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In this paper we introduce a new operation for Linear Programming (LP), called LP complementa-

tion, which resembles many properties of LP duality. Given a maximisation (resp. minimisation) 
LP 𝑃 , we define its complement 𝑄 as a specific minimisation (resp. maximisation) LP which has 
the same objective function as 𝑃 . Our central result is the LP complementation theorem, that 
relates the optimal value Opt(𝑃 ) of 𝑃 and the optimal value Opt(𝑄) of its complement by 

1 
Opt(𝑃 )

+ 1 
Opt(𝑄)

= 1. The LP complementation operation can be applied if and only if 𝑃 has an 
optimum value greater than 1.

To illustrate this, we first apply LP complementation to hypergraphs. For any hypergraph 𝐻 , we 
review the four classical LPs, namely covering 𝐾(𝐻), packing 𝑃 (𝐻), matching 𝑀(𝐻), and transver-

sal 𝑇 (𝐻). For every hypergraph 𝐻 = (𝑉 ,𝐸), we call 𝐻 = (𝑉 ,{𝑉 ⧵ 𝑒 ∶ 𝑒 ∈ 𝐸}) the complement of 
𝐻 . For each of the above four LPs, we relate the optimal values of the LP for the dual hypergraph 
𝐻∗ to that of the complement hypergraph 𝐻 (e.g. 1 

Opt(𝐾(𝐻∗))
+ 1 

Opt(𝐾(𝐻))
= 1).

We then apply LP complementation to fractional graph theory. We prove that the LP for the frac-

tional in-dominating number of a digraph 𝐷 is the complement of the LP for the fractional total 
out-dominating number of the digraph complement 𝐷 of 𝐷. Furthermore we apply the hypergraph 
complementation theorem to matroids. We establish that the fractional matching number of a 
matroid coincide with its edge toughness.

As our last application of LP complementation, we introduce the natural problem Vertex Cover 
with Budget (VCB): for a graph 𝐺 = (𝑉 ,𝐸) and a positive integer 𝑏, what is the maximum 
number 𝑡𝑏 of vertex covers 𝑆1,… , 𝑆𝑡𝑏

of 𝐺, such that every vertex 𝑣 ∈ 𝑉 appears in at most 𝑏
vertex covers? The integer 𝑏 can be viewed as a “budget” that we can spend on each vertex and, 
given this budget, we aim to cover all edges for as long as possible. We relate VCB with the LP 𝑄𝐺

for the fractional chromatic number 𝜒f of a graph 𝐺. More specifically, we prove that, as 𝑏→∞, 
the optimum for VCB satisfies 𝑡𝑏 ∼ 𝑡f ⋅ 𝑏, where 𝑡f is the optimal solution to the complement LP 
of 𝑄𝐺. Finally, our results imply that, for any finite budget 𝑏, it is NP-hard to decide whether 
𝑡𝑏 ≥ 𝑏+ 𝑐 for any 1≤ 𝑐 ≤ 𝑏− 1.

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
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1. Introduction

1.1. Background

Many optimisation problems can be expressed as, or reduced to, Linear Programs (LPs) or Integer Programs (IPs) [8,11]. As 
such, the use of Linear Programming is ubiquitous [14], with applications in combinatorial optimisation, combinatorics, industrial 
engineering, coding theory, etc. One of the key aspects of Linear Programming is LP duality, and in particular the strong LP duality 
theorem which states that the optimal value of an LP is equal to that of its dual [13].

Many classical problems from graph theory, e.g. maxmimum matching, minimum vertex cover, chromatic number, independence 
number, clique number, minimum dominating set, domatic number, etc. can be expressed as Integer Programs (IPs). Fractional 
graph theory then investigates these problems with three main approaches (see the book by Scheinerman and Ullman [12] for a 
survey). First, it studies the Linear Programming (LP) relaxations of these IPs, some of which have found applications of their own, 
e.g. fractional chromatic number or fractional domatic number for scheduling [1,5]. Second, it applies LP techniques to either the 
original IP problems or their LP relaxations. Amongst those, LP duality is one of the most powerful and ubiquitous [13]. Third, 
it generalises the results to hypergraphs in order to get a clearer framework. In particular, hypergraph duality, where the roles of 
vertices and edges are swapped, is common practice.

Motivating example We illustrate the main contributions of this paper, namely LP and hypergraph complementations, via a simple 
example first. A vertex cover of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. A stable set
of a graph is a set of pairwise non-adjacent vertices. Consider the following problem Vertex Cover with Budget (VCB). Given a 
graph 𝐺 and a vertex budget 𝑏 ≥ 1, find the largest collection 𝑆1,… , 𝑆𝑡𝑏

of vertex covers such that every vertex belongs to at most 
𝑏 of the 𝑆𝑖’s. As 𝑏 tends to infinity, the optimum satisfies 𝑡𝑏 ∼ 𝑡f ⋅ 𝑏, where 𝑡f is defined as follows. Let 𝐴 be the incidence matrix of 
vertex covers of 𝐺, where 𝐴𝑣𝑒 = 1 if and only if 𝑣 belongs to the vertex cover 𝑒. Then 𝑡f = max{1⊤𝑥 ∶ 𝐴𝑥 ≤ 1, 𝑥 ≥ 0}. For instance, 
the pentagon 𝐶5 has eleven vertex covers: all complements of non-edges and all sets of four or five vertices. We obtain

𝐴(𝐶5) =

⎛⎜⎜⎜⎜⎜⎝

1 0 1 0 1 1 0 1 1 1 1
1 1 0 1 0 1 1 0 1 1 1
0 1 1 0 1 1 1 1 0 1 1
1 0 1 1 0 1 1 1 1 0 1
0 1 0 1 1 0 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎠
, 𝑡f (𝐶5) = max{1⊤𝑥 ∶𝐴𝑥 ≤ 1, 𝑥 ≥ 0} = 5

3
.

In general, the 𝑡f quantity has received very little attention. LP complementation then links it to the much more well studied fractional 
chromatic number of graphs [12]. A 𝑐-multicolouring of 𝐺 is the smallest size of a collection of stable sets 𝑆1,… , 𝑆𝜒𝑐

, such that each 
vertex belongs to at least 𝑐 of the 𝑆𝑖 ’s. As 𝑐 tends to infinity, the optimum satisfies 𝜒𝑐 ∼ 𝜒f ⋅ 𝑐, where 𝜒f is the fractional chromatic 
number of 𝐺. We have 𝜒f = min{1⊤𝑥 ∶ (1 −𝐴)𝑥 ≥ 1, 𝑥 ≥ 0}, where 1 −𝐴 is the incidence matrix of stable sets of 𝐺. For instance, for 
𝐶5,

1 −𝐴(𝐶5) =

⎛⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 1 0 0 0
1 0 0 1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 1 0
1 0 1 0 0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
, 𝜒f (𝐶5) = min{1⊤𝑥 ∶ (1 −𝐴)𝑥 ≥ 1, 𝑥 ≥ 0} = 5

2
.

The relation between vertex covers and stable sets is an example of hypergraph complementation, and accordingly, the 𝑡f and 𝜒f
terms are examples of LP complementation. We shall prove that these two values form a complement pair, i.e. 1 

𝑡f
+ 1 

𝜒f
= 1, which 

is easily verified for 𝐶5. Therefore, computing the fractional chromatic number immediately yields the asymptotic behaviour of the 
vertex cover with budget problem.

1.2. Our contributions

In this subsection, we give an overview of the contributions of this paper. Here, we provide a selected number of definitions and 
simplified statements of results that shall be proved in the rest of the paper.

1.2.1. Linear Programming complementation

In this paper we introduce the notion of the complement of an LP 𝑅, which we denote by 𝑅, as follows. Let 𝑐 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚, 
𝐴 ∈ℝ𝑚×𝑛, then for the following maximisation LP 𝑃 , we have

𝑃 ∶ max{𝑐⊤𝑥 ∶𝐴𝑥 ≤ 𝑏},

𝑃 ∶ min{𝑐⊤𝑥 ∶ (𝑏𝑐⊤ −𝐴)𝑥 ≥ 𝑏}.

Similarly, let 𝑣 ∈ℝ𝑛, 𝑢 ∈ℝ𝑚, 𝑀 ∈ℝ𝑚×𝑛, then for the following minimisation LP 𝑄, we have
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𝑄 ∶ min{𝑣⊤𝑥 ∶𝑀𝑥 ≥ 𝑢},

𝑄 ∶ max{𝑣⊤𝑥 ∶ (𝑢𝑣⊤ −𝑀)𝑥 ≤ 𝑢}.

To simplify notation, in the remainder of the paper we use the notation 𝑃 (resp. 𝑄) to denote a maximisation (resp. minimisation) 
LP, while we use 𝑅 to denote an arbitrary LP which can be either a maximisation or a minimisation LP. Furthermore, for any linear 
program 𝑅, adding the constraint that the variables have to be integral yields an integer program, which we denote 𝑅ℤ .

LP complementation theorem Our central result is a surprising relation between the optimal values of an LP and its complement, given 
that one of these values is finite and larger than 1.

Theorem 1.1 (LP complementation theorem). For any LP 𝑅, 1< Opt(𝑅) <∞ if and only if 1< Opt(𝑅) <∞, in which case

1 
Opt(𝑅)

+ 1 
Opt(𝑅)

= 1.

Alternatively, the theorem states that the harmonic mean of the optimal values of the LP and its complement is 2. Consequently, the 
two values are separated by 2, and one value is equal to 2 if and only if the other is equal to 2.

Natural interpretation of LP complementation The links between two-player zero-sum (matrix) games and LP are well established; see 
[4,15] for instance. We shall review these and then show that LP complementation can be interpreted using two complementary 
games.

Given any 𝑚 × 𝑛 matrix 𝐴, the matrix game Γ𝐴 with payoff matrix 𝐴 is played by two persons, Rose and Colin, as follows. Rose 
selects a row of 𝐴, Colin a column. If the row 𝑖 and the column 𝑗 are chosen, then Rose’s payoff is 𝑎𝑖𝑗 . In particular, if 𝑎𝑖𝑗 > 0, then 
Rose earns money; otherwise, Rose loses money.

A strategy for Colin is then a probability distribution on the columns: 𝑐 = (𝑐1,… , 𝑐𝑛)⊤ such that 𝑐 ≥ 0 and 1⊤𝑐 = 1. Rose’s expected 
payoff for a given strategy 𝑐 for Colin is then 𝑣𝑐 =max𝑖{𝐴𝑖𝑐}, where 𝐴𝑖 is the 𝑖-th row of 𝐴𝑖; thus 𝐴𝑐 ≤ 𝑣𝑐 ⋅1. Colin aims at minimising 
Rose’s expected payoff. The value of the game, denoted as 𝑉 , is the minimum expected of Rose’s payoff over all strategies for Colin.

Without loss of generality, suppose that 0 ≤ 𝐴 ≤ 1. Then the value 𝑉 of the game is also between 0 and 1; let us omit the two 
extreme cases and suppose that 0 < 𝑉 < 1. For any strategy 𝑐 for Colin with payoff 𝑣𝑐 , let 𝑥 = 1 

𝑣𝑐
𝑐, then we have 𝑥 ≥ 0, 𝐴𝑥 ≤ 1, and 

1⊤𝑥 = 1 
𝑣𝑐

. Minimising Rose’s expected payoff 𝑣𝑐 then corresponds to maximising 1⊤𝑥. We can then express 𝑉 = 1∕Opt(𝑃 ), where

𝑃 ∶  max{1⊤𝑥 ∶𝐴𝑥 ≤ 1, 𝑥 ≥ 0}.

LP duality then corresponds to taking Rose’s point of view: 𝑉 = 1∕Opt(𝑃 ∗), with

𝑃 ∗ ∶  min{1⊤𝑦 ∶𝐴⊤𝑦 ≥ 1, 𝑦 ≥ 0}.

LP complementation, on the other hand, corresponds to taking the complementary payoff. Consider a second game, where the 
players change their roles (Rose chooses columns of the payoff matrix and Colin chooses rows), and the payoff is equal to 1 minus the 
original payoff. Thus, the new payoff matrix is (1−𝐴⊤) and the value of the new game is 𝑉 = 1−𝑉 . But then, we have 𝑉 = 1∕Opt(𝑄), 
where

𝑄 = 𝑃 ∶  min{1⊤𝑦 ∶ (1 −𝐴)𝑦 ≥ 1, 𝑦 ≥ 0}.

We then have Opt(𝑃 ) > 1 and Opt(𝑃 ) > 1 and

1 
Opt(𝑃 )

+ 1 
Opt(𝑃 )

= 1.

Consequence for integer programming & bounds Let 𝑃 be a maximisation LP. LP duality can be naturally used to study 𝑃 , as any 
feasible solution to the dual 𝑃 ∗ gives an upper bound on the optimal value of 𝑃 . However, a feasible solution to the dual does not 
provide much information about feasible solutions of the primal. LP complementation works differently, as a feasible solution to the 
complement immediately yields a feasible solution to the primal by simple scaling. However, it only gives a lower bound on the 
optimal value. The primal and its complement then “work together” towards their optimal solutions and values.

The relationship between feasible solutions to the primal and the complement has some important consequences for IPs. Firstly, 
from 𝑃 and 𝑃 , we obtain four programs 𝑃𝑠, 𝑃𝑠ℤ, (𝑃 )𝑡, and (𝑃 )𝑡

ℤ
(where 𝑠 and 𝑡 come from an optimal solution of 𝑃 and its value), 

which have a common optimal solution–see Corollary 2.4.

Secondly, we introduce the bounds 𝛼(𝑃ℤ) and 𝛽(𝑃
ℤ
) on the optimal values of 𝑃 and 𝑃 , respectively. These bounds are based on 

feasible solutions of 𝑃ℤ and 𝑃
ℤ

, respectively. We then prove that these bounds are “mutually tight” for the primal-complement pair 
(they are actually tight for the vertex cover with budget problem on 𝐶5).
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Table 1
Four standard LPs for hypergraphs: covering, packing, transversal, and matching numbers of a hypergraph.

Covering number, 𝑘f (𝐻)
min # edges to cover all vertices 

𝐾(𝐻) ∶ min{1⊤𝑥 ∶𝑀𝐻𝑥 ≥ 1, 𝑥 ≥ 0}

Packing number, 𝑝f (𝐻)
max # vertices, no two in the same edge 

𝑃 (𝐻) ∶ max{1⊤𝑥 ∶𝑀⊤
𝐻
𝑥 ≤ 1, 𝑥 ≥ 0}

Transversal number, 𝜏f (𝐻)
min # vertices to touch all edges 

𝑇 (𝐻) ∶ min{1⊤𝑥 ∶𝑀⊤
𝐻
𝑥 ≥ 1, 𝑥 ≥ 0}

Matching number, 𝜇f (𝐻)
max # pairwise disjoint edges 

𝑀(𝐻) ∶ max{1⊤𝑥 ∶𝑀𝐻𝑥 ≤ 1, 𝑥 ≥ 0}

𝐾(𝐻) 𝑃 (𝐻) =𝐾(𝐻)∗

𝑇 (𝐻) =𝐾(𝐻∗) 𝑀(𝐻) =𝐾(𝐻∗)∗

•

•

•

•

LP duality Hypergraph duality 

Fig. 1. The four initial Linear Programs related to a hypergraph. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this 
article.)

Theorem 1.2. Let 𝑃 ∶ max{𝑐⊤𝑥 ∶ 𝐴𝑥 ≤ 𝑏}, where 𝑏 > 0 and 𝐴 ≠ 0, such that 1 < Opt(𝑃ℤ) ≤ Opt(𝑃
ℤ
) <∞. Then Opt(𝑃ℤ) ≤ 𝛼(𝑃ℤ) ≤

Opt(𝑃 ), Opt(𝑃 ) ≤ 𝛽(𝑃
ℤ
) ≤ Opt(𝑃

ℤ
) and

Opt(𝑃 ) = 𝛼(𝑃ℤ) ⟺ Opt(𝑃 ) = 𝛽(𝑃
ℤ
).

Hypergraph complementation For a hypergraph 𝐻 = (𝑉 ,𝐸) with 𝑛 vertices and 𝑚 edges, its incidence matrix is denoted by 𝑀𝐻 ∈ℝ𝑛×𝑚. 
The dual of the hypergraph 𝐻 is 𝐻∗ = (𝐸,𝑉 ∗), where 𝑉 ∗ = {𝐸𝑣 ∶ 𝑣 ∈ 𝑉 } and 𝐸𝑣 = {𝑒 ∈ 𝐸 ∶ 𝑣 ∈ 𝑒}. We then have 𝑀𝐻∗ = (𝑀𝐻 )⊤
and (𝐻∗)∗ ≅𝐻 .

Now we define the complement of 𝐻 as 𝐻 = (𝑉 ,{𝑉 ⧵ 𝑒 ∶ 𝑒 ∈ 𝐸}); note that 𝑀
𝐻

= 1 −𝑀𝐻 . Hypergraph complementation is an 

involution that commutes with duality, i.e. 𝐻 =𝐻 and (𝐻∗) =
(
𝐻

)
∗.

A covering of a hypergraph 𝐻 is a set of edges whose union is equal to its set of vertices 𝑉 . The covering number 𝑘(𝐻) of 𝐻 is 
the minimum size of a covering of 𝐻 ; this can be formulated as the optimum of an integer program. The fractional covering number

𝑘f (𝐻) of 𝐻 is the optimal value of the LP 𝐾(𝐻) that is obtained by removing the integrality constraints.

It can be easily shown that 𝐾(𝐻∗) =𝐾(𝐻)∗. By applying the LP complementation theorem to 𝐾(𝐻), we obtain the hypergraph 
complementation theorem, as follows.

Theorem 1.3 (Hypergraph complementation theorem). For any hypergraph 𝐻 ,

1 
𝑘f (𝐻∗)

+ 1 
𝑘f (𝐻)

= 1.

Applying LP duality and hypergraph duality to 𝐾(𝐻) yields four standard LPs 𝐾(𝐻), 𝑃 (𝐻), 𝑇 (𝐻),𝑀(𝐻) for hypergraphs, 
given in Table 1 and related in Fig. 1 [12]. By applying LP complementation to these four LPs, we obtain the four new LPs 
𝐾(𝐻), 𝑃 (𝐻), 𝑇 (𝐻),𝑀(𝐻). The new notions of LP complementation and hypergraph complementation allow us to establish a formal 
relation of these four LPs with the four original LPs; see Fig. 2 for an illustration.

The hypergraph complementation theorem then holds for all four parameters in Table 1.

Corollary 1.4. For any hypergraph 𝐻 , we have

1 
𝑘f (𝐻∗)

+ 1 
𝑘f (𝐻)

= 1 
𝑝f (𝐻∗)

+ 1 
𝑝f (𝐻)

= 1 
𝜇f (𝐻∗)

+ 1 
𝜇f (𝐻)

= 1 
𝜏f (𝐻∗)

+ 1 
𝜏f (𝐻)

= 1.

1.2.2. The impact of LP complementation to related problems

Here we give a brief overview of the implications that LP Complementation has in the following two case studies. Full details are 
given in Sections 4 and 5, respectively.
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𝐾(𝐻) 𝑃 (𝐻)

𝑇 (𝐻) 𝑀(𝐻)

𝐾(𝐻) =𝑀(𝐻) 𝑃 (𝐻) = 𝑇 (𝐻)

𝑇 (𝐻) = 𝑃 (𝐻) 𝑀(𝐻) =𝐾(𝐻)

•

•

•

•

•

•

•

•

LP duality LP complementation Hypergraph duality Hypergraph complementation 

Fig. 2. The eight Linear Programs related to a hypergraph. 

Case study 1: fractional graph theory We give two applications of the hypergraph complementation theorem to graph theory.

Firstly, fractional domination in digraphs provides a setting where LP complementation and hypergraph complementation natu-

rally arise. An in-dominating set of a digraph 𝐷 is a set 𝑆 of vertices such that for any vertex 𝑣 ∈ 𝑉 (𝐷), either 𝑣 ∈ 𝑆 or there exists 𝑠 ∈ 𝑆

such that (𝑠, 𝑣) ∈𝐸(𝐷); similarly a total in-dominating set is a set 𝑇 of vertices such that for any vertex 𝑣, there exists 𝑡 ∈ 𝑇 such that 
(𝑡, 𝑣) ∈𝐸(𝐷). Out-dominating and total out-dominating sets are defined similarly. The in-dominating number is the smallest cardinality 
of an in-dominating number; as expected, the total out-dominating number is the smallest cardinality of a total out-dominating set. 
We relate the fractional in-dominating number of a digraph 𝐷 and the fractional total out-dominating number of its digraph complement 
𝐷 as follows.

Theorem 1.5 (Domination complementation theorem). For any digraph 𝐷, we have that 1 
𝛾 inf (𝐷) +

1 
Γout f (𝐷)

= 1.

This theorem is very general, as it holds for all digraphs, and provides more specific relations about domination numbers for 
graphs, tournaments, and regular digraphs. The last one is itself a generalisation of the result in [12, Theorem 7.4.1], which only 
applies to regular graphs.

Secondly, we apply the hypergraph complementation theorem to matroids. We establish that the fractional matching number of 
a matroid coincides with its edge toughness. This result can then be applied to graphic matroids, yielding a formula for the edge 
toughness of a graph. Moreover, we derive an alternative proof of the relationship between the edge toughness of a matroid and the 
fractional covering number of its dual matroid.

Case study 2: vertex cover with budget We further investigate the Vertex Cover with Budget problem. First, using our LP comple-

mentation results we relate the “time per budget” ratio 𝑡f to the fractional chromatic number 𝜒f of the graph by 1 
𝑡f
+ 1 

𝜒f
= 1. Second, 

we show that, surprisingly, for any finite budget we can also relate the optimal time with multicolourings of the graph. Finally, we 
prove that, computing an optimum solution, where the budget is finite, is NP-complete.

The rest of the paper is organised as follows. Section 2 first gives the LP complementation theorem. It then investigates its con-

sequences to IP and derives the 𝛼 and 𝛽 bounds. In Section 3, we introduce the complement of a hypergraph and apply the LP 
complementation theorem to obtain the hypergraph complementation theorem. In Section 4, we apply the hypergraph complemen-

tation theorem to obtain general results on the fractional dominating number of digraphs and to obtain a new proof of a result on 
the edge toughness of matroids. Finally, Section 5 applies our results from Sections 2 and 3 to the VCB problem.

2. Linear Programming complementation

2.1. The LP complementation theorem

For any linear program (LP) 𝑅 which is feasible and bounded, we denote its optimal value as Opt(𝑅). If 𝑃 is a maximisation 
problem, then we denote Opt(𝑃 ) = −∞ if 𝑃 is infeasible and Opt(𝑃 ) = ∞ if 𝑃 is unbounded. Similarly, if 𝑄 is a minimisation 
problem, then we denote Opt(𝑄) =∞ if 𝑄 is infeasible and Opt(𝑄) = −∞ if 𝑄 is unbounded. We denote the all-zero vector or matrix 
as 0, regardless its dimension; similarly, the all-ones vector or matrix is denoted as 1.

We define the complement of an LP 𝑅, which we denote 𝑅, as follows. Let 𝑐 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛, then for the following 
maximisation LP 𝑃 , we have

𝑃 ∶ max{𝑐⊤𝑥 ∶𝐴𝑥 ≤ 𝑏},

𝑃 ∶ min{𝑐⊤𝑥 ∶ (𝑏𝑐⊤ −𝐴)𝑥 ≥ 𝑏}.



Theoretical Computer Science 1032 (2025) 115087

6

M. Gadouleau, G.B. Mertzios and V. Zamaraev 

Table 2
General definition of LP complement.

Primal 𝑅 Complement 𝑅
max 𝑐⊤𝑥 min 𝑐⊤𝑥
𝐴𝑙𝑥 ≤ 𝑏𝑙 (𝑏𝑙𝑐⊤ −𝐴𝑙)𝑥 ≥ 𝑏𝑙
𝐴𝑒𝑥 = 𝑏𝑒 (𝑏𝑒𝑐⊤ −𝐴𝑒)𝑥 = 𝑏𝑒
𝐴𝑔𝑥 ≥ 𝑏𝑔 (𝑏𝑔𝑐⊤ −𝐴𝑔 )𝑥 ≤ 𝑏𝑔
𝑥𝑙 ≤ 0 𝑥𝑙 ≤ 0
𝑥𝑔 ≥ 0 𝑥𝑔 ≥ 0
𝑥𝑓 free 𝑥𝑓 free

Similarly, let 𝑣 ∈ℝ𝑛, 𝑢 ∈ℝ𝑚, 𝑀 ∈ℝ𝑚×𝑛, then for the following minimisation LP 𝑄, we have

𝑄 ∶ min{𝑣⊤𝑥 ∶𝑀𝑥 ≥ 𝑢},

𝑄 ∶ max{𝑣⊤𝑥 ∶ (𝑢𝑣⊤ −𝑀)𝑥 ≤ 𝑢}.

The definition above is extended to general LPs in Table 2.

Complementation is an involution, i.e. 𝑅 =𝑅. Moreover, complementation commutes with duality: indeed, if 𝑅∗ denotes the dual 
of 𝑅, then we have (𝑅∗) =

(
𝑅

)
∗.

Say two real numbers 𝑥, 𝑦 > 1 are a complement pair if 1 
𝑥
+ 1

𝑦 = 1. The main result is that, provided 1 < Opt(𝑅) <∞ or 1 < Opt(𝑅) <

∞, then the optimal values of 𝑅 and 𝑅 form a complement pair.

Theorem 2.1 (LP complementation theorem). For any LP 𝑅, 1< Opt(𝑅) <∞ if and only if 1< Opt(𝑅) <∞, in which case

1 
Opt(𝑅)

+ 1 
Opt(𝑅)

= 1.

Proof. Without loss of generality, let 𝑃 ∶ max{𝑐⊤𝑥 ∶𝐴𝑥 ≤ 𝑏}. Suppose 1< Opt(𝑃 ) <∞, say Opt(𝑃 ) = 1+ 𝑎 for some 𝑎 > 0. Let 𝑥 be 
an optimal solution of 𝑃 , and let 𝑥 = 1 

𝑎
𝑥. We then have

(𝑏𝑐⊤ −𝐴)𝑥 = 1 + 𝑎

𝑎 
𝑏− 1 

𝑎
𝐴𝑥 ≥ 𝑏,

and hence 𝑥 is a feasible solution of 𝑃 , with value 1 + 1 
𝑎
.

We have just shown that 𝑃 has a feasible solution of value greater than one. We now prove that Opt(𝑃 ) > 1. For the sake of 
contradiction, suppose that 𝑃 has a feasible solution with value at most 1, then for any 𝜖 > 0, 𝑃 has a feasible solution 𝑦 with value 
1+𝜖. Let 𝑦= 1

𝜖
𝑦, then by the same reasoning as above, 𝑦 is a feasible solution of 𝑃 with value 1+ 1

𝜖
; we conclude that 𝑃 is unbounded, 

which is the desired contradiction.

Having established that 1 < Opt(𝑃 ) <∞, we find that the first paragraph showed that

1 
Opt(𝑃 )

+ 1 
Opt(𝑃 )

≥
1 

𝑎+ 1
+ 𝑎 
𝑎+ 1

= 1.

We now prove the reverse inequality. Let Opt(𝑃 ) = 1 + �̄� with 𝑎 > 0 and 𝑥 be an optimal solution of 𝑃 . Then 𝑥 = 1 
𝑎
𝑥 is a feasible 

solution of 𝑃 with value 1 + 1 
𝑎
, and we obtain

1 
Opt(𝑃 )

+ 1 
Opt(𝑃 )

≤
𝑎

𝑎+ 1
+ 1 
𝑎+ 1

= 1.

The case where we suppose 1 < Opt(𝑃 ) <∞ instead is similar and hence omitted. □

Observation 2.2. If (𝑎, 𝑏) form a complement pair, with 𝑎 ≤ 𝑏, then 𝑎 ≤ 2 ≤ 𝑏. Moreover, the following are equivalent: 𝑎 = 2; 𝑏 = 2; 
𝑎 = 𝑏.

The LP complementation theorem then has this immediate consequence.

Corollary 2.3. Suppose 1< Opt(𝑃 ) ≤ Opt(𝑃 ) <∞. Then

Opt(𝑃 ) ≤ 2 ≤ Opt(𝑃 ).

Moreover, the following are equivalent: Opt(𝑃 ) = 2; Opt(𝑃 ) = 2; Opt(𝑃 ) = Opt(𝑃 ).
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Table 3
Examples of the nine possible scenarios for (Opt(𝑃 ),Opt(𝑃 )). Here 𝑥 is a single variable.

𝑃 𝑃 Opt(𝑃 ) Opt(𝑃 )
max{𝑥 ∶ 𝑥 ≤ 𝑏} min{𝑥 ∶ (𝑏− 1)𝑥 ≥ 𝑏} 𝑏 > 1 𝑏 

𝑏−1
> 1

max{𝑥 ∶ 𝑥 ≤ 0, 𝑥 ≥ 1} min{𝑥 ∶ 𝑥 ≤ 0} −∞ −∞
max{−𝑥 ∶ 𝑥 ≥ 1, 𝑥 ≤ 0} min{−𝑥 ∶ −2𝑥 ≤ 1, 𝑥 ≤ 0} −∞ 0
max{𝑥 ∶ 𝑥 ≤ 1, 𝑥 ≥ 2} min{𝑥 ∶ 0 ≥ 1} −∞ ∞
max{−𝑥 ∶ 𝑥 ≥ 0} min{−𝑥 ∶ 𝑥 ≥ 0} 0 −∞
max{𝑥 ∶ 𝑥 = 0} min{𝑥 ∶ 𝑥 = 0} 0 0
max{𝑥 ∶ 𝑥 ≤ 1} min{𝑥 ∶ 0 ≥ 1} 1 ∞
max{𝑥 ∶ 𝑥 ≥ 2} min{𝑥 ∶ 𝑥 ≤ 2} ∞ −∞
max{𝑥 ∶ 𝑥 ≥ 0} min{𝑥 ∶ 𝑥 ≥ 0} ∞ 0

2.2. Feasibility and boundedness

The strong duality theorem not only states that the optimal values of a primal LP and that of its dual are equal whenever they 
are finite, but it also considers the case of infeasibility and unboundedness: if an LP is unbounded, then its dual is infeasible; if the 
dual is unbounded, then the LP is infeasible; it is also possible that both the LP and its dual are infeasible. Duality hence considers 
three possible scenarios for a maximisation LP 𝑃 : Opt(𝑃 ) = −∞, −∞ < Opt(𝑃 ) <∞, and Opt(𝑃 ) = ∞; then only four scenarios are 
possible for the primal-dual pair (𝑃 ,𝑃 ∗).

Complementation, on the other hand, considers four possible scenarios for 𝑃 : Opt(𝑃 ) = −∞, −∞< Opt(𝑃 ) ≤ 1, 1< Opt(𝑃 ) <∞
and Opt(𝑃 ) =∞. So this could make up to sixteen scenarios for the primal-complement pair (𝑃 ,𝑃 ). The LP complementation theorem 
implies that if 1 < Opt(𝑃 ) <∞, then so does Opt(𝑃 ) and vice versa. The proof of Theorem 2.1 also shows that if Opt(𝑃 ) > 1, then 
𝑃 is feasible, i.e. Opt(𝑃 ) <∞. Therefore, if Opt(𝑃 ) =∞, then Opt(𝑃 ) ≤ 1. This leaves nine possible scenarios; for each of those we 
give an example in Table 3.

2.3. Consequence for integer programming

The proof of Theorem 2.1 actually shows that, whenever Opt(𝑃 ) > 1, 𝑥 is an optimal solution of 𝑃 if and only if 1 
Opt(𝑃 )−1𝑥 is an 

optimal solution of 𝑃 . This has a consequence for integer programming.

For any linear program 𝑅, adding the constraint that the variables be integral yields an integer program, which we denote 𝑅ℤ . 
We consider the LPs in the following form 𝑃 ∶ max{𝑐⊤𝑥 ∶𝐴𝑥 ≤ 𝑏} and 𝑄 ∶ min{𝑣⊤𝑥 ∶𝑀𝑥 ≥ 𝑢}. For any 𝑠, 𝑡∈ℕ, we then introduce

𝑃𝑠 ∶ max{𝑐⊤𝑥 ∶𝐴𝑥 ≤ 𝑠𝑏},

𝑄𝑡 ∶ min{𝑣⊤𝑥 ∶𝑀𝑥 ≥ 𝑡𝑢}.

Clearly, Opt(𝑃𝑠) = 𝑠Opt(𝑃 ) and Opt(𝑄𝑡) = 𝑡Opt(𝑄).
The LP complementation theorem has two consequences for IPs of the form 𝑃𝑠ℤ or 𝑄𝑡

ℤ. We give these for 𝑃𝑠ℤ below; their 
counterparts for 𝑄𝑡

ℤ are analogous and hence omitted.

Corollary 2.4. Suppose 𝑃 ∶ max{𝑐⊤𝑥 ∶𝐴𝑥 ≤ 𝑏}, where 𝐴, 𝑏, and 𝑐 are all rational. Let 𝑠, 𝑡∈ℕ such that �̃�∈ (ℤ∕𝑠)𝑛 is an optimal solution 
of 𝑃 with value 1 + 𝑡 

𝑠
> 1. Then

1. The four optimisation problems 𝑃𝑠, 𝑃𝑠ℤ, (𝑃 )𝑡, and (𝑃 )𝑡
ℤ

all have a common integral optimal solution �̂�= 𝑠�̃� of value 𝑠+ 𝑡.

2. We have Opt(𝑃𝑠𝑡ℤ) = Opt(𝑃𝑠𝑡) and Opt((𝑃 )𝑠𝑡
ℤ
) = Opt((𝑃 )𝑠𝑡), thus

1 
Opt(𝑃𝑠𝑡ℤ)

+ 1 

Opt((𝑃 )𝑠𝑡
ℤ
)
= 1 
𝑠𝑡
.

Proof. 1. By definition, �̂� is an optimal solution of 𝑃𝑠 with value 𝑠 + 𝑡. Since �̂� = 𝑡
1 

Opt(𝑃 )−1 �̃�, we obtain that �̂� is also an optimal 

solution of (𝑃 )𝑡. Moreover, �̂� is integral, therefore it is also an optimal solution of 𝑃𝑠ℤ and (𝑃 )𝑡
ℤ

.

2. It is easily seen that for any LP 𝑅 and any 𝑎 ∈ ℕ, if 𝑅𝑎 has an integral optimal solution, then so does 𝑅𝑎𝑏 for any 𝑏 ∈ ℕ. By item 
1, 𝑃𝑠 and (𝑃 )𝑡 both have integral optimal solutions, thus so do 𝑃𝑠𝑡 and (𝑃 )𝑠𝑡. Applying the LP complementation theorem then 
finishes the proof. □

2.4. Bounds

Let 𝑃 ∶ max{𝑐⊤𝑥 ∶ 𝐴𝑥 ≤ 𝑏}, where 𝑏 > 0 and 𝐴 ≠ 0. Let 𝑄 ∶ min{𝑣⊤𝑥 ∶𝑀𝑥 ≥ 𝑢} with 𝑢 > 0 and 𝑀 ≠ 0. We remark that 𝑥 = 0 is 
a feasible solution of both 𝑃 and 𝑄. Let 𝐴𝑖 and 𝑀𝑖 denote the 𝑖-th rows of 𝐴 and 𝑀 , respectively. We define the rank function of 𝑃
and 𝑄, respectively by
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𝜌𝑃 (𝑥) = max
{

𝐴𝑖𝑥

𝑏𝑖
∶ 1 ≤ 𝑖 ≤𝑚

}
𝜎𝑄(𝑥) = min

{
𝑀𝑖𝑥

𝑢𝑖
∶ 1 ≤ 𝑖 ≤𝑚

}
.

Then 𝑥 is a feasible solution of 𝑃 (of 𝑄, respectively) if and only if 𝜌𝑃 (𝑥) ≤ 1 (𝜎𝑄(𝑥) ≥ 1, respectively). We now introduce

𝛼(𝑃 ) = sup
{

𝑐⊤𝑥 
𝜌𝑃 (𝑥)

∶ 𝜌𝑃 (𝑥) < 𝑐⊤𝑥

}
,

𝛽(𝑄) = inf
{

𝑣⊤𝑥 
𝜎𝑄(𝑥)

∶ 0 < 𝜎𝑄(𝑥)
}
.

We also introduce the counterparts for the IPs as

𝛼(𝑃ℤ) = sup
{

𝑐⊤𝑥 
𝜌𝑃 (𝑥)

∶ 𝜌𝑃 (𝑥) < 𝑐⊤𝑥,𝑥 ∈ℤ𝑛

}
,

𝛽(𝑄ℤ) = inf
{

𝑣⊤𝑥 
𝜎𝑄(𝑥)

∶ 0 < 𝜎𝑄(𝑥), 𝑥 ∈ℤ𝑛

}
.

Suppose that 1 < Opt(𝑃ℤ) <∞ and 1 < Opt(𝑃
ℤ
) <∞. We prove that 𝛼(𝑃ℤ) and 𝛽(𝑃

ℤ
) are complement pairs. (The same is true 

for 𝛼(𝑃 ) and 𝛽(𝑃 ), as we shall prove later.)

Lemma 2.5. If 1 < Opt(𝑃ℤ) <∞ and 1< Opt(𝑃
ℤ
) <∞, then we have

1 
𝛼(𝑃ℤ)

+ 1 

𝛽(𝑃
ℤ
)
= 1.

Proof. By definition, we have 𝜌𝑃 (𝑥) + 𝜎
𝑃
(𝑥) = 𝑐⊤𝑥. Therefore,

1 − 1 
𝛼(𝑃ℤ)

= 1 − inf
{

𝜌𝑃 (𝑥)
𝑐⊤𝑥 

∶ 𝜌𝑃 (𝑥) < 𝑐⊤𝑥,𝑥 ∈ℤ𝑛

}
= sup

{
𝑐⊤𝑥− 𝜌𝑃 (𝑥)

𝑐⊤𝑥 
∶ 𝜌𝑃 (𝑥) < 𝑐⊤𝑥,𝑥 ∈ℤ𝑛

}
= 1 

inf
{

𝑐⊤𝑥 
𝜎
𝑃
(𝑥) ∶ 0 < 𝜎

𝑃
(𝑥), 𝑥 ∈ℤ𝑛

}
= 1 

𝛽(𝑃
ℤ
)
. □

We obtain the more complete version of Theorem 1.2 as follows.

Theorem 2.6. Let 𝑃 ∶ max{𝑐⊤𝑥 ∶𝐴𝑥 ≤ 𝑏}, where 𝑏 > 0 and 𝐴≠ 0. Let 𝑄 ∶ min{𝑣⊤𝑥 ∶𝑀𝑥 ≥ 𝑢} with 𝑢 > 0 and 𝑀 ≠ 0.

1. If Opt(𝑃ℤ) > 1, then 1< Opt(𝑃ℤ) ≤ 𝛼(𝑃ℤ) ≤ 𝛼(𝑃 ) = Opt(𝑃 ).
2. If Opt(𝑄ℤ) > 1, then Opt(𝑄) = 𝛽(𝑄) ≤ 𝛽(𝑄ℤ) ≤ Opt(𝑄ℤ).
3. If 1 < Opt(𝑃ℤ) ≤ Opt(𝑃

ℤ
) <∞, then Opt(𝑃 ) = 𝛼(𝑃ℤ) ⟺ Opt(𝑃 ) = 𝛽(𝑃

ℤ
).

Proof. 1. We prove the bounds on 𝛼.

(a) Opt(𝑃ℤ) ≤ 𝛼(𝑃ℤ). Let 𝑥′ be an optimal solution of 𝑃ℤ. Then 0 < 𝜌𝑃 (𝑥′) ≤ 1 < 𝑐⊤𝑥′, thus

𝛼(𝑃ℤ) ≥ 𝑐⊤𝑥′

𝜌𝑃 (𝑥′)
≥ 𝑐⊤𝑥′ = Opt(𝑃ℤ).

(b) 𝛼(𝑃ℤ) ≤ 𝛼(𝑃 ). By definition.

(c) 𝛼(𝑃 ) ≤ Opt(𝑃 ). Let 𝑥′′ be such that 𝛼(𝑃 ) = 𝑐⊤𝑥′′

𝜌𝑃 (𝑥′′)
, then let 𝑦 = 1 

𝜌𝑃 (𝑥′′)
𝑥′′. We have

𝐴𝑦 = 1 
𝜌𝑃 (𝑥′′)

𝐴𝑥′′ ≤
1 

𝜌𝑃 (𝑥′′)
(𝜌𝑃 (𝑥′′)𝑏) = 𝑏,

hence 𝑦 is a feasible solution of 𝑃 ; its value is 𝑐⊤𝑦 = 𝛼(𝑃 ).
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(d) Opt(𝑃 ) ≤ 𝛼(𝑃 ). Same proof as item 1a above.

2. Similar and hence omitted.

3. The pair (Opt(𝑃 ),Opt(𝑃 )) is a complement pair by the LP complementation theorem, while (𝛼(𝑃ℤ), 𝛽(𝑃
ℤ
)) is a complement pair 

by Lemma 2.5. Therefore, Opt(𝑃 ) = 𝛼(𝑃ℤ) if and only if Opt(𝑃 ) = 𝛽(𝑃
ℤ
). □

3. Fractional hypergraph theory

3.1. Fractional hypergraph parameters

Many important graph parameters, such as the clique number, chromatic number, matching number, etc. can be viewed as the 
optimal values of IPs defined on hypergraphs related to the original graph. Fractional hypergraph theory then lifts the integrality con-

straint and focuses on the fractional analogues of those parameters, which are the optimal values of the corresponding LP relaxations. 
In this section, we review four important fractional hypergraph parameters, and how they are related. A comprehensive account of 
those parameters can be found in [12].

A (finite) hypergraph is a pair 𝐻 = (𝑉 ,𝐸), where 𝑉 is a set of 𝑛 vertices and 𝐸 is a multiset of 𝑚 edges, each being a subset of 
vertices. Recall the following concepts for a hypergraph 𝐻 . Its incidence matrix is 𝑀 =𝑀𝐻 ∈ℝ𝑛×𝑚 such that, for all 𝑣 ∈ 𝑉 and 𝑒 ∈𝐸,

𝑀𝑣𝑒 =

{
1 if 𝑣 ∈ 𝑒

0 otherwise.

A vertex is universal if it belongs to all edges of 𝐻 . On the other hand, a vertex is isolated if it does not belong to any edge of 𝐻 . Say 
an edge 𝑒 is complete if 𝑒 = 𝑉 and that it is empty if 𝑒 = ∅. For a vertex 𝑣 ∈ 𝑉 , we denote by 𝐸𝑣 the multiset of edges of 𝐻 that contain 
𝑣, i.e. 𝐸𝑣 = {𝑒 ∈𝐸 ∶ 𝑣 ∈ 𝑒}.

We now introduce four LPs related to a hypergraph 𝐻 ; we shall then apply the LP complementation theorem to them. All those 
LPs have an optimal value in [1,∞]. Technically, if the optimal value is either 1 or ∞, then the LP complementation theorem does 
not apply. However, we highlight these degenerate cases, which can easily be handled separately. By using the convention that 1 and 
∞ form a complement pair, we can then include these degenerate cases in our hypergraph complementation theorem.

A covering of 𝐻 is a set of edges whose union is equal to 𝑉 . The covering number 𝑘(𝐻) of 𝐻 is the minimum size of a covering of 
𝐻 . The fractional covering number 𝑘f (𝐻) of 𝐻 is the optimal value of the following LP, which we give in two forms: a concise matrix 
form and a more explicit form.

𝐾(𝐻) ∶ min{1⊤𝑥 ∶𝑀𝐻𝑥 ≥ 1, 𝑥 ≥ 0}

= min

{∑
𝑒∈𝐸

𝑥𝑒 ∶
∑
𝑒∈𝐸𝑣

𝑥𝑒 ≥ 1 ∀𝑣 ∈ 𝑉 ,𝑥𝑒 ≥ 0 ∀𝑒 ∈𝐸

}
.

It is easily seen that the covering number is actually the optimal value of 𝐾(𝐻)ℤ. We remark that 𝐾(𝐻) is feasible if and only if 
𝐻 has no isolated vertices. Clearly, if 𝐾(𝐻) is feasible, then it has an optimal solution. In that case, 𝑘f (𝐻) = Opt(𝐾(𝐻)) ≥ 1, with 
strict inequality if and only if 𝐻 has no complete edges.

A packing of 𝐻 is a set of vertices such that every edge contains at most one of those vertices. The packing number 𝑝(𝐻) of 𝐻 is 
the maximum size of a packing of 𝐻 . The fractional packing number 𝑝f (𝐻) of 𝐻 is the optimal value of the LP dual to 𝐾(𝐻):

𝑃 (𝐻) =𝐾(𝐻)∗ ∶ max{1⊤𝑦 ∶𝑀⊤
𝐻
𝑦 ≤ 1, 𝑦 ≥ 0}

= max

{∑
𝑣∈𝑉

𝑦𝑣 ∶
∑
𝑣∈𝑒 

𝑦𝑣 ≤ 1 ∀𝑒 ∈𝐸,𝑦𝑣 ≥ 0 ∀𝑣 ∈ 𝑉

}
.

Again, the maximum size of a packing of 𝐻 corresponds to the optimal value of the analogous IP. We remark that 𝑃 (𝐻) is always 
feasible. However, 𝑃 (𝐻) is bounded if and only if 𝐻 has no isolated vertices. In that case, 𝑝f (𝐻) = Opt(𝑃 (𝐻)) > 1 if and only if it 
has no complete edges. LP duality then yields 𝑝f (𝐻) = 𝑘f (𝐻).

For any hypergraph 𝐻 = (𝑉 ,𝐸), its dual is 𝐻∗ = (𝐸,𝑉 ∗), where 𝑉 ∗ = {𝐸𝑣 ∶ 𝑣 ∈ 𝑉 }. We then have 𝑀𝐻∗ = (𝑀𝐻 )⊤ and (𝐻∗)∗ ≅𝐻 . 
We note that 𝐻 has no empty edge if and only if 𝐻∗ has no isolated vertex, and vice versa.

A matching of 𝐻 is a set of disjoint edges; it corresponds to a packing of 𝐻∗. The fractional matching number is then 𝜇f (𝐻) = 𝑝f (𝐻∗), 
i.e. the optimal value of:

𝑀(𝐻) = 𝑃 (𝐻∗) ∶ max{1⊤𝑦 ∶𝑀𝐻𝑦 ≤ 1, 𝑦 ≥ 0}

= max

{∑
𝑒∈𝐸

𝑦𝑒 ∶
∑
𝑒∈𝐸𝑣

𝑦𝑒 ≤ 1 ∀𝑣 ∈ 𝑉 , 𝑦𝑒 ≥ 0 ∀𝑒 ∈𝐸

}
.

A transversal of 𝐻 is a set of vertices such that every edge contains a vertex from that set; it corresponds to a covering of 𝐻∗. The 
fractional transversal number is then 𝜏f (𝐻) = 𝑘f (𝐻∗), i.e. the optimal value of:
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𝑇 (𝐻) =𝐾(𝐻∗) ∶ min{1⊤𝑥 ∶𝑀⊤
𝐻
𝑥 ≥ 1, 𝑥 ≥ 0}

= min

{∑
𝑣∈𝑉

𝑥𝑣 ∶
∑
𝑣∈𝑒 

𝑥𝑣 ≥ 1 ∀𝑒 ∈𝐸,𝑥𝑣 ≥ 0 ∀𝑣 ∈ 𝑉

}
.

Again, LP duality yields 𝜇f (𝐻) = 𝜏f (𝐻).

Observation 3.1. In summary, for any 𝐻 we have 𝜏f (𝐻) = 𝑘f (𝐻∗) = 𝑝f (𝐻∗) = 𝜇f (𝐻).

3.2. Hypergraph complementation

We define the complement of 𝐻 as 𝐻 = (𝑉 ,{𝑉 ⧵ 𝑒 ∶ 𝑒 ∈ 𝐸}). We then have 𝑀
𝐻

= 1 −𝑀𝐻 . Hypergraph complementation is an 

involution that commutes with duality: 𝐻 =𝐻 and (𝐻∗) =
(
𝐻

)
∗.

It can be easily shown that

𝐾(𝐻∗) =𝐾(𝐻)∗.

Therefore, we obtain eight LPs, which are related in Fig. 2.

For any 𝑆 ⊆ 𝑉 , let

𝜌𝐻 (𝑆) = max{|𝑆 ∩ 𝑒| ∶ 𝑒 ∈𝐸} ,

𝛼(𝐻) = max
{ |𝑆| 
𝜌𝐻 (𝑆)

∶ 𝑆 ⊆ 𝑉 ,𝜌𝐻 (𝑆) > 0
}
.

We similarly define for any 𝑍 ⊆𝐸

𝜎𝐻 (𝑍) = min{|{𝑒 ∈𝑍 ∶ 𝑣 ∈ 𝑒}| ∶ 𝑣 ∈ 𝑉 } ,

𝛽(𝐻) = min
{ |𝑍| 
𝜎𝐻 (𝑍)

∶𝑍 ⊆𝐸,𝜎𝐻 (𝑍) > 0
}
.

We immediately recognise that 𝛼(𝐻) = 𝛼(𝑃 (𝐻)ℤ) and 𝛽(𝐻) = 𝛽(𝐾(𝐻)ℤ). Denoting the maximum size of an edge in 𝐻 as 𝜖(𝐻) =
max{|𝑒| ∶ 𝑒 ∈𝐸} and the minimum degree of a vertex in 𝐻 as 𝛿(𝐻) = min{|𝐸𝑣| ∶ 𝑣 ∈ 𝑉 }, we have

𝛼(𝐻) ≥ |𝑉 | 
𝜖(𝐻)

, 𝛽(𝐻) ≤ |𝐸| 
𝛿(𝐻)

.

The next theorem is a more complete version of Theorem 1.3.

Theorem 3.2 (Hypergraph complementation theorem). For any hypergraph 𝐻 ,

1 
𝑘f (𝐻∗)

+ 1 
𝑘f (𝐻)

= 1.

Moreover, we have the bounds

𝑝(𝐻) ≤ 𝛼(𝐻) ≤ 𝑘f (𝐻) ≤ 𝛽(𝐻) ≤ 𝑘(𝐻),

with equalities reached as follows:

𝑘f (𝐻) = 𝛼(𝐻) ⟺ 𝑘f (𝐻∗) = 𝛽(𝐻∗).

Proof. We have 𝑃 (𝐻∗) =𝐾(𝐻). Theorem 2.1 then shows that 𝑝f (𝐻∗) = 𝑘f (𝐻∗) and 𝑘f (𝐻) are complement pairs. Theorem 2.6 then 
gives the other two equations. □

Obviously, the hypergraph complementation theorem holds for all four parameters reviewed in Section 3.1.

Corollary 3.3. For any hypergraph 𝐻 ,

1 
𝑘f (𝐻∗)

+ 1 
𝑘f (𝐻)

= 1 
𝑝f (𝐻∗)

+ 1 
𝑝f (𝐻)

= 1 
𝜇f (𝐻∗)

+ 1 
𝜇f (𝐻)

= 1 
𝜏f (𝐻∗)

+ 1 
𝜏f (𝐻)

= 1.
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4. Applications to fractional graph theory

4.1. Fractional domination in graphs and digraphs

All the digraphs we consider are simple (no parallel arcs) and irreflexive (no loops). Thus, a digraph is a pair 𝐷 = (𝑉 (𝐷),𝐸(𝐷)), 
where 𝐸(𝐷) ⊆ 𝑉 (𝐷)2 ⧵ {(𝑣, 𝑣) ∶ 𝑣 ∈ 𝑉 (𝐷)}. The adjacency matrix of 𝐷 is the {0,1}-matrix 𝐴𝐷 = (𝑎𝑖𝑗 ∶ 𝑖, 𝑗 ∈ 𝑉 (𝐷)), where 𝑎𝑖𝑗 = 1
if and only if (𝑖, 𝑗) ∈ 𝐸(𝐷). We define digraph complement of 𝐷, denoted 𝐷, with 𝑉 (𝐷) = 𝑉 (𝐷) and 𝐸(𝐷) = (𝑉 (𝐷)2 ⧵ {(𝑣, 𝑣) ∶ 𝑣 ∈
𝑉 (𝐷)}) ⧵𝐸(𝐷).

For any 𝑣 ∈ 𝑉 (𝐷), the open in-neighbourhood of 𝑣 is 𝑁 in
o (𝑣) = {𝑢 ∶ (𝑢, 𝑣) ∈ 𝐸(𝐷)}; the closed in-neighbourhood of 𝑣 is 𝑁 in

c (𝑣) =
𝑁 in

o (𝑣) ∪ {𝑣}. We thus define two hypergraphs 𝐻 in
o (𝐷) and 𝐻 in

c (𝐷), both with vertex set 𝑉 (𝐷), and where the edges of 𝐻 in
o (𝐷) are 

the open in-neighbourhoods of all vertices and the edges of 𝐻 in
c (𝐷) are the closed in-neighbourhoods instead. Open and closed out-

neighbourhoods are defined similarly, and hence we define 𝐻out
o (𝐷) and 𝐻out

c (𝐷) similarly as well. We note that 𝑀
𝐻 in

o (𝐷) =𝐴𝐷 and 
𝑀

𝐻 in
c (𝐷) = 𝐼𝑛 +𝐴𝐷 , where 𝑛 is the number of vertices in 𝐷 and 𝐼𝑛 is the identity matrix of size 𝑛. We then have

𝐻 in
o (𝐷)∗ ≅𝐻out

o (𝐷), 𝐻 in
c (𝐷)∗ ≅𝐻out

c (𝐷), 𝐻out
o (𝐷) =𝐻out

c (𝐷), 𝐻out
c (𝐷) =𝐻out

o (𝐷).

An in-dominating set of 𝐷 is a set 𝑆 of vertices such that for any 𝑣 ∈ 𝑉 (𝐷), there exists 𝑠 ∈ 𝑆 ∩𝑁 in
c (𝑣); in other words, it is a transversal 

of 𝐻 in
c (𝐷). Similarly, a total in-dominating set of 𝐷 is a transversal of 𝐻 in

o (𝐷). We note that 𝐷 always has an in-dominating set (𝑉 (𝐷)
itself), while 𝐷 has a total in-dominating set if and only if it has no sources (vertices with empty in-neighbourhoods). Out-dominating 
and total out-dominating sets are defined similarly. See the book by Haynes, Hedetniemi, and Slater for a comprehensive survey of 
domination problems [7].

The fractional in-dominating number of 𝐷 and the fractional total out-dominating number of 𝐷 are then, respectively:

𝛾 inf (𝐷) = 𝜏f (𝐻 in
c (𝐷)) = 𝜏f (𝐻out

c (𝐷)∗),

Γout f (𝐷) = 𝜏f (𝐻out
o (𝐷)) = 𝜏f (𝐻out

c (𝐷)).

Let us call a vertex 𝑣 in-universal in 𝐷 if 𝑣 ∈𝑁 in
c (𝑢) for all 𝑢 ∈ 𝑉 , i.e. 𝑣 is a universal vertex of 𝐻 in

c (𝐷). We note that 𝛾 inf (𝐷) > 1 if and 
only if 𝐷 has no in-universal vertices; the latter is also equivalent to Γout f (𝐷) <∞. We obtain the following; again the degenerate 
case of an in-universal vertex is handled by the (1,∞) complement pair.

Theorem 4.1 (Domination complementation theorem). For any digraph 𝐷,

1 
𝛾 inf (𝐷)

+ 1 
Γout f (𝐷)

= 1.

We focus on three special cases of Theorem 4.1. Firstly, a graph 𝐺 is a symmetric digraph, i.e. 𝐴𝐺 = 𝐴⊤
𝐺

. For a graph 𝐺, in-

neighbourhoods and out-neighbourhoods coincide. We then refer to 𝛾f (𝐺) = 𝛾 inf (𝐺) = 𝛾out f (𝐺) as the fractional dominating number 
of 𝐺; the fractional total dominating number of 𝐺 is defined and denoted similarly.

Corollary 4.2. For any graph 𝐺,

1 
𝛾f (𝐺)

+ 1 
Γf (𝐺)

= 1.

Secondly, a tournament 𝑇 is a digraph where (𝑖, 𝑗) ∈𝐸(𝑇 ) if and only if (𝑗, 𝑖) ∉𝐸(𝑇 ). If 𝑇 is a tournament, then 𝑇 is obtained by 
reversing the direction of every arc in 𝑇 . Thus, 𝐻out

o (𝑇 ) =𝐻 in
o (𝑇 ) and we obtain the following corollary, where the final conclusion 

follows from Observation 2.2.

Corollary 4.3. For any tournament 𝑇 ,

1 
𝛾 inf (𝑇 )

+ 1 
Γinf (𝑇 )

= 1.

In particular, 𝛾 inf (𝑇 ) ≤ 2 ≤ Γinf (𝑇 ).

Thirdly, 𝐷 is 𝑘-regular if for every vertex 𝑣 ∈ 𝑉 (𝐷), |𝑁 in
o (𝑣)| = |𝑁out

o (𝑣)| = 𝑘. Clearly, if 𝐷 has 𝑛 vertices, then 𝐷 is 𝑘-regular if 
and only if 𝐷 is (𝑛− 1 − 𝑘)-regular. The following result is a generalisation of the result in [12, Theorem 7.4.1], which only applies 
to regular graphs.

Corollary 4.4. For any 𝑘-regular digraph 𝐷 on 𝑛 vertices,

𝛾 inf (𝐷) = 𝑛 
𝑘+ 1

, Γout f (𝐷) = 𝑛 
𝑘
.
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Proof. The value 𝑛∕(𝑘 + 1) is an obvious upper bound for 𝛾 inf (𝐷) (assign 1∕(𝑘 + 1) to each vertex); similarly, 𝑛∕(𝑛 − 𝑘 − 1) is an 
upper bound for Γout f (𝐷). By Theorem 4.1, these bounds must be tight. □

4.2. Application to edge toughness of matroids

Let 𝑀 = (𝑉 , 𝐼) be a matroid [10], where 𝐼 is the collection of independent sets of 𝑀 . A basis of 𝑀 is a maximal independent set. 
We then denote the set of bases of 𝑀 as 𝐵(𝑀) and we construct the hypergraph 𝐻𝐵(𝑀) = (𝑉 ,𝐵(𝑀)). The rank function of 𝑀 is 
then 𝜌𝑀 = 𝜌𝐻𝐵 (𝑀), i.e. 𝜌𝑀 (𝑆) = max{|𝑆 ∩ 𝑒| ∶ 𝑒 ∈𝐵(𝑀)}. The dual matroid 𝑀 is then defined as 𝐻𝐵(𝑀) =𝐻𝐵(𝑀), hence its rank 
function satisfies 𝜌

𝑀
(𝑆) = |𝑆| − 𝜌𝑀 (𝑉 ) + 𝜌𝑀 (𝑉 ⧵ 𝑆). We note that the dual of a matroid is commonly denoted as 𝑀∗, but in this 

paper, denoting it as 𝑀 better reflects that its definition is in terms of hypergraph complementation, instead of hypergraph duality.

The edge toughness (or strength) of 𝑀 is [12]

𝜎′(𝑀) = min
{ |𝑉 ⧵ 𝑆| 

𝜌𝑀 (𝑉 ) − 𝜌𝑀 (𝑆)
∶ 𝑆 ⊆ 𝑉 ,𝜌𝑀 (𝑉 ) > 𝜌𝑀 (𝑆)

}
.

The edge toughness is well defined unless 𝜌𝑀 (𝑉 ) = 0. Moreover, 𝜎′(𝑀) = 1 if and only if 𝑀 has a coloop, i.e. an element 𝑣 that 
belongs to all bases. Say that 𝑀 is nontrivial if it falls in neither case mentioned above; then its edge toughness satisfies 𝜎′(𝑀) > 1.

Next, we use the hypergraph complementation theorem to show that the fractional transversal number and fractional matching 
number of a matroid coincide with its edge toughness.

Theorem 4.5. For any nontrivial matroid 𝑀 , we have

𝜇f (𝐻𝐵(𝑀)) = 𝜏f (𝐻𝐵(𝑀)) = 𝜎′(𝑀).

The proof of Theorem 4.5 is based on the following lemma. For any hypergraph 𝐻 , let

𝛾(𝐻) = min
{ |𝑇 | |𝑇 |− 𝜌𝐻 (𝑇 )

∶ 𝑇 ⊆ 𝑉 , |𝑇 | > 𝜌𝐻 (𝑇 )
}

.

In particular, we can easily check that 𝛾(𝐻𝐵(𝑀)) = 𝜎′(𝑀).

Lemma 4.6. For any hypergraph 𝐻 , 𝛽(𝐻∗) = 𝛾(𝐻).

Proof. We denote the set of edges of 𝐻 as 𝐸, and the set of edges of 𝐻 as 𝐸. For any 𝑇 ⊆ 𝑉 , we have

𝜎𝐻∗ (𝑇 ) = min{|𝑇 ∩ 𝑒| ∶ 𝑒 ∈𝐸} = |𝑇 |−max{|𝑇 ∩ 𝑒| ∶ 𝑒 ∈𝐸} = |𝑇 |− 𝜌
𝐻
(𝑇 ),

and hence

𝛽(𝐻∗) = min
{ |𝑇 | 

𝜎𝐻∗ (𝑇 )
∶ 𝑇 ⊆ 𝑉 ,𝜎𝐻∗ (𝑇 ) > 0

}
=min

{ |𝑇 | |𝑇 |− 𝜌
𝐻
(𝑇 )

∶ 𝑇 ⊆ 𝑉 , |𝑇 | > 𝜌
𝐻
(𝑇 )

}
= 𝛾(𝐻). □

Proof of Theorem 4.5. Firstly, by the matroid base covering theorem (see [12, Theorem 5.4.1] or [14, Corollary 42.1c]), the frac-

tional covering number of a matroid reaches the 𝛼 bound in Theorem 3.2. For the dual matroid, we obtain

𝑘f (𝐻𝐵(𝑀)) = 𝛼(𝐻𝐵(𝑀)).

Moreover, thanks to Lemma 4.6, we recognise that

𝜎′(𝑀) = 𝛾(𝐻𝐵(𝑀)) = 𝛽(𝐻𝐵(𝑀)∗).

Applying Observation 3.1 and Theorem 3.2 then yields

𝜇f (𝐻𝐵(𝑀)) = 𝑘f (𝐻𝐵(𝑀)∗) = 𝛽(𝐻𝐵(𝑀)∗) = 𝜎′(𝑀). □

Applying the hypergraph complementation theorem, we obtain the following corollary, already given in [12].

Corollary 4.7 (Theorem 5.6.8 in [12]). For any nontrivial matroid, we have

1 
𝜎′(𝑀)

+ 1 
𝑘f (𝐻𝐵(𝑀))

= 1.
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In particular, if 𝑀𝐺 is the cycle matroid of a graph 𝐺, where the elements of 𝑀𝐺 are the edges of 𝐺 and the bases of 𝑀𝐺 are all 
spanning forests of 𝐺 [10], then the edge toughness of 𝑀𝐺 reduces to the edge toughness (a.k.a. strength) of 𝐺, defined as follows. 
For any 𝑍 ⊆ 𝐸(𝐺), let 𝐺 −𝑍 denote the graph obtained by removing the edges from 𝑍 , and let 𝑐(𝐺 −𝑍) denote the number of its 
connected components. Then

𝜎′(𝐺) = min
{ |𝑍| 

𝑐(𝐺 −𝑍) − 𝑐(𝐺)
∶𝑍 ⊆𝐸(𝐺), 𝑐(𝐺 −𝑍) > 𝑐(𝐺)

}
.

We remark that 𝜎′(𝐺) is well defined if and only if 𝐸(𝐺) is nonempty. Moreover, 𝜎′(𝐺) = 1 if and only if 𝐺 has a cut edge, i.e. 𝐺 has 
a connected component that is not 2-edge connected.

Denote 𝐻𝑆𝐹 (𝐺) =𝐻𝐵(𝑀𝐺). The matching number of 𝐻𝑆𝐹 (𝐺) is the maximum number of edge-disjoint spanning forests in 𝐺. 
On the other hand, the transversal number of 𝐻𝑆𝐹 (𝐺) is the smallest size of an edge cut set of 𝐺. In particular, these two quantities 
are equal to 1 whenever 𝐺 has a cut edge. When there is no cut edge, by Theorem 4.5, their fractional analogues are equal to the 
edge toughness of 𝐺.

Corollary 4.8. For any graph 𝐺 whose connected components are all 2-edge connected,

𝜇f (𝐻𝑆𝐹 (𝐺)) = 𝜏f (𝐻𝑆𝐹 (𝐺)) = 𝜎′(𝐺).

5. Vertex cover with budget

5.1. The vertex cover hypergraph

Let 𝐺 be a graph. A vertex cover of 𝐺 can be defined as a set 𝑆 of vertices such that 𝑉 ⧵ 𝑆 is a stable set. We define 𝐻𝑉 𝐶 (𝐺) as 
the hypergraph whose edges are all the vertex covers of 𝐺. Then its complement is 𝐻𝑉𝐶 (𝐺) =𝐻𝐼𝑆 (𝐺), whose edges are the stable 
sets of 𝐺. It immediately follows that 𝑘f (𝐻𝑉𝐶 (𝐺)) is equal to 𝜒f (𝐺), the fractional chromatic number of 𝐺. We then denote

𝑡f (𝐺) = 𝜇f (𝐻𝑉𝐶 (𝐺)),

and thanks to Observation 3.1, we have 𝑡f (𝐺) = 𝑘f (𝐻𝑉𝐶 (𝐺)∗). We have 𝜒f (𝐺) = 1 if and only if 𝐺 is empty, in which case 𝑡f (𝐺) =∞. 
If 𝐺 is nonempty, then 𝜒f (𝐺) ≥ 2, with equality if and only if 𝐺 is bipartite. The hypergraph complementation theorem then yields

1 
𝑡f (𝐺)

+ 1 
𝜒f (𝐺)

= 1.

Let us give some properties of the 𝑡f (𝐺) =
𝜒f (𝐺) 

𝜒f (𝐺)−1
quantity.

Bounds Let 𝛼(𝐺) denote the independence number of 𝐺, 𝜔(𝐺) denote its clique number and 𝜒(𝐺) denote its chromatic number. 
Then the bounds on 𝜒f (𝐺) in [12, Chapter 3] and [9], given on the left hand side below, immediately translate to bounds on 
𝑡f (𝐺), given on the right hand side below.

𝜒f (𝐺) ≥
𝑛 

𝛼(𝐺)
⟶ 𝑡f (𝐺) ≤

𝑛 
𝑛− 𝛼(𝐺)

,

𝜒f (𝐺) ≥
𝜒(𝐺) 

1 + ln𝛼(𝐺)
⟶ 𝑡f (𝐺) ≤

𝜒(𝐺) 
𝜒(𝐺) − 1 − ln𝛼(𝐺)

,

𝜒f (𝐺) ≥ 𝜔(𝐺) ⟶ 𝑡f (𝐺) ≤
𝜔(𝐺) 

𝜔(𝐺) − 1
,

𝜒f (𝐺) ≤ 𝜒(𝐺) ⟶ 𝑡f (𝐺) ≥
𝜒(𝐺) 

𝜒(𝐺) − 1
.

Possible values If 𝐺 is non-empty, then 𝑡f (𝐺) is a rational number in (1,2]. Conversely, for any rational number 𝑞 ∈ (1,2], there is 
𝐺 with 𝑡f (𝐺) = 𝑞 (since 𝜒f (𝐾(𝑛, 𝑟)) = 𝑛∕𝑟 for the Kneser graph with 𝑛 ≥ 2𝑟 (see e.g. [12])).

Complexity Again, complexity results for 𝜒f (𝐺) can be converted into complexity results for 𝑡f (𝐺). Thus, for any 1 < 𝑠 < 2, de-

termining whether 𝑡f (𝐺) ≥ 𝑠 is NP-complete (an immediate consequence of [6]). On the other hand, 𝑡f (𝐺) can be computed in 
polynomial time if 𝐺 is a line graph (see [12, Section 4.5]), or if 𝐺 is perfect (since the chromatic and fractional chromatic 
numbers coincide in that case).

5.2. Vertex cover with finite budget

The Vertex Cover with Budget (VCB) problem is defined as follows. Let 𝐺 be a graph and 𝑏 a positive integer. For any family 
of 𝑡 vertex covers 𝑆 = {𝑆1,… , 𝑆𝑡} of 𝐺, we refer to the budget of 𝑆 as the maximum number of times a particular vertex appears in 
𝑆 :

max{|{𝑖 ∶ 𝑣 ∈ 𝑆𝑖}| ∶ 𝑣 ∈ 𝑉 }.
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For any 𝑏 ≥ 1, we denote the cardinality of the largest family of vertex covers with budget at most 𝑏 as 𝑡𝑏(𝐺). The problem is, given 
𝐺 and 𝑏, to determine 𝑡𝑏(𝐺).

We note that VCB differs from the so-called Budgeted Maximum Vertex Cover Problem (see [2] and references therein).

A 𝑏-fold matching of a hypergraph 𝐻 is a set of edges of 𝐻 such that every vertex is contained in at most 𝑏 edges (so that a matching 
is a 1-fold matching). The maximum size of a 𝑏-fold matching is denoted as 𝜇𝑏(𝐻). We immediately obtain that 𝑡𝑏(𝐺) = 𝜇𝑏(𝐻𝑉𝐶 (𝐺)). 
Similarly, a 𝑐-fold covering is a set of edges of 𝐻 such that every vertex is contained in at least 𝑐 edges. The smallest size of a 𝑐-fold 
covering of 𝐻 is denoted as 𝑘𝑐(𝐻). We then have [12, Theorem 1.2.1]

𝜇f (𝐻) = lim 
𝑏→∞

𝜇𝑏(𝐻)
𝑏 

=max
𝑏∈ℕ 

𝜇𝑏(𝐻)
𝑏 

,

𝑘f (𝐻) = lim 
𝑐→∞

𝑘𝑐(𝐻)
𝑐

=max
𝑐∈ℕ 

𝑘𝑐(𝐻)
𝑐

.

Moreover, there exist 𝛽 and 𝛾 such that 𝜇𝑙𝛽 = 𝑙𝛽𝜇f (𝐻) and 𝑘𝑙𝛾 = 𝑙𝛾𝑘f (𝐻) for all 𝑙 ∈ ℕ. Therefore, 𝑡f (𝐺) is the limit of the time-per-

budget ratio 𝑡𝑏(𝐺)∕𝑏.

Proposition 5.1. For any 𝐺,

𝑡f (𝐺) = lim 
𝑏→∞

𝑡𝑏(𝐺)
𝑏 

=max 
𝑏→∞

𝑡𝑏(𝐺)
𝑏 

.

Moreover, there exists 𝛽 ∈ℕ such that 𝑡𝑙𝛽 (𝐺) = 𝑡f (𝐺) ⋅ 𝑙𝛽 for all 𝑙 ∈ℕ.

We now obtain more precise results about 𝑡𝑏(𝐺).

Proposition 5.2. For any 𝐺 and any 𝑏, we have⌊
𝜒(𝐺) 

𝜒(𝐺) − 1
⋅ 𝑏
⌋
≤ 𝑡𝑏(𝐺) ≤

⌊
𝜔(𝐺) 

𝜔(𝐺) − 1
⋅ 𝑏
⌋

Proof. If there is a homomorphism from 𝐺′ to 𝐺, which we denote as 𝐺′ → 𝐺, then 𝑡𝑏(𝐺) ≤ 𝑡𝑏(𝐺′). Since 𝐾𝜔(𝐺) → 𝐺→ 𝐾𝜒(𝐺), we 
obtain 𝑡𝑏(𝐾𝜒(𝐺)) ≤ 𝑡𝑏(𝐺) ≤ 𝑡𝑏(𝐾𝜔(𝐺)). It is then easy to verify that 𝑡𝑏(𝐾𝑛) =

⌊
𝑛 

𝑛−1 ⋅ 𝑏
⌋

for all 𝑛 ≥ 1. Hence the result. □

Since the chromatic number of a perfect graph can be computed in polynomial time [6], we obtain the following

Corollary 5.3. If 𝐺 is a perfect graph, then for any 𝑏, 𝑡𝑏(𝐺) =
⌊

𝜒(𝐺) 
𝜒(𝐺)−1 ⋅ 𝑏

⌋
can be computed in polynomial time.

The highest time 𝑡𝑏(𝐺) is only achieved for bipartite graphs, as seen below.

Proposition 5.4. The following are equivalent.

(a) 𝑡f (𝐺) = 2.

(b) 𝑡𝑏(𝐺) = 2𝑏 for some 𝑏≥ 1.

(c) 𝑡𝑏(𝐺) = 2𝑏 for all 𝑏 ≥ 1.

(d) 𝐺 is bipartite.

Proof. We have (d) ⟹ (c) ⟹ (b) ⟹ (a). Conversely, 𝑡f (𝐺) = 2 if and only if 𝜒f (𝐺) = 2, which in turn is equivalent to 𝐺 being 
bipartite. □

We obtain a final result on the computational complexity of decision problems related to 𝑡𝑏(𝐺).

Theorem 5.5. For any 𝑏, 𝑐 ≥ 1 and any hypergraph 𝐻 ,

𝜇𝑏(𝐻) ≥ 𝑏+ 𝑐 ⟺ 𝑘𝑐(𝐻) ≤ 𝑏+ 𝑐.

Proof. It is easy to verify that each statement is equivalent to the next, in the following sequence:

• 𝜇𝑏(𝐻) ≥ 𝑏+ 𝑐.

• There exist 𝑏+ 𝑐 edges of 𝐻 , say 𝑒1,… , 𝑒𝑏+𝑐 , such that for any 𝑣 ∈ 𝑉 , |{𝑖 ∶ 𝑣 ∈ 𝑒𝑖}| ≤ 𝑏.

• There exist 𝑏+ 𝑐 edges of 𝐻 , say 𝑓1,… , 𝑓𝑏+𝑐 , such that for any 𝑣 ∈ 𝑉 , |{𝑖 ∶ 𝑣 ∈ 𝑓𝑖}| ≥ 𝑐.

• 𝑘𝑐(𝐻) ≤ 𝑏+ 𝑐. □
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A 𝑐-multicolouring of a graph 𝐺 is a colouring of its vertices, such that each vertex is assigned a set of 𝑐 distinct colours, and where 
the sets of colours of any two adjacent vertices are disjoint [3]. For 𝐻 =𝐻𝑉𝐶 (𝐺), we have 𝜇𝑏(𝐻) = 𝑡𝑏(𝐺) and 𝑘𝑐(𝐻) = 𝜒𝑐(𝐺), the 
smallest number of colours in a 𝑐-multicolouring of 𝐺. It follows from Theorem 5.5 that for any 𝑏 ≥ 1 and 𝑐 ≥ 1, 𝑡𝑏(𝐺) ≥ 𝑏+ 𝑐 if and 
only if 𝜒𝑐(𝐺) ≤ 𝑏 + 𝑐. For 𝑐 = 𝑏, as proved in Proposition 5.4, deciding whether 𝑡𝑏(𝐺) = 2𝑏 can be done in polynomial time. On the 
other hand, since for any 𝑐 and any 𝑎 > 2𝑐, deciding whether a graph 𝐺 satisfies 𝜒𝑐 (𝐺) ≤ 𝑎 is NP-complete (see [12, Section 3.9]), 
we obtain the following corollary.

Corollary 5.6. For any 𝑏≥ 2 and any 1≤ 𝑐 ≤ 𝑏− 1, it is NP-complete to decide whether 𝑡𝑏(𝐺) ≥ 𝑏+ 𝑐.

6. Conclusion and future work

In this paper, we introduced LP complementation, and established the LP complementation theorem. We then illustrated the 
potential applications of LP complementation to Integer Linear Programming, graph and hypergraph theory, and algorithmic problems 
on graphs.

We believe that LP complementation has an interesting potential that needs to be uncovered. We can highlight several ways in 
which LP complementation could be applied further:

• LP and hypergraph complementation for structural hypergraph theory. The hypergraph complementation operation is very nat-

ural, and yet it does not seem to have been studied yet.

• Application of LP complementation in graph theory and combinatorics. Any 0/1 matrix can be interpreted as the bipartite adja-

cency matrix of a bipartite graph 𝐺. The complementation operation then corresponds to the bipartite adjacency matrix of the 
bipartite complement of 𝐺. Can LP complementation be used to establish relationships between the properties of a bipartite graph 
and its bipartite complement?

• Further applications to combinatorial problems “with budget.” Including the budget 𝑏 and considering the limit of a particular 
quantity as 𝑏 tends to infinity naturally involves optimal values of LPs.

• Algorithmic applications of LP complementation. It is well-known that LP duality can be used to create efficient primal-dual 
algorithms for LP. Can LP complementation be used in a similar way?

CRediT authorship contribution statement

Maximilien Gadouleau: Writing – original draft, Formal analysis, Conceptualization. George B. Mertzios: Writing – original 
draft, Formal analysis, Conceptualization. Viktor Zamaraev: Writing – original draft, Formal analysis, Conceptualization.

Funding

This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/P020372/1].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] W. Abbas, M. Egerstedt, C.-H. Liu, R. Thomas, P. Whalen, Deploying robots with two sensors in 𝐾1,6-free graphs, J. Graph Theory 82 (2016) 236–252.

[2] Mujidat Abisola Adeyemo, An Empirical Analysis of an Algorithm for the Budgeted Maximum Vertex Cover Problem in Trees, Masther’s thesis, West Virginia 
University, 2019.

[3] M. Bonamy, Ł. Kowalik, M. Pilipczuk, A. Socała, M. Wrochna, Tight lower bounds for the complexity of multicoloring, ACM Trans. Comput. Theory 11 (2019) 
1–19.

[4] L. Brickman, Mathematical Introduction to Linear Programming and Game Theory, Springer-Verlag, New York, 1989.

[5] Wayne Goddard, Michael A. Henning, Fractional Domatic, Idomatic and Total Domatic Numbers of a Graph. Structure of Domination in Graphs, Springer-Verlag, 
New York, 2021.

[6] M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981) 169–197.

[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., 1998.

[8] F.S. Hillier, G.J. Lieberman, Introduction to Operations Research, seventh edition, Tata McGraw-Hill Edition, 2002.

[9] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math. 13 (1975) 383–390.

[10] J.G. Oxley, Matroid Theory, Oxford University Press, 2006.

[11] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover, 1982.

[12] E.R. Scheinerman, D.H. Ullman, Fractional Graph Theory, Wiley, 1997.

http://refhub.elsevier.com/S0304-3975(25)00025-8/bib0242F0B092FDB85D495DE5F57D664AC4s1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib35441D39D73220C520C446BBBEDBC712s1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib35441D39D73220C520C446BBBEDBC712s1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib566912A08441B5F5411F7552EF1DAB7Ds1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib566912A08441B5F5411F7552EF1DAB7Ds1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib99F1B96DA534AC64B56FAC9F43D311B6s1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib8D7C6831CB681AF77A5FDC046CD79F9Cs1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib8D7C6831CB681AF77A5FDC046CD79F9Cs1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib6B0CF6496F201648640126BD1EECAA50s1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib9E83F4498A5C23F5344252B922EC06F6s1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib9D5171CE04BBEBF35CB4F10FFE2E274Ds1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib53CBEC76FC6426D9C90072E182E128D4s1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bibB780D78F65160ED3F0E55A01638F1528s1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bib969711184D1E00B2316D8A898BA2716Fs1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bibED8CB00524163AA9EC9EF64FDA68530Cs1


Theoretical Computer Science 1032 (2025) 115087

16

M. Gadouleau, G.B. Mertzios and V. Zamaraev 

[13] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience, 1986.

[14] A. Schrijver, Combinatorial Optimization, Springer-Verlag, 2003.

[15] N.N. Vorob’ev, Game Theory: Lectures for Economists and Systems Scientists, Springer-Verlag, New York, 1977.

http://refhub.elsevier.com/S0304-3975(25)00025-8/bib264C7D13E31BB50A8BAFA95EE9F259ADs1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bibC969D63C082876C2898FFF148786166As1
http://refhub.elsevier.com/S0304-3975(25)00025-8/bibBB006EF3B0D299A90E473239AB707EDFs1

	Linear Programming complementation
	1 Introduction
	1.1 Background
	1.2 Our contributions
	1.2.1 Linear Programming complementation
	LP complementation theorem
	Natural interpretation of LP complementation
	Consequence for integer programming & bounds
	Hypergraph complementation

	1.2.2 The impact of LP complementation to related problems
	Case study 1: fractional graph theory
	Case study 2: vertex cover with budget



	2 Linear Programming complementation
	2.1 The LP complementation theorem
	2.2 Feasibility and boundedness
	2.3 Consequence for integer programming
	2.4 Bounds

	3 Fractional hypergraph theory
	3.1 Fractional hypergraph parameters
	3.2 Hypergraph complementation

	4 Applications to fractional graph theory
	4.1 Fractional domination in graphs and digraphs
	4.2 Application to edge toughness of matroids

	5 Vertex cover with budget
	5.1 The vertex cover hypergraph
	5.2 Vertex cover with finite budget

	6 Conclusion and future work
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Data availability
	References


