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global targets to reduce species loss and restore ecosystems. The recent devel-
opment of cheap and robust acoustic recording devices offers a cost-effective

means of gathering standardised long-term datasets.

. Accounting for sources of bias in ecological monitoring and research is a

fundamental part of the study design process. To highlight this issue in the
context of long-term terrestrial ecoacoustic monitoring, here we collate and
discuss sources of bias arising from (i) hardware devices, (ii) firmware, software

and analysis tools and (iii) the deployment environment.

. One important source of bias is unavoidable changes in recording hardware—to

demonstrate how this potentially introduces bias, we present two case studies
comparing the output from simultaneous recordings from different recorders.
To mitigate biases, we recommend effective documentation of environmental
and hardware-related variables, as well as a long-term data storage strategy that
facilitates reanalysis. Additionally, the use of regular calibration tests to measure
variation in the acoustic detection space will facilitate analytical approaches or
post-hoc Al solutions that remove unwanted biases.

Synthesis and applications: The sources of bias and suggested mitigations described
here will be of relevance to hardware manufacturers, ecological researchers and
conservation practitioners. Researchers and conservation practitioners must be
fully aware of relevant biases when designing long-term ecoacoustic studies and

should incorporate appropriate mitigations into their study design.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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1 | BACKGROUND

Meeting ambitious global targets to reverse species extinction
rates and restore ecosystems (IPBES, 2019) requires informed pol-
icy choices. Robust, standardised, long-term monitoring of species,
biological communities and ecosystems is needed to provide the
data underpinning such decision-making (Pereira & Cooper, 2006).
Traditional fieldworker-led monitoring at scales sufficient to gen-
erate long-term trends is labour-intensive and can be logistically
challenging (Schmeller et al., 2009), limiting the spatial and tem-
poral extent of these datasets. However, technological develop-
ments and the relatively low cost of modern acoustic recorders (Hill
et al., 2019) present opportunities for the long-term monitoring of
sound-producing animals and soundscapes at much greater spatial
and temporal scales than is possible with human observers (Darras
et al,, 2019; Obrist et al., 2010; Roe et al., 2021; Sethi et al., 2021).

Long-term ecological studies are often hampered by sampling
biases, and there is a deep literature highlighting these challenges
and offering suggestions for their resolution (e.g. Boyd et al., 2022,
2023; Dobson et al., 2020; Magurran et al., 2010; Meng, 2018).
Various papers discuss the benefits and challenges of passive
acoustic monitoring (e.g. Darras et al., 2019; Gibb et al., 2018; Sugai
et al., 2019), but to date, the implications of biases in the context of
long-term monitoring with these technologies have not been fully
examined. As such, in this paper, we highlight and address issues that
arise specifically when using passive acoustic monitoring for long-
term ecological studies, as this presents a unique set of challenges
and potential biases.

Data from acoustic recorders is often assumed to be more con-
sistent and reliable than data collected by human observers because
many of the biases associated with the latter are removed (Darras
et al., 2018, 2019). However, there are many factors that can intro-
duce biases during data collection with acoustic recorders and anal-
ysis with acoustic indices or species recognisers (Hartig et al., 2024).
Practitioners, researchers, software and hardware developers
should be aware of where and how biases originate and have a strat-
egy for mitigating these when designing or using acoustic methods

for long-term monitoring programmes.

2 | SOURCES OF BIAS IN LONG-TERM
ACOUSTIC PROJECTS

We consider ‘bias’ to be any factor that could introduce a systematic
but unquantified alteration, distortion, or misrepresentation of
acoustic data that might lead to inaccurate inference about long-
term changes in ecosystems. These biases can emerge at any stage
during data collection and analysis. Here, we divide these biases into

three broad categories based on the source of the bias: hardware
(Table 2), software (Table 3) and the deployment environment
(Table 4). These biases will often alter variables such as the signal-
to-noise ratio, sensitivity, polar pattern or frequency response (bold
terms are explained in Table 1) which will lead to an alteration in
the size of the acoustic detection space. Were a researcher unaware
that a bias had altered the acoustic detection space in a long-term
dataset, the researcher may incorrectly infer (or miss) variation in
a species' occupancy, density, or behaviour. However, there are
various measures that a researcher can take to (i) mitigate and
minimise biases that cause variation in the acoustic detection space;
(i) test that the acoustic detection space remains constant; and (iii)
account for variation in the acoustic detection space in the data

analysis.

2.1 | Hardware

Changing the hardware used in long-term acoustic projects will
influence the data collected (Adams et al., 2012; Luna-Naranjo
et al., 2024). Audio recordings can be influenced by power
sources (Miquel et al., 2022), processor chip architecture (Hayman
et al., 2017) or the type, age and quality of microphone (Darras et al.,
2020; Turgeon et al., 2017). Even using the same make and model of
recorderis no guarantee of consistency as availability will change over
time: manufacturers discontinue or improve products, components
are superseded, and there can even be variation between batches
of the same component. All of these changes potentially alter the

target signal representation and thus the acoustic detection space.

2.2 | Analysis tools, firmware and software

Widely available recording analysis tools are regularly updated,
affecting both acoustic indices (Sueur et al., 2008; Villanueva-
Riviera & Pijanowski, 2018) and species recognisers (Center for
Conservations Bioacoustics, 2023; Kahl et al., 2021). For example,
the widely used BirdNET sound ID tool is periodically updated
to cover a greater range of species and new vocalisations (Kahl
et al., 2021). This means that later analyses must be run over the
whole dataset, otherwise new outputs would not be directly
comparable to older outputs.

Device firmware and driver updates potentially improve recorder
reliability, recording quality, power usage and make other minor
fixes, but there is little literature on how these patches may affect
acoustic indices or species recognition algorithms (Open Acoustic
Devices, 2024; Wildlife Acoustics, 2024). For example, gain settings
changed in early AudioMoth firmware versions so that identical gain
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TABLE 1 Glossary of key terms used in

this paper. Term

Signal-to-noise ratio

Sensitivity

Polar pattern

Frequency response

Detection space

settings resulted in different recording levels between v1.2.0 and
v1.4.0 (Lapp et al., 2023).

Choices made when processing acoustic data can affect acous-
tic indices patterns (Bradfer-Lawrence et al., 2023, 2024; Metcalf
et al,, 2024) and species detectability (Perea & Tena, 2020).
Additionally, different software programs can produce different
results despite theoretically running the same procedure. This
is well documented with acoustic indices (Bradfer-Lawrence
et al., 2024), where differences in default settings, analytical steps
and even internal representations of audio files can all influence

the final output.

2.3 | Deployment environment

Changes to the deployment environment will cause variation in
the effective detection space (Darras et al., 2016). Anthropogenic
changes to soundscapes (e.g. increased noise from roads) over time
are likely to be a widespread phenomenon (Fairbrass et al., 2017), as
is changing vegetation and climatic conditions (Haupert et al., 2023;
Sanchez-Giraldo et al., 2020; Thomas et al., 2020). All of these
factors could introduce systematic variation in sound propagation
or attenuation and thus the signal-to-noise ratio (Lapp et al., 2023)
although the relationship between land use, vegetation and effective
detection space of recording units is complex (Darras et al., 2016).
Damage to recording units by animals is also common and may alter

Definition

The ratio of the amplitude of
the target sound signal to the
amplitude of background noise

The efficiency of the microphone
in turning acoustic energy into an
electrical signal

The directional sensitivity of a
microphone, or how well it picks
up sound from different angles

The range of sound frequencies
that a microphone can capture
and its sensitivity within that
range. It can be represented
graphically with a response curve

The geometrical space that

the recording device samples
effectively. Detection space may
also be referred to as detection
range or radius

the recorded signals. Damage might include obvious destruction by
domestic livestock but can be more subtle, such as invertebrates

B Jourma of Applicd Ecoogy

Explanation

This describes how well the
target signal, for example an
animal vocalisation, stands out
against background noise. A
higher ratio means a clearer
target signal

This determines how faint

a sound can be detected.
Higher sensitivity is needed for
detecting quieter sounds

Polar patterns can be visualised
in 2D or 3D space. Common
polar patterns are cardioid,
omnidirectional and bidirectional

A flat response microphone
is equally sensitive to all
frequencies, while a shaped
response curve varies in

its sensitivity to different
frequencies

Determined by the amplitude,
directionality and frequency of
the target species' vocalisations,
the ambient sound level and the
microphone features: signal-
to-noise ratio, polar pattern,
sensitivity and frequency
response

building nests in recorder housings or consuming wind shields.

24 | Summary

Separating the effects of biases from genuine variation in target
signals may be challenging and requires consideration from
practitioners, researchers, and software and hardware developers.
In the remainder of this paper, we collate and summarise sources
of bias that may arise when using acoustic recording in long-term
monitoring programmes (Tables 2-4). We highlight the project
stages where these biases should be considered and propose
potential mitigations. Potential mitigations and other important
considerations are explored further in the main text. To illustrate
how biases could influence ecological inference we present two real-

world case studies.

3 | CASE STUDIES

To provide examples of some of the biases we outline in Tables 2-4,
and how variation in recording performance can translate into dif-
ferences in outputs, we present two case studies; one using acoustic
indices to characterise soundscape patterns, and one using a species
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classifier to identify bird calls. Both case studies collected simulta-
neous recordings at the same locations with two different recorder
models. These are intended to be illustrative of the types of dif-
ferences that might arise based on choices made during hardware
selection.

3.1 | Case study 1: Soundscapes in the
Brazilian Amazon

We collected 24 h of continuous recordings in old-growth forest
in the Brazilian Amazon using an FL-BAR and an AudioMoth at-
tached to the same tree. Recorder type had a strong impact on
what was recorded and the signal-to-noise ratio of recordings;
for example, the AudioMoth detected insect sounds between
12 and 16 kHz not picked up by the FL-BAR, whilst the inverse
was true at lower frequencies. For each 1-min file we calculated
the Acoustic Complexity Index (ACI) and the Bioacoustic Index
using the soundecology package (v1.3.3, Villanueva-Riviera &
Pijanowski, 2018) in R (v.4.3.1, R Core Team, 2023). We compared
the two time-series visually using general additive models pro-

duced with the geom_smooth function including standard error,

B Journalof Appled Ecoogy |
in the R package ggplot2 (Wickham, 2016), with all other argu-
ments left as default.

Rainfall drove clear periodicity in the acoustic indices values
(particularly between 01:00 and 02:00: Figure 1). Bioacoustic Index
values were minimally affected by recorder type; the AudioMoth
values closely tracked those of the FL-BAR (Figure 1), albeit slightly
lower on average throughout (mean difference -4.36+3.86 SD).
In contrast, the ACI values differed between the recorders. The
AudioMoth recorded many loud raindrops as they hit the hard cas-
ing housing the microphone, resulting in high ACI values (Figure 1,
Bradfer-Lawrence et al., 2019). The FL-BAR's microphone is posi-
tioned below the recorder housing; while less impacted during rain-
fall, the foam cover may absorb water afterwards (and waterlogged
microphones may have a very small range until they dry out—which
is often many hours later). This potentially underlies the temporal lag
in ACI values (Figure 1). While the FL-BAR microphones generally
have a better signal-to-noise ratio, at some points the AudioMoth
appeared to have a higher signal-to-noise ratio, particularly at higher
frequencies and after periods of rainfall. These patterns mirror a
much wider-scale study by Zhang et al. (2024), who reported sub-
stantial variation in acoustic indices values from different recorders

when the signal-to-noise ratio was low.

Acoustic Complexity Index
2000 1
1900 1
1800 1
1700 P - 3
1600 1
i T T T T T Recorder
0 4 8 12 16 20 24
r Audiomoth
g : :
Bioacoustic Index — FLBAR
40 1
301
201
101
0 -
0 4 8 12 16 20 24
Time (24 hr clock)

FIGURE 1 A comparison of Acoustic Complexity Index (top) and Bioacoustic Index (bottom) values derived from simultaneous recordings
from an AudioMoth v1.2 and a Frontier Labs Bioacoustic Recorder. Points show values calculated in R using the soundecology package; the

smooths are outputs from generalised additive models.

85U8017 SUOWILLOD 8AIEa.1D) 3|qeotjdde ay) Aq peusenob a1e sejole YO ‘85N JO S3|N 10} ARIq1T 8ULUO A8]IAA UO (SUONIPUOD-PUE-SWLBI W00 A8 1M AReq) 18Ul [UO//:SdNY) SUORIPUOD pue Sws | 841 88S *[5202/c0/vT] uo ARiqiauliuo A8jim ‘AiseAlun - AiseAluN weyind Aq 00002 7992-G9ET/TTTT 0T/I0p/uoo A3 (1M ARIq Ul juo'S fuInossq/sdny wo.y papeojumod ‘0 ‘992S9ET



JARRETT ET AL.

" | B oumalof Appled Ecoogy
3.2 | Case study 2: Avian species in the Pyrenean
temperate forest

We used an AudioMoth and a SongMeter Micro attached to the
same tree in the Spanish Pyrenees to collect 5980min of record-
ings over 22days. We analysed the recordings using BirdNET V2.4
(Kahl et al., 2021) which returned 1081 and 1872 detections from
the AudioMoth and SongMeter Micro datasets respectively. We did
not manually vet each detection as we were not making ecological
inferences. In line with Kahl and Wood (2024), we expected differ-
ences in the BirdNET scores between the two recorders.
Twenty-six species were detected with the AudioMoth and 23
with the SongMeter Micro. Twelve species (46%) were only recorded
by the AudioMoth, and 9 species (39%) only by the SongMeter
Micro; these included 4 and 3 species respectively that were likely
false positives because they do not occur in this habitat (e.g. ducks
and waders). The 9 species with the most detections were the same
across both devices. The main findings are summarised in Figure 2;

the number of detections differed in some cases (e.g. 447 detec-
tions of European robin Erithacus rubecula from the SongMeter
Micro recorder vs. 169 from the AudioMoth) but was similar in other
species (e.g. 256 vs. 272 for Short-toed Treecreeper Certhia brachy-
dactyla). However, these similar scores disguise non-trivial variation
in the confidence values obtained from both recorders. In a long-
term monitoring program where vocalisation activity rate was used
to estimate species density (Pérez-Granados et al., 2019) changing
recorders in the middle of the monitoring period could compromise
the data, and so a period of simultaneous deployment would be es-
sential (see Section 4.2).

4 | IMPLICATIONS AND GUIDANCE

Biases can be dealt with in advance (i.e. prevention) or overcome
after they have emerged (i.e. mitigation; Dobson et al., 2020).
We identified 10 potential sources of bias in long-term acoustic

Erithacus rubecula Certhia brachydactyla Regulus ignicapilla Troglodytes troglodytes
5 —a47 51 n=256 51 n=221 51 n=300
4 - g:?gg 4 - n=272 A n=266 44 n=142
34 34 34
21 2 24
1 1 1
0+ 0+ 0+

05 0.6 0.7 0.8 0.9 1.0

050607080910 0506070809 1.0
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FIGURE 2 Density plots showing the spread of detection confidence scores for the most common species for each recorder. Numbers in
each panel refer to the number of detections for that species with each recorder.
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monitoring, proposed possible solutions, and highlighted the project
stage when these biases might be addressed (Tables 2-4). Our case
studies demonstrated the ways these biases can cause variation in
real-world data and highlighted the challenges researchers and prac-
titioners will face during long-term projects. In the following sec-
tions, we provide more detail on practical (Section 4.1) and analytical
(Section 4.2) mitigations and summarise the policy implications of

the issues covered here (Section 4.3).

4.1 | Practical mitigations
41.1 | Equipment

To minimise the need to replace any equipment, such as casing,
components or microphones during data collection, it is prudent
to purchase spares at the start of the project. Investing in better
quality windshields and more robust casing than is obviously needed
will counter the possibility of future environmental changes having
detrimental effects on recording quality (Table 2). Where equipment
change is unavoidable, a period of side-by-side comparison will help
quantify differences arising from the transition. Any change would
ideally be gradual so that hardware type is not confounded with
year, although equipment degradation may make this difficult to

achieve (see below).

4.1.2 | Robust monitoring protocols

All hardware, software and analytical pipelines should be docu-
mented in the monitoring protocol. When selections are tested
before choices are finalised, then the testing methodology and re-
sults should also be documented. Collect comprehensive metadata,
including all possible confounding variables, so that these can be in-
corporated into analyses if necessary. When hardware, firmware or
software is updated, developers and manufacturers should inform

users about the likely consequences of these changes.

4.1.3 | Datastorage

Long-term data storage can help mitigate issues caused by software
updates or analytical changes because analyses can be rerun on the
whole dataset. However, there are substantial financial and envi-
ronmental costs of data storage: for example, a 20-recorder project
recording in wav format for 2h a day at 48kHz would accumulate
96 TB of data over 20years, according to the Audiomoth config app
(Hill et al., 2019). Long-term storage costs money and data storage
facilities are an increasing source of carbon emissions. These conse-
quences can be reduced by retaining only a subset of data, although
consideration should be given to the content of the subset: whether
to store random samples or a fixed number of positive classifica-
tions for example. If storing full audio files is not viable, generative

-
models could offer a means of recovering approximate reconstruc-
tions of full audio samples from compressed representations (Gibb

et al., 2024). Trade-offs are inevitable, and there is no single option

that will fit all long-term monitoring projects (Metcalf et al., 2022).

4.2 | Analytical approaches
421 | Accounting for bias in models

Where some change in hardware has occurred, the simplest and
cheapest means of mitigating bias would be to account for this
variation by including ‘hardware type’ as a factor in the model. For
example, when using hierarchical models, hardware type could be
included as arandom effect, to account for variation between equip-
ment. The success of such an approach would likely be context de-
pendent, with the type of variation, the recording environment, and
the timing of the changeover (if the move to new hardware were
done gradually over a number of years this may make it easier to sta-
tistically account for the effect of the device changeover) determin-
ing the extent to which model structure can account for the bias(es).
However, if the hardware change coincided with a genuine change in
the ecosystem, separating the two might be impossible.

4.2.2 | Calibration testing

Sources of bias caused by many of the issues identified here should
be quantified and thus accounted for by periodically measuring
deterioration of microphones and effective detection spaces of
recorders using a standardised calibration protocol (e.g. Haupert
et al., 2023; Yip et al., 2017). The approaches in all these calibra-
tion tests are similar and designed to allow the use of correction
factors to standardise microphone quality and effective detection
space. Yip et al. (2017) played bird vocalisations at known distances
and amplitudes and compared detection space of different types of
acoustic recorders and a human observer to quantify variation in
effective detection distances. Examples using white noise or tones
with no comparison to a human observer can be found in Haupert
et al. (2023). It is important that calibration tests are designed
with consideration for the target signal: if the target species were
Goldcrest Regulus regulus for example (which vocalises at very high
frequencies and is only detectable from very short distances) then a
calibration test would need to involve high frequency sounds within
the vocal range of this species played from positions near to the re-
corders. Although speakers will have directionality that differs from
the target animal, this directionality will be uniform over time and so
calibrating with speakers can effectively measure relative change in
microphone performance over time. Where calibration tests reveal
a decline (but not complete degradation) in recorder or microphone
performance, analyses should take this into account using either an
offset for the affected recordings or a random effect for the record-
ers in the model.
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Large-scale, long-term acoustic projects should build calibration
testing into the program. This includes prior to initial recorder de-
ployment and then regularly thereafter, particularly at the end of
any field campaign. If microphone design allows, then settings can
be changed. If a long-term project has recorders of more than one
make and model, ensure the study is designed so that not all units of
one type are in a single treatment (if applicable). When developers
or manufacturers introduce or modify equipment this should be ac-
companied by the results of a standardised calibration test.

While the scope of this paper is limited to terrestrial ecoacoustic
monitoring, it is worth mentioning that in marine ecoacoustics there
is a well-developed literature on underwater calibration testing (e.g.
Hayman et al., 2017; Heaney et al., 2020) that incorporates many

principles that are applicable to terrestrial monitoring.

4.2.3 | Machine learning

Innovations in deep learning could help mitigate bias arising from
changes in hardware used in a long-term project. Simultaneous record-
ings in the same location with old and new hardware could be mod-
elled to identify residual variation arising from hardware and identify
the frequency response and self-noise associated with each hardware
type. This would enable a ‘mapping between recorders’, where the
residual variation typical of one hardware type could be added or re-
moved as appropriate. This would account for inter-recorder variation
without fundamentally affecting the underlying signal of interest (Gibb
et al., 2024). High-resolution reconstruction techniques using genera-
tive models may also permit ‘re-recording’ audio captured by previous
recorders (where no simultaneous recordings exist), effectively map-
ping historical samples to the spectral and noise profile of replacement
hardware (Duff et al., 2023). This may alleviate some of the challenges
of the fast-paced development of acoustic hardware by enabling the
reuse of audio from lower quality or partially degraded recording de-
vices. Fieldwork can aid research in this area by collecting simultaneous
recordings with multiple different devices and through regular calibra-

tion testing of recorders' signal-to-noise ratios (Metcalf et al., 2022).

4.3 | Implications for long-term acoustic
monitoring

When designing a long-term acoustic monitoring project, users
should identify those biases (Tables 2-4) that are likely to affect
their project and build appropriate mitigations into the project de-
sign. This should include taking measures to minimise biases likely to
arise during recording that could affect the detection space; regular
calibration testing to assess that the detection space remains con-
stant over time, and identifying appropriate analytical techniques to
account for biases that cause variation in the detection space.

In highlighting the risk of bias in long-term ecoacoustic

datasets, we do not intend to dissuade users from attempting

long-term monitoring using acoustic methods. Acoustic monitor-
ing is a robust means of data collection and has the potential to be
more repeatable and reliable than traditional fieldworker surveys.
However, an increased awareness and understanding among hard-
ware manufacturers, researchers, practitioners and policymakers
of the challenges, and collaborative efforts to resolve these, will
improve the quality of monitoring outputs and benefit the field of

ecoacoustics.
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