
Geometriae Dedicata          (2025) 219:33 
https://doi.org/10.1007/s10711-025-00997-5

ORIG INAL PAPER

3d Farey graph, lambda lengths and SL2-tilings

Anna Felikson1 ·Oleg Karpenkov2 · Khrystyna Serhiyenko3 · Pavel Tumarkin1

Received: 22 September 2023 / Accepted: 25 February 2025
© The Author(s) 2025

Abstract
We explore a three-dimensional counterpart of the Farey tessellation and its relations to
Penner’s lambda lengths and SL2-tilings. In particular, we prove a three-dimensional version
of the Ptolemy relation, and generalise results of Short to classify tame SL2-tilings over
Eisenstein integers in terms of pairs of paths in the 3D Farey graph.
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1 Introduction andmain results

We study geometric aspects of the Farey graph over the Eisenstein integers and its realisation
in hyperbolic three-dimensional space as the 1-skeleton of the union of the symmetry planes
(including points at the absolute) of the reflection group of the regular ideal hyperbolic
tetrahedron. Our first main goal is to generalise relations between Penner’s λ-lengths and
SL2(Z)-tilings and to prove a three-dimensional version of the Ptolemy relation. Secondly,
we classify tame SL2-tilings over Eisenstein integers in terms of pairs of paths in the 3D
Farey graph.

The classical notion of the Farey graph, together with its close relatives such as circle
packings, continued fractions, Conway-Coxeter friezes and SL2-tilings, is a subject of large
and ever growing literature. Overviews of different aspects of the theory can be found in [12,
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20, 29]. Moreover, the Farey graph also appears in the study of discrete group of symmetries
of the hyperbolic plane H

2, which has been studied exhaustively. It is then natural to ask
which features of this theory can be generalised or extended to higher dimensions.

There are many natural generalisations of the above mentioned classical notions based
on the substitution of the ring of integers Z with other rings. In 1887 in his fundamental
work [15], A. Hurwitz initiated a systematic study of the continued fractions over C and over
various subrings in C (see also [14]). In 1951, Cassels, Ledermann and Mahler made the
first steps in the Farey graphs for Gaussian and Eisenstein numbers in [5]. A little later in his
paper [27], Schmidt introduced a counterpart of the Farey graph for all imaginary quadratic
fields K = Q(

√−d), where d is square-free, see also paper [34] by Vulakh for further
generalisations (recall that d = 1, 3 correspond to the Gaussian and Eisenstein numbers
considered in [5]). We would also like to mention an essentially different three-dimensional
approach to the Farey graph developed by Beaver and Garrity [2], based onmultidimensional
Farey addition that does not appear in the theory of complex continued fractions (see [28] for
further details). Furthermore, various other objects related to the Farey graph have also been
extended beyond the classical setting. In particular, a three-dimensional analogue of Ford
circles for d = 1 was originally introduced by Ford [11]; for other fields see e.g. [23, 26]. In
[33], Stange studied various circle packings arising from Bianchi groups PSL2(OK ), where
OK is the ring of integers of an imaginary quadratic field K . Coxeter [8] considered examples
of friezes with quadratic irrational entries, Holm and Jorgensen [13] used p-angulations of
polygons to classify friezes with quiddity row consisting of positive integer multiples of
2 cos(π/p).

In this paper, we consider a 3-dimensional analogue of the Farey graph arising from a
tessellation of hyperbolic space H

3 by regular hyperbolic ideal simplices (used in place of a
tessellation ofH

2 by ideal triangles). We call it the tetrahedral graph T . The graph T inherits
many good properties of the classical Farey graph F (see Sect. 3 for details and essential
definitions). In particular, the vertices of T are precisely points of ̂Q(σ ) = Q(σ ) ∪ {∞},
where σ = eiπ/3 = 1

2 + i
√
3
2 , the group of symmetries of T is the Bianchi group Bi(3), and

the edges ofT can be described, similarly to the ones of the Farey graph, via determinants: two
irreducible fractions p/q and r/s ∈ ̂Q(σ ) are joined by an edge if and only if |ps − rq| = 1
(see Sect. 3.2). Furthermore, as for the Farey graph, faces of T can be described via Farey
addition (see Sect. 3.3).

Another property inherited by the tetrahedral graph is the relation with λ-lengths. Given
two points x, y ∈ ∂H

d and a choice of horospheres hx , hy centred at x and y, Penner [24]
introduced the notion of λ-length λxy between x and y as λxy = ed/2, where d is the signed
distance between hx and hy . Penner also showed that for an ideal quadrilateral xyzt , the
corresponding λ-lengths satisfy the Ptolemy relation

λxzλyt = λxyλzt + λyzλxt .

Given two irreducible fractions p/q, r/s ∈ ̂Q(σ ), we can also define the det-length
l(p/q, r/s) as the absolute value of the determinant l(p/q, r/s) = |ps − rq|. We then
choose a distinguished set of horospheres at points of ̂Q(σ ) (see Sect. 4.2; the horospheres
are represented by Ford spheres [26]) and show that λ-lengths computed with respect to these
horospheres coincide with det-lengths.

Theorem 4.12 Let X , Y ∈ ̂Q(σ ) be two irreducible fractions. Let the standard horosphere
be chosen at every point of ̂Q(σ ). Then λXY = lXY .

To prove Theorem 4.12, we first show that λ-lengths between vertices of T satisfy an
analogue of the Ptolemy relation:
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Theorem 4.7 Let A1A2A3A4 be a fundamental tetrahedron of T with vertices in ̂Q(σ ), and
choose any X ∈ ̂Q(σ ) distinct from Ai . Let λi = λX Ai be the λ-length of X Ai , i = 1, . . . , 4.
Then

4
∑

i=1

λ4i =
∑

1≤i< j≤4

λ2i λ
2
j .

We prove Theorem 4.7 in two ways, namely by a direct computation and as a corollary
of the Soddy-Gosset theorem relating the radii of five mutually tangent spheres in R

3. We
then show (in Theorem 4.8) that det-lengths satisfy the same the Ptolemy relation, which
eventually implies Theorem 4.12.

Theorem 4.7 is a particular case of Theorem 4.18 which we state next; the latter can be
considered as a 3-dimensional counterpart of the Ptolemy relation which can be applied to
any five points in ̂C:

Theorem 4.18 Let X1, . . . , X5 ∈ ̂C = ∂H
3 be 5 distinct points. Suppose that there are

horospheres chosen at these points. Let λi j = λXi X j . Then

∑

(i j)(klm)∈S5
λ4i jλ

2
klλ

2
lmλ2mk =

∑

(i jklm)∈S5
λ2i jλ

2
jkλ

2
klλ

2
lmλ2mi ,

where (i j)(klm) and (i jklm) denote cycle decompositions of permutations in the symmetric
group S5.

Next, we apply T to generalise results of Short [30] to classify SL2(Z[σ ])-tilings. A path
(vi ) in T is a (bi-infinite) sequence of vertices of T such that vi and vi+1 are connected by
an edge of T . We normalise the paths by requiring that the expressions vi = pi/qi satisfy
the condition piqi+1 − pi+1qi = 1. We then prove the following result, which is a direct
generalisation of the result of [30].

Theorem 5.20 Given two normalised paths vi = pi/qi and u j = r j/s j , the map (ui , v j ) �→
mi j = pi s j − qir j provides a bijection between equivalence classes of tame SL2(Z[σ ])-
tilings and pairs of paths in T considered up to the simultaneous action of SL2(Z[σ ]) on
both paths.

Here, we say that two SL2(Z[σ ])-tilings are equivalent if one is obtained from the other
by multiplication of even rows by σ k and of odd rows by σ−k , together with multiplication
by σ l (resp. σ−l ) of even (resp. odd) columns.

In fact, the bijection given in Theorem 5.20 can be refined to enumeration of individual
tilings rather than equivalence classes. This is achieved by using T -angle sequences of paths
we introduce in Sect. 6.

Given a path in T , we construct a sequence of numbers from Z[σ ] called a T -angle
sequence of the path (also known as a quiddity sequence for friezes or as an itinerary in
[30]). We then use Theorem 5.20 to provide a geometric interpretation of the classification
of SL2-tilings obtained in [3].

In conclusion, we note that in the classical two-dimensional setting there are also beautiful
connections between the combinatorics of SL2-tilings, triangulations of polygons or more
generally apeirogons, cluster algebras, aswell as the representation theory of quivers. It would
be interesting to see to what extent it is possible to incorporate these ideas into the three-
dimensional setting. One example of connections between cluster algebras and triangulated
three-dimensional hyperbolic manifolds can be found in [22].
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We would also like to note that since the first version of this paper was released several
related works have appeared. In [31], Farey complexes over arbitrary rings are studied and
applied to describe tame SL2-tilings. In [18], a complex analog of Penner’s λ-lengths is used
to provide a counterpart of the Ptolemy relation for skew ideal quadrilaterals inH

3 (this result
can also be proved in a way similar to the one described in Remark 4.20). In particular, in
[18, Theorem 2] a complex version of Theorem 4.12 is proved, which implies our Theorem
4.12 after taking the absolute values.

The paper is organised as follows. In Sect. 2, we recall basic properties of the classical
Farey graph F . In Sect. 3, we introduce the tetrahedral graph T and describe its properties.
Section4 is devoted to establishing various relations on λ-lengths, first between the points of
̂Q(σ ) and then generally in H

3. In Sect. 5, we show that SL2-tilings over Z[σ ] are classified
by pairs of paths in T . In Sect. 6, we describe paths in T in terms of sequences of numbers
from Z[σ ] (T -angles of the paths), we then enumerate SL2-tilings over Z[σ ] by pairs of
infinite sequences (together with an element of SL2(Z[σ ])). Finally, Sect. 7 is devoted to
various remarks, including the connection between paths in T and continued fractions over
Z[σ ], discussion of some properties of T -angles, and generalisation of the results to other
imaginary quadratic fields. We also give a geometric argument to reprove a recent result of
Cuntz and Holm [10] concerning friezes over algebraic numbers.

2 Preliminaries: the Farey graph and its symmetries

In this section we recall some classic notions and definitions. In particular we recall the
definitions of the Farey graph, Farey addition, Ford circles, and the Farey tessellation of the
hyperbolic plane. We also discuss the group of symmetries of the Farey tessellation.

Notation. Throughout the paper we denote ̂C = C ∪ {∞}. We also use the notations ̂R, ̂Q,
̂Z, ̂Z[σ ] for the sets R ∪ {∞}, Q ∪ {∞}, Z ∪ {∞}, and Z[σ ] ∪ {∞} respectively.

2.1 The Farey graph

Definition 2.1 The Farey graph F is an infinite graph whose vertices are ̂Q; two vertices
u, v ∈ ̂Q with irreducible fractions p/q and r/s respectively are connected by an edge if and
only if |ps − rq| = 1.

It is convenient to visualise the Farey graph F by drawing it in the upper half-plane
model of the hyperbolic plane H

2. Namely, we identify H
2 with {z ∈ C | Im(z) > 0} ⊂ ̂C;

its boundary is therefore identified with ̂R. Then the vertices of the graph F are naturally
identified with rational points of the absolute; for each edge uv in the graph F we draw a
hyperbolic line connecting u and v (i.e. a semicircle with endpoints at u and v), see Fig. 1.

Observe that the geodesic semicircles representing any two distinct edges of the graph
do not intersect each other in H

2, however they might have a common vertex on the abso-
lute. Moreover, the obtained diagram is a tessellation of H

2 by ideal triangles (i.e. geodesic
triangles with vertices at the absolute); we call it the Farey tessellation.
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Fig. 1 The Farey graph

2.2 Farey addition in ̂Q and ideal triangles in the tessellation

Given an edge connecting p/q with r/s in the Farey graph (we assume q > 0, s ≥ 0), the
third vertex of the triangle lying right below this edge is given by Farey addition, i.e.

p

q
⊕ r

s
= p + r

q + s
,

see Fig. 1, right. One can check that the third vertex of the triangle lying right above the edge
can be written by p

q � r
s = p−r

q−s , and that in terms of hyperbolic geometry the two triangles
can be obtained from each other by applying a reflection with respect the hyperbolic line
connecting p/q with r/s. Note that u � v = v � u.

2.3 Symmetry group ofF

Recall that the group PSL2(Z) naturally acts on the upper half-plane, here for every

(

a b
c d

)

∈
SL2(Z) we consider the mapping z → az+b

cz+d . This action preserves the value |ps − rq| for
every two irreducible fractions p/q, r/s ∈ ̂Q. Therefore, every element of PSL2(Z) takes
the Farey graph to itself. Thus, we can identify PSL2(Z) with a subgroup of symmetries of
F .

In fact, PSL2(Z) is the group of orientation-preserving symmetries of F . This group is
an index 2 subgroup of the group of all symmetries ofF , the latter is generated by reflections
with respect to the the sides of the ideal triangle with vertices 0, 1,∞. The group PSL2(Z)

acts transitively on the vertices ofF , on the edges ofF , and on the triangles in the tessellation.

2.4 Ford circles

Consider the Euclidean circle of (Euclidean) radius 1/2 tangent to the real axis at the point 0
(in terms of hyperbolic geometry it represents a horocycle). The action of PSL2(Z) takes this
circle to infinitely many circles tangent to the real axis at each rational point, see Fig. 2. All
such circles are called Ford circles. Observe that for every pair of rational points connected
by an edge in the Farey graph the corresponding Ford circles are tangent (while all other
circles in the family are disjoint).
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Fig. 2 Ford circles

3 3D Farey graph: tetrahedral graph T

Recall that we denote σ = eiπ/3 = 1+i
√
3

2 . Let Q(σ ) be the field of fractions of the ring
Z[σ ].

3.1 Tetrahedral graphT and its symmetries

Consider a regular ideal tetrahedron T ⊂ H
3 with vertices (0, 1, σ,∞). Let H be the group

generated by reflections with respect to the faces of T .
The group H acts discretely onH

3 and T is a fundamental domain for the action. Through-
out the paper we call all images of T under the action of H fundamental tetrahedra.

Definition 3.1 (Tetrahedral graph, tetrahedral tiling) Denote by T the tiling of H
3 by tetra-

hedra hT , h ∈ H , and denote by T0, T1, T2, and T3, the sets of all vertices, edges, faces, and
tetrahedra themselves of the tetrahedra in the tiling respectively.

The following proposition is due to Bianchi [4].

Proposition 3.2 The set of vertices of T is ̂Q(σ ). The symmetry group of T is the Bianchi
group Bi(3) = PGL2(Z[σ ])�〈τ 〉, where τ is complex conjugation. The group PGL2(Z[σ ])
of orientation-preserving symmetries of T acts transitively on T0 and T1.

3.2 Edges inT and det-length

First, we recall the notion of irreducible fractions.

Definition 3.3 (Irreducible fractions in ̂Q(σ )) A fraction is an expression p
q , p, q ∈ Z[σ ]. A

fraction p
q is irreducible if for any k ∈ Z[σ ] such that p = kp′, q = kq ′ with p′, q ′ ∈ Z[σ ]

one has |k| = 1.

Note that the ringZ[σ ] has six units, i.e. six powers of σ . Thus, if the fraction p/q ∈ ̂Q(σ )

is irreducible, then the other five irreducible fractions pσ i/qσ i for i = 1, . . . , 5 represent
the same element of ̂Q(σ ).

Remark 3.4 It is an easy observation that PGL2(Z[σ ]) takes irreducible fractions to irre-
ducible fractions.
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Definition 3.5 (Det-length) Given two irreducible fractions zi = pi
qi
, pi , qi ∈ Z[σ ], i = 1, 2,

define det-length l(z1, z2) by

l(z1, z2) =
∣

∣

∣

∣

det

(

p1 p2
q1 q2

)∣

∣

∣

∣

.

Remark 3.6 Assume that z1, z2 ∈ Q. Then the value of det-length l(z1, z2) coincides with
the integer sine of the integer lattice angle with vertex at the origin and edges passing through
(z1, 1) and (z2, 1) respectively, which is equal to the index of the sublattice generated by
integer points of these two edges in the integer lattice (see, e.g., [16]).

Although the following proposition is well known, we give a proof for completeness.

Proposition 3.7 The group PGL2(Z[σ ]) preserves the det-length l.

Proof Let an element of PGL2(Z[σ ]) be represented by M =
(

a b
c d

)

∈ GL2(Z[σ ]). Let
p/q and m/n be two irreducible fractions, p, q,m, n ∈ Z[σ ]. Then

l(M

(

p
q

)

, M

(

m
n

)

) =
∣

∣

∣

∣

det

(

ap + bq am + bn
cp + dq cm + dn

)∣

∣

∣

∣

=
∣

∣

∣

∣

det

(

a b
c d

)∣

∣

∣

∣

∣

∣

∣

∣

det

(

p m
q n

)∣

∣

∣

∣

= 1 · l(
(

p
q

)

,

(

m
n

)

),

which shows that the det-length is preserved. ��
Now, we give a complete description of the edges in T .

Proposition 3.8 Let pi
qi
, pi , qi ∈ Z[σ ], i = 1, 2, be two irreducible fractions. Then the line

connecting p1
q1

to p2
q2

is an edge of some tetrahedron hT , h ∈ H, if and only if l( p1
q1

,
p2
q2

) = 1.

Proof First, suppose that p1/q1 = ∞. As p1/q1 is irreducible, we have q1 = 0 and p1 = σ k

for k ∈ {0, 1, . . . , 5}. So,
∣

∣

∣

∣

det

(

p1 p2
q1 q2

)∣

∣

∣

∣

=
∣

∣

∣

∣

det

(

1 p2
0 q2

)∣

∣

∣

∣

= |q2|,

which implies that the determinant is a unit if and only if p2/q2 ∈ Z[σ ]. On the other hand,
one can see directly from the tiling ofH

3 by ideal tetrahedra that the points in̂Q(σ ) connected
to ∞ by an edge of some tetrahedron hT , h ∈ H , are precisely ones lying in Z[σ ].

Next, consider arbitrary irreducible fractions p1/q1 and p2/q2. According to Proposi-
tion 3.2, there exists an element f ∈ PGL2(Z[σ ]) taking p1/q1 ∈ ̂Q(σ ) to ∞. In view
of Remark 3.4, the consideration above implies that the statement holds for f (p1/q1) and
f (p2/q2). Since f preserves the det-length (Proposition 3.7), we conclude that the statement
holds for p1/q1 and p2/q2 as well. ��
Remark 3.9 Consider the hyperbolic plane � in H

3 containing the line Im(z) = 0, and let
F be the classical Farey graph lying in �. Propositions 3.7 and 3.8 imply that T can also
be constructed as the orbit of F under the action of the Bianchi group Bi(3) (this follows
closely the construction of Schmidt arrangement for any imaginary quadratic field, see [33]).
Based on that, the description of faces and fundamental tetrahedra of T (up to the action of
the Bianchi group) can be deduced from [27]. In the rest of this section we give an explicit
description of faces and fundamental tetrahedra of T in terms of Farey addition.
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3.3 Faces inT and symmetric Farey addition

3.3.1 Symmetric Farey addition inT

As we have already mentioned in Sect. 2.2, for the irreducible adjacent vertices p
q , r

s ∈ ̂Q of
the classical Farey graph (where we assume q > 0, s ≥ 0) the third point adjacent to both
(and lying between them) is given by Farey addition p

q ⊕ r
s = p+r

q+s . The other vertex of the

Farey graph adjacent to both p
q and r

s is given by p
q � r

s = p−r
q−s .

Define the symmetric Farey sum of p
q , r

s ∈ ̂Q as

p

q
� r

s
=

{ p + r

q + s
,
p − r

q − s

}

.

The symmetric Farey sum provides the set of all vertices that form all fundamental triangles
with the given edge joining p

q and r
s .

The symmetric Farey sum has a natural generalisation to ̂Q(σ ).

Definition 3.10 Let p/q and r/s be irreducible fractions in ̂Q(σ ). The symmetric Farey sum
of p/q and r/s is the following set

p

q
� r

s
=

{ p + σ i r

q + σ i s
∈ ̂Q(σ ) | i = 0, 1, 2, 3, 4, 5

}

.

Remark 3.11 Note that the resulting set does not depend on the choice of irreducible frac-
tions representing p/q and r/s. The definition may look asymmetric (the second summand
multiplied by σ i while the first is not), however, it is symmetric in ̂Q(σ ).

3.3.2 Faces inT

By the construction, all the faces in T are triangles. Below, we describe them in terms of
symmetric Farey summation.

Proposition 3.12 Three points α, β, γ ∈ Q(σ ) are the vertices of a triangle in the graph T
if and only if l(α, β) = 1 and

γ ∈ α � β.

Remark 3.13 There are precisely 6 triangles adjacent to any edge of T .

Proof Without loss of generality (keeping in mind Proposition 3.2) we set α = 1
0 and β = 0

1 .
Then let γ = p

q .

By Proposition 3.8 we have l(α, γ ) = 1 = l(β, γ ), and therefore q = σ i and p = σ j for

some i, j . It is clear that the sets { σ j

σ i | i, j = 0, . . . , 5} and α � β coincide. ��

3.4 Fundamental tetrahedra inT

We now describe quadruples of vertices of the fundamental tetrahedra in T .
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Proposition 3.14 Four points α, β, γ, δ ∈ ̂Q(σ ) are the vertices of one fundamental tetrahe-
dron in T if and only if they are of the form

p

q
,

r

s
,

p + σ i r

q + σ i s
,

p + σ i+1r

q + σ i+1s

for some p, q, r , s satisfying l( p
q , r

s ) = 1, where i ∈ Z is considered modulo 6.

Proof First, we check that the two fundamental tetrahedra containing the triangle α = 1
0 ,

β = 0
1 , γ = 1

1 are exactly of the required shape. Indeed, the condition of Proposition 3.8 for

the edges (α, δ) and (β, δ) imply δ = σ i

σ j . The condition for (γ, δ) implies that |σ i −σ j | = 1,

which is satisfied if and only if i = j ±1 (modulo 6). So, either δ = σ
1 or δ = 1

σ
. This means

that (α, β, γ, δ) coincides with either ( 10 ,
0
1 ,

1+0·σ 0

0+1·σ 0 ,
1+0·σ−1

0+1·σ−1 ) or ( 10 ,
0
1 ,

1+0·σ 0

0+1·σ 0 ,
1+0·σ
0+1·σ ).

By Proposition 3.12 any triangle in T can be written as (
p
q , r

s ,
p+σ i r
q+σ i s

). This triangle can

be obtained from ( 10 , 0
1 ,

1
1 ) by applying a transformation

(

p σ i r
q σ i s

)

∈ PGL2(Z[σ ]). This
map takes σ

1 and 1
σ
to p+σ i+1r

q+σ i+1s
and p+σ i−1r

q+σ i−1s
respectively. So, we get the required statement

(up to swapping γ and δ). ��
Proposition 3.14 can be reformulated in the following way.

Corollary 3.15 Four pointsα, β, γ, δ ∈ ̂Q(σ ) are the vertices of one fundamental tetrahedron
in T if and only if they are of the form

p

q
,

r

s
,

p + r

q + s
, and

p + σr

q + σ s
,

where |ps − qr | = 1.

4 Relations on �-lengths

In this section we derive some relations on λ-lengths which can be considered as 3-
dimensional analogues of the Ptolemy relation. We start by recalling Penner’s definition
of λ-lengths and one of the proofs of the hyperbolic version of the Ptolemy relation. Then
we continue by using similar ideas in a 3-dimensional setting.

4.1 �-lengths and the Ptolemy relation

The following definition was introduced by Penner [24].

Definition 4.1 (λ-length) Given two points A, B ∈ ∂H
n together with the choice of horoballs

hA and hB centred at A and B respectively, the λ-length λAB of the segment AB is defined
as exp(d/2), where d is the (signed) distance between the horospheres hA and hB . Here
d = 0 when the horoballs hA and hB are tangent and d < 0 when the horoballs intersect
non-trivially (in the latter case d is defined as the negative distance d(a, b) between the
intersection points a = AB ∩ hA and b = AB ∩ hB of the line AB with the horoballs).

The computation in the next example is a particular case of [25, Corollary 4.2].

123



   33 Page 10 of 30 Geometriae Dedicata           (2025) 219:33 

Fig. 3 To Example 4.2: (a) on the left, (b) in the middle, and inversion with respect to the unit circle on the
right

Example 4.2 (Computing λ-lengths) Consider the upper halfplane model of the hyperbolic
plane H

2 with complex coordinate z.

(a) Let A = ∞, B = 0, let hA be given by equation Im(z) = 1 (horizontal line) and hB be
given by the (Euclidean) circle of radius r tangent to the absolute Im(z) = 0, see Fig. 3,
left. Then

d = d(i, 2ri) = ln
1

2r
,

and thus

λAB = exp(d/2) = 1√
2r

.

(b) Let A = 0, B = z, let hA be given by Euclidean circle of radius 1/2 and hB be given by
Euclidean circle of radius r , then λAB = |z|√

2r
. This is easy to check using inversion with

respect to the unit circle centred at the origin and applying the result of (a), see Fig. 3
middle and right.

(c) The result of (b) implies the Ptolemy relation for ideal quadrilaterals in H
2 (see Exam-

ple 4.3 below).

Example 4.3 (The Ptolemy relation) It was shown by Penner in [24] that λ-lengths satisfy
the Ptolemy relation:

Given an ideal quadrilateral ABCD (i.e. A, B,C, D ⊂ ∂H
2) with any choice of horo-

cycles at points A, B,C, D, the λ-lengths of sides and diagonals of ABCD satisfy

λACλBD = λABλCD + λBCλAD . (4.1)

We prove this relation in three steps:

a: Reducing to the quadrilateral (0, 1,∞, x) ⊂ H
2. By using the isometry group of H

2

we can assume that a quadrilateral ABCD has vertices 0, 1,∞, x , we will denote it by
(0, 1,∞, x) ⊂ H

2.
b: Choosing the horocycles. Notice that a choice of horocycles does not affect validity

of (4.1). Indeed, changing a horocycle at one vertex Z ∈ {A, B,C, D} changes the
length d of every edge incident to Z by the same number γ , and hence the corresponding
λ-lengths are multiplied by the same number eγ /2, which preserves (4.1) as the relation
is homogeneous. In particular, we may assume that three of the horocycles are mutually
tangent.
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Fig. 4 The Ptolemy Theorem and one of its proofs

c: Proof for quadrilateral (0, 1,∞, x) ⊂ H
2, with three mutually tangent horocycles. It is

now sufficient to show (4.1) for the ideal quadrilateral (0, 1,∞, x) ⊂ H
2, with x ∈ R,

0 < x < 1, and the horocycles chosen as follows (see also Fig. 4, right). Let Im(z) = 1
be the horocycle at ∞, |z − i/2| = 1/2 and |z − 1 − i/2| = 1/2 be the horocycles at
0 and 1 respectively, and let |z − x − ir | = r be the horocycle at x . Then three of the
horocycles are mutually tangent, so that λ0,∞ = λ1,∞ = λ0,1 = 1. We can also compute
using the result of Example 4.2 (b):

λ0,x = x√
2r

, λ1,x = 1 − x√
2r

, λ∞,x = 1√
2r

,

so that we get λ0,x + λx,1 = λx,∞, which is exactly the Ptolemy relation for the quadri-
lateral (0, 1,∞, x).

Remark 4.4 (λ-lengths and det-lengths) One can observe that det-lengths l(u, v) between
points u, v ∈ ̂Q (see Definition 3.5) satisfy the Ptolemy relation (e.g. by combining results of
[6] and [21]). Computing λ-length between points of̂Qwith respect to Ford circles shows that
both λ-lengths and det-lengths of the sides of fundamental triangles of the Farey tessellation
are equal to 1. Applying the Ptolemy relation iteratively we conclude that

λu,v = l(u, v)

for every u, v ∈ ̂Q.

4.2 The Ptolemy relation inT

Definition 4.5 (Standard horospheres at T0: counterpart of Ford circles) Consider the fun-
damental tetrahedron T = (0, 1, σ,∞) of T , choose four pairwise tangent horospheres at
its vertices (i.e. horospheres represented by three balls of radii 1/2 and a horizontal plane
at the height 1). Notice that any isometry of H

3 preserving T takes the four horospheres to
the same four horospheres. Due to the action of PGL2(Z[σ ]), we can pick a horosphere at
each point of T0 = ̂Q(σ ) (so that at every fundamental tetrahedron the four horospheres are
mutually tangent). This choice of horospheres at ̂Q(σ ) will be called standard.

Remark 4.6 The definition above is equivalent to the definition of Ford spheres given by
Northshield [23].
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In this section, we assume by default the standard choice of horospheres at T0. This
assumption simplifies the proofs without affecting the statements, since the relations con-
sidered below are all homogeneous. The only exception here will be Theorem 4.12, as the
standard choice of horospheres is essential there.

Theorem 4.7 Let A1A2A3A4 be a fundamental tetrahedronwith vertices in̂Q(σ ), and choose
any X ∈ ̂Q(σ ) distinct from Ai . Let λi = λX Ai be the λ-length of X Ai , i = 1, . . . , 4. Then

4
∑

i=1

λ4i =
∑

1≤i< j≤4

λ2i λ
2
j . (4.2)

Proof The setting of the theorem is illustrated in Fig. 5, left. Applying an isometry, we may
assume that A1A2A3A4 = (0, 1, σ,∞) and that X = z ∈ ̂Q(σ ). Let the horosphere at z be
represented by a Euclidean sphere of radius r/2. Then from Example 4.2(b) applied to the
plane through points z, Ai ,∞ we get that

λi = |z − Ai |√
2r

, i = 1, 2, 3, λ4 = 1√
2r

.

At this point, it is sufficient to check that the values ai = |z − Ai |2, i = 1, 2, 3 and a4 = 1
satisfy the equation

4
∑

i=1

a2i =
∑

1≤i< j≤4

aia j .

This is a straightforward computation after the following substitutions are implemented:
a1 = zz, a2 = (z − 1)(z − 1), and a3 = (z − σ)(z − σ). ��

4.3 �-lengths and Soddy-Gosset theorem

Itwas noted to the authors byArthurBaragar and IanWhitehead that Eq.4.2 can be considered
as a corollary of the Soddy-Gosset Theorem relating the radii of five mutually tangent spheres
in Euclidean space (see e.g. [17]). Given n + 2 mutually tangent spheres in R

n of radii ri ,
i = 1, . . . , n + 2, denote ki = 1/ri . Then the Soddy-Gosset theorem asserts that

(

n+2
∑

i=1

ki

)2

= n
n+2
∑

i=1

k2i . (4.3)

The plane version of this theorem (4mutually tangent circles inE
2) is called theDescartes

Circle Theorem. We will use the version with n = 3 and five spheres, one of which is of
infinite radius, and hence has k5 = 0. Equation4.3 is then reduced to

∑

1≤i< j≤4

ki k j =
4

∑

i=1

k2i , (4.4)

cf. Equation4.2.
Now, consider the configuration of points A1, A2, A3, A4 and X as in Theorem 4.7: here,

A1A2A3A4 is a fundamental tetrahedron of T (or any other regular ideal tetrahedron, i.e. an
image of the fundamental tetrahedron under any isometry of H

3) and X is any point on the
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absolute of H
3. After applying an isometry we may assume that X = ∞ (we use the upper

halfspace model with coordinates {(z, t) | z ∈ C, t ∈ R+}).
Next, we choose four mutually tangent horospheres centred at points A1, A2, A3, A4 (this

is possible as A1A2A3A4 is a regular ideal tetrahedron). The four horospheres together with
the plane representing the absolute play the role of the five mutually tangent spheres in the
Soddy-Gosset theorem. Let ri be the radius of the horosphere centred at Ai . Applying the
Soddy-Gosset theorem as in Eq.4.4, we get

∑

1≤i< j≤4

1

ri

1

r j
=

4
∑

i=1

1

r2i
. (4.5)

We also choose the horosphere hX centred at X as the plane given by t = 1 and denote
by λi the λ-lengths of Ai X . In view of the computation in Example 4.2(a) we have

λi = 1√
2ri

,

so, replacing 1/ri by 2λ2i in Eq.4.5 we get Eq.4.2.

4.4 Det-lengths and �-lengths

In this section, we show that det-lengths between points of ̂Q(σ ) coincide with λ-lengths
with respect to standard horospheres.

We start by showing that det-lengths satisfy the counterpart of Relation 4.2.

Theorem 4.8 For points A1A2A3A4 and X as in Theorem 4.7, define li := lX Ai . Then

4
∑

i=1

l4i =
∑

1≤i< j≤4

l2i l
2
j .

Proof As in the proof of Theorem 4.7, we assume that A1A2A3A4 = (0, 1, σ,∞) and that
X = z ∈ Q(σ ). We can write z = p

q = p1+p2σ
q1+q2σ

, p1, p2, q1, q2 ∈ Z, and hence obtain

l1 = l0,z = |p|, l2 = l1,z = |p − q|, l3 = lσ,z = |p − qσ |, l4 = l∞,z = |q|.
Taking into account that |p|2 = pp = p21 + p22 + p1 p2 (and that there are similar

expressions for |q|2, |p − q|2 and |p − σq|2), one can easily check the identity claimed in
the theorem. ��
Remark 4.9 Theorem 4.8 is a counterpart of the 2-dimensional statement mentioned in
Remark 4.4.

Remark 4.10 Since the equations above are homogeneous, Theorem 4.8 is not affected when
the fraction for z is not irreducible. Indeed, whenwe change the horosphere (resp.multiplying
the numerator and denominator by the same factor), each of the summands in the sum is
multiplied by the same factor.

Remark 4.11 The relation in Theorems 4.7 is quadratic with respect to λ24. It has two positive
roots, these roots have the following geometrical meaning. Let A′

4 be the point obtained from
A4 by the reflection with respect to the plane A1A2A3 (i.e. A1A2A3A′

4 is the fundamental
tetrahedron adjacent to A1A2A3A4 along A1A2A3). We assume that A′

4 lies in the same
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Fig. 5 Notation for Theorems 4.7, 4.12, and 4.16

half-space with respect to A1A2A3 as X while A4 lies in the other half-space, see Fig. 5,
middle.

Denote λ′
4 = λX A′

4
the corresponding λ-length. Then λ4 and λ′

4 are the two roots of the
quadratic equation in Theorem 4.7 (as in Theorem 4.7, we do not make any assumptions on
the position of point X ).

Remark 4.11 gives rise to the following theorem.

Theorem 4.12 Let X , Y ∈ ̂Q(σ ) be two irreducible fractions. Let the standard horosphere
be chosen at every point of ̂Q(σ ). Then λXY = lXY .

Proof We consider two cases: either the geodesic XY lies in a plane containing a face of a
fundamental tetrahedron of T or it does not.

First, suppose that XY lies in a plane � containing a face of a fundamental tetrahedron
of T . The tessellation T induces a Farey triangulation on �. Denote by S the set of triangles
whose interior is intersected by the geodesic XY , let N = |S|. We proceed by induction on
N . If N = 0, then XY is an edge of some triangle (and edge of T ) and lXY = 1 = λXY (by
Proposition 3.8 and since the horospheres are mutually tangent). Otherwise, N ≥ 2.

Let TY ∈ S be the triangle with vertex Y . Denote by Y1 and Y2 the other two vertices
of TY . Then the set of triangles intersected by geodesics XY1 and XY2 are subsets of S not
containing TY , so their det-lengths coincide with λ-lengths by the induction assumption.

Consider the quadrilateral with vertices X , Y1, Y2, Y . As we have seen above, for all its
edges the det-lengths coincide with λ-lengths, as well as for Y1Y2. Then both λXY and lXY
satisfy the same Ptolemy relation (see Remark 4.9), and thus coincide as well.

Now, suppose that XY does not lie in the plane of a face of any fundamental tetrahedron
of T , the proof is very similar to the two-dimensional case. Denote by S the set of (closed)
fundamental tetrahedra intersected by XY in an interior point of H

3, let N = |S|. Again, we
proceed by induction on N .

Let TY ∈ S be the fundamental tetrahedron with vertex Y . Denote by Y1, Y2, Y3 the other
three vertices of TY . For every i = 1, 2, 3 either the set of tetrahedra intersected by the
geodesic XYi is a subset of S not containing TY , or XYi belongs to the plane of a face of
some fundamental tetrahedron. By the induction assumption (and the two-dimensional case),
the det-lengths of all XYi coincide with their λ-lengths.
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Consider the triangular bipyramid with vertices X , Y and Yi . For all its edges the det-
lengths coincide with λ-lengths. By Theorems 4.7 and 4.8, the values λXY and lXY satisfy
the same quadratic equation, and we are left to show that it should be the same root.

Let T ′
Y be the fundamental tetrahedron adjacent to TY along the face Y1Y2Y3, and let Y ′

be its fourth vertex. From Remark 4.11 we know that λXY ′ and lXY ′ are also the roots of the
same quadratic equation as λXY and lXY . By the inductive assumption, λXY ′ = lXY ′ (as XY ′
intersect a smaller number of tetrahedra than N ). This implies that each of λXY and lXY is
the other root of the same quadratic equation, which implies λXY = lXY . ��
Remark 4.13 Theorem 4.12 implies that the set of all λ-lengths of arcs with ends at ̂Q(σ )

coincides with the set of absolute values of all elements of Z[σ ].
Remark 4.14 There is another, purely computational, approach to Theorem 4.12. Given an
irreducible fraction p/q ∈ ̂Q(σ ), the radius of the standard horosphere at p/q is equal to
1/2|q|2 (see e.g. [26] byRieger). Using Example 4.2(a), one can see that theλ-length between
p/q and ∞ = 1/0 is equal to the corresponding det-length. Now, every point of ̂Q(σ ) can
be taken to σ k/0 by an element of PSL2(Z[σ ]), and as both λ-length and det-length are
invariant, the result follows.

Remark 4.15 It was pointed out to the authors by the anonymous referee that the proof
mentioned in Remark 4.14 can be easily extended to provide a more general statement.
Namely, given any two pairs of complex numbers (p1, q1) and (p2, q2) and horospheres
H1, H2 of Euclidean radii 1/2|q1|2 and 1/2|q2|2 centered at points X1 = p1/q1 and X2 =
p2/q2 respectively, the lambda length λX1X2 computed with respect to the horospheres H1

and H2 is equal to |p1q2−p2q1|. The proof is similar to the one of Proposition 6.2 from [32] by
Springborn.Here, the counterpart ofRieger’s result is aC-version of the PGL2−equivariance
of the corresponding horospheres, see e.g. [32, Proposition 5.1].

4.5 Linear relation

Consider a geodesic γ connecting two points X and Y in ̂Q(σ ). Consider all fundamental
tetrahedra crossed by γ . Denote X = X0, let X1, X2, X3 be the other three vertices of the
first tetrahedron crossed by γ , and let Xi , i > 3, be the vertices added on the way when
tetrahedra are attached one by one along γ .

Theorem 4.16 Let bi = λ2X0Xi
. Then

(a) bi + bi+4 = bi+1 + bi+2 + bi+3;
(b) bi ∈ Z;
(c) bi < bi+4.

Proof In view of Theorem 4.7, the values bi and bi+4 are the two roots of the following
quadratic equation

x2 − x(bi+1 + bi+2 + bi+3) + b2i+1 + b2i+2 + b2i+3 + bi+2bi+3 + bi+1bi+3 + bi+1bi+2 = 0,

which implies bi + bi+4 = bi+1 + bi+2 + bi+3, which settles part (a).
Applying equation (a) iteratively we see that bi ∈ Z for all i , as b1 = b2 = b3 = 1 and

b4 = 3 (where the latter follows from Theorem 4.7), which proves (b).
To prove (c), notice that X0 is separated from Xi+4 by the plane Xi+1Xi+2Xi+3, and Xi is

the reflection image of Xi+4 with respect to Xi+1Xi+2Xi+3. To compare λX0Xi+4 with λX0Xi
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notice that the distance from the horosphere at X0 to the horosphere at Xi+4 is equal to the
sum of the distance from the horosphere at X0 to the point P = Xi+1Xi+2Xi+3 ∩ X0Xi+4

and the distance from P to the horosphere at Xi , see Fig. 5, right. The latter sum is larger than
the distance from the horosphere at X0 to the horosphere at Xi , which implies bi+4 > bi .

��
Remark 4.17 Equation (a) of Theorem 4.16 is a counterpart of the following relation in the
classical Farey graph:

bi + bi+3 = 2(bi+1 + bi+2),

where bi = λ2X0Xi
and triangles Xi Xi+1Xi+2 and Xi+1Xi+2Xi+3 are fundamental ones.

4.6 3D Ptolemy relation: general formula

In this section we generalise relation (4.2) to any pair of adjacent ideal tetrahedra in H
3.

Theorem 4.18 Let X1, . . . , X5 ∈ ̂C = ∂H
3 be 5 distinct points. Suppose that there are

horospheres chosen at these points. Let λi j = λXi X j . Then
∑

(i j)(klm)∈S5
λ4i jλ

2
klλ

2
lmλ2mk =

∑

(i jklm)∈S5
λ2i jλ

2
jkλ

2
klλ

2
lmλ2mi ,

where (i j)(klm) and (i jklm) denote cycle decompositions of permutations in the symmetric
group S5.

Proof First, we apply the action of PSL2(C) on H
3 to map X1, X2, X3 to 0, 1,∞ (this does

not change any of the λi j ). Suppose that X4 and X5 are mapped to points z, w ∈ C. Notice
that the choice of horospheres does not affect whether the equation is true or not (since the
equation is homogeneous). So, we can take three tangent horospheres at 0, 1,∞ and the two
other horospheres tangent to the horosphere at ∞. This makes five of the λ-lengths equal to
1. The other five we can compute using the formula from Example 4.2, and check that the
obtained expressions satisfy the equation, we omit the details. ��
Remark 4.19 It was noted to the authors by Ivan Izmestiev that Theorem 4.18, as well as
similar formulae relating λ-lengths between n + 2 points at the boundary of n-dimensional
hyperbolic space for any n ≥ 4, can be obtained as follows. Given an isotropic vector u in
the hyperboloid model of H

n , every horosphere centred at u can be written as hu,c = {x ∈
H

n | 〈x, cu〉 = −1/
√
2} for some c ∈ R+. Then for two points u, v ∈ ∂H

n the λ-length
λu,v with respect to the horospheres hu,a and hv,b can be written as λu,v = √−〈au, bv〉,
see [25, Lemma 4.1]. Now, the formula for n + 2 points {ui } can be obtained by expanding
the determinant of the matrix (〈ci ui , c j u j 〉), which vanishes since the vectors are linearly
dependent.

Remark 4.20 As it was observed by the anonymous referee, one can avoid using the non-
conformal model of H

n in the proof sketched in Remark 4.19 by considering the Euclidean
distance matrix instead (whose determinant also vanishes), and then applying [25, Corollary
4.2] to convert Euclidean distances to λ-lengths to obtain the required relation.

Remark 4.21 Suppose we are given a triangulated cusped hyperbolic 3-manifold, where all
tetrahedra in the triangulation are ideal. Consider two tetrahedra in the triangulation sharing
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Fig. 6 2–3 move

a facet. Assuming the union of the two tetrahedra is a convex bipyramid, one can change tri-
angulation by applying a 2–3move, see Fig. 6. Theorem 4.18 describes the relations between
λ-lengths of the arcs of the initial and the resulting triangulations.

5 SL2-tilings over Z[�]
Taking their origin in Conway-Coxeter frieze patterns [6, 7], SL2-tilings were introduced
in [1] and became a topic of a rapidly growing field of studies connecting combinatorics,
geometry, cluster algebras and many related domains, see the review byMorier-Genoud [19]
concerning the connections. It was shown by Short [30] that all SL2-tilings over Z can be
classified in terms of pairs of paths on the Farey graph F .

In this section, we provide a classification of SL2-tilings with entries in Z[σ ] in terms of
pairs of paths in T , generalising the results of [30].

5.1 Normalised paths

Definition 5.1 We say that (vi )
n
i=k for k ∈ {−∞, 0} and n ∈ Z+ ∪ {+∞} is a path on T if

vivi+1 is an edge of T for every i satisfying k ≤ i < n.

We will abuse notation by writing (vi ) if the path is bi-infinite.

Definition 5.2 A path (vi )
n
i=k represented by irreducible fractions vi = pi/qi for all i is

called normalised if

det

(

pi pi+1

qi qi+1

)

= 1

for all admissible i .

Remark 5.3 Given an irreducible fraction p0/q0 representing v0 ∈ ̂Q(σ ) (so that we fix one
of the six fractions of the form σ k p0/σ kq0), there is a unique fraction p1/q1 representing
v1 ∈ ̂Q(σ ) and satisfying the condition for a normalised path given inDefinition 5.2. Similarly
each pi/qi in the normalised path (vi ) can be uniquely reconstructed from p0/q0. Therefore,
for every nontrivial path there are precisely six different normalisations (obtained from one
of them by multiplying both pi and qi by σ (−1)i ·k).
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5.2 SL2-tilings

Definition 5.4 (SL2-tiling)
Let M = (mi j ) be a bi-infinite matrix, i, j ∈ Z, mi j ∈ R, where R is an integral domain.

M is an SL2-tiling if
(

mi, j mi, j+1

mi+1, j mi+1, j+1

)

∈ SL2(R)

for any i, j ∈ Z.
An SL2-tiling M is tame if

det

⎛

⎝

mi, j mi, j+1 mi, j+2

mi+1, j mi+1, j+1 mi+1, j+2

mi+2, j mi+2, j+1 mi+2, j+2

⎞

⎠ = 0

for any i, j ∈ Z.

Given two bi-infinite normalised paths (ui ) and (v j ), where ui = pi/qi , v j = r j/s j ,
consider the numbers

mi j = det

(

pi r j
qi s j

)

. (5.1)

Proposition 5.5 ( [30]) If R = Z, the bi-infinite matrix (mi j ) is a tame SL2-tiling. Moreover,
(5.1) provides a bijection between tame SL2-tilings (modulo multiplication of all entries by
−1) and pairs of bi-infinite normalised paths in the Farey graph F (considered up to the
simultaneous action of SL2(Z)).

5.3 SL2-tilings overZ[�] and pairs of paths inT

The goal of this section is to prove a counterpart of Proposition 5.5 based on the paths in T
(see Theorems 5.18 and 5.20).

Definition 5.6 Consider two bi-infinite normalised paths (pi/qi ) and (r j/s j ) inT . The scalar
product of two paths is a matrix (mi, j ) where

mi, j = pir j + qi s j

for all i and j . In this case we write (mi, j ) = (pi/qi ) · (r j/s j ).

Remark 5.7 In terms of matrices, the scalar product of two paths can be understood as a
matrix multiplication:

(mi, j ) =

⎛

⎜

⎜

⎜

⎜

⎝

... ...

pi−1 qi−1

pi qi
pi+1 qi+1

... ....

⎞

⎟

⎟

⎟

⎟

⎠

(

... r j−1 r j r j+1 ...

... s j−1 s j s j+1 ...

)

.

Proposition 5.8 The scalar product (mi, j ) of two bi-infinite normalised paths (pi/qi ) and
(r j/s j ) in T forms a tame SL2(Z[σ ])-tiling.
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Fig. 7 SL2(Z[σ ])-tiling as a scalar product of two normalised paths in T . The shaded region is the initial
block, all shifted blocks are obtained from that one by multiplication by powers of σ (see Example 5.10)

Proof A direct calculation shows that the scalar product forms an SL2(Z[σ ])-tiling (cf. the
proof of Proposition 3.7). The tameness follows from the fact that (mi, j ) is a product of two
(infinite) matrices of rank two. ��
Remark 5.9 Note that tameness is equivalent to the requirement that every row of the matrix
(mi, j ) is a linear combination of two adjacent rows, say (m0, j ) and (m1, j ).

Example 5.10 Consider two periodic paths in T : (ui ) = (. . . ,∞, 0, 1, σ,∞, . . . ), and
(v j ) = (. . . , 0, σ 2,−1,∞, 0, . . . ). Normalise the paths as follows:

u0 = 1

0
, u1 = 0

1
, u2 = −1

−1
, u3 = σ

−σ
, and ui+4 = σ (−1)i+1

σ (−1)i+1 ui ;

v0 = 0

−σ
, v1 = σ

σ
, v2 = −1

1
, v3 = −1

0
, and vi+4 = σ (−1)i

σ (−1)i
vi .

The initial four values and the recursive formulae define the (bi-infinite) normalised paths
uniquely. By taking the scalar product, we obtain a tiling shown in Fig. 7. The tiling has a
block structure with the initial block of size 4 × 4 shown in Fig. 7, with

mi+4k, j+4l = σ l−kmi, j .

Note that we get a counterpart of an antiperiodic SL2-tiling considered in [21, Section
3.3]. The reason for this is the periodicity of the paths (ui ) and (v j ).

Proposition 5.11 Any tame SL2(Z[σ ])-tiling is a scalar product of two normalised paths.

Proof Let (mi j ) be a tame SL2(Z[σ ])-tiling. First, we construct the path (r j/s j ). Set
(p0/q0, p1/q1) = (1/0, 0/1). Then we can set r j = m0, j , s j = m1, j . This would imply that
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the condition mi, j = pir j + qi s j is satisfied for i = 0 and all j . Notice that since

det

(

m0, j m0, j+1

m1, j m1, j+1

)

= 1,

each fraction r j/s j = m0, j/m1, j is irreducible, and by the same reason the path (r j/s j ) is
normalised.

Now, we use the path (r j/s j ) and the values (p0/q0, p1/q1) = (1/0, 0/1) to construct
(pi/qi ) for all i . We know from tameness of (mi, j ) that every row of (mi, j ) is a linear
combination of the rows (m0, j ) and (m1, j ). Denote by αi and βi the coefficients of this linear
combination for the i-th row, i.e.

mi, j = αim0, j + βim1, j .

The values αi and βi are uniquely defined from

(

αi βi
)

(

m0,0 m0,1

m1,0 m1,1

)

= (

mi,0 mi,1
)

, (5.2)

moreover, αi , βi ∈ Z[σ ] as det
(

m0,0 m0,1

m1,0 m1,1

)

= 1.

We set pi = αi and qi = βi . As r j = m0, j and s j = m1, j , this implies that mi, j =
pim0, j + qim1, j = pir j + qi s j for all i, j .

We are left to check that the constructed path (pi/qi ) is normalised. Notice that (5.2)
implies that αi/βi is an irreducible fraction. Also, notice that

(

αi βi
αi+1 βi+1

)(

m0,0 m0,1

m1,0 m1,1

)

=
(

mi,0 mi,1

mi+1,0 mi+1,1

)

implies that det

(

αi βi
αi+1 βi+1

)

= 1, and hence, the path is normalised. ��

Remark 5.12 Notice that once the initial values (p0/q0, p1/q1) = (1/0, 0/1) are fixed, the
sequences (pi/qi ) and (s j/r j ) are uniquely determined by (mi, j ).

Remark 5.13 An easy computation shows that the action of SL2(Z[σ ]) on paths takes nor-
malised paths to normalised ones (cf. the proof of Proposition 3.7).

Lemma 5.14 Let (pi/qi ) and (r j/s j ) be two normalised paths. Let A ∈ SL2(Z[σ ]) and
consider

(

p′
i

q ′
i

)

= A

(

pi
qi

)

,

(

r ′
j

s′
j

)

= (AT )−1
(

r j
s j

)

.

Let M and M ′ be SL2(Z[σ ])-tilings given by

M = ((pi/qi ) · (r j/s j )) and M ′ = ((p′
i/q

′
i ) · (r ′

j/s
′
j )).

Then M and M ′ coincide.
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Proof This is a direct computation:

(m′
i j ) =

⎛

⎜

⎜

⎜

⎜

⎝

... ...

p′
i−1 q ′

i−1
p′
i q ′

i
p′
i+1 q ′

i+1
... ....

⎞

⎟

⎟

⎟

⎟

⎠

(

... r ′
j−1 r ′

j r
′
j+1 ...

... s′
j−1 s′

j s
′
j+1 ...

)

=

⎛

⎜

⎜

⎜

⎜

⎝

... ...

pi−1 qi−1

pi qi
pi+1 qi+1

... ....

⎞

⎟

⎟

⎟

⎟

⎠

AT (AT )−1
(

... r j−1 r j r j+1 ...

... s j−1 s j s j+1 ...

)

= (mi j ).

��
Remark 5.15 Notice that different normalisations of the paths may lead to different
SL2(Z[σ ])-tilings. More precisely, if pi and qi are multiplied by σ (−1)i k (cf. Remark 5.3),
then the i-th row of (mi, j ) is multiplied by σ (−1)i k . Similarly, changing the normalisation
of (r j/s j ) affects columns of (mi, j ). This leads to 36 tame SL2(Z[σ ])-tilings, generically
18 of them are distinct tilings (as a simultaneous multiplication of columns and rows by −1
preserves the tiling).

Definition 5.16 We call SL2(Z[σ ])-tilings obtained from different normalisations of the
same pair of paths equivalent.

Lemma 5.17 Let ((pi/qi ), (r j/s j )) and ((p′
i/q

′
i ), (r

′
j/s

′
j )) be two pairs of normalised paths

and M = (pi/qi ) · (r j/s j ), M ′ = (p′
i/q

′
i ) · (r ′

j/s
′
j ) be their scalar products.

If M is equivalent to M ′ then there exists a matrix A ∈ SL2(Z[σ ]) and normalisations
p′′
i /q

′′
i and r ′′

j /s
′′
j of p

′
i/q

′
i and r

′
j/s

′
j respectively such that

(

p′′
i

q ′′
i

)

= A

(

pi
qi

)

,

(

r ′′
j

s′′
j

)

= (AT )−1
(

r j
s j

)

.

Proof First, as M = (pi/qi ) · (r j/s j ) is equivalent to M ′ = (p′
i/q

′
i ) · (r ′

j/s
′
j ), there exists

normalisations p′′
i /q

′′
i and r ′′

j /s
′′
j of p

′
i/q

′
i and r

′
j/s

′
j such that M = (p′′

i /q
′′
i ) · (r ′′

j /s
′′
j ).

Next, let X , Y ∈ SL2(Z[σ ]) be matrices such that

X

(

p0 p1
q0 q1

)

=
(

1 0
0 1

)

, Y

(

p′′
0 p′′

1
q ′′
0 q ′′

1

)

=
(

1 0
0 1

)

.

Consider the following two pairs of sequences
(

(pi/qi ), (r j/s j )
)

and
(

(pi
′′/qi ′′),

(r j
′′/s j ′′)

)

given by:
(

pi
qi

)

= X

(

pi
qi

)

,

(

r j

s j

)

= (XT )−1
(

r j
s j

)

and
(

pi
′′

qi
′′
)

= Y

(

p′′
i

q ′′
i

)

,

(

r j
′′

s j ′′
)

= (Y T )−1
(

r ′′
j

s′′
j

)

.

By Remark 5.12 these two pairs of sequences coincide, so we get the condition of the
lemma satisfied for A = Y−1X . ��
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Theorem 5.18 The scalar product provides a bijection between equivalence classes of tame
SL2(Z[σ ])-tilings and pairs of paths in T considered up to the simultaneous action of
SL2(Z[σ ]) by A ∈ SL2(Z[σ ]) on one of the paths and (AT )−1 on the other.

Proof By Proposition 5.8 the scalar product maps any pair of normalised paths in T to a
tame SL2(Z[σ ])-tiling. We will prove that this map provides the required bijection.

First, notice that by Definition 5.16 different normalisations of the paths lead to equiv-
alent SL2(Z[σ ])-tilings. Next, by Lemma 5.14 pairs of paths equivalent under the action
of SL2(Z[σ ]) result in the same SL2(Z[σ ])-tiling. This implies that the scalar product is
a well-defined map from pairs of paths in T (up to the simultaneous action of SL2(Z[σ ]))
to equivalence classes of SL2(Z[σ ])-tilings. This map is surjective by Proposition 5.11 and
injective by Lemma 5.17. ��
Remark 5.19 In [30], a similar bijectionwas constructed for SL2(Z)-tilings usingdeterminant
instead of the scalar product, i.e. using the map ((pi/qi ), (r j/s j )) �→ (mi, j ) given by

mi, j = pi s j − qir j .

Our construction can also be formulated in these terms.Namely, replace the path (r j/s j )by
the path (s j/−r j ). Then the scalar product is exactly replaced by computing the determinant.
Notice that the transformation (r j/s j ) → (s j/ − r j ) is given by the map z → −1/z, or, in

other words, by the action of

(

0 −1
1 0

)

∈ SL2(Z) applied to the path (r j/s j ).

Note that the construction with determinant is also invariant under isometries, i.e. given
a pair of normalised paths ((pi/qi ), (r j/s j )) and a matrix A ∈ SL2(Z[σ ]), the paths
(A(pi/qi ), A(r j/s j )) obtained by simultaneous action of A on both paths define the same
SL2(Z[σ ])-tiling as ((pi/qi ), (r j , s j )) (cf. Lemma 5.14).

Furthermore, given standard horospheres at all points of ̂Q(σ ), the absolute value of the
element mi, j = pi s j − qir j of the constructed SL2(Z[σ ])-tiling is the λ-length of the arc
connecting pi/qi with r j/s j (see Theorem 4.12).

In view of Remark 5.19, the result of Theorem 5.18 can be reformulated as follows.

Theorem 5.20 The map ((pi/qi ), (r j/s j )) �→ (mi, j = pi s j − qir j ) provides a bijection
between equivalence classes of tame SL2(Z[σ ])-tilings and pairs of paths in T considered
up to the simultaneous action of SL2(Z[σ ]) on both paths.

Example 5.21 The SL2(Z[σ ])-tiling constructed in Example 5.10 can be obtained using
the procedure above from periodic paths (ui ) = (. . . ,∞, 0, 1, σ,∞, . . . ), and (v j ) =
(. . . ,∞, σ, 1, 0,∞, . . . ).

Definition 5.22 We say that two paths (pi/qi ) and (r j/s j ) are coplanar in T if there exists
a hyperbolic plane � containing a face of some fundamental tetrahedron in T and such that
pi/qi , r j/s j ∈ � for all i, j .

The following is an immediate corollary of Theorem 5.20.

Corollary 5.23 Let (pi/qi ) and (r j/s j ) be two normalised paths on T , and let (mi, j ) =
(pi s j − qir j ) be the SL2(Z[σ ])-tiling defined by these paths. Then the following are equiv-
alent:

(a) paths (pi/qi ) and (r j/s j ) are coplanar;
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(b) mi, j ∈ Z for all i, j ∈ Z;
(c) there are two consecutive rows k, k + 1 and two consecutive columns l, l + 1, such that

mi,l ,mi,l+1 ∈ Z, and mk, j ,mk+1, j ∈ Z for all i, j ∈ Z.

Proof • “(a)⇒(b)”: Given two paths lying in a plane�, there exists A ∈ SL2(Z[σ ]) taking
� to the vertical plane containing the real line. Then all the points A(pi/qi ) and A(r j/s j )
are real, so the resulting paths lie in a copy of the Farey graph contained in A(�), which
implies (b).

• “(b)⇒(c)”: This is a trivial implication.
• “(c)⇒(a)”:We show that condition (c) implies that both paths (pi/qi ) and (r j/s j ) are real

rational numbers (and hence (a) follows). Showing this is equivalent to proving that both
(pi/qi ) and (−s j/r j ) are real. In terms of the latter pair of paths, the SL2(Z[σ ])-tiling
(mi, j ) is the scalar product of paths. Now, we apply the construction from Proposi-
tion 5.11, and get that pi/qi and −s j/r j are real rationals. ��

6 Paths in T and sequences in Z[�]
In this section we show that paths in T can be parameterised by (bi-infinite) sequences of
elements of Z[σ ]. This relates the results of the previous section to classification of SL2-
tilings obtained in [3].

Definition 6.1 A path (vi )
n
i=m in T represented by irreducible fractions vi = pi/qi for all i

is called skew-normalised if

det

(

pi pi+1

qi qi+1

)

= (−1)i

for all admissible i .

Similarly to the case of normalised paths, the property of being skew-normalised is pre-
served under the action of SL2(Z[σ ]).
Definition 6.2 Consider a skew-normalised path (vi−1, vi , vi+1) in T with vi = pi/qi irre-
ducible fractions in Z[σ ]. Assume that

(

pi+1

qi+1

)

=
(

pi−1 pi
qi−1 qi

)

·
(

1
a

)

.

We say that a is the oriented T -angle of vi−1vivi+1 and denote it by ∠T (vi−1vivi+1).

Proposition 6.3 (a) Given a skew-normalised path (vi−1, vi , vi+1) inT , there exists a unique
a ∈ Z[σ ] such that ∠T (vi−1vivi+1) = a.

(b) For every skew-normalised path (vi−1, vi ) in T and every a ∈ Z[σ ] there exists a unique
vi+1 ∈ T0 such that (vi−1, vi , vi+1) is a skew-normalised path and∠T (vi−1vivi+1) = a.

(c) For every skew-normalised path (vi , vi+1) in T and every a ∈ Z[σ ] there exists a unique
vi−1 ∈ T0 such that (vi−1, vi , vi+1) is a skew-normalised path and∠T (vi−1vivi+1) = a.

Proof To prove (a), note that
(

pi pi+1

qi qi+1

)

=
(

pi−1 pi
qi−1 qi

)

·
(

0 ξ

1 α

)

(6.1)

for some α, ξ ∈ C which are defined uniquely.
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Since the path (vi−1, vi , vi+1) is skew-normalised,

det

(

pi−1 pi
qi−1 qi

)

= (−1)i−1, det

(

pi pi+1

qi qi+1

)

= (−1)i ,

which implies that ξ = 1. Equation (6.1) can now be rewritten as
(

pi−1 pi+1

qi−1 qi+1

)

=
(

pi−1 pi
qi−1 qi

)

·
(

1 1
0 α

)

.

Therefore, we conclude

∠T (vi−1vivi+1) = α =
det

(

pi−1 pi+1

qi−1 qi+1

)

det

(

pi−1 pi
qi−1 qi

) = (−1)i−1 det

(

pi−1 pi+1

qi−1 qi+1

)

,

which proves (a).
Parts (b) and (c) now follow from (6.1) with ξ = 1 and α = a. ��

Definition 6.4 Given a skew-normalised path (vi ), define ai = ∠T (vi−1vivi+1). We call the
sequence (ai ) the T -angle sequence of the path (vi ).

Remark 6.5 T -angle sequence is a counterpart of itinerary appearing in [30] and quiddity
sequence appearing in the context of friezes [6]. This sequence (up to change of certain signs)
also appears in [3, Section 3].

Proposition 6.6 (a) Every bi-infinite sequence (ai ), ai ∈ Z[σ ], is a T -angle sequence of
some skew-normalised path.

(b) Two skew-normalised paths (pi/qi ) and (r j/s j ) have the same T -angle sequence if and
only if the paths are equivalent under SL2(Z[σ ])-action.

Proof (a) follows from parts (b) and (c) of Proposition 6.3.
To prove (b), note that invariance of T -angle sequences under the action of SL2(Z[σ ])

follows immediately from Definition 6.2: left multiplication by the same matrix does not
affect the validity of the equation.

Conversely, consider a skew-normalised path (vi ). Parts (b) and (c) of Proposition 6.3
imply that the fractions v0 = p0/q0 and v1 = p1/q1 together with the sequence (ai )
uniquely define the whole path (vi ). Note that there exists A ∈ SL2(Z[σ ]) taking (v0, v1) to
( 10 ,

0
1 ). Therefore, given two skew-normalised paths (vi ) and (v′

i ), there exists an element of
SL2(Z[σ ]) taking (vi ) to (v′

i ), which completes the proof. ��
Remark 6.7 Given a path (vi ) in T , there exist 6 of its skew-normalisations obtained from one
of them by multiplying both numerator and denominator of vi by σ (−1)i ·k (cf. Remark 5.3).
The T -angle sequence of the new path is then obtained by multiplying ai by σ (−1)i+1·2k .

Definition 6.8 Consider two sequences (ai ) and (bi ) where ai , bi ∈ Z[σ ]. We say that (ai )
and (bi ) are equivalent if there exists k ∈ {−1, 1} such that bi = aiσ (−1)i+1·2k .

An equivalence class of sequences corresponds to a path in T considered up to the action
of PSL2(Z[σ ]).

We introduce one more notion with the aim to reformulate Theorem 5.20 in terms of
T -angle sequences. Namely, the paths from Theorem 5.20 are replaced by their T -angle
sequences, and the relative position of the paths with respect to each other is indicated by a
matrix in SL2(Z[σ ]).
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Definition 6.9 Consider a triple
(

(ai ), (b j ), X
)

, where (ai ) and (b j ) are equivalence classes
of sequences, ai , b j ∈ Z[σ ], and X ∈ SL2(Z[σ ]). We say that two triples

(

(ai ), (b j ), X
)

and
(

(ãi ), (b̃ j ), ˜X
)

are equivalent if the following two conditions hold:

(1) (ai ) is equivalent to (ãi ), and (b j ) is equivalent to (b̃ j );

(2) if ã0 = a0σ−2k and b̃0 = b0σ−2 l , then ˜X = ±
(

σ l 0
0 σ−l

)

X

(

σ−k 0
0 σ k

)

.

Remark 6.10 Substituting X with −X corresponds to changing the sign of all numerators
and denominators in one of the normalised paths. In particular, a generic equivalence class
of triples consists of 18 elements.

Theorem 6.11 There exists a bijection between equivalence classes of tame SL2(Z[σ ])-
tilings and equivalence classes of triples

(

(ai ), (b j ), X
)

, where (ai ) and (b j ) are sequences,
ai , b j ∈ Z[σ ], and X ∈ SL2(Z[σ ]).
Proof Given a triple

(

(ai ), (b j ), X
)

we construct an SL2(Z[σ ])-tiling as follows.
According to Proposition 6.6, there exists a unique skew-normalised path (ui ) with T -

angle sequence (ai ) and u0 = p0/q0, u1 = p1/q1, where

p0
q0

=

⎧

⎪

⎨

⎪

⎩

1/0 if 0 ≤ arg(a0) < 2π/3,

σ−1/0 if 2π/3 ≤ arg(a0) < 4π/3,

σ−2/0 if 4π/3 ≤ arg(a0) < 2π;
p1
q1

= 0

p−1
0

.

Similarly, there exists a unique skew-normalised path (v j ) with T -angle sequence (b j )

and v0 = r0/s0, v1 = r1/s1, where

(

r0 r1
s0 s1

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

x1,1 x1,2
x2,1 x2,2

)

if 0 ≤ arg(b0) < 2π/3,
(

σ−1x1,1 σ x1,2
σ−1x2,1 σ x2,2

)

if 2π/3 ≤ arg(b0) < 4π/3,
(

σ−2x1,1 σ 2x1,2
σ−2x2,1 σ 2x2,2

)

if 4π/3 ≤ arg(b0) < 2π.

Wecan now construct a normalised path (u′
i ) according to the following rule: if ui = pi/qi

then

u′
i =

{

pi
qi

if i ≡ 0, 1 (mod 4),
−pi
−qi

if i ≡ 2, 3 (mod 4).

Similarly, we use the skew-normalised path (v j ) to construct a normalised path (v′
j ). Now,

a tame SL2(Z[σ ])-tiling is defined by mi, j = p′
i s

′
j − q ′

i r
′
j , where u

′
i = p′

i/q
′
i , v

′
j = r ′

j/s
′
j

(see Remark 5.19).
If sequences (ãi ) and (ai ) are equivalent, then, by Remark 6.7, the corresponding skew-

normalised paths (ũi ) and (ui ) are distinct skew-normalisations of the same path in T . Hence,
(ũ′

i ) and (u′
i ) are distinct normalisations of the same path in T . Since X is substituted with

˜X , the sequence (b j ) still leads to the same path (v j ) in T . Therefore, by Theorem 5.20, the
triple

(

(ãi ), (b̃ j ), ˜X
)

leads to an equivalent SL2(Z[σ ])-tiling. Similarly, changing (b j ) (and
X ) also leads to an equivalent SL2(Z[σ ])-tiling.
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Therefore, we have constructed a well-defined map from equivalence classes of triples
(

(ai ), (b j ), X
)

to equivalence classes of SL2(Z[σ ])-tilings.
To prove surjectivity of this map, consider any two paths in T and the corresponding

class of SL2(Z[σ ])-tilings. Choose any skew-normalisations (ui ) and (v j ) of these paths
and set (ai ) and (b j ) to be the corresponding T -angle sequences. Set X to be the element
of SL2(Z[σ ]) taking u0 to v0 and u1 to v1. Then the triple

(

(ai ), (b j ), X
)

produces an
SL2(Z[σ ])-tilings from the required equivalence class. This proves surjectivity.

Notice that taking different skew-normalisations of the paths in the construction above
(and, hence, the corresponding matrix X ) leads to an equivalent triple. This shows injectivity.

��
The next theorem is a very particular case of Proposition 3 of [3] where it is proved in

purely linear-algebraic terms (cf. also [21, Theorem 2]).

Theorem 6.12 There exists a bijection between tame SL2(Z[σ ])-tilings and triples
(

(ai ),
(b j ), X

)

, where (ai ) and (b j ) are sequences, ai , b j ∈ Z[σ ], and X ∈ SL2(Z[σ ]).
Proof The map constructed in the proof of Theorem 6.11 takes equivalence classes of triples
(

(ai ), (b j ), X
)

to equivalence classes of tame SL2(Z[σ ])-tilings. Due to Proposition 5.11,
the same map is a surjective map from triples

(

(ai ), (b j ), X
)

to tame SL2(Z[σ ])-tilings.
We now observe that generically equivalence classes of triples and equivalence classes of
SL2(Z[σ ])-tilings consist of 18 elements each (see Remarks 5.15 and 6.10), which shows
that the map is one-to-one in the generic case.

We are left to deal with singular equivalence classes. The small classes of tilings appear
when mi, j = 0 for all i + j even (or all i + j odd). In every such class there are precisely
six tilings, and it is easy to see that corresponding T -angle sequences (ai ) and (b j ) are
both identically zero. The matrix X in that case can take precisely six values, so that the
equivalence class of triples is also of size 6. This completes the proof of the theorem. ��

7 Further comments

7.1 Skew-normalised paths and continued fractions

Consider a finite skew-normalised path (vi )
n+2
i=0 and let v0 = 1/0 and v1 = 0/1. Let (ai )

n+1
i=1

be its T -angle sequence. Then (ai )
n+1
i=1 provides a continued fraction expansion for vn+2:

vn+2 = [a1; a2, . . . , an+1] = a1 + 1

a2 + 1

a3 + 1

. . . + 1

an+1

.

Indeed, as it was shown in the proof of Proposition 6.3,
(

pi pi+1

qi qi+1

)

=
(

pi−1 pi
qi−1 qi

)

·
(

0 1
1 ai

)

,

and the statement becomes a classical property of continuants for [a1; a2, . . . , an+1].
Corollary 7.1 A skew-normalised path (ui ) visits the same vertex of T twice if and only
if its T -angle sequence (ai ) contains a finite subsequence (ai )

k+n
i=k , k, n ∈ Z such that

0 = [ak; ak+1, ak+2, . . . , ak+n].
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7.2 Some further properties ofT -angles

Definition 6.2 of T -angle∠T (v0v1v2) can be generalised to the situation when v0, v1, v2 are
any vertices of T : here, we drop the requirement on v0v1 and v1v2 to be edges of T . Namely,
following the proof of Proposition 6.3, one can define a ∈ Q(σ ) such that

(

pi+1

qi+1

)

=
(

pi−1 pi
qi−1 qi

)

·
(

ξ

a

)

for some ξ ∈ Q(σ ) (notice that a may not belong to Z[σ ] anymore).
Next, we list some properties of T -angles.

Proposition 7.2 Let vi = pi/qi , where pi , qi ∈ Z[σ ], i = 1, 2, 3. Let deti, j = piq j − p jqi .
Then

(1) ∠T (v0v1v2) = det0,2
det0,1

;
(2) ∠T (v0v1v2) · ∠T (v1v2v0) · ∠T (v2v0v1) = −1.

Proof The first property is a result of a direct computation, the second follows from the first.
��

There is also the following version of the Ptolemy relation for T -angles.

Proposition 7.3 Let vi = pi/qi , where pi , qi ∈ Z[σ ], i ∈ {1, 2, 3, 4} be four distinct points
lying on one circle or line in C in the cyclic order v1v2v3v4. Let v0 = p0/q0 be any other
point in ̂Q(σ ). Define

xi, j =
√

|∠T (viv0v j ) · ∠T (v jv0vi )|.
Then x1,3x2,4 = x1,2x3,4 + x2,3x1,4.

Proof We prove the identity with the assumption that all pi/qi are irreducible. This does not
affect the validity of the statement as the identity is homogeneous.

Denote deti, j = piq j − p jqi . In view of Proposition 7.2(a),

xi, j = x j,i =
√

∣

∣

∣

∣

deti, j det j,i
deti,0 det j,0

∣

∣

∣

∣

= | deti, j |
√| deti,0 det j,0 | .

Theorem 4.12 implies that the determinants satisfy the Ptolemy relation, i.e.

| det1,3 || det2,4 | = | det1,2 || det3,4 | + | det2,3 || det1,4 |.
By dividing every term of this equation by

√| det1,0 det2,0 det3,0 det4,0 |, we obtain the
required relation for xi, j . ��

7.3 Other imaginary quadratic fields

Let K be an imaginary quadratic field Q(
√−d), where d ∈ Z+ is square-free, and let ̂K =

K ∪ {∞}. Let OK be the ring of integers of K , consider K as the field of fractions of OK .
So, every point of ̂K can be written as an irreducible fraction p/q , where p, q ∈ OK . We
consider ̂K as points of the boundary of H

3, with Bianchi group Bi(d) acting on ̂K .
Following [27], one can consider a graphG with vertices at ̂K and edges between p/q and

r/s whenever |ps − rq| = 1. As for d = 3, G can be constructed as the orbit of the classical
Farey graph F under the action of Bi(d). Note that the graph is not always connected, see
[33].

Triangular and quadrilateral faces of G are described in [27] (up to the action of Bi(d)).
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7.3.1 Lambda lengths

As for d = 3, we can assign a standard horosphere at every point of OK (i.e., a sphere of
Euclidean radius 1/2), and then apply SL2(OK ) to obtain a standard horosphere at every
point of ̂K . Two horospheres are tangent if and only if their centres are adjacent in G, and
disjoint otherwise.

Proceeding as in Remark 4.14 and using the results of [23], we can deduce that the det-
lengths still coincide with λ-lengths with respect to the standard horospheres.

In particular, this leads to the following corollary: given a normalised path (pi/qi ), the
value |piqi+2 − pi+2qi | coincides with the λ-length between pi/qi and pi+2/qi+2.

7.3.2 SL2-tilings

The results of Sect. 5 are also valid for any imaginary quadratic field K . The only difference
is that one needs to consider all units of K rather than powers of σ (for example, we need to
do so in defining equivalent SL2(OK ) tilings as in Definition 5.16).

In particular, given two normalised paths in G, we can construct an SL2(OK )-tiling by
taking determinants of the pairs of entries. The construction provides a bijection between
equivalence classes of tame SL2(OK )-tilings and pairs of paths in G considered up to the
simultaneous action of SL2(OK ) on both paths.

The counterpart of Theorem 6.12 for any K is proved in [3], while the geometric approach
via pairs of paths and their corresponding sequences of elements of OK also works. In
particular, modulus of i-th entry of the corresponding quiddity sequence will be equal to the
λ-length between (i − 1)-th and (i + 1)-th vertices of the path.

7.3.3 Friezes

Consider an SL2(Z)-tiling constructed via taking determinants (see Theorem 5.20), where
two paths coincide. If the path is periodic with period m > 3, we obtain a tame frieze
pattern of height m − 3 (see [19]). It follows from [30] that all tame friezes can be obtained
in this way. This can be generalized to SL2(OK )-tilings for all imaginary quadratic fields
using Schmidt arrangements described above: tame friezes of height m − 3 without zeroes
correspond precisely to non-self-intersecting closed (normalised) paths of length m.

Recently, Cuntz and Holm [9, 10] proved that the number of tame friezes of given height
without zeroes overOK is finite for any K = Q(

√−d), and for d /∈ {1, 2, 3, 7, 11} all entries
of friezes are actually rational integers. We would like to note that an independent proof of
this result can be obtained by looking at the geometry of the corresponding graphs.

The finiteness of the number of friezes of given height without zeroes is equivalent to the
finiteness of the number of closed non-self-intersecting paths up to the action of the Bianchi
group. The latter is implied by the following observation: in a closed non-self-intersecting
path of length m, the modulus of any entry of the quiddity sequence does not exceed m − 2
(due to their relation to λ-lengths).

Further, it follows from [33, Theorem 5.1] that for d /∈ {1, 2, 3, 7, 11} all vertices of any
closed non-self-intersecting path in the corresponding graph belong to an image of ̂Q under
an element of Bi(d), which immediately implies that all entries of the frieze are integers.

Also, all tame non-zero friezes over Eisenstein integers can be enumerated by closed paths
in the tetrahedral graph (up to the symmetry group of the graph). It would be interesting to
have a combinatorial way of a complete enumeration of all closed paths of a given length.
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