𝑥 ∈ R).

Lemma A.2 (𝐿2-Bound). If 𝜀 ∈ [0, 1], then the process 𝑌 𝜀(𝑥) defined by (3.15) satisfies for any 𝑡 > 0,

sup
𝑥∈R

E[|𝑌 𝜀𝑡 (𝑥)|
2] < ∞. (A.10)
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Proof. Fix 𝜀 ∈ [0, 1] and let 𝐺𝜀 ∶ R → R be given by 𝐺𝜀(𝑦) ∶= 𝑦𝐹𝜀(𝑦) for all 𝑦 ∈ R with 𝐹𝜀 defined in (3.14). Recall that 𝑉 satisfies
Hypotheses 1.1, 1.2 and 2.2. Since 𝑉 ′ is an odd function, it follows that 𝐺𝜀(𝑦) = 𝐺𝜀(|𝑦|) ≤ 0 for all 𝑦 ∈ R. By Hypothesis 1.2 and
Hypothesis 2.2 (Condition (G1)) there is 𝑐∗ > 0 for which

𝐺𝜀(𝑦) ≤ −𝑐∗|𝑦|
2+𝛼 for all 𝑦 ∈ R. (A.11)

By Itô’s formula, for 𝑡 > 0, we have

|𝑌 𝜀𝑡 (𝑥)|
2 = 𝑥2 + 2∫

𝑡

0
𝐺𝜀(𝑌 𝜀𝑠 (𝑥))d𝑠 + 𝑡 +𝑀

𝑥
𝑡 , (A.12)

where 𝑀𝑥 = (𝑀𝑥
𝑡 , 𝑡 ≥ 0) is a local martingale given by

𝑀𝑥
𝑡 = 2∫

𝑡

0
𝑌 𝜀𝑠 (𝑥)d𝐵𝑠. (A.13)

Since 𝐺𝜀(𝑦) ≤ 0 for all 𝑦 ∈ R, a localization argument yields that, E[|𝑌 𝜀𝑡 (𝑥)|
2] ≤ 𝑥2 + 𝑡 for any 𝑡 ≥ 0. As a consequence, we have

hat 𝑀𝑥 is a true mean-zero martingale. Now, if we take expectation on both sides of equality (A.12), apply Fubini’s theorem and
use (A.11) we obtain for all 𝑡 > 0

E[|𝑌 𝜀𝑡 (𝑥)|
2] = 𝑥2 + 2∫

𝑡

0
E[𝐺𝜀

(

𝑌 𝜀𝑡 (𝑥)
)

]d𝑠 + 𝑡 ≤ 𝑥2 − 2𝑐∗ ∫
𝑡

0
E[|𝑌 𝜀𝑠 (𝑥)|

2+𝛼]d𝑠 + 𝑡. (A.14)

By Jensen’s inequality we obtain

E[|𝑌 𝜀𝑡 (𝑥)|
2+𝛼] ≥ (E[|𝑌 𝜀𝑡 (𝑥)|

2])1+𝛼∕2 for all 𝑡 ≥ 0. (A.15)

By (A.14) and (A.15) if we denote 𝜓𝜀𝑡 (𝑥) ∶= E[|𝑌 𝜀𝑡 (𝑥)|
2] and let 𝐺(𝑦) ∶= −2𝑐∗|𝑦|1+𝛼∕2 + 1 for all 𝑦 ∈ R then we have that

d
d𝑡
𝜓𝜀𝑡 (𝑥) ≤ 𝐺(𝜓𝜀𝑡 (𝑥)) for 𝑡 ≥ 0.

Now, we let (�̃�𝑡(𝑥), 𝑡 ≥ 0) be the solution of (A.8) for 𝐺 = 𝐺 and with initial condition �̃�0(𝑥) = 𝜓𝜀0 (𝑥) = 𝑥2. Observe that 𝐺 ∈ L,
here L is defined in (A.3). To conclude (A.10), we rely on monotonicity and Lemma A.1. Indeed, for any 𝑥 ∈ R and 𝑡 > 0

E
[

|𝑌 𝜀𝑡 (𝑥)|
2
]

≤ �̃�𝑡(𝑥) ≤ lim
𝑧→∞

�̃�𝑡(𝑧) = �̃�𝑡(∞) < ∞. □ (A.16)

A.1.3. Integral expression
Now, we examine the integral form of the limit process.

Proposition A.3 (Integral Form). For any fixed 𝜀 ∈ [0, 1], let 𝐹𝜀 be as defined in (3.14). Then, the limit process 𝑌 𝜀𝑡 (sgn(𝑥)∞) ∶=
lim𝑟→∞ 𝑌 𝜀(sgn(𝑥) ⋅ 𝑟) solves

{

d𝑌𝑡 = 𝐹𝜀(𝑌𝑡)d𝑡 + d𝐵𝑡 for 𝑡 > 0,
𝑌0 = sgn(𝑥)∞,

in the sense that almost surely lim𝑡→0 𝑌𝑡 = sgn(𝑥)∞ and for any 0 < 𝑡0 < 𝑡
𝑌𝑡 = 𝑌𝑡0 + ∫

𝑡

𝑡0
𝐹𝜀(𝑌𝑠) d𝑠 + 𝐵𝑡 − 𝐵𝑡0 . (A.17)

Proof. Assume without loss of generality that 𝑥 > 0. By (A.2) 𝑌 𝜀𝑡 (𝑟) increases with 𝑟 and therefore the limit 𝑌 𝜀𝑡 (∞) exists. By (A.10)
it follows that P(𝑌 𝜀𝑡 (∞) <∞) = 1 for any 𝑡 > 0. Given 𝑇 > 𝑡0 > 0, we claim that, for every 𝛿 > 0

lim
𝑟→∞

P
(

sup
𝑡∈[𝑡0 ,𝑇 ]

|

|

𝐹𝜀(𝑌 𝜀𝑡 (∞)) − 𝐹𝜀(𝑌 𝜀𝑡 (𝑟))|| > 𝛿
)

= 0. (A.18)

The proof of (A.18) is postponed to Lemma A.4 below. Now, note that, almost surely

𝑌 𝜀𝑡 (𝑟) = 𝑌 𝜀𝑡0 (𝑟) + ∫

𝑡

𝑡0
𝐹𝜀(𝑌 𝜀𝑠 (𝑟)) d𝑠 + 𝐵𝑡 − 𝐵𝑡0 .

By (A.18) we may take the limit inside the above integral and therefore

P
(

𝑌 𝜀𝑡 (∞) = 𝑌 𝜀𝑡0 (∞) + ∫

𝑡

𝑡0
𝐹𝜀(𝑌 𝜀𝑠 (∞)) d𝑠 + 𝐵𝑡 − 𝐵𝑡0 ∀ 𝑡 > 𝑡0

)

= 1. □

Lemma A.4. For any 𝑇 > 𝑡0 > 0 and 𝛿 > 0 the equality in (A.18) holds true.
Proof. We first note that (A.18) is a consequence of

lim
𝐴→∞

P

(

sup
𝑡∈[𝑡0 ,𝑇 ]

|

|

𝑌 𝜀𝑡 (∞)|
|

> 𝐴
)

= 0 (A.19)

and

∀𝛿 > 0 lim supP
(

sup |

|

𝑌 𝜀𝑡 (∞) − 𝑌 𝜀𝑡 (𝑟)|| > 𝛿
)

= 0. (A.20)

𝑟→∞ 𝑡∈[𝑡0 ,𝑇 ]
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Indeed, as 𝐹𝜀 is locally Lipschitz, for any 𝛿 > 0 and 𝐴 > 0 there is 𝛿′ = 𝛿′(𝛿 , 𝐴, 𝜀) > 0 for which

P
(

sup
𝑡∈[𝑡0 ,𝑇 ]

|

|

𝐹𝜀(𝑌 𝜀𝑡 (∞)) − 𝐹𝜀(𝑌 𝜀𝑡 (𝑟))|| > 𝛿
)

≤ P

(

sup
𝑡∈[𝑡0 ,𝑇 ]

|

|

𝑌 𝜀𝑡 (∞) − 𝑌 𝜀𝑡 (𝑟)|| > 𝛿′
)

+ P

(

sup
𝑡∈[𝑡0 ,𝑇 ]

|

|

𝑌 𝜀𝑡 (∞)|
|

> 𝐴
)

.

By monotonicity and Lemma A.2, lim𝑟→∞ 𝑌 𝜀𝑡 (𝑟) = 𝑌 𝜀𝑡 (∞) ∈ R, for any 𝑡 > 0. The pointwise limit, does not guarantee (A.19) and
(A.20). In order to obtain the above uniform bounds we will show that the family (𝑌 𝜀(𝑟), 𝑟 ≥ 0) is tight in the space of continuous
aths 𝐶. Tightness in 𝐶 and pointwise convergence imply uniform convergence of the family and the bounds (A.19) and (A.20). By

Aldous’ tightness criterion, see [96, Thm. 16.10, p.178] or [97, Thm. 4.1.3, p.51] we only need to show that

∀ 𝑡 ∈ [𝑡0, 𝑇 ] lim
𝐴→∞

sup
𝑟∈R

P
(

|

|

𝑌 𝜀𝑡 (𝑟)|| > 𝐴) = 0, (A.21)

and that

∀𝜂 > 0 lim
𝛿→0

sup
𝑟∈R

P

(

sup
|𝑡−𝑠|<𝛿

|

|

𝑌 𝜀𝑡 (𝑟) − 𝑌 𝜀𝑠 (𝑟)|| > 𝜂
)

= 0. (A.22)

Proof of (A.21). By Lemma A.2 we have that

𝐶𝜀𝑡 ∶= sup
𝑟∈R

E[|
|

𝑌 𝜀𝑡 (𝑟)||
2] < ∞. (A.23)

Therefore, by Chebyshev’s inequality, for any 𝑡 ∈ [𝑡0, 𝑇 ] it follows that

sup
𝑟∈R

P
(

|

|

𝑌 𝜀𝑡 (𝑟)|| > 𝐴) ≤ sup
𝑟∈R

E[|
|

𝑌 𝜀𝑡 (𝑟)||
2]

𝐴2
≤
𝐶𝜀𝑡
𝐴2

→ 0 as 𝐴→ ∞.

Proof of (A.22). We first write 𝑌 𝜀𝑡 (𝑟) −𝑌 𝜀𝑠 (𝑟) = ∫ 𝑡𝑠 𝐹𝜀(𝑌
𝜀
𝑢 (𝑟)) d𝑢+𝐵𝑡 −𝐵𝑠. By the triangle inequality and the continuity of Brownian

otion, to verify (A.22) it suffices to prove that for any 𝜂 > 0

lim
𝛿→0

sup
𝑟∈R

P
(

sup
|𝑡−𝑠|≤𝛿 ∫

𝑡

𝑠
𝐹𝜀(𝑌 𝜀𝑢 (𝑟)) d𝑢 > 𝜂

)

= 0.

Fix 𝐾 > 0, 𝜂 > 0, and let 𝐴𝑟𝐾 ∶= {sup𝑢∈[𝑡0 ,𝑇 ] |𝑌 𝜀𝑢 (𝑟)| > 𝐾}. Now note that there is 𝛿 = 𝛿(𝐾 , 𝜂 , 𝜀) such that 𝛿 sup
|𝑦|≤𝐾

|

|

𝐹𝜀(𝑦)|| ≤ 𝜂 and
therefore for any 𝐾 > 0, 𝜂 > 0

lim
𝛿→0

sup
𝑟∈R

P
(

sup
|𝑡−𝑠|≤𝛿 ∫

𝑡

𝑠
𝐹𝜀(𝑌 𝜀𝑢 (𝑟)) d𝑢 > 𝜂

)

≤ sup
𝑟∈R

P
(

𝐴𝑟𝐾
)

.

Since the left-hand side of the above inequality does not depend on 𝐾, we obtain that

lim
𝛿→0

sup
𝑟∈R

P
(

sup
|𝑡−𝑠|≤𝛿 ∫

𝑡

𝑠
𝐹𝜀(𝑌 𝜀𝑢 (𝑟)) d𝑢 > 𝜂

)

≤ lim
𝐾→∞

sup
𝑟∈R

P(𝐴𝑟𝐾 ).

Hence, to obtain (A.22) it is enough to prove that lim𝐾→∞ sup𝑟∈R P(𝐴𝑟𝐾 ) = 0. By (A.12) and (A.13), since 𝐺𝜀(𝑦) = 𝑦𝐹𝜀(𝑦) ≤ 0 for all
∈ R we have that

sup
𝑡∈[𝑡0 ,𝑇 ]

|𝑌 𝜀𝑡 (𝑟)|
2 ≤ |𝑌 𝜀𝑡0 (𝑟)|

2 + 𝑇 + sup
𝑡∈[𝑡0 ,𝑇 ]

|

|

|

|

|

∫

𝑡

𝑡0
2𝑌 𝜀𝑠 (𝑟)d𝐵𝑠

|

|

|

|

|

.

The estimate on 𝐴𝑟𝐾 then becomes

P
(

𝐴𝑟𝐾
)

≤ P
(

|𝑌 𝜀𝑡0 (𝑟)|
2 + 𝑇 > 𝐾2∕2

)

+ P
(

sup
𝑡∈[𝑡0 ,𝑇 ]

|

|

|

|

|

∫

𝑡

𝑡0
2𝑌 𝜀𝑠 (𝑟)d𝐵𝑠

|

|

|

|

|

> 𝐾2∕2
)

.

First, note that for 𝐾2∕2 > 2𝑇 and by (A.23) we have

P
(

|𝑌 𝜀𝑡0 (𝑟)|
2 + 𝑇 > 𝐾2∕2

)

≤ P
(

|𝑌 𝜀𝑡0 (𝑟)|
2 > 𝐾2∕4

)

≤ 4
𝐶𝜀𝑡0
𝐾2

.

To conclude, note that by Doob’s submartingale inequality, Itô’s isometry and (A.23) it follows that

P
(

sup
𝑡∈[𝑡0 ,𝑇 ]

|

|

|

|

|

∫

𝑡

𝑡0
2𝑌 𝜀𝑠 (𝑟)d𝐵𝑠

|

|

|

|

|

> 𝐾2∕2
)

≤
∫ 𝑇𝑡0 4E[|𝑌 𝜀𝑠 (𝑟)|

2]d𝑠

𝐾4∕4
≤

∫ 𝑇𝑡0 16𝐶𝜀𝑠 d𝑠

𝐾4

≤
16𝑇 sup𝑠∈[𝑡0 ,𝑇 ] 𝐶

𝜀
𝑠

𝐾4
→ 0 as 𝐾 → ∞,

where for the last passage we note that by (A.16), 𝑠 ↦ 𝐶𝜀𝑠 is bounded by a continuous function in (0,∞). □

A.2. Markov property of the extended family

To prove that the extended family obtained by (A.1) is Markovian, one needs to verify the conditions stated in Theorem 5.16
in [93, Ch 2, p.78]. These are the (i) compatible initial values, (ii) the measurability of the transition laws, and (iii) Markov property.

Note that for all 𝑥 ∈ R, 𝜀 > 0, and 𝑡 > 0, P(𝑌 𝜀𝑡 (𝑥) ∈ {±∞}) = 0 so conditions (i)–(iii) are satisfied for all finite initial values. It
only remains to see that (i)–(iii) is satisfied for initial values 𝑥 ∈ {−∞,∞}. We only consider 𝑥 = ∞, the case 𝑥 = −∞ is analogous.
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For (i), note that

P(𝑌 𝜀0 (∞) = ∞) = lim
𝑅→∞

P(𝑌 𝜀0 (∞) > 𝑅) = lim
𝑅→∞

lim
𝑥→∞

P(𝑌 𝜀0 (𝑥) > 𝑅) = 1.

For (ii), Proposition A.3 implies that for any 𝑡0 > 0 and 𝑇 > 0, the process 𝑌 𝜀(𝑛) converges uniformly on the interval [𝑡0, 𝑇 ] to 𝑌 𝜀(∞)
as 𝑛 → ∞. Therefore by the monotonicity in (A.2) and the continuity of probability, for all 𝑘 ∈ N, 𝑡1 < ⋯ < 𝑡𝑘, and 𝑎1,… , 𝑎𝑘 ∈ R
one has

lim inf
𝑛→∞

P(𝑌 𝜀𝑡1 (𝑛) > 𝑎1,… , 𝑌 𝜀𝑡𝑘 (𝑛) > 𝑎𝑘) = P(𝑌 𝜀𝑡1 (∞) > 𝑎1,… , 𝑌 𝜀𝑡𝑘 (∞) > 𝑎𝑘).

The measurability follows by extending the above using Dynkin’s 𝜋-𝜆 theorem.
Condition (iii) is a consequence of (A.17) in Proposition A.3. Indeed, for any fixed 𝑠 > 0, if we let (𝑊𝑡 ∶= 𝐵𝑡+𝑠 − 𝐵𝑠, 𝑡 ≥ 0) we

ave that almost surely for any 𝑡 > 0

𝑌 𝜀𝑡+𝑠(∞) = 𝑌 𝜀𝑠 (∞) + ∫

𝑡

0
𝐹𝜀(𝑌 𝜀𝑢+𝑠(∞)) d𝑢 +𝑊𝑡.

Now, if we let Y𝑡 ∶= 𝑌 𝜀𝑡+𝑠(∞), it follows that (Y𝑡, 𝑡 ≥ 0) solves the SDE (3.15) with initial condition 𝑌 𝜀𝑠 (∞). Furthermore, by
Theorem 3.5 in [37, p. 58], Eq. (3.15) is well-posed in R and, by Lemma A.2, 𝑌 𝜀𝑠 (∞) ∈ R almost surely for any 𝑠 > 0. Therefore,

ith the help of Theorem 9.1 in [37, p. 86] we conclude that

P(𝑌 𝜀𝑡+𝑠(∞) ∈ 𝐴|𝑌 𝜀𝑠 (∞) = 𝑦) = P(𝑌 𝜀𝑡 (𝑦) ∈ 𝐴),

which yields (iii) and concludes that the extended family is Markovian.

A.3. Continuity at infinity

Let 𝜀 ∈ [0, 1] be fixed. In this section we prove that the map 𝑥↦ 𝑌 𝜀𝑡 (𝑥) is continuous with respect to the total variation distance
or any 𝑡 > 0. We first note that the map above is continuous in R, see Theorem 1.3 in [98] and Theorem 1.1 in [99] for a proof.
herefore, it only remains to verify the continuity at infinity. This is the content of the following lemma.

Lemma A.5 (Continuity in Total Variation at Infinity). For any 𝜀 ∈ [0, 1] and any 𝑡 > 0 it follows that

lim
𝑥→∞

dTV
(

𝑌 𝜀𝑡 (𝑥), 𝑌 𝜀𝑡 (∞)
)

= 0 and lim
𝑥→−∞

dTV
(

𝑌 𝜀𝑡 (𝑥), 𝑌 𝜀𝑡 (−∞)
)

= 0.

Proof. We only prove the case for which 𝑥 → +∞. The case when 𝑥 → −∞ follows from the symmetry of 𝑉 𝜀. Let 𝜇𝜀,𝑥𝑡 be the
easure in R2 defined by

𝜇𝜀,𝑥𝑡 (d𝑧1, d𝑧2) = P(𝑌 𝜀𝑡 (𝑥) ∈ d𝑧1, 𝑌 𝜀𝑡 (∞) ∈ d𝑧2).
For 𝑠 ∈ (0, 𝑡) we define 𝑓 ∶ R2 → [0, 1] by 𝑓 (𝑧1, 𝑧2) ∶= dTV(𝑌 𝜀𝑡−𝑠(𝑧1), 𝑌 𝜀𝑡−𝑠(𝑧2)). By the Markovian property of the extended family
𝑌 𝜀⋅ (𝑥), 𝑥 ∈ R

)

and Proposition D.2 for any 𝐾 > 0 we have that

dTV
(

𝑌 𝜀𝑡 (𝑥), 𝑌 𝜀𝑡 (∞)
)

≤ ∫R2
𝑓 (𝑧1, 𝑧2)𝜇𝜀,𝑥𝑠 (d𝑧1, d𝑧2)

≤ ∫
|𝑧1|,|𝑧2|≤𝐾

𝑓 (𝑧1, 𝑧2)𝜇𝜀,𝑥𝑠 (d𝑧1, d𝑧2) + P(|𝑌 𝜀𝑡 (𝑥)| > 𝐾) + P(|𝑌 𝜀𝑡 (∞)| > 𝐾).

By Lemma A.2 and Chebyshev’s inequality it follows that

lim sup
𝐾→∞

lim sup
𝑥→∞

(

P(|𝑌 𝜀𝑡 (𝑥)| > 𝐾) + P(|𝑌 𝜀𝑡 (∞)| > 𝐾)
)

= 0.

It suffices to show that for any 𝐾 > 0

lim sup
𝑥→∞ ∫

|𝑧1|,|𝑧2|≤𝐾
𝑓 (𝑧1, 𝑧2)𝜇𝜀,𝑥𝑠 (d𝑧1, d𝑧2) = 0. (A.24)

We now define for any 𝛿 > 0

𝜔𝑓 ,𝐾 (𝛿) ∶= max{𝑓 (𝑧1, 𝑧2) ∶ |

|

𝑧1|| , ||𝑧2|| ≤ 𝐾 , |
|

𝑧1 − 𝑧2|| ≤ 𝛿}.

Since 𝑓 is continuous and 𝑓 (𝑧, 𝑧) = 0, it follows that

𝜔𝑓 ,𝐾 (𝛿) < ∞ and lim
𝛿→0

𝜔𝑓 ,𝐾 (𝛿) = 0. (A.25)

Given 𝛿 > 0, consider the following split of the integral in (A.24),

∫
|𝑧1|,|𝑧2|≤𝐾

𝑓 (𝑧1, 𝑧2)𝜇𝜀,𝑥𝑠 (d𝑧1, d𝑧2) = ∫
|𝑧1|,|𝑧2|≤𝐾

𝑓 (𝑧1, 𝑧2) 1
|𝑧1−𝑧2|≤𝛿 𝜇

𝜀,𝑥
𝑠 (d𝑧1, d𝑧2) + ∫

|𝑧1|,|𝑧2|≤𝐾
𝑓 (𝑧1, 𝑧2) 1

|𝑧1−𝑧2|>𝛿 𝜇
𝜀,𝑥
𝑠 (d𝑧1, d𝑧2)

≤ 𝜔𝑓 ,𝐾 (𝛿) + 𝜂(𝑥, 𝛿),
where 𝜂(𝑥, 𝛿) ∶= 𝜇𝜀,𝑥(|𝑧 − 𝑧 | > 𝛿) = P(|𝑌 𝜀(𝑥) − 𝑌 𝜀(∞)| > 𝛿). By (A.1),
𝑠 | 1 2| | 𝑠 𝑠 |
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lim
𝑥→∞

𝜂(𝑥, 𝛿) = 0 for any 𝛿 > 0.

To conclude the proof of Lemma A.5 we note that, by (A.25)

lim sup
𝑥→∞ ∫

|𝑧1|,|𝑧2|≤𝐾
𝑓 (𝑧1, 𝑧2)𝜇𝜀,𝑥𝑠 (d𝑧1, d𝑧2) ≤ inf

𝛿 >0𝜔𝑓 ,𝐾 (𝛿) = 0. □

Appendix B. Uniform bounds

In this section we prove the bounds (3.18) and (3.20).

B.1. Uniform entrance in a compact

The bound (3.18) is a consequence of the following proposition.

Proposition B.1. For any 𝜂 > 0 and 𝑎 > 0 there are 𝑏 > 0 and 𝛿 ∈ (0, 𝜂) such that

sup
𝜀∈[0,1]

P
(

𝑌 𝜀𝛿 (∞) ∉ [𝑎, 𝑏]) ≤ 𝜂 .

The proof of Proposition B.1 is based on the two following statements, whose proofs are given afterwards.

For any 𝑎 > 0, lim
𝛿→0

sup
𝜀∈[0,1]

P(||
|

𝑌 𝜀𝛿 (∞)||
|

≤ 𝑎) = 0. (B.1)

For any 𝛿 > 0, lim
𝑏→∞

sup
𝜀∈[0,1]

P(||
|

𝑌 𝜀𝛿 (∞)||
|

> 𝑏) = 0. (B.2)

Proof of Proposition B.1. Given 𝜂 > 0 and 𝑎 > 0, by (B.1) there is 𝛿 ∈ (0, 𝜂) such that P(||
|

𝑌 𝜀𝛿 (∞)||
|

< 𝑎) < 𝜂∕2 for any 𝜀 ∈ [0, 1]. Next,
by (B.2), we choose 𝑏 > 0 such that P(||

|

𝑌 𝜀𝛿 (∞)||
|

> 𝑏) < 𝜂∕2 for any 𝜀 ∈ [0, 1]. With this, we conclude that for every 𝜀 ∈ [0, 1]
P(||
|

𝑌 𝜀𝛿 (∞)||
|

∉ [𝑎, 𝑏]) = P(||
|

𝑌 𝜀𝛿 (∞)||
|

> 𝑏) + P(||
|

𝑌 𝜀𝛿 (∞)||
|

< 𝑎) < 𝜂 . □

In what follows we prove (B.1) and (B.2).

Proof of (B.1). Fix any 𝑎 > 0. For 𝐷 > 0, let 𝛺(𝛿 , 𝐷) ∶= {sup𝑡≤𝛿 ||𝐵𝑡|| ≤ 𝐷}. Fix 𝑥 ∶= 2(𝑎 + 𝐷) and choose 𝐾 ∶= 2𝑥. Now let
∶= 𝜏(𝑎) ∧ 𝜏(𝐾) where 𝜏(𝑣) = 𝜏(𝑎, 𝑥, 𝜀) ∶= inf {𝑡 > 0 ∶ 𝑌 𝜀𝑡 (𝑥) = 𝑣} for 𝑣 ∈ R. Note that 𝑌 𝜀𝛿 (∞) ≥ 𝑌 𝜀𝛿 (𝑥), and that almost surely

𝑌 𝜀𝛿∧𝜎 (𝑥) = 𝑥 − ∫

𝛿∧𝜎

0
|

|

𝐹𝜀(𝑌 𝜀𝑠 (𝑥))|| d𝑠 + 𝐵𝛿∧𝜎 . (B.3)

By Hypothesis 1.2 and 3.14 it follows that

𝐶(𝐾) ∶= sup
𝜀∈[0,1]

sup
|𝑦|≤𝐾

|

|

𝐹𝜀(𝑦)|| = sup
𝜀∈[0,1]

sup
|𝑦|≤𝐾

|

|

|

|

|

𝑉 ′(𝑏𝜀𝑦)
𝑏1+𝛼𝜀

|

|

|

|

|

<∞. (B.4)

Given 𝐷 > 0, there is 𝜂 > 0 such that 𝛿 ∈ (0, 𝜂), implies 𝛿 < 𝜎 on 𝛺(𝛿 , 𝐷). Indeed, by (B.4) there is 𝐶 = 𝐶(𝐷) > 0 which allows (B.3)
to be bounded by

𝑌 𝜀𝛿∧𝜎 (𝑥) ≥ 𝑥 − 𝐶(𝛿 ∧ 𝜎) −𝐷 ≥ 𝑥 −𝐷 − 𝐶 𝛿 and 𝑌 𝜀𝛿∧𝜎 (𝑥) ≤ 𝑥 +𝐷 < 𝐾 .
Since 𝑥 − 𝐷 > 2𝑎, for any 𝛿 ∈ (0, 𝐶−1𝑎) it follows that 𝑌 𝜀𝛿∧𝜎 (𝑥) ∈ (𝑎, 𝐾). In conclusion, on the event 𝛺(𝛿 , 𝐷), we have that
𝜀
𝛿 (∞) ≥ 𝑌 𝜀𝛿 (𝑥) = 𝑌 𝜀𝛿∧𝜎 (𝑥) > 𝑎. Since P(𝛺(𝛿 , 𝐷)) → 1 as 𝛿 → 0, the proof of (B.1) is complete. □

Proof of (B.2). We start the proof with uniform 𝐿2 bounds, that is, we prove that for any 𝑡 > 0

sup
𝜀∈[0,1]

E[|𝑌 𝜀𝑡 (𝑥)|
2] <∞.

For any 𝑥 ∈ R and 𝑡 ≥ 0, inequality (A.16) yields

E
[

|𝑌 𝜀𝑡 (𝑥)|
2
]

≤ �̃�𝑡(𝑥),

where (�̃�𝑡(𝑥), 𝑡 ≥ 0) is the solution of
{

d
d𝑡𝜓𝑡(𝑥) = 𝐺(𝜓𝑡(𝑥)),
𝜓0(𝑥) = 𝑥

with 𝐺(𝑦) ∶= −2𝑐∗|𝑦|1+𝛼∕2 + 1 for all 𝑦 ∈ R for some 𝑐∗ > 0. The monotone convergence theorem with the help of Lemma A.1 implies

E
[

|𝑌 𝜀𝑡 (∞)|2
]

≤ �̃�𝑡(∞) <∞. (B.5)

To conclude (B.2) note that (B.5) yields,

sup
𝜀∈[0,1]

P(||
|

𝑌 𝜀𝛿 (∞)||
|

> 𝑏) ≤ �̃�𝑡(∞)
𝑏2

→ 0 as 𝑏→ ∞. □
18 
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B.2. Uniform convergence in total variation distance

The bound (3.20) is a consequence of the following proposition.

Proposition B.2. For any 𝑡 > 0, 𝑎 > 0, 𝑏 > 𝑎 and 𝜂 > 0 there is 𝜀0 > 0 for which

sup
0≤𝜀<𝜀0

sup
𝑥∈[𝑎,𝑏]

dTV
(

𝑌 0
𝑡 (𝑥), 𝑌 𝜀𝑡 (𝑥)

)

< 𝜂 . (B.6)

Proof. By Theorem 5.1 in [100], we have
|

|

|

dTV
(

𝑌 0
𝑡 (𝑥), 𝑌 𝜀𝑡 (𝑥)

)

|

|

|

2
≤ 2∫

𝑡

0
E
[

|

|

|

𝐹0(𝑌 0
𝑠 (𝑥)) − 𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||

|

2
]

d𝑠.

To conclude (B.6) we show that

lim
𝜀0→0

sup
0≤𝜀<𝜀0

sup
𝑥∈[𝑎,𝑏]

sup
𝑠∈[0,𝑡]

E
[

|

|

|

𝐹0(𝑌 0
𝑠 (𝑥)) − 𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||

|

2
]

= 0. (B.7)

First, we define the event

𝐴𝑀 ,𝜀 = 𝐴𝑀 ,𝜀(𝑥, 𝑡) ∶=
{

sup
𝑠∈[0,𝑡]

|𝑌 0
𝑠 (𝑥)| ∨ |

|

𝑌 𝜀𝑠 (𝑥)|| ≤𝑀
}

. (B.8)

Now, for any 𝑀 > 0, we may write the expectation term in (B.7) as

E
[

|

|

|

𝐹0(𝑌 0
𝑠 (𝑥)) − 𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||

|

2
1𝐴𝑀 ,𝜀

]

+ E
[

|

|

|

𝐹0(𝑌 0
𝑠 (𝑥)) − 𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||

|

2
1𝐴𝑐𝑀 ,𝜀

]

.

Since 𝑀 > 0 is arbitrary, to prove (B.7) it suffices to show that for any 𝑀 > 0

lim
𝜀0→0

sup
0≤𝜀<𝜀0

sup
𝑥∈[𝑎,𝑏]

sup
𝑠∈[0,𝑡]

E
[

|

|

|

𝐹0(𝑌 0
𝑠 (𝑥)) − 𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||

|

2
1𝐴𝑀 ,𝜀

]

= 0 (B.9)

and that

lim
𝑀→∞

sup
𝜀∈[0,1]

sup
𝑥∈[𝑎,𝑏]

sup
𝑠∈[0,𝑡]

E
[

|

|

|

𝐹0(𝑌 0
𝑠 (𝑥)) − 𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||

|

2
1𝐴𝑐𝑀 ,𝜀

]

= 0. □ (B.10)

Proof of (B.9) Let 𝛥𝜀𝑠(𝑥) ∶= 𝑌 𝜀𝑠 (𝑥) −𝑌 0
𝑠 (𝑥). We recall that for each 𝜀 ∈ [0, 1] the process 𝑌 𝜀(𝑥) = (𝑌 𝜀𝑡 (𝑥), 𝑡 ≥ 0) solves (3.15). Moreover,

the processes (𝑌 𝜀(𝑥), 𝜀 ∈ [0, 1]) are coupled with the same noise, i.e., there is (𝐵𝑡, 𝑡 ≥ 0) a Brownian motion under P such that for all
𝜀 ∈ [0, 1] we have almost surely that

𝑌 𝜀𝑡 (𝑥) = 𝑥 + ∫

𝑡

0
𝐹𝜀(𝑌 𝜀𝑠 (𝑥))d𝑠 + 𝐵𝑡 for all 𝑡 > 0. (B.11)

Now, we may use (B.11) to write

𝛥𝜀𝑠(𝑥) = 𝑌 𝜀𝑠 (𝑥) − 𝑌 0
𝑠 (𝑥) = ∫

𝑠

0
[𝐹𝜀(𝑌 𝜀𝑢 (𝑥)) − 𝐹0(𝑌 0

𝑢 (𝑥))] d𝑢.

By the mean value theorem we have

𝛥𝜀𝑠(𝑥) = ∫

𝑠

0
[𝐹𝜀(𝑌 𝜀𝑢 (𝑥)) − 𝐹𝜀(𝑌 0

𝑢 (𝑥)) −
(

𝐹0(𝑌 0
𝑢 (𝑥)) − 𝐹𝜀(𝑌 0

𝑢 (𝑥))
)

] d𝑢

= ∫

𝑠

0
[𝐹 ′
𝜀(𝛩

𝜀
𝑢)𝛥

𝜀
𝑢(𝑥) −

(

𝐹0(𝑌 0
𝑢 (𝑥)) − 𝐹𝜀(𝑌 0

𝑢 (𝑥))
)

] d𝑢,

where 𝛩𝜀𝑢 ∈
(

𝑌 𝜀𝑢 (𝑥) ∧ 𝑌 0
𝑢 (𝑥), 𝑌 𝜀𝑢 (𝑥) ∨ 𝑌 0

𝑢 (𝑥)
)

for all 𝑢 ≥ 0. By the convexity of 𝑉 , it follows that 𝐹 ′
𝜀(𝛩

𝜀
𝑢) ≤ 0. By the chain rule and the

fact that |𝑥| ≤ 1 + 𝑥2 for all 𝑥 ∈ R we have that

|𝛥𝜀𝑠(𝑥)|
2 = |𝛥𝜀0(𝑥)|

2 + ∫

𝑠

0
2𝛥𝜀𝑢(𝑥)d𝛥

𝜀
𝑢(𝑥)

= 2∫
𝑠

0
[𝐹 ′
𝜀(𝛩

𝜀
𝑢)|𝛥

𝜀
𝑢(𝑥)|

2 − 𝛥𝜀𝑢(𝑥)
(

𝐹0(𝑌 0
𝑢 (𝑥)) − 𝐹𝜀(𝑌 0

𝑢 (𝑥))
)

] d𝑢

≤ 2∫

𝑠

0
(1 + |𝛥𝜀𝑢(𝑥)|

2) ||
|

𝐹0(𝑌 0
𝑢 (𝑥)) − 𝐹𝜀(𝑌 0

𝑢 (𝑥))
|

|

|

d𝑢.

If we let 𝜓𝜀𝑠 (𝑥) ∶= sup𝑢∈[0,𝑠] |𝛥𝜀𝑠(𝑥)|21𝐴𝑀 ,𝜀 and 𝐾(𝑀 , 𝜀) ∶= sup
|𝑧|≤𝑀

|

|

𝐹0(𝑧) − 𝐹𝜀(𝑧)|| we obtain that 𝜓𝜀𝑠 (𝑥) ≤ 2𝐾(𝑀 , 𝜀) ∫ 𝑠0 (1 +𝜓𝜀𝑢 (𝑥))d𝑢 for
ny 𝑥 ∈ R. Now, for any fixed 𝑀 > 0, by Hypothesis 1.2 we have 𝐾(𝑀 , 𝜀) → 0 as 𝜀→ 0. This implies that for any 𝜂 > 0 and 𝑀 > 0

there is 𝜀0 such that sup𝜀∈[0,𝜀0] sup𝑥∈R 𝜓
𝜀
𝑡 (𝑥) ≤ 𝜂. This completes the proof of (B.9). □

Proof of (B.10) Since (𝑟1 + 𝑟2)2 ≤ 2
(

𝑟21 + 𝑟
2
2
)

for any 𝑟1, 𝑟2 ∈ R, the expectation in (B.10) can be bounded by

2E
[

|

|

|

𝐹0(𝑌 0
𝑠 (𝑥))

|

|

|

4
1𝐴𝑐𝑀 ,𝜀(𝑥,𝑠)

]

+ 2E
[

|

|

𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||
4
1𝐴𝑐𝑀 ,𝜀(𝑥,𝑠)

]

,

it remains to show that

lim sup sup sup E
[

|

|

𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||
4
1𝐴𝑐 (𝑥,𝑠)

]

= 0.

𝑀→∞ 𝜀∈[0,1] 𝑥∈[𝑎,𝑏] 𝑠∈[0,𝑡] 𝑀 ,𝜀
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By Cauchy–Schwarz inequality, we have

E
[

|

|

𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||
4
1𝐴𝑐𝑀 ,𝜀

]

≤
(

E
[

|

|

𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||
8
])1∕2

⋅
(

P
(

𝐴𝑐𝑀 ,𝜀
))1∕2

. (B.12)

We now claim that

sup
𝜀∈[0,1]

sup
𝑥∈[𝑎,𝑏]

sup
𝑠∈[0,𝑡]

E
[

|

|

𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||
8
]

< ∞, (B.13)

and that, recall (B.8), for any fixed 𝑡 > 0

sup
𝜀∈[0,1]

sup
𝑥∈[𝑎,𝑏]

P(𝐴𝑐𝑀 ,𝜀(𝑥, 𝑡)) → 0 as 𝑀 → ∞. (B.14)

From (B.12), (B.13) and (B.14) we conclude (B.10). It remains to prove (B.13) and (B.14). □
Proof of (B.13) We first note that Hypothesis 1.2 and Hypothesis 2.2(Condition (G2)) imply that there is 𝑐 > 0 such that
|

|

𝑉 ′(𝑧)|
|

≤ 𝑐|𝑧|1+𝛼 exp(𝑧2) for any 𝑧 ∈ R. Therefore

E
[

|

|

𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||
8
]

= E
[

|

|

|

𝑉 ′(𝑏𝜀𝑌 𝜀𝑠 (𝑥))∕𝑏
1+𝛼
𝜀

|

|

|

8
]

≤ 𝑐8E
[

|

|

𝑌 𝜀𝑠 (𝑥)||
8(1+𝛼) |

|

|

1 + exp(8𝑏𝜀 ||𝑌 𝜀𝑠 (𝑥)||2)||
|

]

.

Now, since 𝑏𝜀 → 0 as 𝜀 → 0 and |𝑧|1+𝛼 ≤ exp(𝑧2) for all 𝑧 ∈ R, there is �̃� > 0 for which

E
[

|

|

𝐹𝜀(𝑌 𝜀𝑠 (𝑥))||
8
]

≤ �̃�E
[

exp(|
|

𝑌 𝜀𝑠 (𝑥)||
2)
]

.

To conclude, we now show that

sup
𝜀∈[0,1]

sup
𝑥∈[𝑎,𝑏]

sup
𝑠∈[0,𝑡]

E
[

exp(|
|

𝑌 𝜀𝑠 (𝑥)||
2)
]

= 𝐶(𝑡, 𝑎, 𝑏) < ∞. (B.15)

Indeed, by Itô’s formula for 𝐻(𝑧) = exp(𝑧2), 𝑧 ∈ R, we have that

𝐻(𝑌 𝜀𝑠 (𝑥)) = 𝐻(𝑥) + ∫

𝑠

0
𝐻(𝑌 𝜀𝑢 (𝑥))

(

2𝑌 𝜀𝑢 (𝑥)𝐹𝜀(𝑌
𝜀
𝑢 (𝑥)) + 2(𝑌 𝜀𝑢 (𝑥))2 + 1)d𝑢 +𝑀𝑠,

where (𝑀𝑠, 𝑠 ≥ 0) is a local martingale. Recall that 𝐺𝜀(𝑧) = 𝑧𝐹𝜀(𝑧) for all 𝑧 ∈ R. By (A.11) we deduce that

sup
𝜀∈[0,1]

sup
𝑧∈R

(

2𝑧𝐹𝜀(𝑧) + 2𝑧2 + 1) = 𝐶 <∞.

Therefore, if we let 𝜏𝐾 = 𝜏(𝐾 , 𝜀, 𝑥) ∶= inf {𝑠 > 0 ∶ |

|

𝑌 𝜀𝑠 (𝑥)|| > 𝐾} we obtain

E
[

𝐻(𝑌 𝜀𝑠∧𝜏𝐾 (𝑥))
]

≤ 𝐻(𝑥) + 𝐶 ∫

𝑠

0
E
[

𝐻(𝑌 𝜀𝑢∧𝜏𝐾 (𝑥))
]

d𝑢. (B.16)

Now, by Grönwall’s inequality we obtain for 𝑥 ∈ [𝑎, 𝑏] and 𝑠 ∈ [0, 𝑡] that

E
[

𝐻(𝑌 𝜀𝑠∧𝜏𝐾 (𝑥))
]

≤ 𝐻(𝑥) exp(𝐶 𝑠) ≤ (

𝐻(𝑎) +𝐻(𝑏)
)

exp(𝐶 𝑡).
Since the constant 𝐶 in (B.16) does not depend on 𝜀, Fatou’s lemma implies

sup
𝜀∈[0,1]

sup
𝑥∈[𝑎,𝑏]

sup
𝑠∈[0,𝑡]

E
[

exp(|
|

𝑌 𝜀𝑠 (𝑥)||
2)
]

= sup
𝜀∈[0,1]

sup
𝑥∈[𝑎,𝑏]

sup
𝑠∈[0,𝑡]

E
[

lim inf
𝐾→∞

𝐻
(

𝑌 𝜀𝑠∧𝜏𝐾 (𝑥)
)

]

≤ sup
𝜀∈[0,1]

sup
𝑥∈[𝑎,𝑏]

sup
𝑠∈[0,𝑡]

lim inf
𝐾→∞

E
[

𝐻(𝑌 𝜀𝑠∧𝜏𝐾 (𝑥))
]

≤
(

𝐻(𝑎) +𝐻(𝑏)
)

exp(𝐶 𝑡),

(B.17)

which yields (B.15). This completes the proof of (B.13).
Proof of (B.14) Since 𝑧𝐹𝜀(𝑧) = 𝐺𝜀(𝑧) ≤ 0 for all 𝑧 ∈ R, it follows from (A.12) that

sup
𝑠∈[0,𝑡]

|𝑌 𝜀𝑠 (𝑥)|
2 ≤ 𝑥2 + 𝑡 + sup

𝑠∈[0,𝑡]
|

|

𝑀𝜀,𝑥
𝑠

|

|

,

where 𝑀𝜀,𝑥 = (𝑀𝜀,𝑥
𝑠 , 𝑠 ≥ 0) is the local martingale given by (A.13). Therefore, for any 𝑥 ∈ [𝑎, 𝑏] and any 𝑀 such that 𝑀 > 𝑎2 + 𝑏2 + 𝑡

P
(

sup
𝑠∈[0,𝑡]

|𝑌 𝜀𝑠 (𝑥)|
2 > 𝑀

)

≤ P
(

𝑥2 + 𝑡 + sup
𝑠∈[0,𝑡]

|

|

𝑀𝜀,𝑥
𝑠

|

|

> 𝑀
)

= P
(

sup
𝑠∈[0,𝑡]

|𝑀𝜀,𝑥
𝑠 |

2 > (𝑀 − 𝑥2 − 𝑡)2
)

≤
E
[

|𝑀𝜀,𝑥
𝑡 |

2
]

(𝑀 − 𝑥2 − 𝑡)2
=

𝐶𝜀,𝑡,𝑥
(𝑀 − 𝑥2 − 𝑡)2

,

where the second inequality follows from Doob’s 𝐿2 submartingale inequality and by Itô’s isometry, 𝐶𝜀,𝑡,𝑥 ∶= 4 ∫ 𝑡0 E
[

|𝑌 𝜀𝑠 (𝑥)|
2] d𝑠.

ow, since 𝑧2 ≤ exp(𝑧2) for all 𝑧 ∈ R, by (B.17) it follows that

sup
𝜀∈[0,1]

sup
𝑥∈[𝑎,𝑏]

sup
𝑠∈[0,𝑡]

𝐶𝜀,𝑡,𝑥 = 𝐶 ′(𝑡, 𝑎, 𝑏) <∞.

Now, recall the definition in (B.8). Since 𝑥2 ≤ 𝑎2 + 𝑏2 for any 𝑥 ∈ [𝑎, 𝑏], it follows that for any 𝑀 such that 𝑀 > 𝑎2 + 𝑏2 + 𝑡
sup
𝜀∈[0,1]

sup
𝑥∈[𝑎,𝑏]

P(𝐴𝑐𝑀 ,𝜀(𝑥, 𝑡)) ≤
𝐶 ′(𝑡, 𝑎, 𝑏)

(𝑀 − 𝑎2 − 𝑏2 − 𝑡)2

and so, we obtain (B.14) and thereby conclude the proof of Proposition B.2. □
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Appendix C. Convergence of invariant measures: details

Recall the notation introduced above (2.13), that is, 𝑌∞
𝑑
= 𝜈, 𝑋𝜀

∞
𝑑
= 𝜇𝜀 and 𝑋𝜀

∞
𝑑
= 𝜇𝜀. By Lemma 2.1 it follows that

𝜈(d𝑧) = 𝐶−1 exp
(

−2𝑉0(𝑧)
)

d𝑧,

where 𝐶 is a normalization constant, 𝑉0(𝑧) ∶= (2 + 𝛼)−1𝐶0|𝑧|
2+𝛼 with 𝛼 and 𝐶0 defined in Hypothesis 1.2. Similarly, 𝜇𝜀 and 𝜇𝜀 is the

density of 𝑋𝜀
∞ and 𝑋𝜀

∞ given by, and they are given by

𝜇𝜀(d𝑧) = 𝐶−1
𝜀 exp

(

−2
𝑉 (𝑧)
𝜀

)

d𝑧 and 𝜇𝜀(d𝑧) = 𝐶−1
𝜀 exp

(

−2
𝑉 (𝑧)
𝜀

)

d𝑧.

respectively. For (𝑏𝜀, 𝜀 ∈ [0, 1)) as defined in (2.9), the same argument leading to (3.22) yields that the density of 𝑋𝜀∞
𝑏𝜀

and 𝑌 𝜀∞ = 𝑋𝜀∞
𝑏𝜀

is given by

𝑏𝜀𝐶
−1
𝜀 exp

(

−2
𝑉 (𝑏𝜀𝑧)
𝜀

)

d𝑧 and 𝑏𝜀𝐶
−1
𝜀 exp

(

−2
𝑉 (𝑏𝜀𝑧)
𝜀

)

d𝑧.

Lemma C.1 (Asymptotic Coupling of the Invariant Measures). For each 𝜀 > 0, let 𝑋𝜀
∞ and 𝑋𝜀

∞ be the random variables whose distributions
re the invariant measures of the SDE given by (1.1) and (2.11), respectively. Assume that the potential 𝑉 of (1.1) satisfies Hypotheses 1.1,

1.2, and 1.4 and assume that the potential 𝑉 of (2.11) satisfies Hypotheses 1.1, 1.2, and 2.2. Under those assumptions, it follows that

lim
𝜀→0

dTV

(𝑋𝜀
∞
𝑏𝜀

, 𝑌∞
)

= 0 and lim
𝜀→0

dTV

(

𝑋𝜀
∞
𝑏𝜀

, 𝑌∞
)

= 0, (C.1)

where (𝑏𝜀, 𝜀 ∈ [0, 1)) is defined in (2.9). In particular,

lim
𝜀→0

dTV(𝑋𝜀
∞, 𝑋

𝜀
∞) = lim

𝜀→0
dTV(𝜇𝜀, ̃𝜇𝜀) = 0. (C.2)

The following two lemmas will be instrumental for the proof of Lemma C.1.

Lemma C.2 (Uniform Convergence of the Potentials). Under the same hypotheses of Lemma C.1, for any 𝐾 > 0 it follows that

lim
𝜀→0

sup
|𝑧|≤𝐾

|

|

|

|

𝑉 (𝑏𝜀𝑧)
𝜀

− 𝑉0(𝑧)
|

|

|

|

= 0 (C.3)

and

lim
𝜀→0

sup
|𝑧|≤𝐾

|

|

|

|

|

𝑉 (𝑏𝜀𝑧)
𝜀

− 𝑉0(𝑧)
|

|

|

|

|

= 0. (C.4)

where 𝑉0(𝑧) = (2 + 𝛼)−1𝐶0|𝑧|
2+𝛼 for any 𝑧 ∈ R with 𝛼 and 𝐶0 defined in Hypothesis 1.2. □

Proof. In the sequel, we show (C.3). Let 𝐾 > 0 and 𝜂 > 0 be fixed and define 𝜂 ∶= 𝜂 𝐾−1 > 0. By (2.9), 𝑏𝜀 → 0, as 𝜀 → 0. Now, by
Hypothesis 1.2 there exists 𝜀0 = 𝜀0(𝐾 , ̃𝜂) > 0 such that for any |𝑧| ≤ 𝐾 and 𝜀 < 𝜀0,

𝐶0|𝑧|
1+𝛼sgn(𝑧) − 𝜂 < 𝑉 ′(𝑏𝜀𝑧)

𝑏1+𝛼𝜀
< 𝐶0|𝑧|

1+𝛼sgn(𝑧) + 𝜂 .

If we integrate each term from 0 to 𝑥 in the above inequality, use Hypothesis 1.1 and note that, by (2.9), 𝑏2+𝛼𝜀 = 𝜀 we obtain that
for any |𝑧| ≤ 𝐾 and 𝜀 < 𝜀0

sup
|𝑧|≤𝐾

|

|

|

|

𝑉 (𝑏𝜀𝑧)
𝜀

− 𝑉0(𝑧)
|

|

|

|

≤ 𝜂 𝐾 = 𝜂 .

Since 𝜂 > 0 is arbitrary, the proof of (C.3) is complete.
By construction, we stress that 𝑉 also satisfies Hypotheses 1.1 and 1.2. Hence the proof of (C.4) is analogous. □

Lemma C.3 (Convergence of the Normalizing Constants). Under the same hypotheses of Lemma C.1 it follows that

lim
𝜀→0

𝑏𝜀𝐶
−1
𝜀 = 𝐶 (C.5)

and

lim
𝜀→0

𝑏𝜀𝐶
−1
𝜀 = 𝐶 . (C.6)

Proof. By the change of variables 𝑧↦ 𝑏𝜀𝑧 we obtain that 𝐶𝜀
𝑏𝜀

= ∫R 𝑒
− 2
𝜀 𝑉 (𝑏𝜀𝑧)d𝑧. Now, by Lemma C.2 and Fatou’s lemma we have

𝐶 = ∫R
𝑒−2𝑉0(𝑧)d𝑧 ≤ lim inf

𝜀→0 ∫R
𝑒−

2
𝜀 𝑉 (𝑏𝜀𝑧)d𝑧 = lim inf

𝜀→0

𝐶𝜀
𝑏𝜀
.

Similarly, for 𝑉 we obtain

𝐶 ≤ lim inf 𝐶𝜀 . (C.7)

𝜀→0 𝑏𝜀
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We next show that lim sup𝜀→0
𝐶𝜀
𝑏𝜀

≤ 𝐶. Note first that

lim sup
𝜀→0

𝐶𝜀
𝑏𝜀

≤ lim
𝐾→∞

lim sup
𝜀→0 ∫

|𝑧|≤𝐾
𝑒−

2
𝜀 𝑉 (𝑏𝜀𝑧)d𝑧 + lim

𝐾→∞
lim sup
𝜀→0 ∫

|𝑧|>𝐾
𝑒−

2
𝜀 𝑉 (𝑏𝜀𝑧)d𝑧.

By Lemma C.2, the dominated convergence theorem, and the monotone convergence theorem we obtain that

lim
𝐾→∞

lim sup
𝜀→0 ∫

|𝑧|≤𝐾
𝑒−

2
𝜀 𝑉 (𝑏𝜀𝑧)d𝑧 = lim

𝐾→∞∫
|𝑧|≤𝐾

𝑒−2𝑉0(𝑧)d𝑧 = 𝐶 .

Similarly, for 𝑉 we obtain

lim
𝐾→∞

lim sup
𝜀→0 ∫

|𝑧|≤𝐾
𝑒−

2
𝜀 𝑉 (𝑏𝜀𝑧)d𝑧 = 𝐶 . (C.8)

It remains to show that

lim
𝐾→∞

lim sup
𝜀→0 ∫

|𝑧|>𝐾
𝑒−

2
𝜀 𝑉 (𝑏𝜀𝑧)d𝑧 = 0 (C.9)

and

lim
𝐾→∞

lim sup
𝜀→0 ∫

|𝑧|>𝐾
𝑒−

2
𝜀 𝑉 (𝑏𝜀𝑧)d𝑧 = 0. (C.10)

In the sequel, we give the proof of (C.9), which we divide in two cases, depending on whether 𝛽 ≥ 𝛼 or 𝛽 < 𝛼, where 𝛼 and 𝛽 are
efined in Hypotheses 1.2 and 1.4, respectively. Note first that by Hypothesis 1.2 for any 𝛿 > 0 there is 𝑐0(𝛿) > 0 such that for any
𝑧 with |𝑧| ≤ 𝛿

|

|

𝑉 ′(𝑧)|
|

≥ 𝑐0(𝛿) |𝑧|
1+𝛼 . (C.11)

Assume that 𝛽 ≥ 𝛼. By Hypotheses 1.1 and 1.4 there is an 𝑅 > 1 and 𝑐 > 0 such that for any 𝑧 with |𝑧| ≥ 𝑅0,
|

|

𝑉 ′(𝑧)|
|

≥ 𝑐 |𝑧|1+𝛽 ≥ 𝑐 |𝑧|1+𝛼 . (C.12)

By (C.11) and (C.12) there is a 𝑐1(𝛿) > 0 such that for any 𝑧 ∈ R, |
|

𝑉 ′(𝑧)|
|

≥ 𝑐1(𝛿) |𝑧|
1+𝛼 . Since 𝑉 ′(𝑧) = 𝑉 ′(|𝑧|)sgn(𝑧) and 𝑉 (0) = 0, if

e compute the integral from 0 to 𝑧 of both sides of (C.12) we obtain that there is a 𝑐(𝛿) > 0 such that 𝑉 (𝑧) ≥ 𝑐(𝛿) |𝑧|2+𝛼 for any
∈ R. The preceding inequality implies that −𝑉 (𝑏𝜀𝑧) ≤ −𝑐(𝛿)𝑏2+𝛼𝜀 |𝑧|2+𝛼 which together with 𝑏2+𝛼𝜀 = 𝜀 yields that

lim
𝐾→∞

lim sup
𝜀→0 ∫

|𝑧|>𝐾
𝑒−

2
𝜀 𝑉 (𝑏𝜀𝑧)d𝑧 ≤ lim

𝐾→∞
lim sup
𝜀→0 ∫

|𝑧|>𝐾
𝑒−2𝑐(𝛿)|𝑧|

2+𝛼
d𝑧 = 0. (C.13)

This completes the case 𝛽 ≥ 𝛼.
Now, we assume that −1 < 𝛽 < 𝛼. Since 𝑉 satisfies Hypothesis 1.4, we may now take 𝑅0 ≥ [(2 + 𝛼)(2 + 𝛽)−1]

1
𝛼−𝛽 and let

0(𝛿) ∶= min{𝑉 ′(𝑧)|𝑧|−1−𝛼 ∶ 𝛿 ≤ 𝑧 ≤ 𝑅0}, where 𝛿 > 0 is given in (C.11). Note that 𝜅0(𝛿) > 0 and that 𝑘1(𝛿) ∶= min{𝑐0(𝛿), 𝜅0(𝛿)} > 0
is such that 𝑉 ′(𝑧) ≥ 𝑘1(𝛿)𝑧1+𝛼 for 𝑧 ∈ [0, 𝑅0]. Now, by Hypothesis 1.4 there is 𝑐 > 0 such that 𝑉 ′(𝑧) ≥ 𝑐 𝑧1+𝛽 for any 𝑧 ≥ 𝑅0 and
herefore, for 𝑐 = 𝑐(𝛿) ∶= min{𝑘1(𝛿), 𝑐} > 0

𝑉 ′(𝑧) ≥

{

𝑐 𝑧1+𝛼 for 𝑧 ∈ [0, 𝑅0],
𝑐 𝑧1+𝛽 for 𝑧 > 𝑅0.

As 𝑉 (0) = 0, integrating from 0 to 𝑧 in the both sides of the above inequality we obtain

𝑉 (𝑧) ≥
⎧

⎪

⎨

⎪

⎩

𝑐 𝑧2+𝛼(2 + 𝛼)−1 for 𝑧 ∈ [0, 𝑅0],
𝑐 𝑧2+𝛽
(2+𝛽) + 𝑐

[𝑅2+𝛼
0
2+𝛼 −

𝑅2+𝛽
0

(2+𝛽)

]

for 𝑧 > 𝑅0.

Since 𝑅0 ≥ [(2 + 𝛼)(2 + 𝛽)−1]
1
𝛼−𝛽 , it follows that

𝑅2+𝛼
0
2+𝛼 −

𝑅2+𝛽
0
2+𝛽 ≥ 0, and because 𝑉 is an even function we deduce the existence of

= 𝜅(𝛿) > 0 such that

𝑉 (𝑧) ≥

{

𝜅|𝑧|2+𝛼 for |𝑧| ≤ 𝑅0,
𝜅|𝑧|2+𝛽 for |𝑧| ≥ 𝑅0.

Since 𝑏2+𝛼𝜀 = 𝜀 and 𝑏2+𝛽𝜀 ∕𝜀 = 𝑏𝛽−𝛼𝜀 = 𝑏−|𝛽−𝛼|𝜀 → ∞ as 𝜀 → 0, the dominated convergence theorem yields

lim
𝐾→∞

lim sup
𝜀→0 ∫

|𝑧|>𝐾
𝑒−

2
𝜀 𝑉 (𝑏𝜀𝑧)d𝑧 = lim

𝐾→∞
lim sup
𝜀→0 ∫

|𝑧|>𝐾
𝑒−

2
𝜀 𝑉 (𝑏𝜀𝑧)

(

1
|𝑏𝜀𝑧|≤𝑅0

+ 1
|𝑏𝜀𝑧|>𝑅0

)

d𝑧

≤ lim
𝐾→∞

lim sup
𝜀→0

(

∫
|𝑧|>𝐾

𝑒−2𝜅|𝑧|
2+𝛼

d𝑧 + ∫
|𝑧|>𝐾

𝑒−2𝜅 𝑏𝛽−𝛼𝜀 |𝑧|2+𝛽 d𝑧
)

= lim
𝐾→∞∫

|𝑧|>𝐾
𝑒−2𝜅|𝑧|

2+𝛼
d𝑧 = 0.

(C.14)

This completes the case −1 < 𝛽 < 𝛼.
Combining (C.13) and (C.14) we obtain (C.9). This finishes the proof of (C.5).
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In the sequel, we stress that (C.6) is just a consequence from above case 𝛽 ≥ 𝛼. Indeed, by (C.7) and (C.8), it is enough to
show (C.10). Since 𝑉 satisfies Hypothesis 1.4 with 𝛽 = 𝛼, the proof is already covered in (C.13).

The proof of Lemma C.3 is finished. □

Proof of Lemma C.1. By (3.21), (3.22) and Scheffé’s lemma ([39, Lemma 3.3.2, p.95]), to obtain (C.1), it suffices to note that
Lemma C.2 and Lemma C.3 imply that

lim
𝜀→0

𝑏𝜀
𝐶𝜀
𝑒−2

𝑉 (𝑏𝜀𝑧)
𝜀 = 1

𝐶
𝑒−2𝑉0(𝑧) for any 𝑧 ∈ R

and

lim
𝜀→0

𝑏𝜀
𝐶𝜀
𝑒−2

𝑉 (𝑏𝜀𝑧)
𝜀 = 1

𝐶
𝑒−2𝑉0(𝑧) for any 𝑧 ∈ R. □

Appendix D. Complements

In this section we include, for completeness of the exposition, a few results that have been used throughout the text with a brief
xplanation.

Proof of Lemma 2.1. We apply Theorem 3.3.4 of [20, Ch. 3, p.91]. By Hypothesis 1.4 for all |𝑧| ≥ 𝑅 we have −𝑉 ′(𝑧) 𝑧
|𝑧|1+𝜅

≤ −𝑐|𝑧|𝜌−𝜅

for any 𝜅 ∈ (0, 𝜌), and therefore

lim
|𝑧|→∞

(

−𝑉 ′(𝑧)𝑧|𝑧|−1−𝜅
)

= −∞ < 0.

Hence, the field −𝑉 ′ satisfies the drift condition eq. (3.3.4) in [20, Ch. 3, p.86]. By Theorem 3.3.4 of [20] we have the existence
and uniqueness of the invariant measure 𝜇𝜀. In addition, for any 𝑐 > 0 there are 𝐶1 = 𝐶1(𝑐 , 𝜅 , 𝜀) > 0 and 𝐶2 = 𝐶2(𝑐 , 𝜅 , 𝜀) > 0 such
hat

dTV(𝑋𝜀
𝑡 (𝑥), 𝑋𝜀

𝑡 (𝑦)) ≤ 𝐶1𝑒
−𝐶2𝑡(𝑒𝑐|𝑥| + 𝑒𝑐|𝑦|) for any 𝑥, 𝑦 ∈ R, 𝑡 ≥ 0.

By Hypothesis 1.4, we have ∫R 𝑒
𝑐|𝑧|𝜇𝜀(d𝑧) <∞. Therefore, Theorem 3.3.4 in [20] yields (2.3). Moreover, formula (2.4) follows from

Proposition 4.2 in [101, p. 110]. □

Let 2 represent the set of twice continuously differentiable functions 𝑓 ∶ R → R. □

Lemma D.1 (Existence of a Regular Potential). Assume that 𝑉 satisfies Hypothesis 1.1 and Hypothesis 1.2 with 𝛼 > 0. For each 𝑀 > 0,
there exist an even 2 convex function 𝑉𝑀 = 𝑉𝑀 ,𝛼 ∶ R → [0,∞) and positive constants 𝑐 = 𝑐𝑀 ,𝛼 , 𝐶 = 𝐶𝑀 ,𝛼 and 𝑅 = 𝑅𝑀 ,𝛼 such that

𝑉𝑀 (𝑧) = 𝑉 (𝑧) for |𝑧| ≤𝑀 (D.1)

and

𝑉 ′
𝑀 (𝑧) ≥ 𝑐 𝑧1+𝛼 and |𝑉 ′

𝑀 (𝑧)| ≤ 𝐶 𝑒𝑧2 for all 𝑧 ≥ 𝑅. (D.2)

In particular, the potential 𝑉𝑀 satisfies Hypotheses 1.1, 1.2 and 2.2.

Proof. The proof follows by a standard mollifier procedure. We mimic the lines given in Proposition 4.10 of [31]. Let 𝑔 ∶ R → [0, 1]
be an increasing ∞-function such that 𝑔(𝑢) = 0 for 𝑢 ≤ 1∕2, 𝑔(𝑢) = 1 for 𝑢 ≥ 1, and 𝑔(𝑢) ∈ (0, 1) for all 𝑢 ∈ (1∕2, 1). Let 𝑀 > 0 be
fixed and define

𝐺𝑀 (𝑢) =
(

1 − 𝑔
(

𝑢2

2𝑀2

))

𝑉 ′′(𝑢) + 𝑔
(

𝑢2

2𝑀2

)

|𝑢|𝛼 for all 𝑢 ∈ R.

Observe that 𝐺𝑀 (𝑢) = 𝑉 ′′(𝑢) for all |𝑢| ≤ 𝑀 , and 𝐺𝑀 (𝑢) = |𝑢|𝛼 for all |𝑢| ≥
√

2𝑀 . We note that 𝐺𝑀 is a non-negative continuous
unction and then we set 𝐻𝑀 (𝑢) ∶= ∫ 𝑢0 𝐺𝑀 (𝑦)d𝑦 for all 𝑢 ∈ R. Finally we define 𝑉𝑀 (𝑧) ∶= ∫ |𝑧|

0 𝐻𝑀 (𝑢)d𝑢 for all 𝑧. Since 𝐺𝑀 is an even
function, it follows that 𝐻𝑀 is odd and 𝑉𝑀 is again even. Now, since 𝑉𝑀 (0) = 𝑉 (0) = 0, 𝑉 ′

𝑀 (0) = 𝑉 ′(0) = 0 and 𝑉 ′′
𝑀 (𝑧) = 𝑉 ′′(𝑧) for

≤ 𝑀 it follows that 𝑉𝑀 satisfies (D.1). Moreover, since there is 𝐶 > 0 for which |𝑢|𝛼 ≤ 𝐶 exp(𝑢2) for all 𝑢 ∈ R it follows that 𝑉𝑀
satisfies (D.2). □

Proposition D.2 (Disintegration Inequality). Suppose that {𝑋(𝑥) = (𝑋𝑡(𝑥), 𝑡 ≥ 0), 𝑥 ∈ 𝑆} and 𝑌 = {𝑌 (𝑦) = (𝑌𝑡(𝑦), 𝑡 ≥ 0), 𝑦 ∈ 𝑆} are
arkov families on the measurable space (𝑆 ,) and defined on the same probability space (𝛺 , ,P). Then, for all 𝑟, 𝑠 > 0, 𝑎, 𝑏 ∈ 𝑆, the

ollowing disintegration inequality for the total variation distance holds:

dTV
(

𝑋𝑟+𝑠(𝑎), 𝑌𝑟+𝑠(𝑏)
)

≤ ∫𝑆2
dTV

(

𝑋𝑠(𝑥), 𝑌𝑠(𝑦)
)

P(𝑋𝑟(𝑎) ∈ d𝑥, 𝑌𝑟(𝑏) ∈ d𝑦).
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Proof. Write 𝑡 = 𝑟 + 𝑠. Since the families {𝑋(𝑥), 𝑥 ∈ 𝑆} and {𝑌 (𝑦), 𝑦 ∈ 𝑆} are Markovian and are defined on the same probability
space, for any 𝑎 ∈ 𝑆 and 𝐵 ∈  we have that

P(𝑋𝑡(𝑎) ∈ 𝐵) = ∫𝑆
P(𝑋𝑠(𝑥) ∈ 𝐵)P(𝑋𝑟(𝑎) ∈ d𝑥) = ∫𝑆2

P(𝑋𝑠(𝑥) ∈ 𝐵)P(𝑋𝑟(𝑎) ∈ d𝑥, 𝑌𝑟(𝑎) ∈ d𝑦). (D.3)

Similarly, we have that

P(𝑌𝑡(𝑎) ∈ 𝐵) = ∫𝑆2
P(𝑌𝑠(𝑦) ∈ 𝐵)P(𝑋𝑟(𝑎) ∈ d𝑥, 𝑌𝑟(𝑎) ∈ d𝑦). (D.4)

Therefore, from the definition of total variation distance, together with (D.3) and (D.4) we obtain that
dTV

(

𝑋𝑡(𝑎), 𝑌𝑡(𝑏)
)

= sup
𝐵∈

|

|

|

P
(

𝑋𝑡(𝑎) ∈ 𝐵
)

− P
(

𝑌𝑡(𝑏
)

∈ 𝐵)||
|

= sup
𝐵∈

|

|

|

|

∫𝑆2

(

P
(

𝑋𝑠(𝑥) ∈ 𝐵
)

− P
(

𝑌𝑠(𝑦) ∈ 𝐵
)

)

P
(

𝑋𝑟(𝑎) ∈ d𝑥, 𝑌𝑟(𝑏) ∈ d𝑦)||
|

|

≤ ∫𝑆2
dTV

(

𝑋𝑠(𝑥), 𝑌𝑠(𝑦)
)

P
(

𝑋𝑟(𝑎) ∈ d𝑥, 𝑌𝑟(𝑏) ∈ d𝑦).

□

Proposition D.3 (Support Theorem for Diffusions). For any 𝑥 ∈ R and 𝜀 ∈ [0, 1] let 𝑌 𝜀(𝑥) = (𝑌 𝜀𝑡 (𝑥), 𝑡 ≥ 0) be the solution of (3.15). For
each fixed 𝑡 > 0, the law of 𝑌 𝜀𝑡 (𝑥) is absolutely continuous with respect to the Lebesgue measure and it has full support on R.

Proof. Fix 𝜀 ∈ [0, 1]. Now, write for simplicity 𝑌𝑡 = 𝑌 𝜀𝑡 (𝑥), 𝐹 = 𝐹𝜀 and note that, almost surely, for every 𝑡 ≥ 0

𝑌𝑡 = 𝑥 + ∫

𝑡

0
𝐹 (𝑌𝑠) d𝑠 + 𝐵𝑡. (D.5)

The proof is done in two steps. On the first step, following the ideas in [102], we prove that for any 𝑡 > 0 the law of 𝑌𝑡 denoted by
𝜇𝑡 is absolutely continuous with respect to the Lebesgue measure on R. Let 𝜌𝑡 represent a density of 𝜇𝑡, i.e. for any 𝑎, 𝑏 ∈ R with
 < 𝑏

P(𝑌𝑡 ∈ [𝑎, 𝑏]) = 𝜇𝑡([𝑎, 𝑏]) = ∫

𝑏

𝑎
𝜌𝑡(𝑧) d𝑧.

On the second step, we prove, with the help of the maximum principle in [103], that 𝜌𝑡+𝑠(𝑧) > 0 for all 𝑧 ∈ R. Since 𝑡 > 0 and 𝑠 > 0
are arbitrary, this completes the proof that 𝜇𝑡(d𝑧) = 𝜌𝑡(𝑧)d𝑧 with 𝜌𝑡(𝑧) > 0 for all 𝑡 > 0, i.e. the law of 𝑌𝑡 has full support.

We remark that a standard localization argument is not straightforward with the methods in [102]. Indeed, as the authors
themselves say

‘‘Our result might be deduced from [Aronson-1968] by a localization argument, however, we did not succeed in this
direction’’.

Step 1. We adapt to our case the proof of Theorem 2.1 in [102]. This means that d𝑌𝑡 = 𝑏(𝑌𝑡)d𝑡 + 𝜎(𝑌𝑡)d𝐵𝑡 with 𝑏(𝑧) = 𝐹 (𝑧) and
(𝑧) = 1 for all 𝑧 ∈ R. Since 𝑏 is not bounded by a linear function we cannot apply Theorem 2.1 in [102] directly. However, the

field 𝐹 is convex and drives the trajectories towards the origin which allows us to obtain 𝐿2 bounds and replicate the main steps in
the proof. Moreover, the noise term is simpler and this allows us to ignore the auxiliary function 𝑓𝛿 defined in Lemma 1.2 in [102].

Now, for 𝛿 ∈ (0, 𝑡), consider the random variable 𝑍𝛿 ∶= 𝑌𝑡−𝛿 + 𝐵𝑡 − 𝐵𝑡−𝛿 . Note that for any 𝑏 ∈ R
|

|

E[exp(𝗂𝑏𝑍𝛿)|𝑡−𝛿]|| =
|

|

|

exp(𝗂𝑏𝑌𝑡−𝛿 − 𝛿 𝑏2∕2)||
|

= exp(−𝛿 𝑏2∕2), (D.6)

where (𝑡, 𝑡 ≥ 0) is the natural filtration of the Brownian motion 𝐵 = (𝐵𝑡, 𝑡 ≥ 0) and 𝗂 is the unit imaginary. By (D.5) it follows that

𝑌𝑡 −𝑍𝛿 = ∫

𝑡

𝑡−𝛿
𝐹 (𝑌𝑠) d𝑠.

By (B.13), there is 𝐶 = 𝐶𝑡 such that sup𝑠∈[0,𝑡] E[|𝐹 (𝑌𝑠)|2] ≤ 𝐶2 and therefore by Jensen’s and Cauchy–Schwarz’s inequalities
(

E[|
|

𝑌𝑡 −𝑍𝛿||]
)2 ≤ E[|

|

𝑌𝑡 −𝑍𝛿||
2] = E

[

(

∫

𝛿

0
𝐹 (𝑌𝑡−𝛿+𝑠) d𝑠

)2
]

≤ 𝛿 ∫

𝛿

0
E[|
|

𝐹 (𝑌𝑡−𝛿+𝑠)||
2] ≤ 𝐶2𝛿2. (D.7)

Let 𝜇𝑡 be the law of 𝑌𝑡 and let 𝜇𝑡 be the characteristic function of 𝜇𝑡 defined by 𝜇𝑡(𝑏) ∶= E[exp(𝗂𝑏𝑌𝑡)]. We note that for any 𝛿 ∈ (0, 𝑡)
and 𝑏 ∈ R, by (D.6) and (D.7), we have

|

|

𝜇𝑡(𝑏)|| = |

|

E[exp(𝗂𝑏𝑌𝑡)]|| ≤ |

|

E[exp(𝗂𝑏𝑍𝛿)]|| + |𝑏|E[|
|

𝑌𝑡 −𝑍𝛿||] ≤ exp(−𝛿 𝑏2∕2) + 𝐶 |𝑏| 𝛿 . (D.8)

Let 𝑅𝑡 > 0 be such that (log |𝑏|)2∕𝑏2 < 𝑡 when |𝑏| > 𝑅𝑡. For each 𝑏 with |𝑏| ≥ 𝑅𝑡 we choose 𝛿𝑏 ∶= (log |𝑏|)2∕𝑏2 and so the bound
in (D.8) implies that

|

|

𝜇𝑡(𝑏)|| ≤ exp(−𝛿𝑏𝑏2∕2) + 𝐶 |𝑏| 𝛿𝑏 = exp(−(log |𝑏|)2∕2) + 𝐶(log |𝑏|)2∕𝑏.

Since |

|

𝜇𝑡(𝑏)|| ≤ 1 for all 𝑏 ∈ R it follows that ∫ ∞
−∞

|

|

𝜇𝑡(𝑏)||
2 d𝑏 < ∞ and so, by Lemma 1.1 in [102] it follows that 𝜇𝑡 has density in R.

Step 2. Note that 𝜌𝑡+𝑠 is the solution of
𝐿𝑢 + 𝐹 ′𝑢 = 0 (D.9)
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at time 𝑠 with initial condition 𝜌𝑡 where 𝐿𝑢 ∶= 𝜕𝑡𝑢−
1
2 (𝜕𝑥)

2𝑢+ 𝐹 𝜕𝑥𝑢. By Theorem 3 in [103], (𝜌𝑡+ℎ, ℎ ≥ 0) is a non-negative solution
of (D.9) and therefore either 𝜌𝑡+𝑠(𝑧) > 0 for all 𝑧 ∈ R or 𝜌𝑡+𝑠(𝑧) = 0 for all 𝑧 ∈ R, and since ∫R 𝜌𝑡+𝑠(𝑧)d𝑧 = 1 it follows that 𝜌𝑡+𝑠(𝑧) > 0
or all 𝑧 ∈ R. This concludes the proof. □

We conclude this section with the following result.

Lemma D.4 (Monotonicity and Continuity). For all 𝑥 ∈ R the function 𝑡↦ 𝐺𝑡(𝑥) defined in (3.2) is continuous and strictly decreasing in 𝑡.
Proof. Let 𝑥 ∈ R be fixed. By the triangle inequality for all 𝑡 > 0 and 𝑠 > 0 we have

|

|

𝐺𝑥(𝑡) − 𝐺𝑥(𝑠)|| ≤ dTV(𝑌𝑡(sgn(𝑥)∞), 𝑌𝑠(sgn(𝑥)∞)).

Then it is enough to show that the right-hand side of the preceding inequality tends to zero as 𝑡 → 𝑠. For short, we write
𝑌𝑢 = 𝑌𝑢(sgn(𝑥)∞), 𝑢 ≥ 0. By Proposition D.3 it follows that for every 𝑡 > 0, the law of 𝑌𝑡 is absolutely continuous with respect
to the Lebesgue measure and has a full support density 𝜌𝑡(𝑦). Moreover, (𝜌𝑡(𝑦))𝑡≥0 solves the so-called Fokker–Planck equation

𝜕𝑡𝜌𝑡(𝑦) = 1
2
𝜕2𝑦𝜌𝑡 − 𝜕𝑦(𝐹0(𝑦)𝜌𝑡(𝑦)),

where 𝐹0 is as defined in (3.14), see for instance [23, Section 2.2]. Then lim𝑡→𝑠 𝜌𝑡(𝑦) = 𝜌𝑠(𝑦) for all 𝑦 ∈ R and therefore by Scheffé’s
lemma, see [39, Lemma 3.3.2, p.95], we have lim𝑡→𝑠 dTV(𝑌𝑡, 𝑌𝑠) = 0. This completes the proof that 𝑡↦ 𝐺𝑡(𝑥) is continuous.

We now turn to the proof that 𝐺𝑡(𝑥) is strictly decreasing in 𝑡. Recall that 𝐺𝑥(𝑡) = dTV
(

𝑌𝑡(sgn(𝑥)∞), 𝜈) for 𝑡 ≥ 0. Let 𝑥 ∈ R and
 > 0 be fixed. By (3.24) we have 𝐺𝑥(𝑡) < 1. For short let 𝜃𝑥,𝑡 ∶= 𝐺𝑥(𝑡) and denote the law of 𝑌𝑡(sgn(𝑥)∞) by 𝜇𝑥,𝑡. Let (𝑃𝑠)𝑠≥0 be

the semigroup associated to the Markov process (𝑌𝑠(𝑧), 𝑠 ≥ 0, 𝑧 ∈ R) and note the invariance 𝑃𝑠(𝜈) = 𝜈, 𝑠 ≥ 0. Since 𝜃𝑥,𝑡 is the total
ariation distance between 𝑌𝑡(sgn(𝑥)∞) and 𝜈, there exists a coupling between 𝜇𝑥,𝑡 and 𝜈 such that 𝜇𝑥,𝑡 = (1 − 𝜃𝑥,𝑡)𝜈 + 𝜃𝑥,𝑡𝜂𝑥,𝑡, where
𝑥,𝑡 is a probability measure on R. By the semigroup property we have for any 𝑠 > 0

dTV(𝜇𝑥,𝑡+𝑠, 𝜈) = dTV(𝑃𝑠(𝜇𝑥,𝑡), 𝜈) = dTV((1 − 𝜃𝑥,𝑡)𝑃𝑠(𝜈) + 𝜃𝑥,𝑡𝑃𝑠(𝜂𝑥,𝑡), 𝜈)
= dTV((1 − 𝜃𝑥,𝑡)𝜈 + 𝜃𝑥,𝑡𝑃𝑠(𝜂𝑥,𝑡), 𝜈) = 𝜃𝑥,𝑡dTV(𝑃𝑠(𝜂𝑥,𝑡), 𝜈).

Now, we claim that dTV(𝑃𝑠(𝜂𝑥,𝑡), 𝜈) < 1. Indeed, by disintegration we have

dTV(𝑃𝑠(𝜂𝑥,𝑡), 𝜈) ≤ ∫R
dTV(𝑃𝑠(𝑧), 𝜈)𝜂𝑥,𝑡(d𝑧) = ∫R

𝐺𝑧(𝑠)𝜂𝑥,𝑡(d𝑧).

Hence, dTV(𝑃𝑠(𝜂𝑥,𝑡), 𝜈) = 1 if and only if 𝐺𝑧(𝑠) = 1 for 𝑧-almost surely with respect to the measure 𝜂𝑥,𝑡. This yields a contradiction
with (3.24) and hence the proof that the function 𝐺𝑥 is strictly decreasing is finished. □
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