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Abstract: We compute the gaugino condensates,
〈∏k

i=1 tr(λλ)(xi)
〉

for 1 ≤ k ≤ N − 1, in
SU(N) super Yang-Mills theory on a small four-dimensional torus T4, subject to ’t Hooft
twisted boundary conditions. Two recent advances are crucial to performing the calculations
and interpreting the result: the understanding of generalized anomalies involving 1-form center
symmetry and the construction of multi-fractional instantons on the twisted T4. These self-
dual classical configurations have topological charge k/N and can be described as a sum over
k closely packed lumps in an instanton liquid. Using the path integral formalism, we perform
the condensate calculations in the semi-classical limit and find, assuming gcd(k,N) = 1,〈∏k

i=1 tr(λλ)(xi)
〉
= N−1 N2 (16π2Λ3)k, where Λ is the strong-coupling scale and N is a

normalization constant. We determine the normalization constant, using path integral, as
N = N2, which is N times larger than the normalization used in our earlier publication [1].
This finding resolves the extra-factor-of-N discrepancy encountered there, aligning our results
with those obtained through direct supersymmetric methods on R4. The normalization
constant N can be understood within the Euclidean path-integral framework as the Witten
index IW . From the Hamiltonian approach, it is well-established that IW = N . While the
value N = N2 correctly reproduces the condensate result, this discrepancy between the
Hamiltonian and path-integral formulations calls for reconciliation. We attempt to provide
a potential solution we outline in our discussion.
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1 Introduction

Dynamical mass generation in 4-dimensional strongly coupled gauge theories is a notoriously
difficult problem. Supersymmetry can provide an exceptional means of overcoming this
hurdle. The simplest such gauge theory is N = 1 super Yang-Mills (SYM) theory, which
exhibits a Z(1)

N 1-form (center) symmetry and a Zχ
2N chiral (discrete R) symmetry. If Zχ

2N

fully breaks, a bilinear fermion condensate, the gaugino condensate, must form. Based on
dimensional analysis, the condensate must scale as ⟨tr(λλ)⟩ = cΛ3, where Λ represents the
strong-coupling scale and c is a dimensionless number. Efforts to determine the exact value
of c (given a definition of Λ) via instanton calculus date back to the 1980s. Two primary
methods have been employed in this pursuit: strongly-coupled and weakly-coupled instanton
techniques. For comprehensive reviews, see [2–7].

The weak coupling instanton method successfully determines the precise value of the
constant.1 One finds |c| = 16π2 for SU(N) gauge group (the numerical coefficient was
obtained in [9] and corrected in [10]). These calculations are performed on R4 by starting
with super QCD: this is SYM endowed with additional N − 1 massive fundamental chiral
supermultiplets. In the small-mass limit, the vacuum expectation values of the scalars are
much larger than the strong scale, leading the gauge group to fully break and pushing the
theory into the weak coupling regime. The superpotential of this theory is constructed and
minimized. Subsequently, the masses are increased beyond the strong scale, causing the
fundamental flavours to decouple and giving SYM as the limiting theory. Utilizing the power
of holomorphy then yields the value of c in SYM. This method can also be used to calculate
higher-order gaugino condensates: one finds ⟨

∏k
i=1 tr(λλ)(xi)⟩ = (⟨tr(λλ)⟩)k =

(
16π2Λ3)k.

This result is remarkable as it features two important aspects. The first is clustering, a generic
property of any local and Lorentz-invariant quantum field theory: the expectation value of
the connected correlator of two operators ⟨O1(x1)O2(0)⟩ must decompose as ⟨O1⟩⟨O2⟩ in
the limit |x1| → ∞, with obvious generalization for more than two operators. The second
feature is specific to supersymmetric theories: the correlation functions are independent
of the insertion points xi.

Although the method based on the superpotential yields the correct result, it falls short
of providing an understanding of the microscopic origin of the mechanisms driving dynamical
mass generation. To address this, an approach was considered in [11, 12], where one of the
spatial directions is compactified on a small circle S1 with a circumference smaller than
Λ−1. This setup places the theory on R3 × S1. The compactification pushes the theory into
the weak-coupling regime, revealing monopole-instantons as the semi-classical microscopic
objects responsible for catalyzing symmetry breaking.2 In this context, the bilinear gaugino
condensate calculations yield a value of |c| = 16π2, consistent with the results obtained
via supersymmetry and holomorphy.

Exploring geometries beyond R3 × S1 to understand the origin of dynamical symmetry
breaking and calculate the exact value of c was also pursued as early as 1984. In ref. [14], the

1We will not discuss the strongly-coupled instanton calculation, whose validity has been questioned many
times, see [5] for discussion and references. The weakly-coupled result has recently received independent
confirmation via a large-N lattice determination [8].

2Confinement and chiral symmetry breaking in this theory are due to the magnetic-bion mechanism [13].
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gaugino condensate in the background of a 4-dimensional torus, T4, with ’t Hooft twisted
boundary conditions was considered. However, the coefficient c was not calculated3 until our
recent work [1], where we studied the SU(2) case using the path integral formalism.

The renewed interest in the T4 geometry was motivated by the growing interest in
generalized global symmetries [15], operations that extend beyond those acting on local
fields to those acting on higher-dimensional objects. A particular example is the Z(1)

N 1-form
symmetry that acts on Wilson’s lines in SU(N) SYM. One important application of this
extended symmetry is that one can examine the behavior of the partition function as we
perform a discrete chiral transformation in the background gauge field of Z(1)

N . This yields a
ZN phase, which is interpreted as a mixed ’t Hooft anomaly between Z(1)

N and Zχ
2N . Assuming

SYM confines in the IR, the anomaly implies that the chiral symmetry must break. Turning
on a background gauge field of a discrete 1-form symmetry can only be performed on manifolds
with non-trivial 2-cycles, and T4 is the most natural and simplest example of such manifold.
In this context, the non-trivial twists on T4 induce discrete 2-form fluxes on its 2-cycles,
leading to instantons with fractional topological charges Q = 1/N . According to the index
theorem, an adjoint fermion must have two zero modes in such a background, resembling a
bilinear condensate. This suggests that the fractional instantons responsible for the mixed
’t Hooft anomaly could also provide the microscopic origin of dynamical mass generation
— a situation when you have the cake and eat it too.

Our calculations in [1] (which focused on the SU(2) case) yielded ⟨tr(λλ)⟩ = 2× (16π2Λ3),
twice the value computed using supersymmetry technology4 on R4. This created a puzzle
that warranted further examination of the situation. This paper extends our calculations
on the twisted T4 to SU(N) aiming to:

1. Understand the origin of the mismatch between the R4 and the T4 results for the
bilinear condensate.

2. Examine higher-order condensates and check the clustering in the infinite volume limit.

One critical requirement for Yang-Mills instantons is that these solutions must be self-dual.
Without self-duality, fluctuations in such a background could have negative modes, leading
to instabilities. As shown by ’t Hooft [16], there exist simple self-dual abelian solutions to
the full non-abelian Yang-Mills equations of motion on T4 that carry fractional topological
charges Q = k/N for 1 ≤ k ≤ N − 1. They can be obtained by turning on discrete ’t Hooft
fluxes (or, in other words, by applying twisted boundary conditions) along two of the 2-cycles
of T4, say along the 12 and 34 planes. Self-duality is then ensured if the periods of T4, denoted
by Lµ (µ = 1, 2, 3, 4), satisfy the condition L1L2 = (N − k)L3L4. However, as noted in [1],
these solutions admit more fermion zero modes than necessary to saturate the condensates.
Additionally, in this case, the adjoint matter contributes a source term to the Yang-Mills
equations of motion, rendering these solutions invalid as legitimate backgrounds. To address
these issues and lift the extra fermion zero modes, we detune the T4 periods by introducing
a small detuning parameter ∆ ≡ ((N − k)kL3L4 − kL1L2)/

√
L1L2L3L4. This adjustment

3The calculation of c was not possible then, for reasons reviewed in [1] and further below.
4For brevity, in the rest of the paper, we use the phrase “R4 result” to refer to the result of the weakly-coupled

instanton calculation of the gaugino condensate on R4 or R3 × S1.
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Figure 1. The multi-fractional instanton solution of charge Q = k/N . Displayed is a 3D plot of the
profile described by eq. (2.22) with k = 3, plotted as a function of x1, x2 while keeping x3, x4 fixed. To
enhance visualization, the plot extends to double the periods in x1 and x2. The graph reveals three
lumps, each one described by the function F of (2.22) (itself defined in (B.6)) but with a different
center. These are represented by red, yellow, and blue, clustered (lumped) around the three distinct
centers. These lumps, however, are closely packed, more akin to a liquid than a dilute gas. Previously,
similar configurations were generated numerically to investigate confinement, as detailed in [20] and
further explored in [21].

allows for identifying an approximate self-dual solution to the Yang-Mills equations of motion
as a series expansion in ∆. The price one pays, however, is that such solutions are fully
nonabelian. This method, which originated in [17, 18] for instantons with topological charge
Q = 1/N , was further developed by the authors in [19] for Q = k/N , 1 ≤ k ≤ N − 1.

The nonabelian solution of topological charge Q = k/N can be represented as a sum over
k closely packed lumps, resembling instanton-liquid on T4, see figure 1 for a visualization.
It admits k distinct holonomies in each spacetime direction (the holonomies are along the
Cartan generators of the group U(k)) for a total of 4k holonomies. These constitute a compact
bosonic moduli space of dimension 4k, as per the index theorem. Identifying the symmetries
and determining the shape and volume of this space is crucial for computing the condensates.
Additionally, each lump supports two adjoint fermion zero modes, for a total of 2k zero modes
needed to saturate the higher-order gaugino condensates ⟨

∏k
i=1 tr(λλ)(xi)⟩.

In calculating these condensates, we limit our analysis to order-∆0, as the explicit form
of the full solution to order-∆, while in principle obtainable in a systematic manner, is
complicated and has not yet been found. Yet, using supersymmetric Ward identities, one can
show that the condensates can depend neither on ∆ nor on the insertions xi. Thus, even
though the calculations are performed to O(∆0), they must be exact. Our path integral
computations of the condensates give:〈

k∏
i=1

tr(λλ)(xi)
〉

= N−1 N2
(
16π2Λ3

)k
, (1.1)

where N is a normalization constant, a path integral without operator insertion.
To obtain a meaningful non-zero normalization constant, it is necessary to apply appropri-

ate boundary conditions on T4. Applying twists in both 12 and 34 planes in the path integral
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defining the normalization factor would result in fermion zero modes, causing N to vanish. To
prevent the occurrence of zero modes, we apply twists of −k along only one of the planes of T4:

N =
∑
ν∈Z

∫
[DAµ][Dλ][Dλ̄][DD] e−SSYM

∣∣∣∣
n12=−k ,n34=0

. (1.2)

The quantity N is recognized as the path-integral formulation of the Witten index, IW . In
previous computations using the Hamiltonian formalism, IW was identified as N for SU(N)
SYM, as famously calculated by Witten [22]. This was the value we adopted for N in [1],
leading to an additional factor of N in our earlier calculations of the bilinear condensate
(or an additional factor of 2 in the case of SU(2)). Upon revisiting our analysis, we have
discovered that the path integral computations actually yield N = N2 instead of N . This
correction eliminates the extra factor of N found in [1] and provides the correct value for
the condensate (1.1). While this resolves our earlier issue, it introduces a discrepancy in
the Witten index between the Hamiltonian and path integral formalisms. We provide a
possible approach toward a resolution of this issue. We point out that a similar problem,
i.e., a discrepancy between the Hamiltonian and path-integral formalisms, arises in the ZN

BF theory (a topological field theory) formulated on a torus, and a careful definition of the
measure by means of a triangulation or lattice formulation resolves the issue. We argue that
this formulation holds lessons for the definition of the measure in the Yang-Mills theory.
However, since Yang-Mills theory is not a topological theory, achieving a complete resolution
of the discrepancy is a challenging task that is left for the future.

This paper is organized as follows. In section 2, we succinctly review the self-dual instanton
calculations on the deformed T4, providing the reader with the necessary background to cruise
smoothly into the paper. In particular, we introduce our notation and explain the nature of
the lumpy structure we found in [19], the origin of the bosonic moduli space, and the gaugino
zero modes in the background of these lumps. Section 3 is devoted to a detailed study of the
bosonic moduli space, as identifying the shape and volume of this space is indispensable for
studying the gaugino condensates. These results are employed in section 4 to carry out the
calculations of the higher-order condensates using the path integral formalism. Contrasting
the results in the path integral and Hamiltonian formalisms, calculating the normalization
constant N , and resolving the puzzle encountered in our previous publication [1] is carried
out in section 5. We end with concluding remarks and outlook in section 6.

To maintain the main text at a manageable length, we have moved many important
and detailed calculations to the appendices. In appendix A, we work out supersymmetric
Ward identities on T4 in the presence of twists, showing that the condensates must be
holomorphic in the strong scale Λ and xi insertion-independent. In appendix B, we present
the explicit order-

√
∆ solution of the full nonabelian instanton with topological charge k/N .

The gaugino-zero modes’ explicit form in the nonabelian solution’s background is reviewed in
appendix C. Many important calculations needed to determine the symmetries of Wilson’s
lines are discussed in appendix D. The shape and volume of the bosonic moduli space are
determined in appendix E. Appendix F contains a proposal for using the localization technique
to compute the Witten index. Finally, in appendix G, we discuss the ZN BF theory on T2

and draw lessons about defining the measure in Yang-Mills theory.
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2 Review of self-dual instantons on the deformed T4

In this section, we introduce the notation and summarize the solution of the self-dual
fractional instanton on the detuned T4. We shall be brief yet give sufficient information
about the instanton backgrounds to make the exposition self-contained. For more details
and derivations, see [19].

2.1 Action, boundary conditions, and transition functions

We study minimal SU(N) super-Yang-Mills theory in four dimensions on the four torus.
Its Euclidean action is:

SSYM = 1
g2

∫
T4

tr□
[1
2FµνFµν + 2(∂µλ̄α̇ + i[Aµ, λ̄α̇])σ̄α̇α

µ λα +D2
]
. (2.1)

Here Aµ = Aa
µT

a is the SU(N) gauge field with hermitian Lie-algebra generators obeying
tr□

(
T aT b

)
= δab, λα = λa

αT
a is the adjoint fermion (gaugino), and the field strength

is Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]. The symbol □ denotes the defining (fundamental)
representation, with the normalization tr□

(
T aT b

)
= δab chosen to ensure that the simple

roots satisfy α2 = 2. Under this normalization, the root and co-root lattices, as well as the
weight and co-weight lattices, become identical, significantly simplifying the analysis. From
now on, we remove the symbol □ from the traces, remembering that the trace is always
taken in the defining representation. The adjoint gaugino field is represented by λ̄α̇ = λ̄a

α̇T
a

and λα = λa
αT

a, independent complex Grassmann variables, and D = DaT a is the scalar
auxiliary field of the vector supermultiplet of minimal 4d supersymmetry.5 As the theory
only has adjoint fields, it has a 1-form Z(1)

N (in the modern terminology [15]) global center
symmetry acting on Wilson line operators. It also has a 0-form Zχ

2N global chiral symmetry
acting on the gaugino as λ→ ei 2π

2N λ. These symmetries have a mixed anomaly [15, 23], which
will play a role in our discussion in section 5.

We take the torus to have periods of length Lµ, µ = 1, 2, 3, 4, where µ, ν runs over the
spacetime dimensions. The gauge fields Aµ obey the boundary conditions

Aν(x+ Lµêµ) = Ωµ(x)Aν(x)Ω−1
µ (x)− iΩµ(x)∂νΩ−1

µ (x) , (2.2)

as we traverse T4 in each direction. The boundary conditions ensure that local gauge invariant
quantities are periodic functions of x, with periods equal to the periods of T4. The fermions
λ, λ̄, and the auxiliary field D from (2.1) obey identical boundary conditions, but without the
inhomogeneous term in (2.2). The action (2.1) is invariant under supersymmetry transforms,6

with supersymmetry consistent with the twisted boundary conditions on T4.
Here, Ωµ are the transition functions (or twist matrices), N ×N unitary matrices, and êν

are unit vectors in the xν direction. The transition functions satisfy the cocycle conditions:

Ωµ(x+ êνLν) Ων(x) = ei 2π
N

nµν Ων(x+ êµLµ) Ωµ(x) , (2.3)
5Here, σµ ≡ (iσ⃗, 1), σ̄µ ≡ (−iσ⃗, 1), σ⃗ are the Pauli matrices which determine the µ = 1, 2, 3 components

of the four-vectors σµ, σ̄µ. In addition, for any spinor, ηα = ϵαβηβ , with ϵ12 = ϵ21 = 1, and likewise for the
dotted ones. In addition, σ̄α̇α

µ = ϵα̇β̇ϵαβσµ ββ̇ , σµ ββ̇ = ϵβαϵβ̇α̇σ̄
α̇α
µ . All our notation is that of [5], except that

we use Hermitean gauge fields.
6These are given in appendix F, eq. (F.2).
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where the exponent ei 2π
N

nµν , with integers nµν = −nνµ, is in the ZN center of SU(N). The
nonvanishing twists that we shall consider in this paper are of the form7

n12 = −n21 = −k, n34 = −n43 = 1, (2.4)

and are chosen so a Yang-Mills configuration obeying (2.2) carries fractional topological
charge [24–26]:

Q = −n12n34 + n13n42 + n14n23
N

(mod 1) = k

N
(mod 1) . (2.5)

We study the entire range of possible values k ∈ 1, . . . , N − 1.
’t Hooft [16] found a solution to the cocycle conditions (2.3), giving rise to the fractional

Q in (2.5). This was achieved by embedding the SU(N) transition functions Ωµ(x) in
SU(k)× SU(ℓ)× U(1) ⊂ SU(N), such that N = k + ℓ. To present the solution, we use the
same notation followed in [19]: we take primed upper-case Latin letters to denote elements
of k × k matrices: C ′, D′ = 1, 2, . . . , k, and the unprimed upper-case Latin letters to denote
ℓ× ℓ matrices: C,D = 1, 2, . . . , ℓ. We also introduce the matrices Pk and Qk (similarly the
matrices Pℓ and Qℓ), the k× k (similarly ℓ× ℓ) shift and clock matrices satisfying the relation

PkQk = ei 2π
k QkPk. (2.6)

Explicitly, we have that (Pk)B′C′ = γkδB′,C′−1 (mod k) and (Qk)C′B′ = γk e
i2π C′−1

k δC′B′ , for
the matrix elements of Pk and Qk, where the coefficient γk = ei

π(1−k)
k is chosen to ensure

that Det(Pk) = Det(Qk) = 1. The matrix ω is the U(1) generator:

ω = 2πdiag(ℓ, ℓ, . . . , ℓ︸ ︷︷ ︸
k times

,−k,−k, . . . ,−k︸ ︷︷ ︸
ℓ times

) , (2.7)

commuting with Pk, Pℓ, Qk, Qℓ.
Without much ado, we give the explicit form of the transition functions Ωµ obeying (2.3)

with nµν of (2.4):

Ω1 = (−1)k−1Ik ⊕ Iℓe
iω

x2
NL2 =

(−1)k−1Ike
i2πℓ

x2
NL2 0

0 e
−i2πk

x2
NL2 Iℓ

 , Ω2 = Qk ⊕ Iℓ =
[
Qk 0
0 Iℓ

]
,

Ω3 = Ik ⊕ Pℓe
iω

x4
NℓL4 =

 ei2π
x4

NL4 Ik 0
0 e

−i2πk
x4

NℓL4 Pℓ

 , Ω4 = Ik ⊕Qℓ =
[
Ik 0
0 Qℓ

]
,

(2.8)

and Ik (Iℓ) is the k× k (ℓ× ℓ) unit matrix, reminding the reader that ℓ = N − k. The reader
can easily check that they obey the correct cocycle conditions, eqs. (2.3), (2.4).

7In ref. [19], the more general case with n12 = −r (instead of (2.4)) is studied. Thus, (2.4) corresponds to
taking r = k. This case is singled out for reasons discussed there, also mentioned in appendix B.
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2.2 The abelian self-dual solution on the self-dual T4

It was also shown by ’t Hooft [16] that an abelian gauge field configuration along the U(1)
generator ω of (2.7) exists, which obeys the boundary conditions (2.2) specified by the Ωµ

given in (2.8) and which satisfies the vacuum Yang-Mills equations of motion. Our choice
of nµν (2.4) and the transition functions gives the abelian solution

Âµ = Aµ + δAµ = Aµ +
[
||δAµ C′B′ || 0

0 ||δAµ CB||

]
, (2.9)

where we recall that C ′, B′ = 1, . . . k, while C,B = 1, . . . ℓ and N = k + ℓ. We have split the
solution into two parts. The first term (Aµ) is the moduli-independent part and the second
(δAµ) contains the dependence on the moduli. We start by discussing the first term. The
moduli-independent part of the solution Aµ is given in terms of ω of (2.7) by

A1 = 0 , A2 = −ω x1
NL1L2

, A3 = 0 , A4 = −ω x3
NℓL3L4

. (2.10)

The corresponding field strength is constant on T4:

F12 = F̂12 = −ω 1
NL1L2

, F34 = F̂34 = −ω 1
NℓL3L4

. (2.11)

The reader can verify that the topological charge of this solution is Q = k
N . A self-dual

fractional instanton must satisfy the relation F12 = F34, from which we find that the ratio
of the torus sides has to be tuned to

L1L2
L3L4

= N − k . (2.12)

A torus with periods that satisfy the above relation is said to be a self-dual torus. The
action of the self-dual solution is

S0 =
1
2g2

∫
T4

tr [FµνFµν ] =
8π2|Q|
g2

= 8π2k
Ng2

. (2.13)

Next, we discuss the moduli term in (2.9). ||δAµ C′B′ || is a k×k matrix with components
δAµ C′B′ , while ||δAµ CB|| is a ℓ×ℓ matrix with components δAµ CB . From the index theorem,
one expects that there are a total of 4k bosonic moduli, as appropriate for a self-dual solution
of topological charge k

N . As the moduli space plays a crucial role in the calculation of the
gaugino condensates, we now give two equivalent parameterizations of the moduli, both of
which are used at various stages later in the paper.

Among these, there are 4 translational moduli denoted by zµ. In addition, there are
4(k−1) moduli, denoted by ϕC′

µ . These are the holonomies along the SU(k) Cartan generators
in each spacetime direction. The matrix components δAµ CB and δAµ C′D′ are given in terms
of zµ and ϕC′

µ by

δAµ CD = δCD 2πk zµ

Lµ
, δAµ C′D′ = δC′D′

(
− 2πℓ zµ

Lµ
+ ϕC′

µ

)
, (2.14)

– 8 –
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where ϕC′
µ = ϕ

C′−k(mod k)
µ ≡ ϕ

[C′−k]k
µ and

∑k
C′=1 ϕ

C′
µ = 0 and we use the notation [x]q ≡

x(mod q).8 Clearly, for the special case of k = 1, there are only 4 translational moduli
zµ, and we set the holonomies ϕC′

µ = 0.
For the general case of k > 1, we can equivalently write δAµ of (2.14) using the Cartan

generators Hk of SU(k), embedded in SU(N) by adding zeros in their lower ℓ× ℓ block, as

δA1 = −ω z1
L1

+ 2π
L1

a1 · Hk , δA2 = −ω z2
L2

+ 2π
L2

a2 · Hk ,

δA3 = −ω z3
L3

+ 2π
L3

a3 · Hk , δA4 = −ω z4
L4

+ 2π
L4

a4 · Hk , (2.15)

where, e.g., aµ = (a1µ, a2µ, . . . , ak−1
µ ). Here Hk ≡ (H1

k , . . . ,H
k−1
k ) are the SU(k) Cartan

generators obeying trHa
kH

b
k = δab, a, b = 1, . . . , k− 1. Recall also that these can be expressed

via the weights of the fundamental representation, Hb
k= diag(νb

1, ν
b
2, . . . , ν

b
k), where ν1, . . . ,νk

are the weights of the fundamental representation of SU(k). These are (k − 1)-dimensional
vectors that obey νB′ · νC′ = δB′C′ − 1

k , where B′, C ′ = 1, . . . , k.

2.3 The nonabelian self-dual solution on the deformed T4 and its (multi-) lump
structure.

The self-dual abelian solution in the background of a self-dual T4 has a simple form, and it is
tempting to use it to compute the gaugino condensates. However, as was shown in [1], the
trouble with the abelian solution is that it yields more fermion zero modes than needed. In
particular, the Dirac equation of both the dotted and the undotted spinors have normalizable
solutions,9 while only the undotted (or dotted) spinors are expected to have zero modes. To
make things worse, the additional zero modes source the Yang-Mills equations of motion,
rendering the self-dual abelian solution inconsistent in the presence of adjoint matter.

Ensuring the solution’s self-duality is crucial for maintaining stability, as it prevents the
presence of negative modes in the background. To lift the extra fermion-zero modes, we
consider a non-self-dual (deformed) T4, while still requiring that the Yang-Mills solution
itself remains self-dual. This approach necessitates exploring nonabelian solutions. There
are no known exact self-dual nonabelian solutions on non-self-dual T4. Yet, one can devise a
method to find an approximate solution using perturbation analysis. The brief discussion
below and in appendices B, C is intended to give an idea of the method, originated in [17, 18]
and further developed in [1, 19], and discuss the properties of the solutions relevant for our
calculation of the gaugino condensate.

One begins by introducing the detuning parameter ∆, parameterizing the deviation
from the self-dual torus:

∆ ≡ kℓL3L4 − kL1L2√
V

, (2.16)

and V =
∏4

µ=1 Lµ is the volume of T4. We assume, without loss of generality, ∆ ≥ 0. We
search for a self-dual instanton solution with topological charge Q = k

N on a deformed T4,
8The notation [C′ − k]k, allowing the “wrapping” of the index C′ past k is only used when displaying the

explicit form of the nonabelian solution.
9In other words, the Dirac operators D and D̄ have non-empty kernels. This, however, does not contradict

the index theorem since the index is given the by difference I = kerD − kerD̄.
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following the strategy of [17, 18]. We write the general gauge field on the non-self-dual
torus in the form

Aµ(x) = Âµ + Sω
µ (x) ω + δµ(x) . (2.17)

Here, Âµ is the abelian gauge field with constant field strength defined previously in (2.9)
and Sω

µ (x) is the nonconstant field component along the U(1) generator. The non-abelian
part δµ(x) is given by an N ×N matrix, which is decomposed in a block form:

δµ =
[

Sk
µ Wk×ℓ

µ

W†ℓ×k
µ Sℓ

µ

]
≡
[

||Sk
µ B′C′ || ||Wµ B′C ||

||(W†
µ)CB′ || ||Sℓ

µ BC ||

]
. (2.18)

Next, we write the various functions as series expansions in ∆:

Wk×ℓ
µ =

√
∆

∞∑
a=0

∆aW(a)k×ℓ
µ , Sµ = ∆

∞∑
a=0

∆aS(a)
µ , (2.19)

where Sµ accounts for Sω
µ , Sk

µ, and Sℓ
µ. The field strength Fµν of the instanton configuration is

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]

= F̂µν + F s
µνω +

[
F k

µν Fk×ℓ
µν

F†ℓ×k
µν F ℓ

µν

]
, (2.20)

where F̂µν is given by (2.11), while the explicit expressions of F s
µν , etc. in terms of Wk×ℓ

µ

and Sµ are given in [19], and we refrain from repeating these expressions here as they do
not serve us any later convenience. Since we are looking solely for a self-dual solution, we
impose the self-duality constraint

σ̄µνFµν = 0 , (2.21)

where σ̄µν = 1
4(σ̄µσν − σ̄νσµ).

One proceeds by imposing the constraint (2.21) to the leading order in ∆ by considering
solutions of Wk×ℓ

µ to order
√
∆ and Sµ to order ∆, thus keeping only the terms S(0)

µ and W(0)
µ

in (2.19). The solution of the resulting equations that satisfy the boundary conditions (2.2)
was found in [19]. To O(

√
∆), the solution for W(0)

µ in (2.19) is given in eqs. (B.1)–(B.4)
of appendix B.

One of the main results of [19] was that a solution with Q = k
N consists of k strongly

overlapping lumps. This can be envisaged by studying the x-dependence of gauge-invariant
densities, e.g., tr [F12F12]. From the formulae given in appendix B, one finds that the
x-dependent part of this gauge invariant density has the form

tr [F12F12] (2.22)

∼
k∑

C′=1
F

(
x1 −

L1L2
2π ϕ̂C′

2 − L1C
′

k
, x2 +

L1L2
2π ϕ̂C′

1 , x3 −
ℓL3L4
2π ϕ̂C′

4 , x4 +
ℓL3L4
2π ϕ̂C′

3

)
,

where ϕ̂C′
µ ≡ −2πN zµ

Lµ
+ 2π

Lµ
aµ · νC′ is related to the moduli (2.15) and the function F is

explicitly defined in (B.6).
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The important point is that, for every C ′ = 1, 2, . . . , k, the summand is given by the
same function F (x1, x2, x3, x4) defined above, but centered (lumped) at a different point
xµ on T4. The location of these lumps is specified by the moduli ϕ̂C′

µ for µ = 1, 2, 3, 4 and
C ′ = 1, . . . , k. The sizes of these lumps are inherently tied to the size of T4, which serves
as the sole scale in this scenario. Consequently, these lumps are not distinctly separate but
significantly overlap, resembling a liquid’s behavior more than a dilute gas. In figure 1, we
give a visual representation of this lumpy structure.

2.4 Fermion zero modes on the deformed T4 and their localization on the
“lumps” of the multi-fractional instanton

The fermion zero modes are found by solving the Dirac equation σµDµλ = 0 in the self-dual
background (2.17). To simplify the treatment, we cast the λ matrix in the form

λ =
[
||λC′B′ || ||λC′C ||
||λCC′ || ||λCB||

]
. (2.23)

The solution of the Dirac equation to O(∆0) yields the diagonal zero mode solutions

λα B′C′ = δB′C′ θC′
α , λα BC = −δBC

1
ℓ

k∑
C′=1

θC′
α , (2.24)

where α = 1, 2 is the spinor index and C ′, B′ = 1, 2 . . . , k. There are 2k zero modes in (2.24),
in accordance with the index theorem for the charge Q = k

N instanton.
The leading order zero modes (2.24) get deformed at order

√
∆ [19]. The off-diagonal

matrices to O
(√

∆
)

are given in appendix C. The important point, discussed there and
in [19], is that one can construct order-∆ gauge invariants from the fermion zero modes that
display a pattern similar to the bosonic invariants and are characterized by a lumpy structure.

One finds that each of the k lumps of (2.22) hosts two zero modes, with their positions
determined by the moduli ϕ̂C′

µ . Specifically, see [19] and appendix C, the order-∆ contribution
to the gauge-invariant tr (λλ) formed from the fermion zero modes include terms such as

k∑
C′=1

ℓ∑
D=1

λ1 C′Dλ2 DC′ ∼ (2.25)

k∑
C′=1

η̄C′
1 η̄C′

2

∣∣∣∣∑
m

e
i 2πm

L2
(x2+L1L2

2π
ϕ̂C′

1 )− π
L1L2

[
x1−

L1L2
2π

ϕ̂C′
2 −L1C′

k
+L1

1+k
2k

−L1m

]2 ∣∣∣∣2×
∣∣∣∣ ∑

n∈Z

(
x3 −

ℓL3L4
2π ϕ̂C′

4 − L3ℓn−L3
1+ ℓ

2

)
e

i 2πn
ℓL4

(
x4+ ℓL3L4

2π
ϕ̂C′

3

)
− π

ℓL3L4

[
x3−

ℓL3L4
2π

ϕ̂C′
4 −L3(ℓn+ 1+ℓ

2 )
]2∣∣∣∣2,

where ηC′
α are linear functions of θC′

α (defined in appendix C, see (C.4)). The expression (2.25)
for the order-∆ contribution highlights the localization properties of the fermion zero modes,
as dictated by the holonomies ϕ̂C′

µ , that were evident in the bosonic solution described
in (B.6). From (2.25), we see that every one of the k lumps in the sum over C ′ in (2.25)
hosts 2 fermion zero modes.
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In our calculation of the (multi-)gaugino condensates, order-∆ contributions to the
gaugino bilinear will not be included. The reason is that in order to compute to order ∆, one
needs the full10 order-∆ solution and thus requires knowledge of the order-∆ contribution to
Sµ of the deformed solution (2.19). While it is uniquely determined by solving a recursive
relation, its explicit form is very complicated and has not yet been found. For the k = 1
case, we have an explicit reason to expect ∆-independence of the gaugino condensate since
all fermion zero modes are related by supersymmetry to the bosonic background [1]. For
k > 1, supersymmetric Ward identities (which hold on T4 as well) lead us to expect that
expectation values of products of trλλ(x)trλλ(y) . . . do not depend on the coordinates x, y,
etc. Based on holomorphy, one also does not expect a volume dependence on the result.11

Verifying this using the explicit form of the x-dependent solution would be a highly nontrivial
check on the instanton calculation, but, while desirable, it is not feasible given our current
state of knowledge of the multifractional instantons on the twisted T4. We now make the
following comments:

1. We note that mathematically, independence of the volume, as outlined above, does
not preclude a dependence on ∆, a dimensionless parameter which characterizes the
shape of T4. However, a dependence on ∆, combined with the volume-independence,
would imply non-uniqueness of the infinite-volume limit. As such non-uniqueness is not
expected, especially in a theory with mass gap, we expect that the O(∆0) result is, in
fact, exact.

2. Sometimes, the issue is raised of whether one should expect that the condensate,
calculated in the background of the ’t Hooft twist of the boundary conditions, should
agree with the R4 value in the infinite volume limit, due to the insertion of topological 2-
form background field gauging the Z(1)

N symmetry (the ’t Hooft twist). Our reply to such
concerns is that one does not expect boundary conditions to affect the thermodynamic
limit. In support of this, in nonsupersymmetric Yang-Mills theory, lattice studies [27, 28]
have found that, as the volume becomes larger than the confinement scale, physical
quantities — glueball masses and string tensions — agree between calculations done
with or without ’t Hooft twists.

With these remarks in mind, we now introduce a parameterization of the order-∆0 zero
modes (2.24), which is more in line with the parameterization of the bosonic moduli space
of eq. (2.15) and which we shall use in our calculations. Thus, we define, instead of (2.24),
the O(∆0) fermion zero modes:

λα = ω

2π
√
kN(N − k)

ζk
α + ζα · Hk, (2.26)

i.e. we take the 2k zero modes to be parameterized by the k two-spinor Grassmann variables
ζα = (ζ1α, . . . , ζk−1

α ) and ζk
α. Here, as in (2.15), Hk are the SU(k) Cartan generators embedded

10On the other hand, the trF12F12 invariant is fully determined to O(∆), see [19].
11For a derivation of the supersymmetric Ward identities for the T4 case, see appendix A. In particular, it is

shown there that a dependence of the gaugino condensate on L|Λ|, where L is any measure of the torus size,
is not allowed by holomorphy.
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in SU(N) by taking zeros in the ℓ×ℓ part of the N×N matrix. The factor 1/2π
√
kN(N − k)

that accompanies the first term is introduced for convenience.

3 Shape and volume of the bosonic moduli space

We do not know of a systematic approach to determine the shape of the moduli space.
However, as we noticed in our previous work, one important condition that helps us in this
endeavor is that in pure SU(N) Yang-Mills theory, the expectation value of Wilson lines that
wrap around any of the 4 directions must vanish identically on a small T4 (as we review below).

Let qµ be an integer. Then, a general Wilson line wrapping qµ times in the direction
xµ is given by

W qµ
µ [A] = tr

[
eiqµ

∮
Aµ(x)Ωqµ

µ

]
. (3.1)

The statement of the vanishing of their expectation values is:〈 4∏
µ=1

W qµ
µ

〉
= 0, or

∫
n12,n34

[DAµ]

 4∏
µ=1

W qµ
µ [A]

 e−SY M = 0 , (3.2)

where SY M is the Yang-Mills action, and the path integral is over fields obeying the boundary
conditions (2.2), (2.3), (2.4). For the twists given in (2.4), this path integral sums over gauge
field configurations with topological charges k

N + ν, for all ν ∈ Z.
There are two ways to argue that (3.2) must be true in pure Yang-Mills theory on T4.

First, rather generally, the Wilson lines are charged under the center Z(1)
N 1-form symmetry.

This symmetry must be preserved, i.e.,
〈∏4

µ=1W
qµ
µ

〉
= 0, on a small T4 since breaking the

symmetry makes sense only in the thermodynamic limit. Second, let us consider the theory in
the Hamiltonian approach12 by taking space to be the three-torus T3, say, with spatial twist
n12, treating x4 as Euclidean time. Then, the eigenstates are simultaneous eigenstates of
both the Hamiltonian and the 1-form symmetry in T3: |ψ⟩ = |E(e⃗), e⃗⟩, where e⃗ ≡ (e1, e2, e3)
designates N distinct eigenvalues of the 1-form center symmetry operator in each of the 3
spatial directions, e1,2,3 ∈ {0, 1, . . . , N − 1}. These are the electric fluxes in each of the three
spatial directions [24]. We also impose the normalization condition ⟨E(e⃗a), e⃗a|E(e⃗b), e⃗b⟩ = δa,b.
Then, for example, ⟨W1⟩ =

∑
E,e⃗a

⟨E(e⃗a), e⃗a|e−L4E(e⃗a)W1|E(e⃗a), e⃗a⟩ = 0, where the vanishing
is due to the fact W1 changes the electric flux e1 by unity, hence it has no diagonal matrix
elements between flux eigenstates. Thus, using the Hamiltonian approach with x4 as time,
we can argue that ⟨W1,2,3⟩ should vanish. However, the Euclidean time direction can also
be chosen as x3, allowing us to argue that ⟨W4⟩ should also vanish.

In the following, we shall use the path-integral approach along with the condition (3.2)
to determine the shape and volume of the moduli space Γ of a fractional instanton with
topological charge Q = k/N , 1 ≤ k ≤ N − 1. The point is that if we take pure Yang-
Mills theory on a small T4, with twists as in (2.4), the semiclassical approximation to (3.2)
is expected to hold. Since instantons of all fractional topological charge Q = k

N (mod 1)
contribute to (3.2), all their contributions should vanish.

12See section 5.1 for a quick review of the Hamiltonian quantization on T3.
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In the semiclassical approximation, the path integral determining the expectation value
of the Wilson loop includes an integral over the instanton moduli of the Wilson loop evaluated
in the instanton background. Thus, for any given Wilson line W q

µ , evaluated in the instanton
background Â({zν ,aν}), of eqs. (2.9), (2.15), with the solution of charge Q = k

N , the
condition (3.2) reads

∫
Γ

( 4∏
ν=1

dzνdaν

)
W q

µ [Â({zν ,aν})] = 0, where daν =
k−1∏
b=1

dab
ν , (3.3)

where Γ denotes the moduli space. In appendices D and E, we describe in detail the use of this
condition and the symmetries of the Wilson loop and the local gauge invariants characterizing
the solution to determine the range of the moduli zµ and aµ. Here, we summarize our findings.

The gauge invariants we consider, evaluated in the background of the solution with moduli
zµ and aµ, are the winding Wilson loops (3.1) and the local gauge invariant densities (2.22).
The Wilson loops, evaluated in the O(∆0) background, are13

W q
1 = (−1)q(k−1)e

−i2πq(N−k)
(

z1−
x2

NL2

) [
k∑

C′=1
ei2πqa1·νC′

]
+ (N − k)e

i2πqk

(
z1−

x2
NL2

)
,

W q
2 = e

−i2πq(N−k)
(

z2+ x1
NL1

) [
k∑

C′=1
ei2πq(a2−ρ

k
)·νC′

]
+ (N − k)e

i2πqk

(
z2+ x1

NL1

)
,

W q
3 = e

−i2πq(N−k)
(

z3−
x4

N(N−k)L4

) [
k∑

C′=1
ei2πqa3·νC′

]
+ (N − k) e

i2πqk

(
z3−

x4
NℓL4

)
γq

ℓ δ q
ℓ

,Z,

W q
4 = e

−i2πq(N−k)
(

z4+ x3
N(N−k)L3

) [
k∑

C′=1
ei2πqa4·νC′

]
+ (N − k)e

i2πqk

(
z4+ x3

NℓL3

)
γq

ℓ δ q
ℓ

,Z . (3.4)

Here, ρ is the SU(k) Weyl vector, while δ q
ℓ

,Z indicates that the terms do not vanish only
if q is an integer times ℓ = N − k.

The other invariants we study are the local gauge invariant densities, with an O(∆)
contribution

trF12F12 ∼
k∑

C′=1
F

(
x1 + L1Nz2 − L1

(
a2 −

ρ

k

)
· νC′ − L1

2 − L1
2k , x2 − L2Nz1 + L2a1 · νC′

,

x3 + L3ℓNz4 − L3ℓa4 · νC′
, x4 − L4ℓNz3 + L4ℓa3 · νC′

)
. (3.5)

Studying the moduli dependence of the above gauge invariants, we find (for details see
appendices D and E):

1. We begin with the local gauge density F (3.5). Recalling figure 1, we note that zµ can
be interpreted as “center of mass” coordinate of the k-lump instanton, while aµ · νC′ ,
for C ′ = 1, . . . , k, parameterize the deviation of each lump’s position from the center

13We note that for the purposes of studying the range of the moduli, it suffices to consider W q
µ in the O(∆0)

background since the O(∆) corrections to the Wilson loops have the same symmetry properties as the local
gauge invariants, see [1].
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of mass. It is easy to see, from the discussion below, that each of the lumps can be
located anywhere on the torus.

Further, F , like any local gauge invariant quantity, is periodic with respect to each
argument, with period given by the appropriate torus period Lµ. Thus, it would appear
natural to consider the variables zµ to have periods 1

N for µ = 1, 2 and 1
N(N−k) for

µ = 3, 4.

2. However, the Wilson lines (3.4) are not periodic functions of zµ with these periods.
For µ = 1, 2, a shift of zµ by 1

N performs a Z(1)
N 1-form symmetry transformation of

the instanton background, in the respective x1,2 direction, as it multiplies the winding
Wilson lines by an ei2πq k

N factor (recall that gcd(k,N) = 1). Likewise, shifting z3 or z4
by 1

N(N−k) corresponds to a center symmetry transformation in the respective x3, x4
directions. This follows from inspecting the traces of the Wilson lines given above.

This, of course, reflects the fact that, in the presence of ’t Hooft twists, shifting the
coordinates (equivalently, the moduli zµ) on torus periods is equivalent to global Z(1)

N

center transformations in the corresponding direction. Since center is a global symmetry,
one should include the images of an instanton under these transformations (see [29],
where this was studied on R× T3). Thus, we take the ranges of zµ:

zµ ∈ [0, 1], for µ = 1, 2 , (3.6)

zµ ∈
[
0, 1
N − k

]
, for µ = 3, 4 , or zµ ∈ S1µ .

For use below, in the last line, we denoted the range of each zµ by S1µ of circumference
as shown.

3. Next, we observe that the product aµ ·νC′ shifts by an integer under SU(k) root-lattice
vector translations (because the product of a root with a fundamental weight is integer).
Thus, root lattice shifts are an invariance of both the Wilson loops and the local density,
in view of the latter’s periodicity (in fact, it is easily seen, see appendix D, that these
shifts are due to Ω-periodic gauge transformations). Thus, we have:

aµ ∈ ΓSU(k)
r , ∀µ, (3.7)

where ΓSU(k)
r denotes the fundamental cell of the root lattice of SU(k), which can be

mapped to the torus (S1)k−1.

4. Another identification on the moduli space consists of SU(k) weight-lattice shifts of
aµ, compensated by shifts of zµ. These transformations, as shown in appendix D.1,
leave invariant the gauge invariant Wilson loops W q

µ (3.4) and the local densities (3.5).
Explicitly,

aµ → aµ + wa, zµ → zµ − Ca

k
, a = 1, 2, . . . , k − 1,

where NCa = a (mod k), Ca ∈ Z+. (3.8)
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The nonneggative integer Ca exists because of the gcd(N, k) = 1 condition. These
shifts are also due to Ω-periodic gauge transformations, as shown in appendix D.1.
Furthermore, these transformations form a freely-acting Zk group when acting on the
moduli.

5. Finally, both the Wilson lines (3.4) and local gauge invariants (3.5) do not change,
as shown in appendix D.1, upon SU(k) Weyl reflection with respect to the root αij ,
i ̸= j ∈ {1, . . . , k}, performed simultaneously on all four moduli aµ:

aµ → µαij (aµ) ≡ aµ − (aµ · αij)αij , µ = 1, 3, 4 ,

a2 → a2 −
[(

a2 −
ρ

k

)
· αij

]
αij . (3.9)

It is shown in appendix D.1 that the transformations are also due to Ω-periodic gauge
transformations. The Weyl transformations are isomorphic to the permutation group
of k objects, Sk, of order k!.

A useful pictorial interpretation of (3.9) is that the Weyl transformation permutes the
identical k lump constituents of the multi-fractional instanton, described by the terms
appearing in the sum (3.5).

6. We conclude (see appendix E for details) that the moduli space is the product space of
the SU(k) root cell ΓSU(k)

r and the circle S1µ, in each spacetime direction, modded by
the action of the discrete symmetry Zk:

Γ =
4∏

µ=1

S1µ × ΓSU(k)
r

Zk
≃

4∏
µ=1

(S1)k

Zk
, (3.10)

and an overall action of the Sk group (3.9) permuting the k lumps.

7. The volume of the space (S1)k/Zk is 1/k times the volume of (S1)k. In addition, one
can show (see appendix E) that the fundamental domain of the moduli space can always
be chosen to be the weight lattice of SU(k), i.e., ΓSU(k)

w , times the entire range of the
zµ variables given by (3.6), in each spacetime direction. Thus, we can write

Γ =


z1,2 ∈ [0, 1) ,

z3,4 ∈
[
0, 1

N−k

)
,

aµ ∈ ΓSU(k)
w for µ = 1, 2, 3, 4 ,

(3.11)

modulo the action of the Sk group on aµ.

To reinforce this conclusion, we employ a different approach in appendix E to demon-
strate that the fundamental domain of a is the weight lattice, given that the range of
the zµ variables is as in (3.6). We examine a fractional instanton with a topological
charge of Q = (N − 1)/N , corresponding to setting k = N − 1 and ℓ = 1. We show
that, in this specific case, both the transition functions and gauge fields are completely
abelian. Additionally, the holonomies aµ = (a1µ, . . . , aN−2

µ ) and the four translations zµ
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can be organized into a more symmetric set of moduli Φ̃µ ≡ (Φ1
µ, . . . ,ΦN−1

µ ) that lives
in the Cartan subalgebra of SU(N). The vanishing of the Wilson line expectation values
will then be used to argue that Φ̃µ lies in the root lattice of SU(N). This finding will
be shown to imply that the fundamental domain of a is the weight lattice of SU(N − 1),
provided that the range of the zµ variables is given by (3.6).

The measure on the moduli space dµB is

dµB =
∏4

µ=1
∏k−1

b=1 da
b
µdzµ

√
DetUB

k!(
√
2π)4k

. (3.12)

The factor k! that appears in the dominator of (3.12) is the result of the fact that the lumpy
solution, as well as Wilson’s lines, are invariant under the Weyl group (the transformations (3.9)
simultaneously acting on all four aµ), which is isomorphic to the permutation group Sk of
order k!. The matrix UB is the metric on the moduli space, with matrix elements given
by (summation over ν is implied)

Uµµ′

B ab = 2
g2

∫
T4

tr
[
∂Aν

∂aa
µ

∂Aν

∂ab
µ′

]
, a, b = 1, . . . , k − 1 ,

Uµµ′

B zz = 2
g2

∫
T4

tr
[
∂Aν

∂zµ

∂Aν

∂zµ′

]
,

Uµµ′

B zb = 2
g2

∫
T4

tr

∂Aν

∂zµ

∂Aν

∂aj
µ′

 , b = 1, . . . , k − 1 . (3.13)

Using tr(Ha
kH

b
k) = δab (remember that Hk = (H1

k , . . . ,H
k−1
k ) are embedded in SU(N) by

putting zeros in the ℓ × ℓ lower-right matrix), and tr(ω2) = 4π2Nk(N − k), along with
tr[Hb

kω] = 0, we find that the metric on the moduli space in each spacetime direction µ

is given by the k × k diagonal matrix

Uµµ′

B = 8π2V
g2L2

µ

δµµ′diag

1, 1, . . . , 1︸ ︷︷ ︸
k−1

, kℓN

 , (3.14)

and the square root of the determinant of UB is

√
DetUB =

(√
k(N − k)N

)4
(
8π2

√
V

g2

)2k

. (3.15)

The volume of the bosonic moduli space is obtained by integrating dµB over Γ. As described
above, we choose the fundamental domain to be the weight lattice of SU(k) times the range
of zµ as in (3.11).

Collecting the above results, recalling the fact that the volume of the weight lattice
of SU(k) is 1/

√
k, and performing the integral over the collective coordinates, we readily

find (see appendix E for details)

µB =
∫
Γ

∏4
µ=1

∏k−1
b=1 da

b
µdzµ

√
DetUB

k!(
√
2π)4k

= N2

k!

(
4π

√
V

g2

)2k

. (3.16)
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Here, we integrated over the bosonic moduli space Γ because, as we show in the next section,
to leading order in ∆, the integrand (trλλ)k of the path integral does not depend on the
bosonic moduli.

4 The gaugino condensates

In this section, we combine the above information to compute the higher-order condensate
C(x1, . . . , xk) ≡ ⟨

∏k
i=1 tr(λλ)(xi)⟩ in SU(N) super Yang-Mills theory on a small deformed T4.

As we discussed above, there are 2k fermion zero modes in the background of a fractional
instanton carrying a topological charge Q = k/N . Therefore, we expect that these zero
modes will saturate the condensate. We start by expressing C(x1, . . . , xk) in the path integral
formalism, with action (2.1) (taking D = 0):

C(x1, . . . , xk) = N−1 ∑
ν∈Z

∫
[DAµ][Dλ][Dλ̄]

[
k∏

i=1
tr(λλ)(xi)

]
e−SSYM−iθ(ν+ k

N )
∣∣∣∣
n12=−k ,n34=1

.

(4.1)

Here, we have emphasized that the computations are performed in the presence of the twists
imposed by the transition functions (2.8). The sum is over topological charges ν + k

N , ν ∈ Z,
keeping in mind that it is only the sector ν = 0 (of topological charge k/N) that contributes
to C(x1, . . . , xk) on a small T4 in the semi-classical regime. The pre-coefficient N−1 is a
normalization constant we shall return to. We also set the vacuum angle θ = 0 from here on.

One proceeds with the calculations of (4.1) by gauge-fixing and using the Faddeev-Popov
method and finding the one-loop determinants of the bosonic and fermionic fluctuations
in the background of the fractional instanton. As we elaborated previously, there are both
bosonic and fermion zero modes (moduli), in addition to higher mode fluctuations. Taking
the contribution from each of these sectors is a standard procedure. The upshot is that
the correlator C(x1, . . . , xk) is given by:

C(x1, . . . , xk) = N−1 M3k
PVe

− 8π2k
Ng2

∫
Γ
dµB

∫
dµF

[
k∏

i=1
tr(λλ)(xi)

]
. (4.2)

The pre-factor M3k
PVe

− 8π2k
Ng2 arises from the bosonic and fermionic determinants of the non-zero

modes after employing the Pauli-Villars regularization technique, and MPV is the Pauli-Villars
mass.14 Additionally, we note that S0 = 8π2k

g2N
is the action of a fractional instanton with

a topological charge Q = k/N , see eq. (2.13).
The measure of the bosonic moduli dµB was introduced and discussed in the previous

section, with the result for its volume µB =
∫
Γ dµB given in (3.16). The measure on the

fermionic moduli space dµF is determined as in e.g. [6]. It is given by

dµF =
∏k

C′=1 dζ
C′
1 dζC′

2√
DetUF

, (4.3)

14The reader can consult the reviews in [5, 6] for details. We note that, due to supersymmetry, only the
zero modes contribute in the self-dual instanton background. The power of MP V in (4.2) equals nB − 1

2nF ,
where nB = 4k and nF = 2k is the number of bosonic and fermionic zero modes.
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where UF is the metric on the fermionic moduli space, with components

(UF ) β γ
B′C′ =

2
g2

∫
T4

tr
[
∂λα

∂ζB′
β

∂λα

∂ζC′
γ

]
, B′, C ′ = 1, . . . , k , β, γ = 1, 2 ,

= 2V
g2
δB′C′ ϵγβ . (4.4)

To go from the first to the second line, we used the parameterization of the zero modes of
eq. (2.26) and employed the identities tr

[
Ha

kH
b
k

]
= δab, where a, b = 1, . . . , k − 1, tr

[
ω2] =

4π2kN(N − k), and tr [ωHa
k ] = 0. From (4.4), we immediately find

√
DetUF =

(2V
g2

)k

. (4.5)

The last piece of computation involves the fermion multi-linear
∏k

i=1 tr(λλ)(xi), recalling
that we are only interested in the result to O

(
∆0), as per the discussion at the end of

section 2.4 (this ensures that this multi-linear is position- and bosonic moduli-independent).
Using (2.26), we obtain for the gauge-invariant bilinear:

tr (λλ) = 2tr (λ2λ1)
∣∣
zero modes = 2

k∑
C′=1

ζC′
2 ζC′

1 , (4.6)

from which we find

k∏
i=1

tr(λλ)(xi) = 2kk!
k∏

C′=1
ζC′
2 ζC′

1 . (4.7)

Substituting (3.16), (4.3), (4.5), (4.7) into (4.2), and using15 the strong scale Λ

Λ3 ≡ µ3

g2(µ)e
− 8π2

Ng2(µ) , (4.8)

where the energy scale µ is taken to be the inverse size of T4, we finally obtain

C(x1, . . . , xk) =
〈

k∏
i=1

tr(λλ)(xi)
〉

= N−1 N2
(
16π2M3

PV
g2

e
− 8π2

Ng2

)k ∫ k∏
C′=1

dζC′
1 dζC′

2 ζC′
2 ζC′

1

= N−1 N2
(
16π2Λ3

)k
. (4.9)

In conclusion, our result for
〈∏k

i=1 tr(λλ)(xi)
〉

shown in (4.9), momentarily ignoring the
normalization factor N−1, is N2 times the known result from the weakly coupled (multi)-
instanton calculations on R4. We next turn to a discussion of the subtleties involved.

15This definition of Λ is standard in supersymmetric instanton calculations (e.g. [5, 6, 12]) and is written
here in terms of the canonical coupling. Λ is also the holomorphic scale and can equivalently be expressed in

terms of the holomorphic coupling gh(µ), which only runs to one loop (see [30, 31]), as Λ3 = µ3e
− 8π2

Ng2
h

(µ) .
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5 The Hamiltonian on T3 with a twist, the path integral, the
normalization N , and the gaugino condensate

So far in this paper, we performed a computation of the Euclidean path integral (4.1) with
’t Hooft twists n12 = −k and n34 = 1, leading to the result (4.9). We notice the factor of
N2 obtained in the calculation of ⟨(trλλ)k⟩ on the twisted torus. In order to discuss the
normalization factor N−1 and facilitate comparison to the R4 result, here we reinterpret the
calculation using the Hamiltonian formalism on a spatial T3.

We first recall that supersymmetric Ward identities lead, via the holomorphy argument,
reviewed in appendix A, to the requirement that the gaugino condensates on the four torus
be independent of the volume and thus coincide with the R4 result. That this should be
so has been the expectation at least since [30] (and probably the original toron calculation
of [14]; we stress again that the numerical coefficient was not computed until our previous
work [1] and its extension here).

Now, we interpret our calculation in the Hamiltonian formalism. The exposition below
may look familiar since the Hamiltonian formalism was also an essential part of the discussion
in [1]. However, apart from the more general focus of this paper (e.g., going beyond
N = 2, k = 1), there are a few subtleties that were missed there and that point toward the
understanding of the mismatch pointed out in our earlier work.

5.1 Mixed anomaly, degeneracies, and ⟨(tr λ2)k⟩

We begin by taking, for definiteness, space to be comprised of the x1,2,3 directions and interpret
x4 as Euclidean time. In view of n12 = −k, there is ’t Hooft “magnetic flux” m3 = n12 = −k
on the spatial torus.16 The quantization of SU(N) super-Yang-Mills theory on a three-torus
with twists is already familiar from the calculation of the Witten index [22, 32]; a more recent
introduction, also discussing generalized anomalies in this framework, is in [33].

Briefly, upon quantizing (super) Yang-Mills theory on T3, the energy eigenstates (with
eigenvalues E) can also be labeled by “electric flux,” the eigenvalues of the 1-form center
symmetry generators T̂i in the xi, i = 1, 2, 3, directions. Thus, let |E, e⃗⟩m3 be the simultaneous
eigenstates of T̂i and the Hamiltonian Ĥ in the Hilbert space of states on T3 with spatial
twist m3 = n12 = −k (further below, we denote this Hilbert space by Hm3). Here ej

(e⃗ = (e1, e2, e3)) are the (mod N) integer electric fluxes, labeling the eigenvalues of the Z(1)
N

generators, T̂j |E, e⃗⟩m3 = |E, e⃗⟩m3e
i 2π

N
ej .

It is well known that super Yang-Mills theory has a discrete Z(0)
2N 0-form chiral symmetry,

generated by the operator X̂2N . In the presence of ’t Hooft twists, the generators of the
center symmetry along the magnetic flux do not commute with the chiral symmetry, reflecting
the mixed chiral/center anomaly [15, 23]. Here, we write the commutation relation for our
choice m3 = −k, see [33] for derivation:

T̂3 X̂2N T̂−1
3 = ei 2π

N
kX̂2N . (5.1)

This relation implies that X̂2N |E, e⃗⟩ is an eigenstate of T̂3 with eigenvalue e3 + k. But since
X̂2N is a symmetry, X̂2N |E, e⃗⟩ has the same energy as |E, e⃗⟩. Since gcd(N, k) = 1, we conclude

16Since gcd(k,N) = 1, a completely equivalent (to eq. (5.6) below) result is obtained if we consider, say
x3,4,1 (or x3,4,2) to be the spatial torus coordinates with unit twist n34.
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that there are N degenerate eigenstates of the same energy, labeled by the N different values
of e3. This is an exact degeneracy (in addition to the degeneracy due to supersymmetry) of
all states in the Hilbert space on T3 with ’t Hooft twist m3 = k, with gcd(N, k) = 1.

In the Hamiltonian formalism, we consider expectation values of operators Ô, evaluated
using the twisted partition function, a trace over the Hilbert space Hm3 :

⟨Ô⟩ ≡ N−1 trHm3

[
Ôe−βH T̂3(−1)F

]
. (5.2)

Here, β (= L4) is the extent of the Euclidean time direction, and the fermion number
operator (−1)F is inserted to impose periodic boundary conditions on the fermions. The
insertion of the center symmetry generator T̂3 (along the direction of the magnetic flux
m3) implements twisted boundary conditions in the 34 plane. A normalization factor N
is inserted for a later convenience.

For Ô =
∏k

i=1 tr(λλ)(xi), eq. (5.2) is precisely the path integral (4.1) computed semiclas-
sically in this paper. For brevity, in what follows we denote Ô = (trλ2)k and write (5.2) as

⟨(trλ2)k⟩ = N−1 ∑
E,e⃗

e−βE(−1)F ⟨E, e⃗|(trλ2)k T̂3|E, e⃗⟩

= N−1 ∑
E,e⃗

e−βE(−1)F ⟨E, e⃗|(trλ2)k|E, e⃗⟩ei 2π
N

e3 . (5.3)

The sum is over all energy and center symmetry eigenstates |E, e⃗⟩m3 (we omit the subscript
m3 for brevity).

Next, we use X̂−1
2N (trλ2)k X̂2N = e−i 2π

N
k (trλ2)k to argue that the expectation values of

(trλ2)k in degenerate flux states differing by k units of e3 flux differ by a ZN phase:

⟨E, e⃗+ δi3k|(trλ2)k|E, e⃗+ δi3k⟩ = e−i 2π
N

k⟨E, e⃗|(trλ2)k|E, e⃗⟩ . (5.4)

Consider now the contribution to the sum in (5.3) of the N degenerate states of energy E,
skipping the energy eigenvalue and the other flux labels. Using the facts that e3 is a (mod
N) integer, that gcd(N, k) = 1, and using (5.4), we obtain (omitting e1, e2 for brevity):

N−1∑
e3=0

⟨e3|(trλ2)k|e3⟩ei 2π
N

e3

=
N−1∑
q=0

⟨qk|(trλ2)k|qk⟩ei 2π
N

qk

=
N−1∑
q=0

⟨e3 = 0|(trλ2)k|e3 = 0⟩e−i 2π
N

qkei 2π
N

qk = N⟨e3 = 0|(trλ2)k|e3 = 0⟩ . (5.5)

Thus, returning to (5.3), we obtain

⟨(trλ2)k⟩ = N−1 N
∑

E,e1,e2

e−βE(−1)F ⟨E, e⃗|(trλ2)k|E, e⃗⟩
∣∣
e3=0 . (5.6)

The conclusion from the above discussion is that the twist by T̂3 in (5.2) compensates
the phases of the gaugino condensate in the different degenerate e3 states. In effect, this
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makes the twisted torus partition function (5.2) sum up the gaugino condensates in the N
degenerate states by absolute value, as per (5.6), instead of weighting them by their different
ZN phases (the ones in (5.4), which would make the result add to zero).

In order to obtain the gaugino condensate in one of the N vacua, it is natural to take
the normalization factor N in (5.6) to be equal to the Witten index IW (equal to N). We
continue by recalling the computation of the IW using the Hamiltonian on T3 with a twist
and discussing the comparison with the path integral calculation (4.9).

5.2 A review of the Witten index on T3 with twist

We recall that in [1] we normalized the gaugino condensate by dividing by the Witten index,
thus removing the factor of N found in (5.6) by taking N = IW = N . The Witten index is
the partition function (5.2) with Ô = 1, N = 1, and without the T̂3 insertion:17

IW ≡ trHm3

[
e−βH (−1)F

]
= N. (5.7)

The calculation of IW , giving the result shown, IW = N , was done in the Hamiltonian
formalism on T3 with magnetic flux m3 in the original paper [22]. We recall, see also [32], that
IW is independent of β as well as on the volume of T3 or the spatial twist of the boundary
conditions. We now briefly review the calculation with m3 ̸= 0. Even though it is well-known,
the steps leading to the result will be useful in section 5.4.

We begin by recalling the advantage of using a twist m3 = n12 = −k with gcd(N, k) = 1.
It is simply that the twist removes the zero modes of all fields and fully gaps the excitation
spectrum above a discrete set of zero energy states.18 Only these zero energy states contribute
to IW . For small T3, where semiclassical quantization should hold, these are simply quantum
states obtained from quantizing around the classical configurations with zero field strength.
In the Hilbert space Hm3=−k, there is a discrete set of precisely N such gauge non-equivalent
zero energy configurations. These are most easily written in an appropriately chosen gauge19

for the transition functions on T3, in the A4 = 0 gauge. The N classical gauge nonequivalent
zero energy configurations are:

3∑
i=1

A
(p)
i dxi = −iT̂ p

3 (x1, x2, x3)d T̂
−p
3 (x1, x2, x3), p = 0, 1, . . . , N − 1. (5.8)

Here T̂3(x1, x2, x3) is the generator of center symmetry in the direction of the magnetic flux.
We recall that in Hamiltonian quantization, see [33–36], center symmetry is generated by an
“improper” gauge transformation, T̂3(x1, x2, x3), which is not Ω-periodic but changes by a
ZN center element upon traversing the x3 direction, i.e. one that obeys

T̂3(x⃗+ e⃗iLi) = ei 2π
N

δi3 Ωi T̂3(x⃗) Ω−1
i , where Ω3 = 1. (5.9)

An explicit expression for T̂3 obeying these boundary conditions is possible to find (e.g. [36]),
but we only need its property (5.9).

17Inserting T̂3 makes the partition function with Ô = 1 vanish, because of the degeneracy of flux states due
to (5.1) and the summation over e3 in (5.3).

18The excitation spectrum in pure Yang-Mills theory on a small T3 with a twist has been studied in [34, 35].
19Usually a gauge where Ω1,2,3 are taken constant; for other gauges see [36] and references therein.
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That (5.8), with T̂3 obeying (5.9), are zero-energy field configurations, is clear from the
fact that they are locally pure gauge. That they are gauge inequivalent follows from the
fact that they are distinguished by the different values of the holonomy in the x3 direction,
W3 defined in (3.1):

W3[A(p)] = ei 2π
N

p, p = 0, . . . , N − 1, (5.10)

which takes N different values in the N vacua (5.8). The result (5.10) follows directly from
the boundary condition (5.9) on T̂3 and the definition of W3.

Equivalently stated, the N nonequivalent ground states are the trivial vacuum A(0) = 0
and its N − 1 images under the global Z(1)

N 1-form symmetry in the x3 direction.20 The
fact that there are precisely N zero-energy nonequivalent classical field configurations (5.8)
means, at small T3, that there are N quantum states of zero energy. Since these are the
only states that contribute to IW and since IW does not depend on the volume of T3 and
on β, one concludes that IW = N .

5.3 The gaugino condensate: Hamiltonian vs. path integral and N = IW = N

Returning to our result (5.6) for the gaugino condensate from the Hamiltonian trace and
taking N = N , the Witten index, we obtain, after taking β → ∞ (so that only zero energy
states contribute):

⟨(trλ2)k⟩
∣∣
β→∞ = ⟨E = 0, e⃗ = 0|(trλ2)k|0, e⃗ = E = 0⟩ . (5.11)

Here, we took into account that, as explained in section 5.1, eq. (5.6) is proportional to the
contribution of one of N degenerate zero energy states built over the classical states (5.8),
the one with e3 = 0 (and e1 = e2 = 0); we also took (−1)F = 1.21 Further taking the
infinite T3-volume limit, V3 → ∞, as per the remarks at the end of section 2.4, eq. (5.11)
becomes the gaugino condensate in one of the N vacua on R4. We denote the large V3
limit of (5.11) by ⟨(trλ2)k⟩

∣∣
β,V3→∞.

We now recall that our semiclassical path-integral calculation of (5.2) yielded eq. (4.9).
Upon taking N = N (as done above and in [1]) and using the volume independence, we
arrive from (4.9) at the result

⟨(trλ2)k⟩
∣∣
β,V3→∞ = N−1 N2

(
16π2Λ3

)k
= N

(
16π2Λ3

)k
. (5.12)

Thus, assuming that the path integral we calculated, with N = N , matches the Hilbert space
expression (5.11) above, gives the expected result for ⟨(trλ2)k⟩ in one of the R4 vacua, albeit
with a factor of N discrepancy. This discrepancy was already observed for k = 1, N = 2
in [1]. The calculation of this paper, valid for general values of k,N (with gcd(k,N) = 1),
yields the same discrepancy. We take this to imply that the discrepancy has a common
origin, as we now describe.

20As explained in [22], acting with center symmetry transformations in x1 and x2 leaves A(0) = 0 invariant.
21A slight technical remark is that e3 flux states (T̂3 eigenstates) are a discrete ZN Fourier transform of the

states defined in (5.8). The latter map into each other upon the T̂3 action.
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5.4 The gaugino condensate: N as a semiclassical path integral

We go back to the path integral (4.1) and the normalization factor N . Sticking entirely
with the path integral formalism, it is natural to take it as given by the path integral with
the SYM action (2.1):22

N =
∑
ν∈Z

∫
[DAµ][Dλ][Dλ̄][DD] e−SSYM

∣∣∣∣
n12=−k ,n34=0

. (5.13)

We note that the sum here, as opposed to (4.1), is over integer topological charges ν, since
with the twists indicated, the topological charge (2.5) is integer.

We consider two lines of thought on the expected value of N . The first, more intuitive
and based on the expected validity of semiclassics at small T4, is presented below. The
second, more formal argument (which, however, we think is worthy of further development),
is based on supersymmetric localization; it appears to lead to a similar result and is presented
in appendix F.

Semiclassics at small T4. This is the limit where all our calculations were done. The gauge
coupling is weak and we expect that a semiclassical calculation of the path integral (5.13)
holds. Sectors with ν > 0 require fermion insertions and so should not contribute to (5.13).
At small volume, the contribution of the sector with ν = 0 can be evaluated perturbatively, by
expanding around minimum action configurations. The minimum bosonic action in the ν = 0
sector is zero. Clearly, the zero action configuration A = 0 is a classical saddle point (recall
that it is an isolated saddle point, as the twists remove the continuous degeneracy, with a
massive supersymmetric spectrum of excitations). Thus, one finds that due to supersymmetry
all bosonic and fermionic fluctuations cancel and the contribution of this saddle point to
N is simply unity.

We expect that in this semiclasssical small-T4 limit the path integral (5.13) sums over
the contributions of all possible gauge-nonequivalent zero-action classical configurations.
The point now is that, as shown in [37], the Euclidean action on T4 with nonvanishing
twists n12 = −k, n34 = 0 has exactly N2 gauge nonequivalent zero action configurations.
Since the twists with gcd(N, k) = 1 lift all the continuous zero modes, the only zero action
configurations are discrete holonomies. These zero-action Euclidean configurations on T4

obey boundary conditions appropriate to the given twists, are locally pure gauge, and can
be enumerated by mapping the problem to the study of the irreducible representations of
the “twist group,” as described in [37].

We refer to the more abstract derivation in the cited reference. Here, we describe these
configurations explicitly, using the language already employed in eqs. (5.8), (5.9), (5.10), in
the Hamiltonian calculation of the Witten index. We begin by stating the general result [37]:
the N2 inequivalent configurations, which we label A(p,q), with p and q taking N values each,
are distinguished by the values of the winding Wilson loops in x3 and x4:23

W3[A(p,q)] = ei 2π
N

q, q = 0, . . . , N − 1,
W4[A(p,q)] = ei 2π

N
p, p = 0, . . . , N − 1. (5.14)

22The integral over the auxiliary field is denoted by [DD].
23With W1 = W2 = 0. Recently, these zero action Euclidean minima were also found numerically and

characterized, as in (5.14), as part of the lattice study of fractional instantons [38].
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A qualitative explanation of the existence of the zero action configurations characterized
by (5.14) is that the path integral (5.13) with only nonzero n12 twist allows either x3 or
x4 to be taken as the Euclidean time direction. Thus, one can consider center symmetry
transformations of the trivial A = 0 zero-action saddle point in each of these two directions

— and, in fact, in both directions, as shown below.
With this in mind, we can write an explicit expression for the N2 gauge-inequivalent

zero action configurations A(p,q):

4∑
µ=1

A(p,q)
µ dxµ = −iT̂ q

3 (x1, x2, x3)T̂
p
3 (x1, x2, x4)d

(
T̂ q
3 (x1, x2, x3)T̂

p
3 (x1, x2, x4)

)−1
, (5.15)

where T̂3 is the same function of three arguments as appeared in (5.8), a function obeying (5.9)
with i = 3 denoting the last argument (supplemented by Ω4 = 1). However, notice that
T̂3 above is taken to have different arguments: the function T̂3(x1, x2, x3) performs a center
symmetry transform along x3 while T̂3(x1, x2, x4) is mathematically the same expression, but
performing a center symmetry transform along x4 (center symmetry transforms in x3 and x4
commute). The fact that (5.15) are characterized by the Wilson loop traces of eq. (5.14) follows
simply from the boundary condition (5.9) obeyed by T̂3 with respect to its last argument.24

Thus, on T4, there are N2 zero-action saddle points that are gauge nonequivalent (rather
than N , as assumed in our previous work). Due to supersymmetry, the contribution of
each saddle point to the path integral (5.13) is unity25 just like the contribution of the
A(0,0) = 0 trivial vacuum. In conclusion, the above chain of arguments, based on the small-T4

semiclassical evaluation of (5.13), makes us declare that

N = N2. (5.16)

Another formal argument, presented in appendix F, which also appears to lead to the
result (5.16), and is worthy of pursuit (see the arguments there) is based on supersymmetric
localization of the path integral (5.13).

Thus, accepting the value for N given by the above semiclassical reasoning, eq. (5.16),
and returning to the result of our calculation (4.9), we now obtain

⟨(trλ2)k⟩
∣∣
β,V3→∞ = N−1 N2

(
16π2Λ3

)k
=
(
16π2Λ3

)k
, (5.17)

a result agreeing for all k and N , assuming gcd(k,N) = 1, with the R4 result.
It goes without saying that the discrepancy between the Witten index calculated via the

path integral and Hamiltonian approaches clearly calls for resolution. In this work, we do not
aim to provide a complete solution to this puzzle. Nonetheless, we outline a potential path
forward toward addressing this issue, as we discuss below and in appendix G.

24This calculation is easiest done upon taking Ω1 and Ω2 to be constant, given as appropriate powers of the
clock and shift matrices; recall also that Ω3 = Ω4 = 1.

25The massive spectra of excitations around the A(p,q) saddle points are identical to the ones at the trivial
A(0,0) = 0 one, and the corresponding eigenfunctions are obtained by applying appropriate powers of, the
matrices T̂ q

3 T̂
p
3 (schematically), the ones relating the backgrounds (5.15) to the trivial one.
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6 Conclusions and outlook

The focus of this paper is the calculation of the higher-order gaugino condensate on the twisted
T4, leading to the result (5.17), agreeing with the weakly coupled instanton calculations [5]
on R4 and the recent lattice results [8]. While initially attempted 40 years ago [14], the T4

calculation could be completed only after the recent understanding of generalized anomalies
involving center symmetry [15, 23], including in the Hamiltonian formalism [33], and the
construction of spatially-dependent fractional instanton solutions on the torus, pioneered
in [17] and developed in [18, 19].

Let us now summarize our main results:

1. The result (5.17) for the higher-order condensate is comforting. It explicitly demonstrates
that the small-T4 semiclassical setup directly computes quantities relevant to the R4

limit, thanks to the protection afforded by supersymmetry. It emphasizes the role of
the k-lump multi-fractional instanton “liquid”-like self-dual configurations (pictured on
figure 1) in determining the value of the multi-gaugino condensate.
At the technical level, the determination of the shape and size of the moduli space of
the Q = k/N instanton is crucial in obtaining (5.17). We also note that, for k > 1, the
calculation using the Q = k/N solution is technically significantly simpler compared to
the one using the ADHM background in super QCD (SQCD) on R4 [5].

2. As opposed to the weakly coupled calculation via SQCD on R4, the objects contributing
to the higher-order gaugino condensate are closely related to the ones causing chiral
symmetry breaking and confinement, as on R3×S1 [13]. Fractional instantons, monopole-
instantons, and center vortices are all objects, which in different geometries can be
argued to lead to semiclassical confinement [13, 39–42]. The fractional instantons used
in our calculation are continuously connected, upon taking various limits of T4 sizes and
twists, to both the monopole-instantons (responsible for semiclassical chiral symmetry
breaking and confinement on R3 × S1) and center vortices (which accomplish this on
R2 ×T2). This continuity has been suggested earlier and shown recently (via analytical
or numerical tools, see [36, 38, 43–46]), demonstrating that the space of multi-fractional
instantons on T4 contains the topological objects arising in the semi-infinite volume
R3 × S1 or R2 × T2 limits.

As we already mentioned, there are aspects of our calculation that need better understanding.
We end by listing some of the issues left for future studies:

1. There is one unsettling element left in our determination of (5.17). Based on the usual
relation between Hamiltonian and path integral formalisms, one expects that the path
integral (5.13) equals the Hamiltonian trace (5.7). As is clear from our discussion, the
reason for the discrepancy are the saddle points with p ̸= 0 in (5.15). They contribute
due to the fact that the Euclidean path integral (5.13) can be time-sliced so that time
is either x3 or x4. In order for N of (5.13) to yield the same result as the trace IW

of (5.7), the contribution of the saddle points representing center symmetry images of
A = 0 in the x4 direction has to be omitted. Currently, we do not know how to justify
this. Presumably, an appropriate choice of the (infinite dimensional) complex contour
of integration would be required (see appendix F).
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2. We note, however, that a similar story unfolds in the ZN BF theory on a torus, as we
discuss in appendix G.1. For example, consider this theory on T2. In a Euclidean setup,
this theory has N2 saddle points, naively giving the partition function Z = N2. However,
in a Hamiltonian formalism, one finds that there are N ground states, contributing
N to the partition function. In appendix G.1, we provide a detailed explanation of
this finding and show how a careful treatment of the measure yields the correct result,
Z = N . In appendix G.2, we employ a similar construction in lattice Yang-Mills theory
to argue that a proper formulation of the Yang-Mills measure can potentially resolve
the puzzle of the Witten index.26

3. We also note that the same procedure as suggested in point 1. above — ignoring center
symmetry images in the x4 time direction — can be applied directly to the calculation
of the gaugino condensate (4.1). Recall from (2.22) that z4 shifts by 1

N(N−k) perform
center symmetry transforms in x4. Thus, ignoring center transforms in x4 would make
the range of z4 N times smaller than indicated in (3.6), i.e. would have the range of
z4 ∈ [0, 1

N(N−k) ]. This restriction would produce, instead of (4.9), an answer N times
smaller, agreeing with the R4 answer upon taking N = N .

4. The calculation of the higher-order condensates has yet to be generalized for the cases
with gcd(k,N) > 1. That one expects subtleties is already clear from the fact that the
finite volume degeneracies discussed in section 5.1 depend on whether one takes x1,2 or
x3,4 to be the spatial directions. In addition, the moduli space of our multifractional
instantons has not been fully analyzed for this case.

5. Finally, the relation between gaugino condensates and fractional instantons on T4 found
here is specific for SU(N) gauge groups. For other gauge groups, with a smaller center or
without a center, the gaugino condensate can be seen to arise due to monopole-instantons
on R3 × S1 [12], but these objects do not appear related to fractional topological charge
objects on T4. The physics of the gaugino condensate on T4 is then likely to be more
complicated and remains to be uncovered.
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A Supersymmetric Ward identities on T4

Here, we argue that the supersymmetric Ward identities, usually discussed on R4, also
hold when expectation values are computed via path integral on T4. The Ward identities
that we use are:

Λ∗ ∂

∂Λ∗ ⟨ϕ1(x
1) . . . ϕs(xs)⟩ = 0, (A.1)

σ̄α̇α
µ

∂

∂xi
µ

⟨ϕ1(x1) . . . ϕi(xi) . . . ϕs(xs)⟩ = 0, (A.2)

where ϕi are lowest components of chiral superfields and Λ∗ is the antiholomoprhic scale.
On T4, the brackets ⟨. . .⟩ mean

⟨Ô⟩ ≡ trHm3

[
Ôe−βH T̂3(−1)F

]
, (A.3)

where the trace is over the Hilbert space on T3 (spanned by x1,2,3, with a spatial twist
n12 = −k) and the insertion of the center symmetry generator, T̂3, assures that n34 = 1.
Usually, supersymmetric Ward identities are considered in the limit β → ∞ (in fact, also in
the infinite T3 limit), where only the ground state contributes. The proof uses the fact that the
supercharges annihilate the ground state; see the review [4]. In contrast, at finite β, all excited
states contribute, and hence, the proof of the Ward identities requires some modifications.

Before we consider these, we stress that (A.1) is important since it shows that gaugino
condensates can not depend on the antiholomorphic scale Λ∗, excluding a dependence on
the size of T4 (on dimensional grounds, the size can only enter through dependence on L|Λ|,
where L is any linear dimension of the torus). Thus, holomorphy implies, for example, that
⟨tr (λλ)⟩ = cΛ3 for some constant c. The second Ward identity (A.2) states that expectation
values of products of lowest components of chiral superfields are xi-independent. It has
been used in attempts to relate results obtained for small |xi − xj | (e.g., in strongly-coupled
instanton calculations, whose validity has been questioned by many, see [5]) to those at
arbitrary separations, allowing the use of cluster decomposition in the infinite volume limit.

The fact that the Ward identities also hold on T4 appears to have been known (or
obvious) to the authors of [30]. The required modification in the proof for the T4 case
is minimal, and we present it for completeness. The point is that the Λ∗ derivative is
proportional to an insertion of the highest component of an antichiral superfield,27 which
obeys F ∗ ∼ {Q̄α̇, ψ̄

α̇}, where ψ̄α̇ is the middle component of an antichiral superfield.28 Thus,
denoting ϕ1(x1) . . . ϕs(xs) = Ô, we have

Λ∗ ∂

∂Λ∗ ⟨Ô⟩ ∼ ⟨Ô{Q̄α̇, ψ̄
α̇}⟩ ∼ ⟨Ô(Q̄1̇ψ̄2̇ + ψ̄2̇Q̄1̇)⟩ − (1̇ ↔ 2̇). (A.4)

Then, we use [Q̄α̇, Ô] = 0 to cast the r.h.s. of (A.4) in the form

Λ∗ ∂

∂Λ∗ ⟨Ô⟩ ∼ ⟨Q̄1̇(Oψ̄2̇) + (Oψ̄2̇)Q̄1̇⟩ − (1̇ ↔ 2̇) (A.5)

27This is because Λ∗ couples as ln Λ∗ ∫ d4xd2θ̄ tr W̄ 2, with
∫
d2θ̄ tr W̄ 2 = F ∗, see [30].

28We only consider (A.1), noting that the modification of the proof for (A.2) is identical: using the fact that
σ̄α̇α

µ ∂µϕ(x) = {Q̄α̇, ψα}, one proceeds via steps identical to (A.4)–(A.9) followed in the proof of (A.1).
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In the β → ∞ limit where ⟨. . .⟩ means vacuum (zero-energy) expectation value, (A.5)
vanishes since the supercharges annihilate the ground state, completing the proof. At finite
β, using (A.3), denoting Xα̇ ≡ Ôψ̄α̇, we have instead:29

⟨Q̄1̇X2̇ +X2̇Q̄1̇⟩ =
∑
E

(−1)F e−βE⟨E|Q̄1̇X2̇ +X2̇Q̄1̇|E⟩ . (A.6)

The states with E = 0 are annihilated by the supercharges, just like in R4. For the E > 0
states, we use a representation of the supersymmetry generators in terms of fermionic creation
and annihilation operators Q̄α̇ ∼ a†α, Qα ∼ aα, with {a†α, aβ} = δαβ. Then for each energy
eigenstate,30 we have four degenerate states:

|0⟩, |1⟩ = a†1|0⟩, |2⟩ = a†2|0⟩, |0′⟩ = a†1a
†
2|0⟩, with aα|0⟩ = 0 and a†α|0′⟩ = 0 , (A.7)

where, without loss of generality, |0⟩ and |0′⟩ are taken bosonic and |1⟩, |2⟩ are fermionic.
Thus, the contribution of any given E > 0 supermultiplet of states to (A.6) is proportional to:

⟨0|{Q̄1̇, X2̇}|0⟩+ ⟨0′|{Q̄1̇, X2̇}|0
′⟩ − ⟨1|{Q̄1̇, X2̇}|1⟩ − ⟨2|{Q̄1̇, X2̇}|2⟩

∼ ⟨0|{a†1, X2̇}|0⟩+ ⟨0′|{a†1, X2̇}|0
′⟩ − ⟨1|{a†1, X2̇}|1⟩ − ⟨2|{a†1, X2̇}|2⟩ (A.8)

Then using (A.7), we find that the last line in (A.8) equals

⟨0|X2̇|1⟩+ ⟨2|X2̇|0
′⟩ − ⟨0|X2̇|1⟩ − ⟨2|X2̇|0

′⟩ = 0. (A.9)

This shows that the contribution of each nonzero energy state to the sum in (A.6) cancels
out and the holomorphy, eq. (A.1), holds as on R4. As noted above, the xµ derivative in
the other Ward identity (A.2) reduces, using the supersymmetry transformations of chiral
superfields, to an expression similar to (A.6) and leads to a similar conclusion.

B The nonabelian part of the solution to leading order in ∆

Here, we give the explicit expressions of W(0)k×ℓ
µ that correspond to a fractional instanton

carrying a topological charge Q = r
N . We set n12 = −r, n34 = 1, and employ the embedding

SU(N) ⊃ SU(k)×SU(ℓ)×U(1). This is a more general case than n12 = −k of (2.4) (and with
the same n34 = 1) considered in the bulk of this paper. In our discussion of the properties of
this general solution, it will become apparent why we chose to take k = r through the bulk
of the paper. This general solution was explicitly constructed in [19].

To order
√
∆, the solution (2.19) is determined by two functions,31 W(0)k×ℓ

4 and W(0)k×ℓ
2 ,

given by:32

(
W(0)k×ℓ

2,4

)
C′C

= V −1/4

r
gcd(k,r)−1∑

p=0
C[C′+pk]r
2,4 Φ(p)

C′C(x, ϕ̂) . (B.1)

29Keeping only the first term on the r.h.s. in (A.5); the vanishing of the second term follows similarly to
what we show below.

30There can be extra degeneracies of the energy levels, in addition to the one due to supersymmetry, as seen
in the Hamiltonian formalism on T3 in the presence of twists, section 5.1. The proof of the Ward identities
given holds whether or not twists are present.

31The remaining functions determining the nonabelian solution (2.17), e.g. Sµ from (2.19) appear first at
order-∆. They are uniquely determined in terms of the order-

√
∆ functions given below by solving a recursion

relation, see [19], but we do not have an explicit form.
32For the notation, recall footnote 8.
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The remaining two functions W(0)k×ℓ
1 and W(0)k×ℓ

3 appearing in the leading-order expan-
sion (2.19) are determined by W(0)k×ℓ

2 and W(0)k×ℓ
4 via

W(0)k×ℓ
1 = −iW(0)k×ℓ

2 , W(0)k×ℓ
3 = −iW(0)k×ℓ

4 . (B.2)

In (B.1), C [C′+pk]r
2,4 are complex constants whose significance is discussed in the last paragraph

of this section, while Φ(p)
C′C(x, ϕ̂) are functions of x and the moduli ϕ̂C′

µ . The latter are defined
in terms of ϕC′

µ from eq. (2.14) via

ϕ̂C′
µ ≡ ϕC′

µ − 2πN zµ

Lµ
, with ϕ̂C′

µ = ϕ̂[C
′−r]k

µ . (B.3)

To complete the explicit form of the order-
√
∆ solution, we now give the form of Φ(p)

C′C(x, ϕ̂):

Φ(p)
C′B(x, ϕ̂) =

∑
m=p+ rm′

gcd(k,r) , m′∈Z

∑
n′∈Z

e
i2πx2

L2
(m+ 2C′−1−k

2k
)
e

i2πx4
L4

(n′− 2B−1−ℓ
2ℓ )

×e−i
π(1−k)

k

(
C′− 1+k(1−2m)

2

)
e

i
π(1−ℓ)

ℓ

(
B− 1+ℓ(2n′+1)

2

)
× e

− πr
kL1L2

[
x1−

kL1L2
2πr

(ϕ̂[C′]r
2 −iϕ̂

[C′]r
1 )−L1

r

(
km+ 2C′−1−k

2

)]2

× e
− π

ℓL3L4

[
x3−

ℓL3L4
2π

(ϕ̂[C′]r
4 −iϕ̂

[C′]r
3 )−L3(ℓn′− 2B−1−ℓ

2 )
]2

. (B.4)

Finally, the complex coefficients C[C′+pk]r
2 and C[C′+pk]r

4 are 4r arbitrary parameters, and
a subset of these parameters serve as additional moduli. A careful analysis, see [19], reveals
that C[C′+pk]r

2 , C[C′+pk]r
4 , in addition to the holonomies ϕC′

µ and translations zµ, comprise in
total 4r independent bosonic moduli, as per the index theorem.

In the limiting case r = 1, one finds C[C′+pk]r
4 = 0, while C[C′+pk]r

2 remains as arbitrary
unphysical U(1) phase. Here, we can set ϕC′

µ = 0, and thus, we are left with the 4 translational
moduli zµ. In the general case 1 < r < N , the moduli C[C′+pk]r

2 and C[C′+pk]r
4 are non-compact,

resulting in infinities when integrated over in the path integral. This issue is resolved by
setting k = r, which corresponds to choosing the embedded groups SU(k) = SU(r) and
SU(ℓ) = SU(N − r) within SU(N). This specific choice eliminates C[C′+pk]r

4 and sets C[C′+pk]r
2

to an arbitrary nonphysical U(1) phase, leaving only the compact moduli ϕC′
µ and zµ as the

relevant moduli in the problem. Notice that here C ′ = 1, . . . , r and that ϕC′
µ is subject to the

constraint
∑r

C′=1 ϕ
C′
µ = 0. Thus, there are 4(r − 1) holonomies. Adding the 4 translations zµ

gives a total of 4r bosonic moduli. This r = k choice is the one assumed throughout this work.
One can study the gauge-invariant densities of the solution, e.g., tr [F12F12]. Us-

ing (2.17), (2.18), (2.19), (2.20), it is tedious but straightforward to show that to O(∆):

tr [F12F12] = tr[ω2]
{
F̂ω
12F̂

ω
12 + 2∆F̂ω

12

(
∂1S(0)ω

2 − ∂2S(0)ω
1

)}
+ 8πN∆F̂ω

12trk

[
W(0)

2 W†(0)
2

]
,

(B.5)

where trk denotes taking the trace of the respective k×k matrix. The first term F̂ω
12F̂

ω
12 is con-

stant on the deformed T4, while it can be shown that the second term
(
∂1S(0)ω

2 − ∂2S(0)ω
1

)
=
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O trk

[
W(0)

2 W†(0)
2

]
for some differential operator O whose explicit form can be found in [19].

Then, using (B.1), (B.4) we find for the x-dependent part of the gauge-invariant density (B.5)

trk

[
W(0)

2 W†(0)
2

]
∼

k∑
C′=1

∣∣∣∣ ∑
m′∈Z

e
i

(
2πx2

L2
+L1ϕ̂C′

1

)
m′− π

L1L2

[
x1−

L1L2
2π

ϕ̂C′
2 −L1C′

k
−L1(m′− 1+k

2k
)
]2 ∣∣∣∣2

×
∣∣∣∣ ∑

n′∈Z
e

i

(
2πx4
ℓL4

+L3ϕ̂C′
3

)
n′− π

ℓL3L4

[
x3−

ℓL3L4
2π

ϕ̂C′
4 −L3(ℓn′+ 1+ℓ

2 )
]2 ∣∣∣∣2

≡
k∑

C′=1
F

(
x1 −

L1L2
2π ϕ̂C′

2 − L1C
′

k
, x2 +

L1L2
2π ϕ̂C′

1 , x3 −
ℓL3L4
2π ϕ̂C′

4 , x4 +
ℓL3L4
2π ϕ̂C′

3

)
, (B.6)

where the last equality defines the function F . The lumpy structure of the Q = k
N solution

seen in the above formula is discussed at the end of section 2.3, see figure 1. We also stress that
local gauge invariant densities, as opposed to winding Wilson loops, are periodic functions
on T4 with periods equal to the torus periods Lµ.

C The nonabelian part of the fermion zero modes and their localization

The solutions of the undotted Dirac equation, the fermion zero modes λ, are given as a
matrix in the form

λ =
[
||λC′B′ || ||λC′C ||
||λCC′ || ||λCB||

]
. (C.1)

Here, we only consider the case r = k discussed in the bulk of the paper. The solution of
the Dirac equation to O(∆0) yields the diagonal zero mode solutions

λα B′C′ = δB′C′ θC′
α , λα BC = −δBC

1
ℓ

k∑
C′=1

θC′
α , (C.2)

where α = 1, 2 is the spinor index and C ′, B′ = 1, 2 . . . , k. The order
√
∆ off-diagonal

solutions are, see [19]:

λ1 C′D = −iV 1/4√∆ηC′
2 F (0)

13 C′D , λ2 C′D = 0

λ1 CD′ = 0 , λ2 CD′ = iV 1/4√∆ηD′
1 F∗ (0)

13 D′C , (C.3)

where we introduced the spinor ηC′
α defined, modulo an overall multiplicative factor, as

ηC′
α ≡ θC′

α + 1
ℓ

r∑
B′=1

θB′
α , (C.4)

and

F (0)
13,C′,C(x, ϕ̂) = −iV 1/4 2π

ℓL3L4

∑
m′∈Z

∑
n′∈Z

e
i2πx2

L2

(
m′+ 2C′−1−k

2k

)
e

i2πx4
L4

(n′− 2C−1−ℓ
2ℓ )

×e
−i

π(1−k)
k

(
C′− 1+k(1−2m′)

2

)
e

i
π(1−ℓ)

ℓ

(
C− 1+ℓ(2n′+1)

2

)
×
(
x3 −

ℓL3L4ϕ̂
C′
4

2π − L3

(
ℓn′ − 2C − 1− ℓ

2

))

×e
− π

L1L2

[
x1−

L1L2
2π

(ϕ̂C′
2 −iϕ̂C′

1 )−L1
k

(
km+ 2C′−1−k

2

)]2

×e
− π

ℓL3L4

[
x3−

ℓL3L4
2π

(ϕ̂C′
4 −iϕ̂C′

3 )−L3(ℓn′− 2C−1−ℓ
2 )

]2

. (C.5)
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is the off-diagonal field strength of the instanton background to O(
√
∆), where ϕ̂C′ are

the holonomies from (B.3).
As predicted by the index theorem, there are 2k fermion zero modes associated with the

spinors θC′
α for C ′ = 1, . . . , k and α = 1, 2. These modes arise in the background of a self-dual

fractional instanton with a topological charge of Q = k/N on the deformed T4.
One can construct order-∆ gauge invariants from the fermion zero modes that display a

pattern similar to the bosonic invariants, characterized by a lumpy structure. Each of the k
lumps hosts 2 zero modes, with their positions determined by the moduli ϕ̂C′

µ . Specifically,
the order-∆ gauge invariants formed from the fermion zero modes include terms such as

k∑
C′=1

ℓ∑
D=1

λ1 C′Dλ2 DC′ ∼ (C.6)

k∑
C′=1

η̄C′
1 η̄C′

2

∣∣∣∣∑
m

e
i 2πm

L2
(x2+L1L2

2π
ϕ̂C′

1 )− π
L1L2

[
x1−

L1L2
2π

ϕ̂C′
2 −L1C′

k
+L1

1+k
2k

−L1m

]2 ∣∣∣∣2×
∣∣∣∣∑

n

(
x3−

ℓL3L4
2π ϕ̂C′

4 −L3ℓn− L3
1+ℓ
2

)
e

i 2πn
ℓL4

(
x4+ ℓL3L4

2π
ϕ̂C′

3

)
− π

ℓL3L4

[
x3−

ℓL3L4
2π

ϕ̂C′
4 −L3(ℓn+ 1+ℓ

2 )
]2 ∣∣∣∣2.

This expression highlights the localization properties of the fermion zero modes, as dictated by
the holonomies ϕ̂C′ , which were evident in the bosonic solution described in (B.6). From (C.6),
we see that very one of the k lumps in the sum in (C.6) hosts 2 fermion zero modes.

D Wilson lines and symmetries of gauge-invariant observables

Here, we study the Wilson loops’ moduli dependence. We set k = r, qµ = q and impose
the condition

∫
Γ

( 4∏
ν=1

dzνdaν

)
W q

µ [Â({zν ,aν})] = 0, where daν =
k−1∏

C′=1
daC′

ν . (D.1)

Using eqs. (2.8), (2.9), (2.10), (2.15), we obtain to the zeroth order of ∆:

W q
1 = (−1)q(k−1)e

−i2πq(N−k)
(

z1−
x2

NL2

) [
k∑

C′=1
ei2πqa1·νC′

]
+ (N − k)e

i2πqk

(
z1−

x2
NL2

)
,

W q
2 = e

−i2πq(N−k)
(

z2+ x1
NL1

) [
k∑

C′=1
ei2πq(a2−ρ

k
)·νC′

]
+ (N − k)e

i2πqk

(
z2+ x1

NL1

)
,

W q
3 = e

−i2πq(N−k)
(

z3−
x4

NℓL4

) [
k∑

C′=1
ei2πqa3·νC′

]
+ (N − k) e

i2πqk

(
z3−

x4
NℓL4

)
γq

ℓ δ q
ℓ

,Z ,

W q
4 = e

−i2πq(N−k)
(

z4+ x3
NℓL3

) [
k∑

C′=1
ei2πqa4·νC′

]
+ (N − k) e

i2πqk

(
z4+ x3

NℓL3

)
γq

ℓ δ q
ℓ

,Z , (D.2)
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and ℓ = N − k. Here, ρ is the SU(k) Weyl vector, obeying33 ρ · νC′ = −C ′ + k+1
2 . Also, we

used δ q
ℓ

,Z to denote unity if q is divisible by ℓ (= N − k) and 0 otherwise. In the special case
k = 1, one disregards aµ since there are solely 4 translational moduli zµ.

We also examine the local gauge-invariant densities. Recall that we introduced the
variable ϕ̂C′

µ , in terms of which we wrote the local gauge invariants. This variable is related
to zµ and aµ as follows:

ϕ̂C′
µ = −2πN zµ

Lµ
+ 2π
Lµ

aµ · νC′ . (D.3)

Local gauge invariant densities have the form of a sum of k lumps centered at values
determined by ϕ̂C′ :

k∑
C′=1

F

(
x1 − L1L2

ϕC′
2
2π − L1C

′

r
, x2 + L2L1

ϕC′
1
2π , x3 − ℓL3L4

ϕC′
4
2π , x4 + ℓL4L3

ϕC′
3
2π

)
. (D.4)

We now use (D.3) and rewrite (D.4) in terms of aµ, where we use again the identity
C′

k = −ρ
k · νC′ + 1

2 + 1
2k to replace the C′

k factor:

k∑
C′=1

F

(
x1 + L1Nz2 − L1

(
a2 −

ρ

k

)
· νC′ − L1

2 − L1
2k , (D.5)

x2 − L2Nz1 + L2a1 · νC′ , x3 + L3ℓNz4 − L3ℓa4 · νC′ , x4 − L4ℓNz3 + L4ℓa3 · νC′) .

D.1 Symmetries of Wilson lines and gauge-invariant densities

Root lattice translations. We first note that the Wilson lines are invariant under root
lattice translations of aµ:

aµ → aµ + αij . (D.6)

Here, αij , where i, j = 1, . . . k and i ̸= j, are the SU(k) roots. This easily follows from (i) any
weight of the fundamental representation νC′ can be written as a linear superposition of the
fundamental weights wa, a = 1, . . . , k−1, with integer coefficients, (ii) any root αij is written
as a linear superposition of the simple roots αa, a = 1, . . . , k − 1, and (iii) the fundamental
weights and simple roots satisfy the identity αa · wb = δab. Moreover, the gauge-invariant
densities, e.g. (B.6), are invariant under the shifts (D.6). This can be easily verified using
the properties (i) to (iii), substituting ϕ̂C′

µ = −2πN zµ

Lµ
+ 2π

Lµ
aµ · νC′ , and keeping in mind

that F (x1, x2, x3, x4) in (B.6) is a periodic function of its arguments. Then, it is natural
to conclude that aµ lives in the root space:

aµ ∈ ΓSU(k)
r . (D.7)

where ΓSU(k)
r denotes the fundamental cell of the root lattice of SU(k), which can be mapped

to the torus (S1)k−1.
33To derive this identity, we may use the Rk basis {ei}, i = 1, . . . , k, where ei is a unit vector in the i-th

direction. The Weyl vector is given by ρ =
∑k−1

a=1 wa, where the weights wa are expressed in terms of the
basis vectors as wa =

∑a

i=1 ei − a
k

∑k

i=1 ei. We also use the expression of νC′ , C′ = 1, 2, . . . , k, in terms of
the basis vectors: νC′ = eC′ − 1

k

∑k

i=1 ei.
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It is important to note that the transformations (D.6) are Ω-periodic gauge transforma-
tions. Recall that these are gauge transformations g(x) preserving the boundary conditions
(fixed and determined by the chosen gauge for the transition functions Ωµ(x)) obeyed by the
fields being integrated over in the path integral. In Hamiltonian quantization, these are the
transformations leaving the physical states invariant. Explicitly, Ω-periodic g(x) obey

g−1(x+ Lµ) Ωµ(x) g(x) = Ωµ(x) , ∀µ, (D.8)

with Ωµ(x) from (2.8). With some abuse of notation, we use x+ Lµ to denote a shift of only
the µ-th component of the four-vector x by the corresponding T4 period Lµ.

The root-lattice translations (D.6) can be seen to be due to an Ω-periodic gauge trans-
formation:

gij,µ(x) = e
−i

2πxµ
Lµ

αij ·Hk . (D.9)

Combined SU(k) weight-lattice and zµ shifts. Furthermore, we observe that SU(k)
weight-lattice shifts of aµ in (3.4) are compensated by shifts of zµ, thus leaving W q

µ invariant.
Explicitly,

aµ → aµ + wa, zµ → zµ − Ca

k
, a = 1, 2, . . . , k − 1,

where NCa = a (mod k), Ca ∈ Z+. (D.10)

The non-negative integer Ca exists because of the gcd(N, k) = 1 condition, which we assume
throughout the paper.

To see that (D.10) leaves gauge invariants evaluated in the background of the solution
invariant, notice that under the shift (D.10) of aµ by wa, a ∈ 1, . . . , k − 1, we have that
aµ · νC′ changes by −a

k + θa,C′ , where θa,C′ = 1 if a ≥ C ′ and zero otherwise. For W q
µ ,

this is compensated by the shift of zµ indicated above. The shift (D.10) also preserves the
invariance of the local density (D.5). In this case, the integer-valued shift θa,C′ , along with
a similar contribution from the shift of zµ, is absorbed by the periodic nature of the local
gauge invariants F . Unlike the winding Wilson lines, these invariants are periodic functions
of the coordinates, with periods matching those of the torus.

Finally, it is important to note that the transformations (D.10) are also Ω-periodic gauge
transformations. Consider the following x-dependent gauge transformation:

ga,µ(x) = e
−i2π

xµ
Lµ

(wa·Hk+ Ca
2πk

ω)
, (D.11)

with ω from (2.7). First, we observe that ga,µ(x) commutes with all transition functions (2.8),
since Qk is diagonal while ga,µ(x) is proportional to unity in the lower ℓ× ℓ corner. Thus,
the Ω-periodicity condition (D.8) reduces to the condition that ga,µ be periodic, or that
g−1

a,µ(x + Lµ)ga,µ(x) be the unit matrix. From (D.11), the remarks after (D.10), and the
explicit form (2.7) of ω, we find

g−1
a,µ(x+ Lµ)ga,µ(x) = diag(e−i2π( a

k
−NCa

k )Ik, Iℓ) (D.12)
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which is, indeed, the unit matrix in view of the gcd(N, k) = 1 condition, NCa = a (mod k), as
per (D.10). On the other hand, the x-dependence of the Ω-periodic gauge transform (D.11)
means that the instanton background Aµ(x) shifted by

−iga,µ(x)∂µg
−1
a,µ(x) =

2π
Lµ

(
wa · Hk + Ca

2πkω
)
. (D.13)

Thus, recalling the definition of the moduli (2.15), we find that the gauge transformation (D.11)
precisely affects the shift (D.10) of the moduli zµ and aµ.

Weyl reflections. The Wilson lines (D.2) and the local gauge-invariant densities (D.5) are
left invariant under Weyl transformations acting simultaneously on all aµ. As discussed
in the main text, they have the interpretation of permuting the k identical lumps which
comprise the multi-fractional instanton.

The Weyl group is the group of reflections about hyperplanes orthogonal to all roots
performed simultaneously on all four aµ:34

aµ → µαij (aµ) ≡ aµ − (aµ · αij)αij , µ = 1, 3, 4 ,

a2 → a2 −
[(

a2 −
ρ

k

)
· αij

]
αij , (D.14)

where i, j = 1, 2, . . . , k. The derivation, notation, and the meaning of these reflections will
be discussed momentarily. The group generated by the reflections (D.14) is the Weyl group,
which is isometric to the permutation group Sk of order k!.

To study the Weyl reflections, it is more convenient to use the Rk basis. To this end, let
aµ = (a1µ, . . . , ak

µ) be a vector that lives in Rk, i.e., it has k components, such that it satisfies
the constraint

∑k
i=1 a

k
µ = 0, which eliminates the unphysical component in (a1µ, . . . , ak

µ). Then,
the weights of the defining representation are given by νC′ = eC′ − 1

k

∑k
i=1 ei, where ei are

orthonormal unit vectors in Rk.35 Using this construction, it is easy to prove the identity

aµ · νC′ = aC′
µ , C ′ = 1, 2, . . . , k . (D.15)

A general positive or negative root of SU(k) is given by αij = ei − ej , i ̸= j, with
i, j ∈ {1, . . . , k}, keeping in mind that SU(k) possesses k2 − k roots. The Weyl reflection
operation acting on aµ about the root αij is given by

µαij (aµ) ≡ aµ − (αij · aµ)αij , (D.16)

and the product µαij (aµ) · νC′ is

µαij (aµ) · νC′ = aµ · νC′ − (αij · aµ) (αij · νC′) = aC′
µ −

(
ai

µ − aj
µ

) (
δiC′ − δjC′

)
. (D.17)

We write this product explicitly as

µαij (aµ) · νC′ =


aC′

µ C ′ ̸= j andC ′ ̸= j

ai
µ − (ai

µ − aj
µ) = aj

µ C ′ = i andC ′ ̸= j

aj
µ + (ai

µ − aj
µ) = ai

µ C ′ = j andC ′ ̸= i .

(D.18)

34Later, we also argue that (D.14) are due to a particular set of Ω-periodic gauge transformations.
35Notice that the indices i, j ∈ {1, . . . , k} label the different Rk vectors, e.g. ei instead of eC′ . We hope

using either C′, D′ or i, j in this appendix is not too confusing.
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Thus, a reflection of a about αij swaps the components ai
µ and aj

µ, leaving all other components
unchanged. Recalling (D.15), we observe that the only effect of a Weyl reflection is to
interchange the terms ei2πqai

µ and ei2πqaj
µ within the sum

∑k
C′=1 e

i2πqaµ·νC′ appearing in
W q

1,2,3. This means that a Weyl reflection preserves the value of this sum. Consequently, the
Wilson lines W q

1,3,4 remain invariant under the Weyl reflection defined in (D.16).
The invariance of W q

2 under reflections is more involved, thanks to the phase e−i2πqρ·νC′ .
Recall (D.15) and the identity ρ ·νC′ = −C ′+ k+1

2 . Then, to show the invariance of W q
2 under

reflections about αij , one needs to swap the phases ei2πqi/k and ei2πqj/k that accompany the
terms ei2πqai

2 and ei2πqaj
2 , respectively, within the sum that appears in W q

2 . This is easily
achieved by defining a new vector a′

2:

a′
2 ≡ a2 −

ρ

k
, (D.19)

such that the reflection operation about αij should involve the newly defined a′
2:

µαij

(
a′
2
)
= a′

2 −
(
αij · a′

2
)

αij . (D.20)

We already found above how µαij acts on a2. What remains is to find µαij (ρ):

µαij (ρ) = ρ − (αij · ρ)αij . (D.21)

Using ρ =
∑k−1

a=1 wa and wa =
∑a

i=1 ei − a
k

∑k
i=1 ei (see Footnote 33), we find

ρ · αij = ρ · ei − ρ · ej = j − i ,

µαij (ρ) = ρ − (αij · ρ)αij = ρ − (j − i)αij . (D.22)

Thus, we conclude

µαij (ρ) · νC′ = ρ · νC′ − (j − i)
(
δiC′ − δjC′

)
. (D.23)

Using ρ · νC′ = −C ′ + k+1
2 , we find

µαij (ρ) · νC′

=


ρ · νC′ i ̸= C ′ and j ̸= C ′

ρ · νi − (j − i) = −i+ k+1
2 − j + i = −j + k+1

2 = ρ · νj i = C ′ and j ̸= C ′

ρ · νi j = C ′ and i ̸= C ′ .

(D.24)

This shows that the terms ei2πqρ·νi and ei2πqρ·νj are swapped under a reflection about αij .
Therefore, the reflection defined in (D.20) leaves W q

2 invariant.
As for the local density (D.5), the Weyl reflection (D.14) with a given i, j interchanges the

C ′ = i and C ′ = j terms in (D.5), i.e. permutes two of the k lumps, provided it is performed
on all four moduli aµ. That this is so follows immediately from the action of the shifts (D.14)
on the dot products (described in the various equations above) that enter in (D.5). This
provides a pictorial representation of the action of this symmetry of the moduli space (and
in addition to (D.25) below provides a physical argument why the Weyl reflection should
be performed simultaneously in all four directions).
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The Weyl transformation (D.14) can be seen to be due to an Ω-periodic gauge trans-
formation. Without much ado, we simply state its form

gij(x2) = e
−i2π

x2
L2

(j−i)
k

αij ·Hk Pij , (D.25)

where Pij is a constant permutation matrix permuting the i-th and j-th eigenvalues of a
k × k diagonal matrix (when acting as Pij . . . P

−1
ij ; it is also embedded trivially in SU(N)).

Below, we explain why gij of (D.25) performs the transforms (D.14), without giving all steps,
which can be easily reproduced by the reader.

First, we immediately see that (D.25) obeys (D.8) for µ = 1, 3, 4, since Ω1,3,4 are
proportional to the unit matrix of SU(k) and gij is independent of x1,3,4. Furthermore,
when it acts on the A1,3,4 components of the solution, its effect is that of the permutation
Pij , which precisely permutes the moduli ai

µ and aj
µ, in the Rk basis notation, as explained

after eq. (D.18).
We next consider the Ω-periodicity of gij for µ = 2 and its action on the A2 component

of the solution. That gij is Ω-periodic also for µ = 2, i.e. obeys all of (D.8) follows from
the identity g−1

ij (x2 = L2)Qkgij(x2 = 0) = Qk, which can be checked from the explicit form
of gij and Qk, see (2.6) (using the Rk basis for the roots, as used around eq. (D.16) is also
helpful). That gij(x2) also affects the constant shift of a2 from (D.14) follows from its x2
dependence as well as the expressions for ρ and the roots in the Rk basis.

E Determining the shape and volume of the moduli space

The integrals of the Wilson loops should vanish for any value of xµ. Thus, in each case, we
require that the integrals over the moduli of each of the two terms appearing in each W q

µ

in (D.2) vanish. This can only be accomplished by restricting the range of zµ.

The range of the zµ moduli. For W q
1 and W q

2 , assuming that gcd(k,N − k) = 1, the inte-

grals of e
−i2πq(N−k)

(
z1−

x2
NL2

)
and e

i2πqk

(
z1−

x2
NL2

)
over z1, as well as of e

−i2πq(N−k)
(

z2+ x1
NL2

)
and e

i2πqk

(
z2+ x1

NL2

)
over z2 vanish, for any integer q and for all values of xµ, provided the

limits of integration are taken z1,2 ∈ [0, 1).36

For the case of W q
3 , we require that, for integer q ̸= ℓ, the integral of e−i2πq(N−k)z3

over z3 vanishes (we do not show the x4 dependence, as the vanishing must hold for all x4).
This leads to the condition z3 ∈ [0, 1

N−k ). The second term in W q
3 is only nonzero when

q = ℓ = N − k. To ensure that the integral of e
i2π(N−k)k

(
z3−

x4
N(N−k)L4

)
over z3 vanishes, we

again find that z3 ∈ [0, 1
N−k ) is the appropriate minimal range.

Similarly, for W q
4 , the condition for the first term, with q ̸= ℓZ, requires z4 ∈ [0, 1

N−k ).
For q = ℓZ, as in the case of W ℓ

3 , we demand that the integral of ei2π(N−k)kz4 over z4 vanishes,
establishing the same minimal range, z4 ∈ [0, 1

N−k ).

36If gcd(k,N − k) > 1, shorter periods, 1/gcd(k,N − k), might be expected. However, this case presents
additional complexities and is left for future investigation.
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In conclusion, the ranges of zµ:

zµ ∈ [0, 1], for µ = 1, 2 , (E.1)

zµ ∈
[
0, 1
N − k

]
, for µ = 3, 4 , or zµ ∈ S1µ .

The range of the aµ moduli. We first parameterize aµ ∈ ΓSU(k)
r by defining (skipping

the index µ for brevity):

a =
k−1∑
a=1

taαa, where ta ∈ [0, 1], ∀a = 1, . . . , k − 1. (E.2)

Thus the unit cell of the root lattice is seen to be equivalent to (S1)k−1 parameterized by the
ta’s, all defined modulo 1. Further, the action of the weight lattice shifts are found to be

wb : ta → ta − ab

k
, a, b = 1, . . . , k − 1, (E.3)

where we used the (mod 1) property of ta. The action of the weight lattice shift on ΓSU(k)
r is

immediately seen to be a Zk transformation. Thus it is enough to consider the action (E.3)
with b = 1, which generates all other transformations.

The weight-lattice shifts (D.10) also act on the variable z. For µ = 1, 2, as we discussed,
the range of z1,2 is [0, 1], while for µ = 3, 4 we had the range [0, 1

N−k ]. To discuss all zµ

uniformly (and hence omit the label µ), we define , ẑ1,2 ≡ z1,2, ẑ3,4 ≡ (N − k)z3,4. The range
of all ẑµ is now [0, 1]. Then consider the shifts (D.10) with b = 1 for zµ. Recalling that
C1N = 1(mod k) we find ẑ1,2 → ẑ1,2 − C1

k , and ẑ3,4 → ẑ3,4 − C1(N−k)
k = ẑ3,4 − 1

k , where we
recall modulo 1 property of all ẑµ. The action of the weight lattice shifts on ẑµ is also a
Zk transformation. Thus, for now we have the space (S1)k with coordinates (t1, . . . , tk−1, ẑ)
all modulo 1. This space is subject to the identifications (one should take C1 = 1 for ẑ3,4,
although the precise value is irrelevant):

Zk : ta → ta − a

k
, a = 1, . . . , k − 1,

z → z − C1
k
, NC1 = 1(modk), gcd(N, k) = 1 . (E.4)

The transformation is a freely-acting Zk transformation (one which has no fixed points, as
there is no solution to ta = ta − a

k modulo 1, for a = 1, . . . , k − 1).
Let us now characterize the fundamental domain of (E.4). The easiest way to do this

is to split each of the [0, 1] circles of ta or ẑ into k intervals, each of length 1/k. We label
these intervals by modulo k integers pa, a = 1, . . . , k − 1, labeling the k intervals for each ta,
and pk, labeling the k intervals for z. Each pa and pk can take the integer values 1, . . . , k,
defined modulo k. Thus, we have kk integers label the kk cubes into which we split (S1)k,
a k-dimensional cube (with opposite sides identified).

The utility of this parameterization is that it allows us to figure out how to parame-
terize the fundamental domain of Zk. This is because the cubes get identified under the
transformation (E.4) as follows:

Zk : (p1, p2, . . . , pk−1, pk) ≡ (p1 − 1, p2 − 2, . . . , pk−1 − k + 1, pk − C1) (mod k) (E.5)
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There are kk cubes labeled by the sets of integers (each defined modulo k) (p1, p2, . . . , pk−1, pk).
The identification among the kk cubes given by eq. (E.5) has orbits of size k. Thus, there
are kk

k = kk−1 independent orbits. The fundamental domain of the Zk action is formed by
taking one representative (it does not matter which) of each orbit.37

Volume of fundamental domain. Now, the volume of the (t1, . . . , tk−1, ẑ)-space equals the
sum of the volumes of the kk cubes labeled by the kk different choices of (p1, p2, . . . , pk−1, pk).
After the identification of these cubes into k-dimensional Zk orbits, we are left with a
fundamental domain consisting of kk−1 cubes (since, to describe the fundamental domain, we
take one cube from each orbit). The volume of the fundamental domain of the combined
weight-lattice/ẑ-shifts (E.4) equals the sum of the volumes of these kk−1 cubes and is, therefore,
k times smaller than the volume of the (t1, . . . tk−1, ẑ)-space prior to the identification

Choice of fundamental domain. The fundamental domain of (E.5) can always be chosen
to be the weight lattice of SU(k) times the entire range of the ẑ variable, generalizing the
example of Footnote 37.

To see this, note that the weight lattice fundamental domain is given by applying the
identification (E.5) on all cubes labeled by (p1, . . . , pk−1), with pk (the one representing ẑ)
omitted. The set of kk−1 cubes labeled by the possible choices of (p1, p2, . . . , pk−1) gives the
root lattice fundamental domain, which is then identified under the weight lattice shifts:

Zk : (p1, p2, . . . , pk−1) ≡ (p1 − 1, p2 − 2, . . . , pk−1 − k + 1) (mod k) . (E.6)

As the orbits of (E.6) are k dimensional, the weight lattice fundamental domain is given by the
choice of kk−2 cubes (of the kk−1 total), one from each orbit. This gives the well-known result
that the volume of the weight lattice fundamental domain is 1/k times the volume of the root
lattice. For lack of a better way, we now continue by labeling the weight lattice fundamental
domain by the cubes that comprise it, i.e., by choice of (p∗1, p∗2, . . . p∗k−1), where p∗i are sets of
mod k integers not related by (E.6). As described above, there are kk−2 such cubes. We now
consider a kk−1 dimensional set (p∗1, p∗2, . . . , p∗k−1, pk), with pk unrestricted. In words, to each
of the cubes in the weight lattice fundamental domain, we add the k cubes describing the ẑ
circle). This set of kk−1 cubes is, by construction, not related by (E.5) — as the p∗1...k−1 are not

— hence it forms a fundamental domain of (E.5). We stress that this argument is illustrated
simply for k = 2 in footnote 37 and that the reader can construct examples with k > 2.

Vanishing of the integrals of Wilson loops, eq. (3.3) over the fundamental domain.
To begin, we note that the integrals over the entire range of zµ and aµ, (E.1), (D.7), respectively,
vanish trivially. As we showed, this full range splits into k copies of the fundamental domain
of the Zk action (D.10). The integrand (the Wilson loops) is invariant under (D.10); thus,
its integral restricted to the fundamental domain also vanishes.

37A simple example is k = 2, with say N = 3 where C1 = 1 and we have the 22 cubes (1, 1), (1, 2), (2, 1),
(2, 2). The identification (E.5) gives the two orbits (1, 1) ≡ (2, 2) and (1, 2) ≡ (2, 1). Thus, there are four
choices of a fundamental domain. Notice that it can be taken (1, 1) and (1, 2), which corresponds to taking
the weight lattice range for t1 and the entire range of ẑ.
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Collecting everything. We arrive at the following description of the moduli space. It is
the product space of the SU(k) root cell ΓSU(k)

r and the circle S1µ, in each spacetime direction,
modded by the action of the discrete symmetry Zk:

Γ =
4∏

µ=1

S1µ × ΓSU(k)
r

Zk
≃

4∏
µ=1

(S1)k

Zk
, (E.7)

additionally modded by the permutation of the k identical lumps. As shown above, the
volume of the space (S1)k

Zk
is 1/k times the volume of (S1)k. Further, dividing by the Weyl

group introduces an extra 1/k! factor. In addition, the fundamental domain of the moduli
space can always be chosen to be the weight lattice of SU(k), i.e., ΓSU(k)

w , times the entire
range of the zµ variables given by (E.1).

E.1 The case k = N − 1

In this section, we study the special case of a fractional instanton carrying a topological charge
Q = (N − 1)/N , i.e., taking k = N − 1 and ℓ = 1. We shall show that the transition functions
and gauge fields are fully abelian in this special case. Also, the holonomies aµ = (a1µ, . . . , aN−2

µ )
and the four translations zµ that appear in (D.2) can be grouped into more symmetric moduli
Φ̃µ ≡ (Φ1

µ, . . . ,ΦN−1
µ ) that lives in the Cartan generators of SU(N). Here, we use a tilde over

the boldface letter Φ̃µ to emphasize that this is a (N − 1)-dimensional vector, in contrast
to the (N − 2)-dimensional vector a. Condition (D.1), then, will be used to argue that Φ̃µ

lives in the root lattice of SU(N). This statement will be shown to be equivalent to that
a lives in the weight lattice of SU(N − 1) provided that the range of the zµ variables are
given by (E.1). These results work as a check on our above identification of the shape of
the moduli space in the general case 1 ≤ k ≤ N − 1.

Specializing to the case k = N − 1, the transition functions (2.8) are

Ω1 =

 ei2π
x2

NL2 IN−1 0
0 e

−i2π(N−1) x2
NL2

 , Ω2 =
[
QN−1 0

0 I1

]
,

Ω3 =

 ei2π
x4

NL4 IN−1 0
0 e

−i2π(N−1) x4
NL4

 , Ω4 = IN−1 ⊕Qℓ =
[
IN−1 0
0 Qℓ

]
. (E.8)

Notice that, here, unlike in (2.8), we replace the factor (−1)N that accompanies the unit
matrix IN−1 in Ω1 with 1 (without changing cocycle conditions with n12 = 1−N), greatly
simplifying the treatment. Notice that the factor (−1)k−1 in (2.8) is traced back to our
construction in [19], where we considered the general case r ̸= k. There, it was crucial to
use P−r

k in building Ω1, where Pk is the shift matrix defined before (2.8). In the special
case we are considering in this paper, we set k = r. Under this condition, we obtain
P

−r(=−k)
k = γ−k

k = (−1)k−1.
To proceed, it proves easier to apply a gauge transformation on the transition functions

Ωµ, µ = 1, 2, 3, 4. Let us consider the gauge transformation by the diagonal SU(N) matrix
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U(x) defined by

U(x) ≡

 e
−i2π

(
C′−1
N−1 − N

2(N−1)

)
x2
L2 δB′C′︸ ︷︷ ︸

(N−1)×(N−1)

0

0 1

 . (E.9)

It is easy to check that DetU(x) = 1. Under a gauge transformation by U(x), the transition
functions transform as

Ω′
µ(x) = U(xµ = Lµ)Ωµ(x)U−1(xµ = 0) , (E.10)

and thus, we find

Ω′
1 = Ω1 = INe

i
2πx2
NL2

diag

1, 1, . . . , 1︸ ︷︷ ︸
N−1

,−(N−1)


, Ω′

2 = IN ,

Ω′
3 = Ω3 = INe

i
2πx4
NL4

diag

1, 1, . . . , 1︸ ︷︷ ︸
N−1

,−(N−1)


, Ω′

4 = Ω4 = IN . (E.11)

These transition functions can be cast in terms of the Cartan generators H̃ of SU(N), where
the use of the tilde is to emphasize that these are (N − 1)-dimensional vectors:

Ω′
1 = e

−i2πH̃·ν̃N
x2
L2 , Ω′

2 = 1 , Ω′
3 = e

−i2πH̃·ν̃N
x4
L4 , Ω′

4 = 1 , (E.12)

where H̃ = diag (ν̃1, . . . , ν̃N ). Using the identity ν̃a′ ·ν̃b′ = δa′b′− 1
N , where a′, b′ = 1, 2, . . . , N ,

one can immediately see the equivalence between (E.11) and (E.12). This shows that the
transition functions fully abelianize in the special case k = N − 1.

The abelian gauge field that satisfies the boundary conditions (2.2) using the transition
functions (E.12) is given by

A′
1 = 2πΦ̃1 · H̃

L1
, A′

2 = − 2πx1
L1L2

H̃ · ν̃N + 2πΦ̃2 · H̃

L2
,

A′
3 = 2πΦ̃3 · H̃

L3
, A′

4 = − 2πx3
L3L4

H̃ · ν̃N + 2πΦ̃4 · H̃

L4
, (E.13)

and we used the (N − 1)-dimensional vectors Φ̃µ to label the moduli space; here we have
4(N − 1) independent moduli, as per the index theorem. The corresponding field strength is

F12 = − 2π
L1L2

H̃ · ν̃N , F34 = − 2π
L3L4

H̃ · ν̃N , (E.14)

keeping in mind that the relation L1L2 = L3L4 is satisfied to O(∆0). These expressions of the
field strength exactly match those appearing in (2.11) upon setting k = N − 1 and ℓ = 1 in ω.

As usual, the Wilson lines are given by

W q
µ(x) = tr

[
eiq
∮

A′
µΩ′

µ

]
, (E.15)
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and thus

W q
µ(x) = tr

[
e

−i2πqxµ
Lµ

H̃·ν̃N+i2πqΦ̃µ·H̃
]
=
∑
ν̃a′

e
−i2πqxµ

Lµ
ν̃a′ ·ν̃N+i2πqΦ̃µ·ν̃a′ . (E.16)

As before, we demand that ⟨W q
µ⟩ = 0, and thus, we need to integrate over the moduli space

region Γ that yields a vanishing result, i.e., we demand∫
Γ

N−1∏
j=1

dΦj
µ

∑
ν̃a′

e
−i2πqxµ

Lµ
ν̃a′ ·ν̃N+i2πqΦ̃µ·ν̃a′ = 0 , (E.17)

and the sum is over all the weights ν̃a′ , a′ = 1, . . . , N . In the following, we show that Γ
coincides with the fundamental cell of SU(N) root lattice. To this end, we use the RN basis of
the SU(N) algebra. In this basis, we take Φ̃µ =

(
Φ1

µ,Φ2
µ, . . . ,ΦN

µ

)
and impose the constraint∑N

i=1Φi
µ = 0, which eliminates the unphysical component in

(
Φ1

µ,Φ2
µ, . . . ,ΦN

µ

)
. Also, the

weights in this basis are νi
j = δij − 1

N . Then, the integral (E.17) is written as (suppressing
the x-dependence and sum to reduce clutter)∫

Γ

 N∏
j=1

dΦj
µ

 δ(Φ1
µ + . . .+ΦN

µ )ei2πqΦj
µe−i 2πq

N
(Φ1

µ+...+ΦN
µ ) . (E.18)

The Dirac-delta function, inserted to impose the constraint, kills the term e−i 2π
N

(Φ1
µ+...+ΦN

µ ).
Now, it is easy to see the above integral vanishes provided that we integrate the left-over
term ei2πΦj

µ over a region Γ: the parallelotope bounded by the simple roots α̃i = ẽi − ẽi+1,
i = 1, . . . , N − 1, where {ẽi} is the set of unit vectors spanning RN . We conclude that every
term in the sum (E.17) vanishes when integrated over the fundamental cell of the SU(N)
root space Γ, and thus, W q

µ(x) vanishes when integrated over Γ . An alternative approach
to reach the same result is to use the change of variables

ζa′
µ = Φ̃µ · w̃a′ , (E.19)

where w̃a′ are the fundamental weights of SU(N) and a′ = 1, 2, . . . , N−1. This transformation
effectively rectifies the root lattice by leveraging the identity α̃b′ · w̃a′ = δa′b′ , where α̃b′

is a simple root. As a result, the fundamental domain of the root lattice becomes the
hypercubic region defined by 0 ≤ ζa′

µ ≤ 1. Consequently, it is easy to see that the integral of
ei2πqΦ̃µ·w̃a′ = ei2πqζa′

µ over the fundamental root lattice is zero.
In our endeavor to determine the volume of the bosonic moduli space, we need to

determine the volume of the fundamental cell of the root lattice:∫
Γ

N−1∏
j=1

4∏
µ=1

dΦj
µ

 , (E.20)

which is the fourth power (for 4 spacetime dimensions) of the volume of a (N −1)-dimensional
parallelotope spanned by the simple roots {α1, . . . ,αN−1}. This volume is given by the
fourth power of the determinant of the simple roots:

∫
Γ

N−1∏
j=1

4∏
µ=1

dΦj
µ

 =

Det

 α1
1 α2

1 . . . αN−1
1

. . . . . . . . . . . . .

α1
N−1 α

2
N−1 . . . α

N−1
N−1




4

= (
√
N)4 = N2 . (E.21)
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The metric of the bosonic moduli space spanned by Φ̃µ is given by the matrix UB,
with components given by

Uµµ′

B ij = 2
g2

∫
T4

tr

∂A′
ν

∂Φi
µ

∂A′
ν

∂Φj
µ′

 , i, j = 1, . . . , N − 1 , µ = 1, 2, 3, 4 . (E.22)

Using ∂A′
ν

∂Φi
µ
= 2π

Lµ
δµνδikH

k along with the identity tr[H iHj ] = δij , for i, j = 1, 2, . . . , N − 1,
we obtain

Uµµ′

B ij = 8π2V
g2L2

µ

δijδµµ′ , (E.23)

and

√
DetUB =

(
8π2

√
V

g2

)2(N−1)

. (E.24)

Finally, using the collective coordinates method, one finds that the measure of the bosonic
moduli space is (see [6] and appendix B in [1] for the details of these calculations)

dµB =
√

DetUB

∏N−1
j=1

∏4
µ=1 dΦj

µ

(N − 1)!(
√
2π)4(N−1) =

(
8π2

√
V

g2

)2(N−1) ∏N−1
j=1

∏4
µ=1 dΦj

µ

(N − 1)!(
√
2π)4(N−1) .

(E.25)

The factor (N − 1)! that appears in the dominator is introduced to take into consideration
the fact that the gauge-invariant observables are invariant under the Weyl group, permuting
the N − 1 moduli Φi

µ in the 4 spacetime dimensions simultaneously, which is isomorphic to
the permutation group SN−1 of order (N − 1)!. The volume of the moduli space is obtained
by performing the integral over

∏N−1
j=1

∏4
µ=1 dΦj

µ; using (E.21), we readily find

∫
Γ
dµB = N2

(N − 1)!

(
4π

√
V

g2

)2(N−1)

. (E.26)

Now, let us return to the moduli-space parameterization using aµ and zµ, reminding
the reader that we are still treating the special case k = N − 1. We shall find the range
of aµ by demanding that the change of variables from Φ̃µ to zµ and aµ = (a1µ, . . . , aN−2

µ )
must leave the integral

∫
Γ dµB invariant.

Let UB denote the metric on the moduli space spanned by zµ and a. Using the gauge
fields Aµ given by (2.9), (2.15) we obtain the matrix elements of the metric UB (summation
over ν is implied):

Uµµ′

B ab = 2
g2

∫
T4

tr
[
∂Aν

∂aa
µ

∂Aν

∂ab
µ′

]
, a, b = 1, 2, . . . , N − 2 ,

Uµµ′

B zz = 2
g2

∫
T4

tr
[
∂Aν

∂zµ

∂Aν

∂zµ′

]
,

Uµµ′

B zb = 2
g2

∫
T4

tr
[
∂Aν

∂zµ

∂Aν

∂ab
µ′

]
, b = 1, . . . , N − 2 . (E.27)
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Using tr(Ha
N−1H

b
N−1) = δab (remember that HN−1 = (H1

N−1, . . . ,H
N−2
N−1 ) are embedded in

SU(N) by putting zeros in the 1× 1 lower-right element), and tr(ω2) = 4π2N(N − 1), along
with tr[Ha

N−1ω] = 0, we find that the metric on the moduli space in each spacetime direction
µ is given by the (N − 1) × (N − 1) diagonal matrix

Uµµ′

B = 8π2V
g2L2

µ

diag

1, 1, . . . , 1︸ ︷︷ ︸
N−2

, N(N − 1)

 δµµ′
, (E.28)

and thus

√
DetUB =

(√
N(N − 1)

)4
(
8π2

√
V

g2

)2(N−1)

. (E.29)

In terms of the moduli spanned by zµ and aµ, the differential element on the moduli
space is

dµB =
√

DetUB

∏N−2
b=1

∏4
µ=1 dzµda

b
µ

(N − 1)!(
√
2π)4(N−1) , (E.30)

such that the integral
∫
Γ dµB must be given by (E.26). Recalling that in our case, the

range of zµ ∈ [0, 1) (see eq. (E.1) and recall k = N − 1), and thus
∏4

µ=1
∫ 1
0 dzµ = 1, we see

immediately that the result (E.26) is obtained if and only if we demand that aµ lives in the
weight lattice of SU(N − 1). This confirms our assertion that appears after eq. (E.7) that the
fundamental domain of the moduli space can always be chosen to be the weight lattice of
SU(k), i.e., ΓSU(k)

w (in this case k = N − 1), times the entire range of the zµ variables given
by (E.1). The volume of the fundamental cell of the weight lattice is given by the volume
of a (N − 2)-dimensional parallelotope spanned by the simple weights {w1, . . . ,wN−2} in
each spacetime direction. Thus, we find

∫
ΓSU(N−1)

w

N−2∏
b=1

4∏
µ=1

dab
µ =

Det

 w1
1 w2

1 . . . wN−2
1

. . . . . . . . . . . . .

w1
N−2 w

2
N−2 . . . w

N−1
N−2




4

=
( 1√

N − 1

)4
,

(E.31)

where we used ΓSU(N−1)
w to denote the weight lattice of SU(N − 1). Collecting everything

we obtain

∫
Γ
dµB =

(√
N(N − 1)× 1√

N−1

)4
(N − 1)!

(
4π

√
V

g2

)2(N−1)

= N2

(N − 1)!

(
4π

√
V

g2

)2(N−1)

, (E.32)

matching the result in (E.26).

E.2 Volume of the bosonic moduli space

Now, we use our experience from the case k = N − 1 to determine the volume of the moduli
space of the general case of 1 ≤ k ≤ N − 1, assuming that gcd(r,N − k) = 1. As we argued
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above, the moduli space Γ spanned by zµ and aµ = (a1µ, . . . , ak−1
µ ) can be taken to be:

Γ =


z1,2 ∈ [0, 1) ,

z3,4 ∈
[
0, 1

N−k

)
,

aµ ∈ ΓSU(k)
w for µ = 1, 2, 3, 4 ,

(E.33)

where ΓSU(k)
w is the weight lattice of SU(k), keeping in mind there is an extra identification on

aµ by the Weyl group. The volume of the weight lattice of SU(k) is 1/
√
k. The matrix UB is

the metric on the moduli space, with matrix elements given by (summation over ν is implied)

Uµµ′

B ab = 2
g2

∫
T4

tr
[
∂Aν

∂aa
µ

∂Aν

∂ab
µ′

]
, a, b = 1, . . . , k − 1 ,

Uµµ′

B zz = 2
g2

∫
T4

tr
[
∂Aν

∂zµ

∂Aν

∂zµ′

]
,

Uµµ′

B zb = 2
g2

∫
T4

tr

∂Aν

∂zµ

∂Aν

∂aj
µ′

 , b = 1, . . . , k − 1 . (E.34)

Using tr(Ha
kH

b
k) = δab (remember that Hk = (H1

k , . . . ,H
k−1
k ) are embedded in SU(N) by

putting zeros in the ℓ × ℓ lower-right matrix), and tr(ω2) = 4π2Nk(N − k), along with
tr[Hb

kω] = 0, we find that the metric on the moduli space in each spacetime direction µ

is given by the k × k diagonal matrix:

Uµµ′

B = 8π2V
g2L2

µ

δµµ′diag

1, 1, . . . , 1︸ ︷︷ ︸
k−1

, kℓN

 , (E.35)

and the square root of the determinant of UB is

√
DetUB =

(√
k(N − k)N

)4
(
8π2

√
V

g2

)2k

. (E.36)

Collecting everything we find (performing the integral over the moduli space in all 4 directions):

µB =
∫
Γ

∏4
µ=1

∏k−1
b=1 da

b
µdzµ

√
DetUB

k!(
√
2π)4k

= 1
k!

(
4π

√
V

g2

)2k (√
k(N − k)N

)4

︸ ︷︷ ︸
DetUµµ′

×
( 1√

k

)4

︸ ︷︷ ︸
volume of SU(k)weight in all 4 directions

× 1
(N − k)2︸ ︷︷ ︸
volume of zµ

= N2

(
4π

√
V

g2

)2k

k! . (E.37)

The factor k! takes into consideration the fact that the lumpy solution and Wilson’s lines are
invariant under the Weyl group, given by (D.14), which is isomorphic to the permutation
group Sk of order k!. The pre-coefficient is always N2 for all values of k, reminding we
always assume gcd(k,N − k) = 1.
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F A supersymmetric localization for N

A more sophisticated approach to the calculation of (5.13) (which needs further development,
see below) is based on supersymmetric localization (see, e.g., the lecture notes [49]). The
point is that the super-Yang-Mills action (2.1) can be written as a supersymmetry variation.
Explicitly, one can show by direct calculation that38

g2SSYM = δαOα + δα̇Oα̇, where Oα = 1
8

∫
T4

d4x ∆α, Oα̇ = 1
8

∫
T4

d4x ∆α̇ . (F.1)

with ∆α ≡ σ β
µν α λa

β F
a
µν + λa

αD
a, ∆α̇ ≡ σ̄ α̇

µν β̇
λ̄β̇ a F a

µν + λ̄α̇ aDa . The supersymmetry
transformations, for convenience, defined without the usual Grassmann parameters, which
can be attached if desired, are

δαA
a
µ = σµ

αα̇ λ̄
α̇ a, δα̇Aa

µ = σ̄µ α̇αλa
α,

δβλa
α = −σ β

µν α F a
µν + δβ

αD
a, δβ̇λa

α = 0,
δβλ̄a

α̇ = 0, δβ̇λ̄
α̇ a = −σ̄ α̇

µν β̇
F a

µν + δα̇
β̇
Da,

δαD
a = −σµ αα̇ (Dµλ̄

α̇)a, δα̇Da = −σ̄α̇β
µ (Dµλβ)a . (F.2)

It is easy to check that δαSSYM = δα̇SSYM = 0.
The fact that the action is a supersymmetry variation (F.1) and the vanishing of its

supersymmetry variation imply, formally, that the path integral (5.13) is coupling-independent:

dN
dg−2 = −

∫
T4 with n12 ̸=0 (modN)

DA Dλ Dλ̄ DD
[
δα(Oαe

−SSYM) + δα̇(Oα̇e−SSYM)
]
= 0. (F.3)

The vanishing follows from the fact that when an integrand, which is a symmetry variation,
is integrated using a symmetry-invariant measure, one obtains zero (barring nonvanishing
boundary contributions).

The argument leading to coupling independence here is, of course, formal. One needs
to gauge fix, regulate, etc. — as was done, e.g. for 4d nonconformal theories with extended
supersymmetry in [51] — something that we have not considered. Accepting it at face value,
however, coupling-independence means that one can evaluate N at any coupling, including
the g2 → 0 limit. Then, one arrives at the same conclusion as our small-T4 argument, that
the computation of N reduces to a sum over N2 zero action saddle points, thus leading
us to the same expected value (5.16).

While we stress the formal nature of the localization argument, we present it in the hope
that it can stimulate further work. Based on our usual understanding of the relation between
Hamiltonian formalism and path integral, we expect that the Hilbert space trace (5.7) should
equal the path integral (5.13). In fact, this is what was assumed in our previous work [1]
(which did not take into account the existence of N2 zero action configurations (5.15) but
only took the N A(0,q) saddles into account), leading to a factor of N discrepancy between
the R4 and T4 calculations of the gaugino condensate.

38A Minkowski space version of (F.1) can be found in [50].
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In order that (5.13) give the answer (5.7), instead of (5.16), it is necessary to omit the
contribution of zero action saddle points which are obtained via center symmetry transforms
in the x4 (time) direction of A = 0, reducing thus the N2 saddles (5.15) to N . We do not
yet see how the Euclidean path integral, which sees no difference between x3 and x4 can
accomplish this. Perhaps a proper definition of the Euclidean path integral (5.13), using
complex contours of integration (we note that the Euclidean fields are necessarily complexified,
as is already clear from the supersymmetry transformations and the fact that λ and λ̄ are
independent) could be developed to explain this.

G The path integral measure and the extra saddle points

In this appendix, we discuss the issue around the apparent disagreement we find between
the path integral and Hamiltonian determination of the Witten index.

We begin by pointing out — as suggested to us by an anonymous referee — that an
analogous issue arises in topological ZN gauge theories. Here, it is resolved by a careful
definition of the measure by means of a triangulation or lattice formulation. We shall then
argue that this construction holds lessons for the definition of the measure in the Yang-Mills
theory of interest.

G.1 From the Hilbert space to the path integral in the ZN topological (lattice)
gauge theory

Without loss of generality, we now consider the simplest example of a topological ZN theory:
taking two dimensional spacetime and N = 2. The 2-dimensional Z2 topological theory, for
definiteness defined on T2, has a continuum Euclidean action:

S = i
2
2π

∮
T2
ϕ(0)da(1), (G.1)

where ϕ(0) is a 2π periodic scalar and a(1) is a compact U(1) gauge field with periods∮
da(1) = 2πZ. Upon canonically quantizing this theory on S1, one finds that it has two

ground states, which can be described by the expectation values of the a(1) Wilson loops
winding around S1: ei

∮
S1 â(1)

|P ⟩ = |P ⟩(−1)P , P = 1, 2. As the Hamiltonian is zero, the T2

partition function is ZT2 = tr1 = 2, with the trace taken over the above two-dimensional
Hilbert space.

An issue similar to our Witten index puzzle arises if we consider the partition function
as an Euclidean path integral with action (G.1). Integrating out ϕ(0), a Lagrange multiplier
imposing flatness on the field a(1), we find that there are now four saddle points, the four
Z2 flat connections on T2, where

∮
i a

(1) ∈ {0, π} and the integral
∮

i, i = 1, 2, is taken along
either the spatial or timelike S1. One could now argue, analogous to what we did for the
case of the Witten index, that each of these zero action saddle points contributes the same
amount to the partition function, leading one to expect that the path integral gives ZT2 = 4
instead of the Hamiltonian result ZT2 = 2. We now want to discuss the resolution of this
apparent discrepancy upon a careful definition of the measure.
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First we review the measure defined upon a lattice discretization. It produces the correct
answer, ZT2 = 2, for the Euclidean T2 partition function, see appendix A of ref. [47].39 To
describe it, we start with the Euclidean action (G.1) discretized on a periodic two-dimensional
square lattice:

S = 2πi
2
∑

p

bp

∏
ℓ∈∂p

aℓ (G.2)

where the sum is over the plaquettes (p) of a two dimensional lattice and
∏

ℓ∈∂p aℓ is the
usual lattice curvature of the link-based gauge field aℓ. Both the plaquette-based Lagrange
multiplier bp and the gauge field aℓ are Z2-valued, taking the values 1 or 2. The partition
function on the discretized T2 is then defined as:

ZT2 = 1
22(#p)

∑
{bp,aℓ={1,2}}

eS (G.3)

where #p is the total number of plaquettes and the sum is over all possible configurations of
the lattice gauge fields. To compute (G.3) one first sums over bp (= 1, 2) to obtain a factor of
2#p, canceling one of the denominator factors. In addition, the sum gives rise to the constraint
that ap be a flat Z2 gauge field, as indicated by the δ-function (this is the result given after
the first equality in (G.4) below). There are a total of 2(#p) Z2 lattice gauge fields aℓ, but
the flatness conditions eliminate #p− 1 of them (the periodicity of the lattice guarantees
that the total Z2 flux is zero, eliminating one constraint). Thus the sum over aℓ produces a
factor of 2#p+1 in the numerator, giving the final answer ZT2 = 2. In summary, we found:

ZT2 = 1
2#p

∑
{aℓ={1,2}}

∏
p

δ(
∏

ℓ∈∂p

aℓ) =
2#p+1

2#p
= 2 (G.4)

The normalization factor of the measure appearing in (G.3) (as well as of the more general
theories discussed in [47]) can be understood as arising from the condition of locality and
topological nature of the Z2 theory partition function, which, in particular, require that the
partition function be independent on the number of lattice sites (here, #p).

The theory of interest to us, four-dimensional minimal super-Yang-Mills theory in the
background of a ’t Hooft flux, however, is not a topological field theory — although the
Witten index is invariant under certain deformations, the theory can not be formulated on
general manifolds while preserving supersymmetry. Our goal now is to understand how one
arrives at the definition of the measure from (G.3) starting from the Hilbert space description
and to see if this allows us to draw lessons for the Yang-Mills case of interest.

To this end, we introduce the Hilbert space on a one dimensional periodic spatial lattice
of L sites. We label the sites and the links to the right of each site by ℓ, ℓ = 1, . . . L, with
L+ 1 ≡ 1. On each link we have a Z2 gauge field operator Ẑℓ, Ẑ2

ℓ = 1 (e.g. represented by
the Pauli matrix σ3). The Hilbert space is spanned by the vectors:

|s1, s2, . . . , sL⟩, with Ẑℓ|s1, s2, . . . , sL⟩ = |s1, s2, . . . , sL⟩sℓ, sℓ = ±1, (G.5)
39Curiously, there is also a continuum calculation of the partition function of this two dimensional Z2

topological theory [48], producing the correct answer. The lattice definition we describe here is, however, more
straightforward and generalizes to other dimensions and values of N . It also holds lessons for the definition of
the measure in Yang-Mills theory.
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labeled by the eigenvalue of the Z2 gauge field operator, sℓ. At each site, we have ⟨s|s′⟩ = δs,s′ .
The Hilbert space thus defined is 2L dimensional.

The canonical momenta are X̂ℓ, X̂2
ℓ = 1 (with X̂ℓ represented by e.g. σ1). The operator

generating a Z2 gauge transformations on the site ℓ is ĝℓ = X̂ℓX̂ℓ−1, with ĝ2ℓ = 1. Thus,
a general gauge transformation is labeled by a set of Z2 integers (n1, n2, . . . , nL), one at
each site, nℓ = 1, 2, such that

Ĝ[n] =
L∏

ℓ=1
ĝnℓ

ℓ = X̂n1+n2
1 X̂n2+n3

2 . . . X̂nL+n1
L . (G.6)

Clearly, the general gauge transformations (G.6) act on the link fields as appropriate,

Ĝ[n] Ẑℓ Ĝ[n]−1 = (−1)nℓẐℓ(−1)nℓ+1 .

A projector on gauge invariant states can then be defined as

P̂G ≡ 1
2L

∑
{nℓ=1,2}

Ĝ[n] , (G.7)

where the normalization simply accounts for the fact that there are 2L values of nℓ summed
over. The partition function of this topological Z2 gauge theory, for a single time step in
the periodic Euclidean time direction, i.e. for T2 of size 1 × L, is then defined as a trace
over the physical Hilbert space,

ZT2 = tr1 =
∑

{sℓ=±1}
⟨s1, s2, . . . , sL|P̂G|s1, s2, . . . , sL⟩ (G.8)

= 1
2L

∑
{sℓ=±1,nℓ=1,2}

⟨s1, s2, . . . , sL|s1(−1)n1+n2 , s2(−1)n2+n3 , . . . , sL(−1)nL+n1⟩ .

The sum above is over Z2 gauge fields living on the L spatial links (sℓ) and the L timelike links
(nℓ). As is familiar from Yang-Mills theory, and as we review further below, the time-direction
links arise from the insertion of projection operators on gauge invariant states needed to define
the partition function (gauge invariance requires that this be done on at least one time slice).

Furthermore, for the gauge field configurations that give nonzero contribution to the
r.h.s. of (G.8), the Z2 flux through every one of the L plaquettes vanishes, because the sum is
nonzero only if nℓ + nℓ+1 = 0 for all ℓ, which is precisely the flux through the ℓ-th plaquette
(since for each plaquette the spacelike links are the same, they do not contribute to the flux).
Thus, eq. (G.8) is the same as eq. (G.4) with #p = L. We can also see this explicitly, by
finishing the computation of (G.8) (using ⟨s1|s1(−)n1+n2⟩ = δn1+n2,0):

ZT2 = 1
2L

∑
{sℓ=±1}

∑
{nℓ=1,2}

δn1+n2,0 δn2+n3,0 . . . δnL+n1,0 =
2L

2L
× 2 = 2 (G.9)

The last overall factor of 2 arises because the product of delta functions requires that all
nℓ be the same. We note that the two n1 = n2 = . . . = nℓ configurations are precisely the
saddle points of the continuum action on T2 eq. (G.1), with

∮
a(1) = (0, π) in the Euclidean
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time direction. In (G.8), these configurations are included in the path integral, but their
contribution is divided out by the normalization of the projector P̂G.40

The action of the projector on gauge invariant states P̂G of eq. (G.7):

P̂G|s1, s2, . . . , sL⟩ =
1
2L

∑
{nℓ=1,2}

|s1(−1)n1+n2 , s2(−1)n2+n3 , . . . , sL(−1)nL+n1⟩, (G.10)

shows that the two gauge transformations with n1 = n2 = . . . = nL act trivially on all states.41

Another lesson from (G.10) is that two gauge transformations — one with (n1, n2, . . . , nL) and
the other with (n1 + 1, n2 + 1, . . . , nL + 1) (i.e., the second with nℓ → nℓ + 1, simultaneously
for all ℓ, of course all taken (mod 2)) — act identically on all states. Thus, we can define the
same projector by summing over all {nℓ} but identifying configurations where nℓ ≡ nℓ + 1,
simultaneously for all ℓ:

P̂G|s1, s2, . . . , sL⟩ =
1

2L−1

∑
{nℓ=1,2}

|s1(−1)n1+n2 , s2(−1)n2+n3 , . . . , sL(−1)nL+n1⟩
∣∣∣∣
n1+1,n2+1,...,nL+1≡n1,n2,...nL

,

(G.11)

where we indicated that configurations where all nℓ differ by unity are not summed over.
This identification reduces the number of configurations by two and is now accounted for
in the normalization of the projector.

We shall now attempt to pursue the analogy with Yang-Mills theory. Owing to its
nonabelian and non-topological nature, the analogy is not complete, but there is merit in
studying the transition from the Hamiltonian to the Euclidean path integral formulation.

G.2 From the Hilbert space to the path integral in the single-cube lattice
Yang-Mills theory with ’t Hooft flux

Consider SU(2) Yang-Mills theory with a single unit of ’t Hooft flux n12 = 1 defined on a
single-cube spatial lattice. There are three link variables and a single gauge transformation
parameter g, see figure 2. The lattice Kogut-Susskind Hamiltonian is as follows:

Ĥ = g2

2aĴ
a
i Ĵ

a
i − 2

g2a

(
−tr Û1Û2Û

−1
1 Û−1

2 + tr Û2Û3Û
−1
2 Û−1

3 + tr Û1Û3Û
−1
1 Û−1

3

)
(G.12)

where Ĵa
i are the electric field operators (classically, ∼ (U̇iU

−1
i )a) and a is the lattice spacing

(we recalled that traces of group elements are real in SU(2) gauge theories). We work in the
g2 → 0 limit, thus focusing on minimizing the classical potential energy. The minus sign in
front of the 1 − 2 plane plaquette represents the insertion of a unit ’t Hooft flux.

40The clearest case is the one of L = 1, where no gauge transformation acts nontrivially on the spin, yet the
projector involves a sum over the two values of n1, but divided by two.

41Another peculiarity of this theory as that P̂G projects on a two-dimensional space (there are 2L vectors in
Hilbert space but 2L−1 nontrivial gauge transforms, thus making the physical Hilbert space dimension = 2).
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Figure 2. The single cube lattice Yang-Mills theory with a unit ’t Hooft flux (represented by a
two-form Z2 background field, B12 = 1, and reflected in the change of sign in the 1− 2 plane plaquette
potential energy). There is only one gauge transformation parameter g in this single-cube theory.

Clearly, the classical potential is minimized when the 2− 3 and 1− 3 plaquette traces
are +2 while the 1 − 2 plaquette is −2, thus requiring:

U1U2 = −U2U1,

U2U3 = U3U2, (G.13)
U1U3 = U3U1.

Clearly, up to gauge transformations, we have that

U1 = iσ1, U2 = iσ2, U3 = ±1 . (G.14)

The gauge invariant characterization of these states is that W1 = 1
2trU1 =W2 = 1

2trU2 = 0
and W3 = 1

2trU3 = ±1. These are exactly the two vacua with classically broken center
symmetry along x3 that contribute to the Witten index shown in (5.10) — which can be
recovered in this simple single-cube world with a ’t Hooft twist. Thus, the classical states
can be denoted by

|U1, U2, U3⟩class. = |iσ1, iσ2,±1⟩, (G.15)

where we use position space eigenvectors, Û1|U1⟩ = |U1⟩U1, etc., similar to the Z2 theory
of the previous section.

Now, we proceed to define a single time-step, ϵ, partition function. To this end, we need
a projector on gauge invariant states, which acts as

P̂G|U1, U2, U3⟩ =
∫

SU(2)

dg |gU1g
−1, gU2g

−1, gU3g
−1⟩, with

∫
SU(2)

dg = 1, (G.16)

where the integral is defined with the SU(2) Haar measure. Notice, however, that for all
Ui, the gauge transformations g and −g act identically.42 Thus, we could also define the

42The action of this single gauge transformation corresponds to the action of n1 = n2 = n3 = . . . = nL = 1
and n1 = n2 = . . . = nL = −1 in the Z2 gauge theory of the previous section (the analogy is more pronounced
if one takes L = 1 there, recall footnote 40). The difference is, however, that due to the abelian nature there,
none of these gauge transformations act on any states, while here they do.
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projector by restricting g to be in PSU(2)= SO(3), since the equation below is an identity:

P̂G|U1, U2, U3⟩=
∫

SU(2)

dg |gU1g
−1, gU2g

−1, gU3g
−1⟩=

∫
PSU(2)

dg′ |g′U1g
′ −1, g′U2g

′ −1, g′U3g
′ −1⟩,

provided we normalize
∫

PSU(2)

dg′ = 1 and
∫

SU(2)

dg = 1. (G.17)

The identity follows from the fact that the Haar measures differ by restricting one of the
Euler angles and the fact that the integrand is the same in the second cover of PSU(2).
We note that eq. (G.17) is the counterpart of the two definitions of the projector in the
ZN theory (recall eqs. (G.10), (G.11)).

The transfer matrix, written without specifying whether we use g or g′ from (G.17), is
the matrix element of e−ϵĤ between general Hilbert space vectors on two neighboring time
slices, with a projector on gauge invariant states inserted:

⟨U ′
1, U

′
2, U

′
3|e−ϵĤ P̂G|U1, U2, U3⟩ =

∫
dg ⟨U ′

1, U
′
2, U

′
3|e−ϵĤ |gU1g

−1, gU2g
−1, gU3g

−1⟩. (G.18)

Then we use the well known expression for the matrix element of the transfer matrix [52, 53]

⟨U ′
1U

′
2U

′
3|e−ϵĤ |U1U2U3⟩ = e

2a
g2ϵ

∑3
i=1 trU ′

iU−1
i + 2ϵ

ag2 (−trU1U2U−1
1 U−1

2 +trU2U3U−1
2 U−1

3 +trU1U3U−1
1 U−1

3 )

where we skip the overall constant (which can be written out but is not informative; in
addition, in super-Yang-Mills it should cancel with the fermion contribution, in an ideal
supersymmetric-lattice world). Thus, we obtain for the single time step partition function,
defined as a trace over the physical Hilbert space:

Z = tr e−ϵĤ =
∫
dU1dU2dU3 ⟨U1U2U3|e−ϵĤ P̂G|U1U2U3⟩ (G.19)

=
∫
dU1dU2dU3dg ⟨U1U2U3|e−ϵĤ |gU1g

−1, gU2g
−1, gU3g

−1⟩

=
∫
dU1dU2dU3dg e

2a
g2ϵ

∑3
i=1 trUigU−1

i g−1+ 2ϵ
ag2 (−trU1U2U−1

1 U−1
2 +trU2U3U−1

2 U−1
3 +trU1U3U−1

1 U−1
3 )

Semiclassically, at small coupling g2, the spatial plaquettes in the exponent are maximized
when the Ui’s obey (G.13), (G.14) — this is clear, since potential energy is same as in (G.12).
On the other hand, the kinetic term is maximal only when g commutes with all Ui sad-
dles (G.14). However, since they are proportional to σ1,2,3 in the three directions, it must
be that g be ±1, if we allow g in SU(2) or g = +1 if we use PSU(2). But in view of (G.17)
there shouldn’t be a difference, since the two cases should be identical.

Recalling that 1
2tr g is our fourth direction W4, we notice that the minimum action

saddles that we found above are precisely the ones of (5.14) for N = 2, with W1 =W2 = 0
and W3 = ±1, W4 = ±1. The definition of the path integral measure suggests that the
contributions of the two W4 = ±1 saddles is counted, but divided out in the partition function.

Finally, we note that in this single-hypercube world, one can go further and study the
“fractional instantons”, by including a second ’t Hooft twist in the 3− 4 plane. To this end,
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the twisted partition function is, relabeling g → U4:

tr e−ϵĤ T̂3 = (G.20)

=
∫
dU1dU2dU3dg e

2a
g2ϵ

(trU1U4U−1
1 U−1

4 +trU2U4U−1
2 U−1

4 −trU3U4U−1
3 U−1

4 )

× e
2ϵ

ag2 (−trU1U2U−1
1 U−1

2 +trU2U3U−1
2 U−1

3 +trU1U3U−1
1 U−1

3 )
.

The action is now frustrated by the 3-4 plaquette twist and — as far as we know — the
best one can do analytically is to prove that the action is strictly larger than the minimum
action in (G.19) (i.e. show that a configuration where all terms in the exponent in (G.20),
taken with the appropriate signs, ±Πij ≡ ±trUiUjU

−1
i U−1

j achieve their maximum value
= 2, for all i, j = 1, . . . 4, is impossible).

Taking a = ϵ, one can now ask what are the single-hypercube analogues of the fractional
instantons. The minimization of the classical action can be performed numerically, as in [38]

— where it was done on larger lattices, with results close to the continuum limit and agreeing
with it within errors. The result43 is that there are 8 minimum action “fractional instanton”
configurations in the single-hypercube twisted torus. In all of them the values of the plaquettes
Πij ≡ trUiUjU

−1
i U−1

j are Π13 = Π14 = Π23 = Π24 = 2 (i.e. they take their maximum value,
thus maximizing their contribution to the exponent in (G.20)). In the 1 − 2 and 3 − 4
plaquettes, however, two distinct types of configurations occur

type 1 : Π12 = −2,Π34 = 2, trU3 = ±1, trU4 = ±1, trU1 = trU2 = 0,
type 2 : Π12 = 2,Π34 = −2, trU1 = ±1, trU2 = ±1, trU3 = trU4 = 0. (G.21)

Clearly, the action is the same in all these configurations. As opposed to the continuum
constant flux fractional instanton of ’ t Hooft, in each “instanton” shown in (G.21) there is
unbroken center symmetry in the two directions with nonminimal contribution to the action
(“flux”), so there are only four center symmetry copies of each instanton.44 Here again, the
definition of the measure (G.17) suggests that the two configurations with trU4 = ±1 are
summed over, with their contribution divided out in the path integral (or identified), as
in the ZN gauge theory. We take this to suggest that images of the fractional instantons
under center symmetry in the x4 direction should not be counted also in the continuum
super-Yang-Mills theory.
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43We are grateful to Andrew Cox for performing this numerical simulation.
44These two types of configuration occur equally often, starting the minimization algorithm from a random

initial value, after generating thousands of minimum action configurations. In addition, further traces trUiUj ,
etc., were studied to corroborate the statement that in each configuration there is unbroken center symmetry.
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