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Abstract
1.	 Long-term biodiversity monitoring is needed to track progress towards ambitious 

global targets to reduce species loss and restore ecosystems. The recent devel-
opment of cheap and robust acoustic recording devices offers a cost-effective 
means of gathering standardised long-term datasets.

2.	 Accounting for sources of bias in ecological monitoring and research is a 
fundamental part of the study design process. To highlight this issue in the 
context of long-term terrestrial ecoacoustic monitoring, here we collate and 
discuss sources of bias arising from (i) hardware devices, (ii) firmware, software 
and analysis tools and (iii) the deployment environment.

3.	 One important source of bias is unavoidable changes in recording hardware—to 
demonstrate how this potentially introduces bias, we present two case studies 
comparing the output from simultaneous recordings from different recorders.

4.	 To mitigate biases, we recommend effective documentation of environmental 
and hardware-related variables, as well as a long-term data storage strategy that 
facilitates reanalysis. Additionally, the use of regular calibration tests to measure 
variation in the acoustic detection space will facilitate analytical approaches or 
post-hoc AI solutions that remove unwanted biases.

5.	 Synthesis and applications: The sources of bias and suggested mitigations described 
here will be of relevance to hardware manufacturers, ecological researchers and 
conservation practitioners. Researchers and conservation practitioners must be 
fully aware of relevant biases when designing long-term ecoacoustic studies and 
should incorporate appropriate mitigations into their study design.
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1  |  BACKGROUND

Meeting ambitious global targets to reverse species extinction 
rates and restore ecosystems (IPBES, 2019) requires informed pol-
icy choices. Robust, standardised, long-term monitoring of species, 
biological communities and ecosystems is needed to provide the 
data underpinning such decision-making (Pereira & Cooper, 2006). 
Traditional fieldworker-led monitoring at scales sufficient to gen-
erate long-term trends is labour-intensive and can be logistically 
challenging (Schmeller et  al.,  2009), limiting the spatial and tem-
poral extent of these datasets. However, technological develop-
ments and the relatively low cost of modern acoustic recorders (Hill 
et al., 2019) present opportunities for the long-term monitoring of 
sound-producing animals and soundscapes at much greater spatial 
and temporal scales than is possible with human observers (Darras 
et al., 2019; Obrist et al., 2010; Roe et al., 2021; Sethi et al., 2021).

Long-term ecological studies are often hampered by sampling 
biases, and there is a deep literature highlighting these challenges 
and offering suggestions for their resolution (e.g. Boyd et al., 2022, 
2023; Dobson et  al.,  2020; Magurran et  al.,  2010; Meng,  2018). 
Various papers discuss the benefits and challenges of passive 
acoustic monitoring (e.g. Darras et al., 2019; Gibb et al., 2018; Sugai 
et al., 2019), but to date, the implications of biases in the context of 
long-term monitoring with these technologies have not been fully 
examined. As such, in this paper, we highlight and address issues that 
arise specifically when using passive acoustic monitoring for long-
term ecological studies, as this presents a unique set of challenges 
and potential biases.

Data from acoustic recorders is often assumed to be more con-
sistent and reliable than data collected by human observers because 
many of the biases associated with the latter are removed (Darras 
et al., 2018, 2019). However, there are many factors that can intro-
duce biases during data collection with acoustic recorders and anal-
ysis with acoustic indices or species recognisers (Hartig et al., 2024). 
Practitioners, researchers, software and hardware developers 
should be aware of where and how biases originate and have a strat-
egy for mitigating these when designing or using acoustic methods 
for long-term monitoring programmes.

2  |  SOURCES OF BIA S IN LONG -TERM 
ACOUSTIC PROJEC TS

We consider ‘bias’ to be any factor that could introduce a systematic 
but unquantified alteration, distortion, or misrepresentation of 
acoustic data that might lead to inaccurate inference about long-
term changes in ecosystems. These biases can emerge at any stage 
during data collection and analysis. Here, we divide these biases into 

three broad categories based on the source of the bias: hardware 
(Table  2), software (Table  3) and the deployment environment 
(Table 4). These biases will often alter variables such as the signal-
to-noise ratio, sensitivity, polar pattern or frequency response (bold 
terms are explained in Table  1) which will lead to an alteration in 
the size of the acoustic detection space. Were a researcher unaware 
that a bias had altered the acoustic detection space in a long-term 
dataset, the researcher may incorrectly infer (or miss) variation in 
a species' occupancy, density, or behaviour. However, there are 
various measures that a researcher can take to (i) mitigate and 
minimise biases that cause variation in the acoustic detection space; 
(ii) test that the acoustic detection space remains constant; and (iii) 
account for variation in the acoustic detection space in the data 
analysis.

2.1  |  Hardware

Changing the hardware used in long-term acoustic projects will 
influence the data collected (Adams et  al.,  2012; Luna-Naranjo 
et  al.,  2024). Audio recordings can be influenced by power 
sources (Miquel et al., 2022), processor chip architecture (Hayman 
et al., 2017) or the type, age and quality of microphone (Darras et al., 
2020; Turgeon et al., 2017). Even using the same make and model of 
recorder is no guarantee of consistency as availability will change over 
time: manufacturers discontinue or improve products, components 
are superseded, and there can even be variation between batches 
of the same component. All of these changes potentially alter the 
target signal representation and thus the acoustic detection space.

2.2  |  Analysis tools, firmware and software

Widely available recording analysis tools are regularly updated, 
affecting both acoustic indices (Sueur et  al.,  2008; Villanueva-
Riviera & Pijanowski,  2018) and species recognisers (Center for 
Conservations Bioacoustics, 2023; Kahl et al., 2021). For example, 
the widely used BirdNET sound ID tool is periodically updated 
to cover a greater range of species and new vocalisations (Kahl 
et  al.,  2021). This means that later analyses must be run over the 
whole dataset, otherwise new outputs would not be directly 
comparable to older outputs.

Device firmware and driver updates potentially improve recorder 
reliability, recording quality, power usage and make other minor 
fixes, but there is little literature on how these patches may affect 
acoustic indices or species recognition algorithms (Open Acoustic 
Devices, 2024; Wildlife Acoustics, 2024). For example, gain settings 
changed in early AudioMoth firmware versions so that identical gain 
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    |  3JARRETT et al.

settings resulted in different recording levels between v1.2.0 and 
v1.4.0 (Lapp et al., 2023).

Choices made when processing acoustic data can affect acous-
tic indices patterns (Bradfer-Lawrence et al., 2023, 2024; Metcalf 
et  al.,  2024) and species detectability (Perea & Tena,  2020). 
Additionally, different software programs can produce different 
results despite theoretically running the same procedure. This 
is well documented with acoustic indices (Bradfer-Lawrence 
et al., 2024), where differences in default settings, analytical steps 
and even internal representations of audio files can all influence 
the final output.

2.3  |  Deployment environment

Changes to the deployment environment will cause variation in 
the effective detection space (Darras et  al.,  2016). Anthropogenic 
changes to soundscapes (e.g. increased noise from roads) over time 
are likely to be a widespread phenomenon (Fairbrass et al., 2017), as 
is changing vegetation and climatic conditions (Haupert et al., 2023; 
Sánchez-Giraldo et  al.,  2020; Thomas et  al.,  2020). All of these 
factors could introduce systematic variation in sound propagation 
or attenuation and thus the signal-to-noise ratio (Lapp et al., 2023) 
although the relationship between land use, vegetation and effective 
detection space of recording units is complex (Darras et al., 2016). 
Damage to recording units by animals is also common and may alter 

the recorded signals. Damage might include obvious destruction by 
domestic livestock but can be more subtle, such as invertebrates 
building nests in recorder housings or consuming wind shields.

2.4  |  Summary

Separating the effects of biases from genuine variation in target 
signals may be challenging and requires consideration from 
practitioners, researchers, and software and hardware developers. 
In the remainder of this paper, we collate and summarise sources 
of bias that may arise when using acoustic recording in long-term 
monitoring programmes (Tables  2–4). We highlight the project 
stages where these biases should be considered and propose 
potential mitigations. Potential mitigations and other important 
considerations are explored further in the main text. To illustrate 
how biases could influence ecological inference we present two real-
world case studies.

3  |  C A SE STUDIES

To provide examples of some of the biases we outline in Tables 2–4, 
and how variation in recording performance can translate into dif-
ferences in outputs, we present two case studies; one using acoustic 
indices to characterise soundscape patterns, and one using a species 

Term Definition Explanation

Signal-to-noise ratio The ratio of the amplitude of 
the target sound signal to the 
amplitude of background noise

This describes how well the 
target signal, for example an 
animal vocalisation, stands out 
against background noise. A 
higher ratio means a clearer 
target signal

Sensitivity The efficiency of the microphone 
in turning acoustic energy into an 
electrical signal

This determines how faint 
a sound can be detected. 
Higher sensitivity is needed for 
detecting quieter sounds

Polar pattern The directional sensitivity of a 
microphone, or how well it picks 
up sound from different angles

Polar patterns can be visualised 
in 2D or 3D space. Common 
polar patterns are cardioid, 
omnidirectional and bidirectional

Frequency response The range of sound frequencies 
that a microphone can capture 
and its sensitivity within that 
range. It can be represented 
graphically with a response curve

A flat response microphone 
is equally sensitive to all 
frequencies, while a shaped 
response curve varies in 
its sensitivity to different 
frequencies

Detection space The geometrical space that 
the recording device samples 
effectively. Detection space may 
also be referred to as detection 
range or radius

Determined by the amplitude, 
directionality and frequency of 
the target species' vocalisations, 
the ambient sound level and the 
microphone features: signal-
to-noise ratio, polar pattern, 
sensitivity and frequency 
response

TA B L E  1  Glossary of key terms used in 
this paper.
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    |  7JARRETT et al.

classifier to identify bird calls. Both case studies collected simulta-
neous recordings at the same locations with two different recorder 
models. These are intended to be illustrative of the types of dif-
ferences that might arise based on choices made during hardware 
selection.

3.1  |  Case study 1: Soundscapes in the 
Brazilian Amazon

We collected 24 h of continuous recordings in old-growth forest 
in the Brazilian Amazon using an FL-BAR and an AudioMoth at-
tached to the same tree. Recorder type had a strong impact on 
what was recorded and the signal-to-noise ratio of recordings; 
for example, the AudioMoth detected insect sounds between 
12 and 16 kHz not picked up by the FL-BAR, whilst the inverse 
was true at lower frequencies. For each 1-min file we calculated 
the Acoustic Complexity Index (ACI) and the Bioacoustic Index 
using the soundecology package (v1.3.3, Villanueva-Riviera & 
Pijanowski, 2018) in R (v.4.3.1, R Core Team, 2023). We compared 
the two time-series visually using general additive models pro-
duced with the geom_smooth function including standard error, 

in the R package ggplot2 (Wickham,  2016), with all other argu-
ments left as default.

Rainfall drove clear periodicity in the acoustic indices values 
(particularly between 01:00 and 02:00: Figure 1). Bioacoustic Index 
values were minimally affected by recorder type; the AudioMoth 
values closely tracked those of the FL-BAR (Figure 1), albeit slightly 
lower on average throughout (mean difference −4.36 ± 3.86 SD). 
In contrast, the ACI values differed between the recorders. The 
AudioMoth recorded many loud raindrops as they hit the hard cas-
ing housing the microphone, resulting in high ACI values (Figure 1, 
Bradfer-Lawrence et  al.,  2019). The FL-BAR's microphone is posi-
tioned below the recorder housing; while less impacted during rain-
fall, the foam cover may absorb water afterwards (and waterlogged 
microphones may have a very small range until they dry out—which 
is often many hours later). This potentially underlies the temporal lag 
in ACI values (Figure  1). While the FL-BAR microphones generally 
have a better signal-to-noise ratio, at some points the AudioMoth 
appeared to have a higher signal-to-noise ratio, particularly at higher 
frequencies and after periods of rainfall. These patterns mirror a 
much wider-scale study by Zhang et al.  (2024), who reported sub-
stantial variation in acoustic indices values from different recorders 
when the signal-to-noise ratio was low.

F I G U R E  1  A comparison of Acoustic Complexity Index (top) and Bioacoustic Index (bottom) values derived from simultaneous recordings 
from an AudioMoth v1.2 and a Frontier Labs Bioacoustic Recorder. Points show values calculated in R using the soundecology package; the 
smooths are outputs from generalised additive models.
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8  |    JARRETT et al.

3.2  |  Case study 2: Avian species in the Pyrenean 
temperate forest

We used an AudioMoth and a SongMeter Micro attached to the 
same tree in the Spanish Pyrenees to collect 5980 min of record-
ings over 22 days. We analysed the recordings using BirdNET V2.4 
(Kahl et al., 2021) which returned 1081 and 1872 detections from 
the AudioMoth and SongMeter Micro datasets respectively. We did 
not manually vet each detection as we were not making ecological 
inferences. In line with Kahl and Wood (2024), we expected differ-
ences in the BirdNET scores between the two recorders.

Twenty-six species were detected with the AudioMoth and 23 
with the SongMeter Micro. Twelve species (46%) were only recorded 
by the AudioMoth, and 9 species (39%) only by the SongMeter 
Micro; these included 4 and 3 species respectively that were likely 
false positives because they do not occur in this habitat (e.g. ducks 
and waders). The 9 species with the most detections were the same 
across both devices. The main findings are summarised in Figure 2; 

the number of detections differed in some cases (e.g. 447 detec-
tions of European robin Erithacus rubecula from the SongMeter 
Micro recorder vs. 169 from the AudioMoth) but was similar in other 
species (e.g. 256 vs. 272 for Short-toed Treecreeper Certhia brachy-
dactyla). However, these similar scores disguise non-trivial variation 
in the confidence values obtained from both recorders. In a long-
term monitoring program where vocalisation activity rate was used 
to estimate species density (Pérez-Granados et al., 2019) changing 
recorders in the middle of the monitoring period could compromise 
the data, and so a period of simultaneous deployment would be es-
sential (see Section 4.2).

4  |  IMPLIC ATIONS AND GUIDANCE

Biases can be dealt with in advance (i.e. prevention) or overcome 
after they have emerged (i.e. mitigation; Dobson et  al.,  2020). 
We identified 10 potential sources of bias in long-term acoustic 

F I G U R E  2  Density plots showing the spread of detection confidence scores for the most common species for each recorder. Numbers in 
each panel refer to the number of detections for that species with each recorder.
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    |  9JARRETT et al.

monitoring, proposed possible solutions, and highlighted the project 
stage when these biases might be addressed (Tables 2–4). Our case 
studies demonstrated the ways these biases can cause variation in 
real-world data and highlighted the challenges researchers and prac-
titioners will face during long-term projects. In the following sec-
tions, we provide more detail on practical (Section 4.1) and analytical 
(Section  4.2) mitigations and summarise the policy implications of 
the issues covered here (Section 4.3).

4.1  |  Practical mitigations

4.1.1  |  Equipment

To minimise the need to replace any equipment, such as casing, 
components or microphones during data collection, it is prudent 
to purchase spares at the start of the project. Investing in better 
quality windshields and more robust casing than is obviously needed 
will counter the possibility of future environmental changes having 
detrimental effects on recording quality (Table 2). Where equipment 
change is unavoidable, a period of side-by-side comparison will help 
quantify differences arising from the transition. Any change would 
ideally be gradual so that hardware type is not confounded with 
year, although equipment degradation may make this difficult to 
achieve (see below).

4.1.2  |  Robust monitoring protocols

All hardware, software and analytical pipelines should be docu-
mented in the monitoring protocol. When selections are tested 
before choices are finalised, then the testing methodology and re-
sults should also be documented. Collect comprehensive metadata, 
including all possible confounding variables, so that these can be in-
corporated into analyses if necessary. When hardware, firmware or 
software is updated, developers and manufacturers should inform 
users about the likely consequences of these changes.

4.1.3  |  Data storage

Long-term data storage can help mitigate issues caused by software 
updates or analytical changes because analyses can be rerun on the 
whole dataset. However, there are substantial financial and envi-
ronmental costs of data storage: for example, a 20-recorder project 
recording in wav format for 2 h a day at 48 kHz would accumulate 
96 TB of data over 20 years, according to the Audiomoth config app 
(Hill et al., 2019). Long-term storage costs money and data storage 
facilities are an increasing source of carbon emissions. These conse-
quences can be reduced by retaining only a subset of data, although 
consideration should be given to the content of the subset: whether 
to store random samples or a fixed number of positive classifica-
tions for example. If storing full audio files is not viable, generative 

models could offer a means of recovering approximate reconstruc-
tions of full audio samples from compressed representations (Gibb 
et al., 2024). Trade-offs are inevitable, and there is no single option 
that will fit all long-term monitoring projects (Metcalf et al., 2022).

4.2  |  Analytical approaches

4.2.1  |  Accounting for bias in models

Where some change in hardware has occurred, the simplest and 
cheapest means of mitigating bias would be to account for this 
variation by including ‘hardware type’ as a factor in the model. For 
example, when using hierarchical models, hardware type could be 
included as a random effect, to account for variation between equip-
ment. The success of such an approach would likely be context de-
pendent, with the type of variation, the recording environment, and 
the timing of the changeover (if the move to new hardware were 
done gradually over a number of years this may make it easier to sta-
tistically account for the effect of the device changeover) determin-
ing the extent to which model structure can account for the bias(es). 
However, if the hardware change coincided with a genuine change in 
the ecosystem, separating the two might be impossible.

4.2.2  |  Calibration testing

Sources of bias caused by many of the issues identified here should 
be quantified and thus accounted for by periodically measuring 
deterioration of microphones and effective detection spaces of 
recorders using a standardised calibration protocol (e.g. Haupert 
et  al.,  2023; Yip et  al., 2017). The approaches in all these calibra-
tion tests are similar and designed to allow the use of correction 
factors to standardise microphone quality and effective detection 
space. Yip et al. (2017) played bird vocalisations at known distances 
and amplitudes and compared detection space of different types of 
acoustic recorders and a human observer to quantify variation in 
effective detection distances. Examples using white noise or tones 
with no comparison to a human observer can be found in Haupert 
et  al.  (2023). It is important that calibration tests are designed 
with consideration for the target signal: if the target species were 
Goldcrest Regulus regulus for example (which vocalises at very high 
frequencies and is only detectable from very short distances) then a 
calibration test would need to involve high frequency sounds within 
the vocal range of this species played from positions near to the re-
corders. Although speakers will have directionality that differs from 
the target animal, this directionality will be uniform over time and so 
calibrating with speakers can effectively measure relative change in 
microphone performance over time. Where calibration tests reveal 
a decline (but not complete degradation) in recorder or microphone 
performance, analyses should take this into account using either an 
offset for the affected recordings or a random effect for the record-
ers in the model.
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10  |    JARRETT et al.

Large-scale, long-term acoustic projects should build calibration 
testing into the program. This includes prior to initial recorder de-
ployment and then regularly thereafter, particularly at the end of 
any field campaign. If microphone design allows, then settings can 
be changed. If a long-term project has recorders of more than one 
make and model, ensure the study is designed so that not all units of 
one type are in a single treatment (if applicable). When developers 
or manufacturers introduce or modify equipment this should be ac-
companied by the results of a standardised calibration test.

While the scope of this paper is limited to terrestrial ecoacoustic 
monitoring, it is worth mentioning that in marine ecoacoustics there 
is a well-developed literature on underwater calibration testing (e.g. 
Hayman et  al., 2017; Heaney et  al., 2020) that incorporates many 
principles that are applicable to terrestrial monitoring.

4.2.3  |  Machine learning

Innovations in deep learning could help mitigate bias arising from 
changes in hardware used in a long-term project. Simultaneous record-
ings in the same location with old and new hardware could be mod-
elled to identify residual variation arising from hardware and identify 
the frequency response and self-noise associated with each hardware 
type. This would enable a ‘mapping between recorders’, where the 
residual variation typical of one hardware type could be added or re-
moved as appropriate. This would account for inter-recorder variation 
without fundamentally affecting the underlying signal of interest (Gibb 
et al., 2024). High-resolution reconstruction techniques using genera-
tive models may also permit ‘re-recording’ audio captured by previous 
recorders (where no simultaneous recordings exist), effectively map-
ping historical samples to the spectral and noise profile of replacement 
hardware (Duff et al., 2023). This may alleviate some of the challenges 
of the fast-paced development of acoustic hardware by enabling the 
reuse of audio from lower quality or partially degraded recording de-
vices. Fieldwork can aid research in this area by collecting simultaneous 
recordings with multiple different devices and through regular calibra-
tion testing of recorders' signal-to-noise ratios (Metcalf et al., 2022).

4.3  |  Implications for long-term acoustic 
monitoring

When designing a long-term acoustic monitoring project, users 
should identify those biases (Tables  2–4) that are likely to affect 
their project and build appropriate mitigations into the project de-
sign. This should include taking measures to minimise biases likely to 
arise during recording that could affect the detection space; regular 
calibration testing to assess that the detection space remains con-
stant over time, and identifying appropriate analytical techniques to 
account for biases that cause variation in the detection space.

In highlighting the risk of bias in long-term ecoacoustic 
datasets, we do not intend to dissuade users from attempting 

long-term monitoring using acoustic methods. Acoustic monitor-
ing is a robust means of data collection and has the potential to be 
more repeatable and reliable than traditional fieldworker surveys. 
However, an increased awareness and understanding among hard-
ware manufacturers, researchers, practitioners and policymakers 
of the challenges, and collaborative efforts to resolve these, will 
improve the quality of monitoring outputs and benefit the field of 
ecoacoustics.
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