
Theoretical Computer Science 1038 (2025) 115154

Available online 6 March 2025
0304-3975/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Reconfigurable routing in data center networks ✩

David C. Kutner ,∗, Iain A. Stewart
Department of Computer Science, Durham University, Upper Mountjoy Campus, Stockton Road, Durham DH1 3LE, UK

A R T I C L E I N F O A B S T R A C T

Keywords:

Algorithms

Complexity

Reconfigurable topologies

Optical circuit switches

Software-defined networking

A hybrid network is a static (electronic) network that is augmented with optical switches. The
Reconfigurable Routing Problem (RRP) in hybrid networks is the problem of finding settings for
the optical switches augmenting a static network so as to achieve optimal delivery of some given
workload. The problem has previously been studied in various scenarios with both tractability and
NP-hardness results obtained. However, the data center and interconnection networks to which
the problem is most relevant are almost always such that the static network is highly structured
(and often node-symmetric) whereas all previous results assume that the static network can be
arbitrary (which makes existing computational hardness results less technologically relevant and
also easier to obtain). In this paper, and for the first time, we prove various intractability results
for RRP where the underlying static network is highly structured, for example consisting of a
hypercube, and also extend some existing tractability results.

1. Introduction

The rapid growth of cloud computing applications has induced demand for new technologies to optimize the performance of
data center networks dealing with ever-larger workloads. The data center topology design problem (that of finding efficient data
center topologies) has been studied extensively and resulted in myriad designs (see, e.g., [7]). Advances in hardware, such as optical
switches reconfigurable in milli- to micro-seconds, have enabled the development of reconfigurable topologies (see, e.g., [19]). These
topologies can adjust in response to demand (demand-aware reconfigurable topologies) or vary configurations over time according to
a fixed protocol (demand-oblivious reconfigurable topologies; see, e.g., [4]). So-called hybrid data center networks are a combination
of a static topology consisting of, for example, electrical switches, and a demand-aware reconfigurable topology implemented, for
example, with optical circuit switches or free space optics (see, e.g., [6,14,20,25]). An intuitive example of a simple reconfigurable
topology is illustrated in Fig. 1.

The hybrid network paradigm combines the robustness guarantees of static networks with the ability of demand-aware recon-

figurable networks to serve large workloads at very low cost. Consider, for example, the hybrid network shown in Fig. 2, and the
configuration shown in Fig. 3. In the (unaugmented) static network, there are two possible paths along which a message from node 𝑏
to node 𝑑 may be routed: 𝑏→ 𝑓 → ℎ→ 𝑒→ 𝑑 or 𝑏→ 𝑓 → 𝑒→ 𝑑. In the hybrid network as configured in Fig. 3, the path 𝑏⇢ 𝑎→ 𝑐 ⇢ 𝑑

(among others) is an option.1

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.

E-mail addresses: david.c.kutner@durham.ac.uk (D.C. Kutner), i.a.stewart@durham.ac.uk (I.A. Stewart).
1 We denote by 𝑢⇢ 𝑣 the concatenation of a switch link from 𝑢 to some switch, of the internal switch connection, and of a switch link to 𝑣 from that switch.

https://doi.org/10.1016/j.tcs.2025.115154

Received 28 November 2024; Accepted 26 February 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://orcid.org/0000-0003-2979-4513
mailto:david.c.kutner@durham.ac.uk
mailto:i.a.stewart@durham.ac.uk
https://doi.org/10.1016/j.tcs.2025.115154
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115154&domain=pdf
https://doi.org/10.1016/j.tcs.2025.115154
http://creativecommons.org/licenses/by/4.0/

Theoretical Computer Science 1038 (2025) 115154

2

D.C. Kutner and I.A. Stewart

Fig. 1. Basic model of an optical wireless data-center network, as described in [6,20,25]. Practical timescales for reconfiguration vary from milliseconds [20] to
microseconds or nanoseconds [6,25].

Fig. 2. A hybrid network.

Fig. 3. An augmented network and its abstracted dynamic links.

Of particular interest to us is the question of how the reconfigurable (optical) portion of the network should be configured for
some demand pattern, formalized by Foerster, Ghobadi and Schmid [12] as the Reconfigurable Routing Problem (RRP): in
short, given a hybrid network (consisting of a static network and of some switches) and a workload, we wish to choose a configuration
(setting of the switches) which results in an optimal delivery of the workload.

Crucially, existing hardness results are only valid when the static network is allowed to be arbitrary, which is almost never the case
in practice where interconnection and data center network design is driven by symmetry, high connectivity, recursive decomposition,
and so forth. For example: the popular switch-centric data center network Fat-Tree [3] is derived from a folded Clos network; the
server-centric data center network DCell [17] is recursively-structured whereby at each level, a graph-theoretic matching of servers
is imposed; and the server-centric data center network BCube [16] is recursively-structured with a construction based around a
generalized hypercube. (It should be noted that there do exist examples of unstructured data center networks, such as Jellyfish [23]
and Xpander [24] which utilize the theory of random graphs.) Many (but not all) NP-complete problems become tractable when the
input is restricted to the graphs providing the communications fabric for data center networks and other interconnection networks. For
example, Hamiltonian paths are often trivial to find in many interconnection networks; indeed, no finite connected vertex-transitive
graph without a Hamiltonian path is known to exist (the Lovász Conjecture contends there is no such graph - see Section 4 of [22]).
This motivates our investigation into how the complexity of RRP changes when we restrict to more structured and realistic networks.
The question of the complexity of RRP for specific network topologies was specifically identified as an area for future work in [11].

In this paper, we establish for the first time hardness results for RRP that apply to various specific families of highly structured
static networks such as, for example, the hypercubes. Our constructions are (perhaps not surprisingly) of a much more involved nature
than has hitherto been the case.

Theoretical Computer Science 1038 (2025) 115154

3

D.C. Kutner and I.A. Stewart

2. Problem setting

The decision problem Reconfigurable Routing Problem considered in this paper is a proper restriction of that presented in
prior work [11–13]. In this section, we provide technical detail to fully formalize our version of the problem, but also additionally
provide sufficient framing to briefly review existing results and to identify the areas strengthened by our contribution.

We adopt the usual terminology of graph theory though we tend to use ‘nodes’ and ‘links’ when speaking about the components
of reconfigurable networks and ‘nodes’ and ‘edges’ when dealing with (abstract) graphs. We denote the natural numbers by ℕ (we
include 0 ∈ ℕ) and the non-negative rationals by ℚ+.

2.1. Hybrid networks, (re)configurations and (segregated) routing

A hybrid network 𝐺(𝑆) can be visualized as in Fig. 2, and consists of a static network 𝐺 and some switches 𝑆 augmenting it. A
static network 𝐺 can be abstracted as an undirected graph 𝐺 = (𝑉 ,𝐸) so that each static link (𝑢, 𝑣) ∈𝐸 has some fixed weight 𝑤 ∈ℚ+
(reflecting a transmission cost) and is incident with internal ports of two distinct nodes of 𝑉 . The number of internal ports of some
node 𝑣 ∈ 𝑉 is then exactly the degree of 𝑣 in the abstracted graph 𝐺. We denote by 𝑆 a set of switches augmenting the static network
𝐺 with switch links joining switch ports of some switch to external ports of some of the nodes of 𝑉 . Every switch link has weight 0 (we
say more about switch link weights momentarily). Every switch 𝑠 ∈ 𝑆 has at least two switch ports.

In general, the number of external ports of the nodes of a static network 𝐺 = (𝑉 ,𝐸) is variable, as is the number of switch ports
of the switches of a hybrid network 𝐺(𝑆), and it may be the case that there is more than one switch link between a specific node and
a specific switch. We assume that the switch links describe a bijection between the external ports and the switch ports; otherwise,
there would be some unused ports, which we can safely ignore.

Given a hybrid network 𝐺(𝑆) and a switch 𝑠 ∈ 𝑆 , a switch matching 𝑁𝑠 of 𝑠 is a set of pairs of switch ports of 𝑠 so that all switch
ports involved are distinct. Each switch matching represents an internal setting of the switch and naturally yields a set of pairs of
external ports of nodes where all such ports are distinct; we refer to a set of pairs of external ports obtained in this way as a node
matching (note that this differs from the standard graph-theoretic notion of a matching). An illustration of a configured hybrid network
is shown in Fig. 3: on the left side, switch matchings are represented as sets of arcs, and on the right side the corresponding node
matching is shown as a set of dotted lines.

A configuration 𝑁 is a set of switch matchings, one for each switch. A configuration straightforwardly encodes the corresponding
node matchings. We say that (𝑢, 𝑣) is a dynamic link in the configuration 𝑁 (we sometimes write (𝑢, 𝑣) ∈𝑁) if (𝑢, 𝑣) appears in any
node matching corresponding to 𝑁 .

We allocate a fixed weight 𝜇 ∈ℚ+ to each internal port-to-port connection in a switch 𝑠. Although a dynamic link is an atomic
entity, it can be visualized as consisting of a switch link followed by an internal port-to-port connection in 𝑠 followed by another
switch link. We denote by 𝐺(𝑁) the static network 𝐺 augmented with the dynamic links (each of weight 𝜇) resulting from the
configuration 𝑁 and we call 𝐺(𝑁) an augmented network. In the augmented network visualized in Fig. 3, for example: (𝑎, 𝑏) is a
dynamic link; (𝑎, 𝑐) is a static link; and (𝑒,ℎ) is both a static link a dynamic link. Note that it is possible that an augmented network
𝐺(𝑁) is a multigraph.

The concepts defined above are driven by reconfigurable hardware technology such as optical switches, wireless (beamforming)
and free-space optics, all of which establish port-to-port connections, i.e., switch matchings. The survey paper [14] provides some
detail as regards the relationship between the emergent theoretical models and current opto-electronic technology.

2.2. Routing in hybrid networks

Consider again the example shown in Fig. 3. In the configuration shown, a message 𝑀 from 𝑐 to node 𝑒 may be routed:

1. via static links only, along the path 𝜑1 ∶= 𝑐 → 𝑏→ 𝑓 → 𝑒 with weight 3𝑤, or

2. via dynamic links only, along the path 𝜑2 ∶= 𝑐 ⇢ 𝑑 ⇢ ℎ⇢ 𝑒 with weight 3𝜇, or

3. via a combination of static and dynamic links, along the path 𝜑3 ∶= 𝑐 ⇢ 𝑑 → 𝑒 with weight 𝜇 +𝑤.

Depending on the value of 𝜇, any of the paths may minimize the cost to route 𝑀 : if 𝜇 ≥ 2𝑤 then 𝜑1 is optimal; if 𝜇 ≤
𝑤

2 then 𝜑2
is optimal; and if 𝜇 ∈ [𝑤2 ,2𝑤] then 𝜑3 is an optimal. We may wish to bound the number of alternations allowed between optic and
static links in any path a message takes; we capture this hardware requirement via a segregation parameter 𝜎 ∈ℕ∪{∞}, as introduced
in [13], that is the number of alternations between static and dynamic links. In the fully segregated case, 𝜎 = 0: messages may be
routed either by static links only (as in 𝜑1) or by dynamic links only (as in 𝜑2). In the non-segregated case, 𝜎 =∞ and there is no
restriction on the number of alternations, so any path is admitted. Note 𝜑3 is admitted as a valid path to route 𝑀 if and only if
𝜎 ≥ 1. The dynamic link limit 𝛿, like the segregation parameter 𝜎, is a restriction on admissible flow-paths. Whereas 𝜎 describes the
maximum number of alternations between static and dynamic links permitted, 𝛿 describes the maximum number of dynamic links
any flow-path may use. In particular, when 𝛿 = 1 every flow-path must contain at most one dynamic link.

Networks are expected to route many messages (of varying sizes) optimally at the same time. Given a hybrid network 𝐺(𝑆) we
represent the set of all demands we must optimize for as a workload (matrix) 𝐷 with entries {𝐷[𝑢, 𝑣] ∈ℚ+ ∶ 𝑢, 𝑣 ∈ 𝑉 } providing the
intended pairwise node-to-node workloads (each 𝐷[𝑢, 𝑢] is necessarily 0).

Theoretical Computer Science 1038 (2025) 115154

4

D.C. Kutner and I.A. Stewart

Given a configuration 𝑁 and 𝑢, 𝑣 ∈ 𝑉 for which 𝐷[𝑢, 𝑣] > 0, we route the corresponding workload via a path in 𝐺(𝑁) from 𝑢 to 𝑣
in 𝐺(𝑁) so that this chosen flow-path 𝜑(𝑢, 𝑣) has workload cost 𝐷[𝑢, 𝑣] ×𝑤𝑡𝐺(𝑁)(𝜑(𝑢, 𝑣)), where the weight 𝑤𝑡𝐺(𝑁)(𝜑(𝑢, 𝑣)) is the sum
of the weights of the links of the flow-path 𝜑(𝑢, 𝑣) (if 𝐺(𝑁) has both a static link (𝑥, 𝑦) and a dynamic link (𝑥, 𝑦) then we need to say
which we are using in 𝜑(𝑢, 𝑣)). The total workload cost (of 𝐷 under 𝑁) is defined as

∑
𝑢,𝑣∈𝑉 ,𝐷[𝑢,𝑣]>0

𝐷[𝑢, 𝑣] ×𝑤𝑡𝐺(𝑁)(𝜑(𝑢, 𝑣)).

Our aim will be to find a configuration 𝑁 in some hybrid network 𝐺(𝑆) and flow-paths in 𝐺(𝑁) for which the total workload
cost of some workload matrix 𝐷 is minimized. In an unrestricted scenario, we would choose any flow-path 𝜑(𝑢, 𝑣) to be a flow-path
of minimum weight from 𝑢 to 𝑣 in 𝐺(𝑁), the weight of which we denote by 𝑤𝑡𝐺(𝑁)(𝑢, 𝑣). When 𝜎 ≠ ∞ we must also ensure the
flow-path has at most 𝜎 alternations. We also have the analogous concepts 𝑤𝑡𝐺(𝜑(𝑢, 𝑣)) and 𝑤𝑡𝐺(𝑢, 𝑣) where we work entirely in the
static network 𝐺. Note that we often describe 𝐷 by a weighted digraph, which we usually call 𝐷′ , so that the node set is 𝑉 and there
is an edge (𝑢, 𝑣) of weight 𝑤> 0 if, and only if, 𝐷[𝑢, 𝑣] =𝑤. We also refer to some 𝐷[𝑢, 𝑣] > 0 as a demand (from 𝑢 to 𝑣).

2.3. The reconfigurable routing problem

We are now in a position to introduce our protagonist:

Reconfigurable Routing Problem (𝜎) (RRP(𝜎))

Input: (𝐺,𝑆,𝜇,𝑤,𝐷,𝜅): 𝐷 is a workload matrix for the hybrid network 𝐺(𝑆) with static (resp. dynamic) links all of weight
𝑤 (resp. 𝜇).
Question: Does 𝐺(𝑆) admit some configuration 𝑁 such that the total workload cost of 𝐷 under 𝑁 (where the number of
alternations for any path is bounded by 𝜎) is at most 𝜅?

As previously alluded to, this setting is more expressive than we require for most of this paper, and more restrictive than the exact
formalism considered in prior work [11–13]: in those works, 𝑤 and 𝜇 are sometimes allowed to be functions of their endpoints rather
than fixed constants. This provides much more expressivity; notably, their model loses no power when it is restricted to inputs where
𝐺 is a complete graph and there is only one switch, since it is possible to simulate any other instance by assigning prohibitively large
weights to any static edges and any pair of switch ports which should not be usable.

We now turn to the “realistic” networks we mentioned in our introduction. Henceforth unless otherwise specified, static link
weights are all equal (and normalized to 1) and dynamic link weights are always some fixed constant 𝜇 ∈ℚ+. Also, there is a single
switch and all nodes are connected to it with identical hardware. This is both practically relevant and intuitively realistic; see e.g.
Fig. 1. Then the set of switches 𝑆 of the hybrid network consists of just one switch, which is fully described by the number of switch
links each node in the hybrid network has, which we call Δ𝑆 . This is closely related to the maximum reconfigurable degree Δ𝑅 from
[13], which is an upper bound on the number of external ports per node. The resulting restriction of RRP can be formalized as follows:

Δ𝑆 -switched RRP (𝜎)

Input: (𝐺,𝜇,𝐷,𝜅): 𝐷 is a workload matrix for the hybrid network 𝐺(𝑆) with static (resp. dynamic) links all have weight
1 (resp. 𝜇) (where 𝑆 consists of a single switch that every node in 𝐺 is connected to exactly Δ𝑆 times).
Question: Does 𝐺(𝑆) admit some configuration 𝑁 such that the total workload cost of 𝐷 under 𝑁 (where the number of
alternations for any path is bounded by 𝜎) is at most 𝜅?

3. Results

Table 1 shows a summary of hardness results from previous work as well as our three main intractability results. In general terms,
we obtain NP-completeness for 2-switched RRP and 3-switched RRP on any fixed class of static networks of practical interest
(defined more fully below) and for any value of 𝜎. We then restrict our focus (and associated parameters) to the case where the
static network is a hypercube when we establish the NP-completeness of 1-switched RRP(𝜎 = 3) in this setting; we conjecture that
a similar construction can be used to establish hardness when 𝜎 > 3. We also, in Theorem 3, show that 1-switched RRP(𝜎 = 0) is
solvable in polynomial time. The cases when 𝜎 ∈ {1,2} remain interesting open problems. Subsection 3.1 is devoted to the case of
1-Switched RRP(𝛿 = 1) (i.e. any flow-path must contain at most a single dynamic link) which entails at most 2 alternations, and we
show this case is NP-complete for hypercubes, grids, and toroidal grids. The proof in that section is intended to facilitate the task of
proving hardness for other interesting families of networks.

As is standard in NP-hardness proofs, we reduce from known NP-complete problems to instances of RRP; the challenge is that,
due to the expansive scope of our theorems, we lose several “degrees of freedom” which are used for encoding hard instances in, e.g.,
[10–12]. Specifically, we may not make use of varying static or dynamic link weights to prohibit certain connections, nor encode any
features of the input instance in the topology of the hybrid network 𝐺(𝑆). For example, in Lemma 1 [12], many small switches with

Theoretical Computer Science 1038 (2025) 115154

5

D.C. Kutner and I.A. Stewart

Table 1
Settings for some pre-existing hardness results for RRP. |𝑆| is the number of switches; Δ𝑅 is the maximum
number of external ports per node; 𝜎 is the segregation parameter and 𝛿 is the dynamic link limit; 𝐷 is the
workload matrix; 𝑛 denotes the number of nodes in the instance.

Result |𝑆| Δ𝑅 𝜎/𝛿 𝐷 link weights notes

[11], Theorem 1 Θ(𝑛)
(or 1a)

Θ(𝑛) any
𝜎 ≥ 2

sparse,
all values
0 or 1

variable;
𝑤 ∈ [1,100𝑛2]
𝜇 ∈ [1,100𝑛2]

Showed inapprox.
within Ω(log𝑛)

[12], Lemma 1 Θ(𝑛) 1 fixed;
𝑤 = 𝜇 = 1

All switches have
3 ports.

[12], Theorem 2 1 𝐺 has Θ(𝑛)
components

[13], Theorems
4.1, 4.2

2 any
𝜎 ≥ 0

dense,
values in
poly(𝑛)

𝐺 is empty; there
are no static links

Theorem 1 sparse,
values in
poly(𝑛)

fixed; 𝑤= 1
𝜇 ∈Θ(1

poly(𝑛)
)

𝐺 ∈, where is
any polynomial
family of networks
(incl. hypercubes,
grids, cycles).

Theorem 2 3 fixed; 𝑤= 1
𝜇 ∈Θ(1

log(𝑛)
)

Theorem 4 1 𝜎 = 3 fixed; 𝑤= 1
any 𝜇 ∈ (0,1)

𝐺 is a hypercube

Theorem 8 𝛿 = 1 𝐺 is a hypercube,
grid, or toroidal
grid

a By using variable 𝜇 with prohibitively large weights, it is possible to simulate many switches with just
one.

two feasible configurations each are used to encode a truth assignment, and in Theorem 1 of [11] “bad” links are given weights of
order Θ(𝑛2). Neither of these mechanisms can be leveraged to obtain hardness in our setting; in this sense, our hardness results are
strictly stronger and also harder to obtain than those from [10–12]. We are constrained to choose a size for the network 𝐺, and then
to encode the input instance in the demand matrix 𝐷.

Our first two results hold for a wide class of graph families, which may be of broader interest for the study of computational
hardness in network problems. Rather than allowing arbitrary static networks in instances of RRP, we wish to force any such static
network to come from a fixed family of networks where a family of networks is an infinite sequence of networks {𝐻𝑖 ∶ 𝑖 ≥ 0} so
that the size |𝐻𝑖| of any 𝐻𝑖 is less than the size of 𝐻𝑖+1. However, we wish to control the sequence of network sizes. Consequently,
we define a polynomial family of networks as being a family of networks = {𝐻𝑖 ∶ 𝑖 ≥ 0} where there exists a polynomial 𝑝 (𝑥)
so that |𝐻𝑖+1| = 𝑝 (|𝐻𝑖|), for each 𝑖 ≥ 0.2 Note that given any 𝑛 ≥ 0, we can determine in time polynomial in 𝑛 the smallest 𝑖
such that 𝑛 ≤ |𝐻𝑖|. As an example of a polynomial family of networks, consider the hypercubes; here, the polynomial 𝑝 (𝑥) = 2𝑥.
Other examples include independent sets, complete graphs, cycles, complete binary trees and square grids, among many others. The
sweeping generality of having a single construction which holds for any polynomial family poses a challenge in our proofs of
Theorems 1 and 2; we require that our constructed network 𝐻(𝑆) behaves identically when 𝐻 is a connected (or even complete)
graph and, at the opposite extreme, when 𝐻 is disconnected (or even independent).

Theorem 1. For any polynomial family of networks = {𝐻𝑖 ∶ 𝑖 ≥ 0}, the problem 2-switched RRP restricted to instances (𝐻,𝜇,𝐷,𝜅)
satisfying:

• 𝐻 ∈ has size 𝑛
• the workload matrix 𝐷 is sparse and all values in it are polynomial in 𝑛
• 𝜇 ∈Θ(1

𝑝𝑜𝑙𝑦(𝑛)) is fixed for all dynamic links

is NP-complete.

Proof. Note that 2-switched RRP as in the statement of the theorem is in NP as it can be straightforwardly reduced to an equivalent
instance of the more general RRP, which is known to be in NP. We now build a polynomial-time reduction from the problem 3-Min-

Bisection to our restricted version of RRP where the problem 3-Min-Bisection is defined as follows:

• instance of size 𝑛: a 3-regular graph 𝐺 = (𝑉 ,𝐸) on 𝑛 nodes and an integer 𝑘 ≤ 𝑛2

2 Technically, we insist that there exists a polynomial Turing machine which computes 𝐻𝑖+1 on input 𝐻𝑖 , for each 𝑖≥ 0, but this definition obfuscates the utility
of this description.

Theoretical Computer Science 1038 (2025) 115154

6

D.C. Kutner and I.A. Stewart

𝑥0𝑥−1 𝑥1𝑥−2 𝑥2𝑥− = 𝑥 −𝐿
2 𝑥+ = 𝑥 𝐿

2
… …

𝑦0𝑦−1 𝑦1𝑦−2 𝑦2𝑦− = 𝑦 −𝐿
2 𝑦+ = 𝑦 𝐿

2

… …

Fig. 4. The graph 𝐷′ .

• yes-instance: there exists a partition of 𝑉 into two disjoint subsets 𝐴 and 𝐵, each of size 𝑛 2 , so that the set of edges incident with
both a node in 𝐴 and a node in 𝐵 has size at most 𝑘; that is, 𝐺 has bisection width at most 𝑘.

Note that any 3-regular graph necessarily has an even number of nodes. The problem 3-Min-Bisection was proven to be NP-complete
in [5] where it was also shown that approximating 3-Min-Bisection to within a constant factor approximation ratio entails the
existence of a constant factor approximation algorithm for the more general and widely-studied problem Min-Bisection, which is
defined as above but where 𝐺 can be arbitrary and where 𝐴 and 𝐵 have sizes differing by at most one. Given an arbitrary instance
(𝐺 = (𝑉 ,𝐸), 𝑘) of size 𝑛 of 3-Min-Bisection, we now build an instance (𝐻,𝜇,𝐷,𝜅) of 2-switched RRP. Moreover, we may assume
that 𝑘 ≤

𝑛
3 + 46 as it was proven in [9] that every 3-regular graph has bisection width at most 𝑛 3 + 46.

First, we define a weighted digraph 𝐷′ = (𝑉 ′,𝐸′) which will encode a description of our workload matrix 𝐷 via: there is a directed
edge (𝑢, 𝑣) with weight 𝑤 if, and only if, there is a node-to-node workload of 𝑤 from 𝑢 to 𝑣. Let �̄� be the size of the network 𝐻𝑖 where
𝑖 is the smallest integer such that 𝑛+ 6𝑛2 + 2 ≤ |𝐻𝑖| and set 𝐻 =𝐻𝑖.

• The node set 𝑉 ′ is taken as a disjoint copy of the node set 𝑉 of 𝐺, which we also refer to as 𝑉 , together with the set of nodes
𝑉𝑐 = {𝑥𝑖, 𝑦𝑖 ∶ −

𝐿

2 ≤ 𝑖 ≤
𝐿

2 }, where 𝐿= 3𝑛2 (recall, 𝑛 is even), and another set of nodes 𝑈 of size �̄�−(𝑛+6𝑛2 +2); so, |𝑉 ′| = �̄�. We
call every node of 𝑉𝑐 a chain-node. For ease of presentation, we denote the chain-nodes 𝑥𝐿

2
and 𝑥− 𝐿

2
by 𝑥+ and 𝑥−, respectively,

and we define the chain-nodes 𝑦+ and 𝑦− analogously.

• The (directed) edge set 𝐸′ consists of 𝐸𝛼 ∪𝐸𝛽 ∪𝐸1 where:

– the set of chain-edges 𝐸𝛼 = {(𝑥𝑖, 𝑥𝑖+1), (𝑦𝑖, 𝑦𝑖+1) ∶ 0 ≤ 𝑖 <
𝐿

2 } ∪ {(𝑥𝑖, 𝑥𝑖−1), (𝑦𝑖, 𝑦𝑖−1) ∶ −
𝐿

2 < 𝑖 ≤ 0}
– the set of star-edges 𝐸𝛽 = {(𝑥0, 𝑣) ∶ 𝑣 ∈ 𝑉 } ∪ {(𝑦0, 𝑣) ∶ 𝑣 ∈ 𝑉 }
– the set of unit-edges 𝐸1 which is a copy of the edges 𝐸 of 𝐺, but on our (copied) node set 𝑉 and so that every edge is replaced

by a directed edge of arbitrary orientation.

Note that the nodes of 𝑈 are all isolated in 𝐷′ and that |𝑉 ′| = �̄� (the nodes of 𝑈 will play no role in the following construction).
The workloads on the edges of 𝐸′ are 𝛼, 𝛽 or 1 depending upon whether the edge is a chain-edge from 𝐸𝛼 , a star-edge from 𝐸𝛽 or
a unit-edge from 𝐸1, respectively, where we define 𝛼 = 24𝑛6 and 𝛽 = 6𝑛3. If the directed edge (𝑢, 𝑣) has weight 𝛼 (resp. 𝛽, 1) in 𝐷′

then we say that (𝑢, 𝑣) is an 𝛼-demand (resp. 𝛽-demand, 1-demand). The digraph 𝐷′ can be visualized as in Fig. 4. The grey rectangle
denotes the nodes of 𝑉 , the nodes of 𝑉𝑐 appear along the top and the bottom and the dashed (resp. dotted, solid) directed edges
depict the chain-edges (resp. star-edges, unit-edges). The nodes of 𝑈 are omitted.

As stated earlier, our static network 𝐻 is the network 𝐻𝑖 ∈ where |𝐻𝑖| = �̄�. We refer to the node set of 𝐻 as 𝑉 ′ also and we
refer to the subset of nodes within 𝑉 ′ corresponding to 𝑉 as 𝑉 also. Since we are in the 2-swtiched setting, we have one switch 𝑠
with 2|𝑉 ′| ports so that every node of 𝐻 is adjacent, via switch links, to exactly two ports of the switch. Hence, our switch set is
𝑆 = {𝑠} and our hybrid network is 𝐻(𝑆). It is important to note that for any configuration 𝑁 , any node of 𝐻(𝑁) can be adjacent to
at most 2 other nodes via dynamic links (as Δ𝑆 = 2).

As can be seen, we have the graph 𝐺 = (𝑉 ,𝐸), the digraph 𝐷′ = (𝑉 ′,𝐸′) and the hybrid network 𝐻(𝑆) with node set 𝑉 ′. Although
𝐺, 𝐷′ and 𝐻(𝑆) are disjoint in terms of node sets, we do not distinguish between, say, the node set 𝑉 of 𝐺 and the subset of nodes
𝑉 of 𝐻 . It should always be obvious as to which set we are referring to. We proceed similarly when we talk of specific nodes. As
ever, we refer to ‘edges’ in graphs and ‘links’ in networks (but they are really one and the same).

Theoretical Computer Science 1038 (2025) 115154

7

D.C. Kutner and I.A. Stewart

We set the weight of any dynamic link as 𝜇 = 1
2𝐿 = 1

6𝑛2 and the bound 𝜅 for the total workload cost as 𝜅 = 𝜅𝛼 + 𝜅𝛽 + 𝜅1 where:

• 𝜅𝛼 = 24𝑛6

• 𝜅𝛽 = 3𝑛4 + 𝑛3

2 + 𝑛2

• 𝜅1 =
𝑘

2 +
1
8 −

1
4𝑛 +

𝑘
3𝑛2 .

The values of 𝜅𝛼 , 𝜅𝛽 and 𝜅1 have the following significance.

• Suppose that for every chain-edge (𝑥𝑖, 𝑥𝑖+1) (resp. (𝑥𝑖, 𝑥𝑖−1), (𝑦𝑖, 𝑦𝑖+1), (𝑦𝑖,𝑦𝑖−1)) of 𝐸𝛼 , we force a dynamic link joining 𝑥𝑖 and 𝑥𝑖+1
(resp. 𝑥𝑖 and 𝑥𝑖−1, 𝑦𝑖 and 𝑦𝑖+1, 𝑦𝑖 and 𝑦𝑖−1) in 𝐻(𝑁) and choose a corresponding flow-path serving this 𝛼-demand as consisting
of this dynamic link (𝑁 is the resulting configuration from our chosen switch matching). The total workload cost of flow-paths
serving 𝛼-demands is 2𝐿𝛼𝜇 = 24𝑛6 = 𝜅𝛼 .

• Further, suppose that the dynamic links incident with nodes of 𝑉 in 𝐻(𝑁) are chosen so that we have a path of dynamic links 𝑝𝐴
from 𝑥+ to either 𝑦− or 𝑦+, involving the subset of nodes 𝐴⊆ 𝑉 , and a path of dynamic links 𝑝𝐵 from 𝑥− to 𝑦+ or 𝑦−, respectively,
involving the subset of nodes 𝐵 ⊆ 𝑉 , so that both 𝑝𝐴 and 𝑝𝐵 have length 𝑛 2 + 1. That is, we choose the dynamic links so that they
form a cycle 𝐶 (of length 𝑛 + 2𝐿 + 2) in 𝐻(𝑁) covering exactly the nodes of 𝑉 and 𝑉𝑐 . Suppose that for any star-edge (𝑥0, 𝑣)
(resp. (𝑦0, 𝑣)) of 𝐸𝛽 , we choose the flow-path in 𝐻(𝑁) serving this star-edge as consisting entirely of dynamic links resulting
from the shortest path in our cycle 𝐶 from 𝑥0 to 𝑣 (resp. 𝑦0 to 𝑣). The total workload cost of flow-paths corresponding to the
star-edges is

4𝜇𝛽

𝑛
2∑

𝑖=1
(𝐿
2
+ 𝑖) = 3𝑛4 + 𝑛3

2
+ 𝑛2 = 𝜅𝛽 .

• Further, suppose we choose the flow-path in 𝐻(𝑁) serving the 1-demand (𝑢, 𝑣) (in 𝐸1) to be a path of dynamic links within
the cycle 𝐶 of shortest length. If 𝑢 and 𝑣 both lie on 𝑝𝐴 or both lie on 𝑝𝐵 then the workload cost of this flow-path is at most
𝜇(𝑛 2 − 1) = 1

6𝑛 (
1
2 −

1
𝑛), and if one of 𝑢 and 𝑣 lies on 𝑝𝐴 with the other node lying on 𝑝𝐵 then the workload cost of this flow-path is

at most 𝜇(𝑛 2 +𝐿+ 1) = 1
2 +

1
12𝑛 +

1
6𝑛2 . If the width of the bisection of 𝐺 formed by 𝐴 and 𝐵 is at most 𝑘 then the total workload

cost of flow-paths corresponding to the unit-edges is at most

(3𝑛
2

− 𝑘)𝜇(𝑛
2
− 1) + 𝑘𝜇(𝑛

2
+𝐿+ 1) = 𝑘

2
+ 1

8
− 1

4𝑛
+ 𝑘

3𝑛2
= 𝜅1.

From above, we immediately obtain that if (𝐺,𝑘) is a yes-instance of 3-Min-Bisection then (𝐻(𝑆),𝐷,𝜇, 𝜅) is a yes-instance of RRP.

Conversely, suppose that (𝐻,𝜇,𝐷,𝜅) is a yes-instance of RRP. Let 𝑁 be a configuration (consisting of a switch matching of 𝑠) and
let 𝐹 be a collection of flow-paths that witness that the total workload cost for the workload matrix 𝐷 is at most 𝜅. Denote by 𝑁 ,
also, the sub-network of 𝐻(𝑁) consisting solely of dynamic links. W.l.o.g. we may assume that every node of 𝐻(𝑁) is incident with
exactly two dynamic links of 𝑁 (by adding additional dynamic links that we do not actually use in any flow-path, if necessary).

Claim 1. If (𝑢, 𝑣) ∈𝐸𝛼 (that is, (𝑢, 𝑣) is a chain-edge in 𝐷′) then (𝑢, 𝑣) is a dynamic link in 𝑁 ; so, the total workload cost of the flow-paths
serving 𝛼-demands is exactly 𝜅𝛼 = 24𝑛6.

Proof. Suppose that (𝑥𝑖, 𝑥𝑖+1) ∉𝑁 (there is an analogous argument for each of (𝑥𝑖, 𝑥𝑖−1), (𝑦𝑖, 𝑦𝑖+1) and (𝑦𝑖, 𝑦𝑖−1)). So, the flow-path
of 𝐹 serving the 𝛼-demand (𝑥𝑖, 𝑥𝑖+1) consists of at least two links and has workload cost at least 2𝜇𝛼 (as 2𝜇 is strictly less than 1
which is the weight of a static link). Hence, the total workload cost of flow-paths corresponding to the chain-edges is at least 𝜅𝛼 +𝜇𝛼.
Denote the total workload cost of flow-paths serving the 𝛽-demands (resp. 1-demands) by �̄�𝛽 (resp. �̄�1). So, 𝜅𝛼 + 𝜇𝛼 + �̄�𝛽 + �̄�1 ≤ 𝜅

with 𝜇𝛼 ≤ 𝜇𝛼+ �̄�𝛽 + �̄�1 ≤ 𝜅𝛽 +𝜅1; that is, with 𝑛4 ≤ 𝑛3

2 + 𝑛2 + 𝑘

2 +
1
8 −

1
4𝑛 +

𝑘
3𝑛2 . This yields a contradiction (so long as 𝑛 is big enough)

and the claim follows. □

Claim 2. The set of dynamic links 𝑁 forms a cycle in 𝐻(𝑁) covering exactly the nodes of 𝑉 ∪ 𝑉𝑐 and on which every link from
{(𝑥𝑖, 𝑥𝑖+1), (𝑦𝑖, 𝑦𝑖+1) ∶ 0 ≤ 𝑖 <

𝐿

2 } ∪ {(𝑥𝑖, 𝑥𝑖−1), (𝑦𝑖, 𝑦𝑖−1) ∶ −𝐿

2 < 𝑖 ≤ 0} lies. Moreover, every flow-path of 𝐹 serving a 𝛽-demand consists
entirely of dynamic links.

Proof. By Claim 1, if (𝑢, 𝑣) ∈ 𝐸𝛼 then (𝑢, 𝑣) ∈ 𝑁 and the total workload cost of the flow-paths serving the 𝛼-demands is exactly
𝜅𝛼 = 24𝑛6. Note that because every node of 𝐻(𝑁) is adjacent to at most 2 dynamic links, there are no other dynamic links incident
with a node from 𝑉𝑐 ⧵ {𝑥+, 𝑥−, 𝑦+, 𝑦−}.

Suppose that a flow-path of 𝐹 serving a 𝛽-demand consists entirely of dynamic links. So, the workload cost of such a flow-path is
at least 𝜇𝛽(𝐿2 +1) = 3𝑛3

2 + 𝑛. Alternatively, if a flow-path of 𝐹 serving a 𝛽-demand contains at least one static link then the workload
cost of such a flow-path is at least 𝛽 = 6𝑛3. Consequently, if at least one flow-path of 𝐹 serving a 𝛽-demand contains a static link (of
weight 1) then the total workload cost of flow-paths serving the 𝛽-demands is at least (2𝑛−1)𝜇𝛽(𝐿2 +1)+𝛽 = (2𝑛−1)(3𝑛

3

2 +𝑛)+6𝑛3 =

Theoretical Computer Science 1038 (2025) 115154

8

D.C. Kutner and I.A. Stewart

3𝑛4 + 9𝑛3
2 + 2𝑛2 − 𝑛 > 3𝑛4 + 𝑛3

2 + 𝑛2 + 𝑘

2 +
1
8 − 1

4𝑛 + 𝑘
3𝑛2 = 𝜅𝛽 + 𝜅1 = 𝜅 − 𝜅𝛼 which yields a contradiction. Thus, all flow-paths of 𝐹

serving a 𝛽-demand consist entirely of dynamic links. In particular, 𝑁 must be connected. As 𝑁 is regular of degree 2 then 𝑁 must,
in fact, be a cycle covering the nodes of 𝑉 ∪ 𝑉𝑐 . The claim follows. □

By Claim 2, 𝑁 consists of a path of dynamic links involving all links from {(𝑥𝑖, 𝑥𝑖+1) ∶ −
𝐿

2 ≤ 𝑖 <
𝐿

2 } from 𝑥− to 𝑥+ concatenated
with a path 𝑝𝐴 of dynamic links from 𝑥+ to either 𝑦− or 𝑦+ concatenated with a path of dynamic links involving all links from
{(𝑦𝑖, 𝑦𝑖+1) ∶ −

𝐿

2 ≤ 𝑖 <
𝐿

2 } from 𝑦− or 𝑦+ to 𝑦+ or 𝑦− concatenated with a path 𝑝𝐵 of dynamic links from 𝑦+ or 𝑦− to 𝑥−, respectively.
W.l.o.g. we may assume that 𝑝𝐴 runs from 𝑥+ to 𝑦+ and 𝑝𝐵 from 𝑦− to 𝑥−.

We can now recalculate the total workload cost of the flow-paths serving the 𝛽-demands. Suppose that there are 𝑝 nodes of 𝑉 on
𝑝𝐴 and so 𝑛− 𝑝 nodes of 𝑉 on 𝑝𝐵 . We may assume that no nodes of 𝑈 lie on 𝑝𝐴 or 𝑝𝐵 : if any do, then removing all such nodes from
those paths results in a strictly smaller total workload cost. The total workload cost of the flow-paths serving the 𝛽-demands is

2𝜇𝛽
𝑝 ∑

𝑖=1
(𝐿
2
+ 𝑖) + 2𝜇𝛽

𝑛−𝑝 ∑
𝑖=1

(𝐿
2
+ 𝑖)

= 𝑝𝜇𝛽𝐿+ (𝑛− 𝑝)𝜇𝛽𝐿+ 2𝜇𝛽
𝑝 ∑

𝑖=1
𝑖+ 2𝜇𝛽

𝑛−𝑝 ∑
𝑖=1

𝑖

= 𝑛𝜇𝛽𝐿+ (𝑝(𝑝+ 1) + (𝑛− 𝑝)(𝑛− 𝑝+ 1))𝜇𝛽

= 3𝑛4 + 𝑛(2𝑝2 − 2𝑛𝑝+ 𝑛2 + 𝑛)

≥ 3𝑛4 + 𝑛3

2
+ 𝑛2 = 𝜅𝛽 (when 𝑝 takes the value 𝑛 2)

as the minimum value for 3𝑛4 + 𝑛(2𝑝2 − 2𝑛𝑝+ 𝑛2 + 𝑛) is when 𝑝 = 𝑛
2 .

Suppose that the paths 𝑝𝐴 and 𝑝𝐵 have different lengths. From above, the total workload cost of the flow-paths serving the
𝛽-demands is at least 3𝑛4 + 𝑛(2(𝑛 2 + 1)2 − 2𝑛(𝑛 2 + 1) + 𝑛2 + 𝑛) = 3𝑛4 + 𝑛3

2 + 𝑛2 + 2𝑛 = 𝜅𝛽 + 2𝑛. Consequently, we must have that
2𝑛 ≤ 𝜅1 =

𝑘

2 +
1
8 − 1

4𝑛 + 𝑘
3𝑛2 . As 𝑘 ≤

𝑛
3 + 46 (from [9]), we have that 2𝑛 ≤ 𝑛

6 + 23 + 1
8 − 1

4𝑛 + 1
9𝑛 + 46

3𝑛2 which yields a contradiction.
Hence, the paths 𝑝𝐴 and 𝑝𝐵 each have length 𝑛 2 , with the total workload cost of the flow-paths corresponding to the unit-edges being
at most 𝜅1.

Let (𝑢, 𝑣) be a unit-edge. From above: if 𝑢 and 𝑣 both lie on 𝑝𝐴 or both lie on 𝑝𝐵 and the flow-path serving the 1-demand (𝑢, 𝑣)
consists entirely of dynamic links then the workload cost of this flow-path lies between 𝜇 and 𝜇(𝑛 2 − 1), i.e., 1

6𝑛2 and 1
6𝑛 (

1
2 −

1
𝑛); if 𝑢

and 𝑣 lie on 𝑝𝐴 and 𝑝𝐵 , respectively, or vice versa, and the flow-path serving the 1-demand (𝑢, 𝑣) consists entirely of dynamic links
then the workload cost of this flow-path lies between 𝜇(𝐿+ 2) and 𝜇(𝑛 2 +𝐿+ 1), i.e., 12 +

1
3𝑛2 and 12 +

1
12𝑛 +

1
6𝑛2 ; and if the flow-path

serving the 1-demand (𝑢, 𝑣) contains a static link then the workload cost of this flow-path is at least 1. In particular, we may assume
that any flow-path corresponding to a unit-edge consists entirely of dynamic links.

Let 𝐴 (resp. 𝐵) be the nodes of 𝑉 that appear on 𝑝𝐴 (resp. 𝑝𝐵). So, (𝐴,𝐵) is a bisection of 𝐺. Suppose that this bisection
has width 𝑘 + 𝜖, for some 𝜖 ≥ 1. So there are 𝑘 + 𝜖 unit-edges whose corresponding work-flows contribute collectively at least
(𝑘+ 𝜖)𝜇(𝐿+2) ≥ (𝑘+1)(12 +

1
3𝑛2) =

𝑘

2 +
1
2 +

1
3𝑛2 +

𝑘
3𝑛2 >

𝑘

2 +
1
8 −

1
4𝑛 +

𝑘
3𝑛2 = 𝜅1 to the total workload cost, which yields a contradiction.

Consequently, 𝐺 has bisection width at most 𝑘 and we have that if (𝐻,𝜇,𝐷,𝜅) is a yes-instance of RRP then (𝐺,𝑘) is a yes-instance
of 3-Min-Bisection. Our result follows as (𝐻,𝜇,𝐷,𝜅) can be constructed from (𝐺,𝑘) in time polynomial in 𝑛. □

This result significantly strengthens Theorems 4.1 and 4.2 from [13]: there, RRP(Δ𝑅 ≥ 2, 𝜎 = 0) is shown to be NP-complete when
the static network is an independent set, and the proof does not enable us to restrict the workload matrix 𝐷 meaningfully. The main
weakness of Theorem 1 is its reliance on 𝜇 being a polynomial factor smaller than any static link weight. This is actually related to
the fact that a connected 2-regular network, as is 𝐺(𝑁) when 𝐺 is an independent set and Δ𝑆 = 2, has diameter linear in the number
of nodes 𝑛. A network of maximum degree 3, on the other hand, may have diameter logarithmic in 𝑛 (e.g., a complete binary tree
has this property) and we indeed show NP-completeness of RRP(Δ𝑆 = 3) when 𝜇 =Θ(1

log𝑛).

Theorem 2. For any polynomial family of networks = {𝐻𝑖 ∶ 𝑖 ≥ 0}, the problem 3-switched RRP restricted to instances (𝐻,𝜇,𝐷,𝜅)
satisfying:

• 𝐻 ∈ has size 𝑛
• the workload matrix 𝐷 is sparse and all values in it are polynomial in 𝑛
• 𝜇 ∈Θ(1

log(𝑛))

is NP-complete.

Proof. As in the case of Theorem 1, membership of NP is straightforward. The problem Restricted Exact Cover by 3-Sets (RXC3)
is defined as follows:

Theoretical Computer Science 1038 (2025) 115154

9

D.C. Kutner and I.A. Stewart

(a)

𝑧

(b)

Fig. 5. Attaching the gadgets.

• instance of size 𝑛: a finite set of elements = {𝑥𝑖 ∶ 1 ≤ 𝑖 ≤ 3𝑛}, for some 𝑛 ≥ 1, and a collection of 3-element subsets of ,
called clauses, where = {𝑐𝑗 ∶ 1 ≤ 𝑗 ≤ 3𝑛} and where each 𝑐𝑗 = {𝑥𝑗1, 𝑥

𝑗

2, 𝑥
𝑗

3} so that every element of appears in exactly three
clauses of

• yes-instance: contains an exact cover ′ for ; that is, a subset ′ ⊆ so that every element of appears in exactly one clause
of ′ (hence, ′ necessarily has size 𝑛).

The problem RXC3 is NP-complete as was proven in Theorem A.1 of [15]. Let (,) be an instance of RXC3 of size 𝑛. We will build
an instance (𝐻,𝜇,𝐷,𝜅) of 3-switched RRP corresponding to (,).

First, we define a weighted graph 𝐷′ so as to describe the workload 𝐷. Having built 𝐷′, we will orient every undirected edge so
that: there is a directed edge (𝑢, 𝑣) with weight 𝑤 if, and only if, there is a node-to-node workload of 𝑤 from 𝑢 to 𝑣 (we still refer
to the resulting digraph as 𝐷′). Consequently, we will need one flow-path in our resulting hybrid network corresponding to each
directed edge of 𝐷′ = (𝑉 ′,𝐸′). Our construction proceeds in stages.

• We begin with a complete binary tree 𝑇 of depth 𝑑 so that the number of leaves is 2𝑑 with 2𝑑−1 < 𝑛 ≤ 2𝑑 . If the leaves are
{𝑙𝑖 ∶ 1 ≤ 𝑖 ≤ 2𝑑} then we colour: every leaf 𝑙𝑖, where 𝑛 < 𝑖, white; every leaf 𝑙𝑖, where 1 ≤ 𝑖 ≤ 𝑛, grey; and the root of 𝑇 grey.
Throughout, if we do not specify the colour of a node as grey or white then it is coloured black. Note that 𝑑 = ⌈log2(𝑛)⌉.

• For every 𝑥𝑖 ∈ , we create a unique node 𝑥𝑖 and for every clause 𝑐𝑗 ∈ , we create a unique 2-path as follows: there are 3 nodes
𝑢𝑗 , 𝑣𝑗 and 𝑤𝑗 together with the edges (𝑢𝑗 , 𝑣𝑗) and (𝑣𝑗 ,𝑤𝑗) and the node 𝑢𝑗 is coloured grey.

• For each 1 ≤ 𝑗 ≤ 3𝑛, if the clause 𝑐𝑗 = {𝑥𝑗1, 𝑥
𝑗

2, 𝑥
𝑗

3} then there are edges (𝑥𝑗1, 𝑢𝑗), (𝑥
𝑗

2,𝑤𝑗) and (𝑥𝑗3,𝑤𝑗).
• To every node coloured grey, we attach a unique gadget consisting of a 4-clique with one of its edges subdivided by a node,

denoted 𝑧, so that there is an edge joining the gray node and the node 𝑧; and to every node coloured white, we attach the same
gadget except that we identify the white node and the node denoted 𝑧. These attachments can be visualized as in Fig. 5a and
Fig. 5b where the white and gray nodes are as shown.

• There is an edge (𝑟, 𝑥𝑖), for all 1 ≤ 𝑖 ≤ 3𝑛: call these the root-edges.

This completes the construction of the graph 𝐷′ which can be visualized as in Fig. 6 where the root-edges are depicted as dashed.
Note that the number of nodes in 𝑉 ′ is 𝑁 = 6(2𝑑)+28𝑛+4 and the number of edges in 𝐸′ is 9(2𝑑)+43𝑛+6, with 3𝑛 of these edges root-

edges. Let 𝐷′′ be 𝐷′ with the root-edges removed. Note that every node of 𝐷′′ has degree 3 except for the leaf nodes of {𝑙𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}
and the nodes of {𝑣𝑗 ∶ 1 ≤ 𝑗 ≤𝑚}, all of which have degree 2 (we return to this comment presently). Let 𝐸′ =𝐸′′ ∪𝐸𝑟𝑜𝑜𝑡 where 𝐸𝑟𝑜𝑜𝑡

is the set of root-edges (and so 𝐸′′ is the edge set of 𝐷′′). As regards the edge-weights, orient each of the edges of 𝐸′ ‘down’ the
graph 𝐷′ as it is portrayed in Fig. 6 so as to obtain a digraph and: give each directed edge of 𝐸′′ weight 𝛼, where 𝛼 = 4𝑛 log2(𝑛); and
give each directed root-edge of the form (𝑟, 𝑥𝑖) weight 1.

Let �̄� be the size of the network 𝐻𝑖 where 𝑖 is the smallest integer such that 𝑁 ≤ |𝐻𝑖| and we fix our static network as 𝐻 =𝐻𝑖.
We name a subset of nodes of 𝐻 as 𝑉 ′ with the remaining nodes named 𝑈 . Δ𝑆 = 3, so we have one switch 𝑠 that has 3𝑛 switch
ports and every node of 𝐻 has 3 external ports; so, every node of 𝐻 has exactly 3 switch links to 𝑠, and 𝑆 = {𝑠}. Finally, we define
𝜇 = 1

2⌈log2(𝑛)⌉ and 𝜅 = 𝜇𝛼|𝐸′′|+3𝜇𝑛(⌈log2(𝑛)⌉+3) so as to complete the construction of our instance (𝐻,𝜇,𝐷,𝜅) of 3-switched RRP.

Suppose that (,) is a yes-instance of RXC3. So, let ′ ⊆ be an exact cover of . For every (𝑢, 𝑣) ∈𝐸′′, we choose (𝑢, 𝑣) to be
a dynamic link and ensure that every node of {𝑣𝑗 ∶ 1 ≤ 𝑗 ≤ 3𝑛, 𝑐𝑗 ∈ ′} is joined via a dynamic link to a leaf node of {𝑙𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}.
If 𝑣𝑗 is such that 𝑐𝑗 ∈ ′ then denote the unique leaf node to which there is a dynamic link from 𝑣𝑗 by 𝑙𝑗 . Denote the resulting
switch matching of 𝑠 as constituting the configuration 𝑁 . Referring back to our comment on node degrees above, the dynamic links
so added must form a matching in 𝐻(𝑁). For any workload of weight 𝛼 in 𝐷, we choose the corresponding flow-path to consist
of the dynamic link joining the two nodes in question. Consequently, for all of the workloads corresponding to directed edges of
𝐸′′, the total workload cost of the corresponding flow-paths is 𝜇𝛼|𝐸′′|. All of the remaining workloads involve the root and the
nodes of {𝑥𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}. Any one of these nodes 𝑥𝑖 is such that the element 𝑥𝑖 in a unique clause 𝑐𝑗 ∈ ′. We choose the flow-path
consisting entirely of dynamic links that routes from the root down the tree 𝑇 to the leaf-node 𝑙𝑗 and on to 𝑣𝑗 and, through either
𝑢𝑗 or 𝑤𝑗 , on to 𝑥𝑖. This flow-path has (graph-theoretic) length 𝑑 + 3 and consequently the total workload cost due to flow-paths
corresponding to edges of 𝐸𝑟𝑜𝑜𝑡 is exactly 3𝜇𝑛(𝑑 + 3) = 3𝜇𝑛(⌈log2(𝑛)⌉ + 3). Hence, the total workload cost due to all flow-paths is
𝜇𝛼|𝐸′′|+ 3𝜇𝑛(⌈log2(𝑛)⌉+ 3) = 𝜅 and (𝐻,𝜇,𝐷,𝜅) is a yes-instance of 3-switched RRP.

Conversely, suppose that (𝐻,𝜇,𝐷,𝜅) is a yes-instance of 3-switched RRP and that 𝑁 is a configuration and 𝐹 a set of flow-paths
witnessing that the total workload cost is at most 𝜅.

Theoretical Computer Science 1038 (2025) 115154

10

D.C. Kutner and I.A. Stewart

𝑟𝑜𝑜𝑡

…

… …

… …

…

… …

𝑙1 𝑙2 𝑙3 𝑙4 𝑙𝑛 𝑙𝑛+1 𝑙2𝑑−1 𝑙2𝑑

𝑣1 𝑣2 𝑣𝑗 𝑣3𝑛

𝑢1 𝑤1 𝑢2 𝑤2 𝑢3 𝑤3 𝑢3𝑛 𝑤3𝑛

𝑥1 𝑥2 𝑥𝑖 𝑥3𝑛

𝑇

Fig. 6. The graph 𝐷′ .

Claim 1. It is necessarily the case that every directed edge (𝑢, 𝑣) ∈𝐸′′ is such that (𝑢, 𝑣) is a dynamic link in 𝐻(𝑁).

Proof. Suppose, for contradiction, that there is a directed edge (𝑢, 𝑣) ∈𝐸′′ so that (𝑢, 𝑣) is not a dynamic link in 𝑁 . By construction,
the node-to-node workload of 𝛼 from 𝑢 to 𝑣 contributes a cost of at least 2𝜇𝛼 to the total workload cost (note that the cost of a
static link is 1 and 2𝜇 < 1 when 𝑛 ≥ 3). So, the total workload cost from flow-paths corresponding to directed edges of 𝐸′′ is at least
𝜇𝛼(|𝐸′′|+1). However, 𝜅 = 𝜇𝛼|𝐸′′|+3𝜇𝑛(⌈log2(𝑛)⌉+3) and so we must have that 𝜇𝛼 = 4𝜇𝑛 log2(𝑛) ≤ 3𝜇𝑛(⌈log2(𝑛)⌉+3) which yields
a contradiction when 𝑛 ≥ 210. The claim follows. □

By Claim 1, the total workload cost of flow-paths corresponding to the directed edges of 𝐸′′ is exactly 𝜇𝛼|𝐸′′|. Consequently, the
total workload cost of flow-paths corresponding to the directed edges of 𝐸𝑟𝑜𝑜𝑡 must be at most 3𝜇𝑛(⌈log2(𝑛)⌉+ 3).

Given the set of dynamic links as supplied by Claim 1, the only other possible dynamic links we might have involve the leaf nodes
{𝑙𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}, the nodes of {𝑣𝑖 ∶ 1 ≤ 𝑖 ≤ 3𝑛} and nodes of 𝑈 . If we are looking for a path of dynamic links joining 𝑟 and any node
𝑥𝑖 then no matter how we might extend the set of dynamic links corresponding to the directed edges of 𝐸′′ , we can never obtain a
path of (graph-theoretic) length less than 𝑑 + 3: a path of length 𝑑 down the tree 𝑇 from 𝑟 to a leaf 𝑙 followed by a path of length 3
of the form (𝑙, 𝑣𝑗 , 𝑢𝑗 , 𝑥𝑖) or (𝑙, 𝑣𝑗 ,𝑤𝑗 , 𝑥𝑖).

We may assume 𝑈 is not involved in any such path. Any path visiting some node �̄� ∈𝑈 can be shortened to a path of the former
form by simply removing �̄� from the path. This corresponds to a rewiring of the configuration 𝑁 which decreases the total workload
cost so, for example, the path (𝑟,… , 𝑙, �̄�, 𝑣𝑗 , 𝑢𝑗 , 𝑥𝑖) of length 𝑛 + 4 can be shortened to (𝑟,… , 𝑙, 𝑣𝑗 , 𝑢𝑗 , 𝑥𝑖) of length 𝑛 + 3 by removing
the dynamic links (𝑙, �̄�) and (�̄�, 𝑣𝑗) from 𝑁 and adding the dynamic link (𝑙, 𝑣𝑗) to 𝑁 . Clearly this does not increase the workload cost
for any demand.

So, any flow-path corresponding to some directed edge (𝑟, 𝑥𝑖) ∈ 𝐸𝑟𝑜𝑜𝑡 and consisting entirely of dynamic links has workload cost
at least 𝜇(𝑑 + 3) = 𝜇(⌈log2(𝑛)⌉ + 3). If a flow-path corresponding to some directed edge (𝑟, 𝑥𝑖) ∈ 𝐸𝑟𝑜𝑜𝑡 contains a static link then
the workload cost of this flow-path is at least 1 and 1 >

1
2 + 3

2⌈log2(𝑛)⌉ = 𝜇(⌈log2(𝑛)⌉ + 3), when 𝑛 ≥ 24. As there are 3𝑛 flow-paths
corresponding to directed edges of 𝐸𝑟𝑜𝑜𝑡, we must have that every flow-path corresponding to a directed edge of 𝐸𝑟𝑜𝑜𝑡 consists entirely
of dynamic links and has (graph-theoretic) length ⌈log2(𝑛)⌉+ 3.

Consider the flow-path corresponding to the directed edge (𝑟, 𝑥𝑖) ∈ 𝐸𝑟𝑜𝑜𝑡. Suppose that the dynamic link (𝑙𝑘, 𝑣𝑗) appears on this
flow-path (exactly one such dynamic link does). Note that there are at most 𝑛 such dynamic links used in the flow-paths of 𝐹
corresponding to the directed edges of 𝐸𝑟𝑜𝑜𝑡 . Build the set of clauses ′ ⊆ by including every such 𝑐𝑗 in ′. Consequently, we have
a subset ′ ⊆ of at most 𝑛 clauses. Moreover, as we can reach any 𝑥𝑖 from 𝑟 by a flow-path of 𝑑 + 3 dynamic links, every 𝑥𝑖 ∈

appears in a clause of ′; that is, |′| = 𝑛, ′ is an exact cover for and (,) is a yes-instance of RXC3. As our instance (𝐻,𝜇,𝐷,𝜅)
can be constructed from (,) in time polynomial in 𝑛, our result follows. □

These results led us to consider the problem 1-switched RRP(𝜎 = 𝑘) for 𝑘 ≥ 0. By extending Lemma 1 due to [13], we show
that this restriction leads to a tractable problem when either 𝜎 = 0 or the static network is a complete graph, in contrast with our
NP-completeness results. That result makes use of the dynamic link limit 𝛿 - recall that when 𝛿 = 1 every flow-path must contain at
most one dynamic link. In combination with the constraint 𝜎 = 0, this entails that every flow path consists of either a single dynamic
link (and no static links), or of one or more static links (and no dynamic links). The result below is proven via a maximum matching
argument in [13].

Theoretical Computer Science 1038 (2025) 115154

11

D.C. Kutner and I.A. Stewart

Lemma 1 ([13, Theorem 3.1]). The problem RRP(𝜎 = 0, 𝛿 = 1) can be solved in polynomial-time when there is only one switch. Moreover,
the problem remains solvable in polynomial-time even if we allow non-uniform weights for dynamic links.

Theorem 3. 1-switched RRP(𝜎 = 0) is in P.

Proof. Note that this proof holds even if we allow variable weights for static and optic links. Because each node 𝑣 is connected to
the switch exactly once, it is not possible that any vertex is incident to two optic links, and hence impossible for there to be any path
consisting of two or more optic links. Consequently setting 𝛿 = 1 introduces no new constraints; in this scenario a flow is permissible
with 𝜎 = 0 if and only if it permissible with 𝜎 = 0 and 𝛿 = 1. Hence the input instance of 1-switched RRP(𝜎 = 0, 𝛿 = 1) is a yes-instance
if and only if the corresponding instance of RRP(𝜎 = 0, 𝛿 = 1) is a yes-instance, and tractability follows from Lemma 1. □

Corollary 1. 1-switched RRP(𝜎 = 𝑘) restricted to instances where the static network 𝐺 is a complete graph is in P, for any 𝑘∈ ℕ ∪ {∞}.

Proof. If 𝐺 is a complete graph with all edge weights equal (without loss take 𝑤𝑡(𝑢, 𝑣) = 1 ∀(𝑢, 𝑣) ∈𝐸) then without loss under any
configuration 𝑁 , each demand 𝐷[𝑢, 𝑣] is routed via the flow-path 𝜑(𝑢, 𝑣) of minimum weight, which is either:

• a single static link from 𝑢 to 𝑣 with unit weight.

• a single dynamic link from 𝑢 to 𝑣 with weight 𝜇.

It follows that setting 𝜎 = 0 introduces no new constraints, and then by Theorem 3 we have tractability. □

Corollary 1 rules out the possibility that 1-switched RRP might be NP-complete for any polynomial graph family (since such a
claim would extend to the family of complete graphs) unless P equals NP. This leaves open the practically relevant case where Δ𝑆 = 1
and 𝜎 > 0 for specific topologies. We consequently consider the scenario where the static network is a hypercube and the segregation
parameter 𝜎 = 3.

Theorem 4. For any fixed 𝜇 ∈ (0,1), the problem 1-switched RRP(𝜎 = 3) restricted to instances (𝐻,𝜇,𝐷,𝜅) satisfying:

• 𝐻 ∈, where ∶= {𝑄𝑑 |𝑑 ∈ℕ} is the family of hypercubes

• the workload matrix 𝐷 is sparse and all values in it are polynomial in 𝑛

is NP-complete.

Proof. Note that RRP as in the statement of the theorem is in NP on account of the numerical restrictions imposed. As in the proof
of Theorem 2, we reduce from the problem RXC3. Let (,) be an instance of RXC3 of size 𝑛. W.l.o.g., we may assume that 𝑛 is even.
Let 𝑚 = ⌈log2(3𝑛)⌉ (so, 3𝑛 ≤ 2𝑚). Our static network 𝐻 is the hypercube 𝑄8𝑚 (so, |𝑄8𝑚| = 28𝑚 =𝑂(𝑛8)) and there is exactly 1 switch
link from every node to our switch 𝑠.

We begin by defining a weighted digraph 𝐷′ = (𝑉 ,𝐸′) where 𝑉 is the node set of our hypercube 𝑄8𝑚. The digraph 𝐷′ is to
provide a description of our workload matrix. In order to define the directed edges of 𝐷′, we define some specific subsets of nodes
of 𝑉 . We explain the notation that we use as we proceed. By ‘distance’ we mean the distance (that is, shortest path length) in the
hypercube 𝑄8𝑚 and by 𝑉𝑖 (resp. 𝑉≤𝑖) we mean the subset of nodes of 𝑉 that are at distance exactly 𝑖 (resp. at most 𝑖) from the root
node 𝑟 = (1,1,… ,1) = 18𝑚 (in general, we also denote nodes of 𝑉 as bit-strings of length 8𝑚).

• Within the nodes of 𝑉𝑚, we define the subset 𝑃 = {𝑧�̄�16𝑚 ∶ 𝑧 ∈ {0,1}𝑚} (in general: 𝑦𝑧 denotes the concatenation of two bit-

strings 𝑦 and 𝑧, with 𝑧𝑖 denoting the concatenation of 𝑖 copies of the bit-string 𝑧; and �̄� denotes the complement of the bit-string
𝑧). Note that |𝑃 | = 2𝑚.

• Within the nodes of 𝑉3𝑚, we define the subset �̃� = {(𝑧�̄�)312𝑚 ∶ 𝑧 ∈ {0,1}𝑚}. Note that |�̃�| = 2𝑚.

– For any bit-string 𝑧 ∈ {0,1}8𝑚 and for any bit-string 𝑦 ∈ {0,1}𝑖 where 𝑖 < 8𝑚, we write ⊕(𝑧;𝑦) to denote the bitwise exclusive
OR of 𝑧 and 08𝑚−𝑖𝑦 (so, ⊕(𝑧;𝑦) differs from 𝑧 on at most the last 𝑖 bits). For any set 𝑈 of bit-strings of length 8𝑚 and bit-string
𝑦 of length 𝑖 < 8𝑚, we define 𝑈⊕𝑦 = {⊕(𝑧;𝑦) ∶ 𝑧 ∈𝑈}.

– For any 𝑐 ∈ �̃� , we define

* 𝑐⊕001 =⊕(𝑐; 001)
* 𝑐⊕010 =⊕(𝑐; 010)
* 𝑐⊕100 =⊕(𝑐; 100)
and so we obtain sets of nodes �̃�⊕001, �̃�⊕010 and �̃�⊕100, each consisting of sets of neighbours of nodes in 𝐶 (note also that
if 𝑐1, 𝑐2 ∈ �̃� are distinct then 𝑐1 and 𝑐2 are at distance at least 6 in 𝑄8𝑚 and any node of {𝑐⊕001

1 , 𝑐
⊕010
1 , 𝑐

⊕100
1 } and node of

{𝑐⊕001
2 , 𝑐

⊕010
2 , 𝑐

⊕100
2 } are at distance at least 6 in 𝑄8𝑚).

• Within the nodes of 𝑉4𝑚, we define the subset �̃� = {(𝑧�̄�)4 ∶ 𝑧 ∈ {0,1}𝑚}. Note that |�̃�| = 2𝑚.

– For any 𝑥 ∈ �̃�, we define

* 𝑥⊕01 =⊕(𝑥; 01)

Theoretical Computer Science 1038 (2025) 115154

12

D.C. Kutner and I.A. Stewart

* 𝑥⊕10 =⊕(𝑥; 10)
and so we obtain sets of nodes �̃�⊕01 and �̃�⊕10, each consisting of sets of neighbours of nodes in �̃� (note that if 𝑥1, 𝑥2 ∈ �̃� are
distinct then 𝑥1 and 𝑥2 are at distance at least 8 in 𝑄8𝑚 and any node of {𝑥⊕01

1 , 𝑥
⊕10
1 } and node of {𝑥⊕01

2 , 𝑥
⊕10
2 } are at distance

at least 6 in 𝑄8𝑚).

We define the weighted directed edges 𝐸′ of 𝐷′ as follows. There are three weights: some 𝛽 >max{ 3𝑛(𝑚+1+2𝜇)
𝜇

,
3𝑛(𝑚+1+2𝜇)

1−𝜇 }; some
𝛼 > 15𝑛𝛽 + 9𝑛2 + 9𝑛; and 1. The directed edges of 𝐸𝛽 (resp. 𝐸𝛼 , 𝐸1) all have weight 𝛽 (resp. 𝛼, 1) and 𝐸′ =𝐸𝛽 ∪𝐸𝛼 ∪𝐸1.

• The directed edges of 𝐸𝛽 are derived using the structure of our instance (,) of RXC3.

– For each 1 ≤ 𝑗 ≤ 3𝑛, identify the clause 𝑐𝑗 ∈ with the node 𝑐𝑗 = (𝑏𝑖𝑛𝑚(𝑗 − 1) 𝑏𝑖𝑛𝑚(𝑗 − 1))312𝑚 of the subset �̃� of 𝑉3𝑚, where
in general 𝑏𝑖𝑛𝑖(𝑗) is the binary representation of the natural number 𝑗 as a bit-string of length 𝑖 (so, in particular, 0 ≤ 𝑗 < 2𝑖).
Henceforth, we refer to these specific nodes of �̃� as the set of clause nodes 𝐶 = {𝑐𝑗 ∶ 1 ≤ 𝑗 ≤ 3𝑛}.

– For each 1 ≤ 𝑖 ≤ 3𝑛, identify the element 𝑥𝑖 of with the node 𝑥𝑖 = (𝑏𝑖𝑛𝑚(𝑖−1) 𝑏𝑖𝑛𝑚(𝑖− 1))4 of the subset �̃� of 𝑉4𝑚. Henceforth,
we refer to these specific nodes of �̃� as the set of element nodes 𝑋 = {𝑥𝑖 ∶ 1 ≤ 𝑖 ≤ 3𝑛}.

For any clause 𝑐𝑗 = {𝑥𝑗1, 𝑥
𝑗

2, 𝑥
𝑗

3} of , there are directed edges (𝑐⊕001
𝑗

, 𝑥𝑖1), (𝑐
⊕010
𝑗

, 𝑥𝑖2) and (𝑐⊕100
𝑗

, 𝑥𝑖3) in 𝐸𝛽 and we refer to the
nodes 𝑐⊕001

𝑗
, 𝑐⊕010

𝑗
and 𝑐⊕100

𝑗
as the associate clause nodes of clause 𝑐𝑗 or of clause node 𝑐𝑗 . We define the associate element nodes

of an element or an element node analogously. This constitutes all directed edges of 𝐸𝛽 .

• We denote by 𝑃 = {𝑝𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} a subset of 𝑛 nodes of 𝑃 which we refer to as the set of port nodes. The directed edges of 𝐸𝛼

are 𝐸𝑃
𝛼
∪𝐸𝑊

𝛼
where:

– 𝐸𝑃
𝛼
= {(𝑧, �̄�) ∶ 𝑧 ∈ 𝑉≤𝑚+5 ⧵ 𝑃 }

– 𝐸𝑊
𝛼

is an arbitrary orientation of a specific perfect matching 𝑀 (coming up) on the nodes of 𝑊 ⧵ (𝑋 ∪𝑋⊕01 ∪𝑋⊕10) where
𝑊 is defined as 𝑉4𝑚 ∪

⋃3
𝑖=1 𝑉4𝑚−𝑖 ∪

⋃3
𝑖=1 𝑉4𝑚+𝑖.

Note that |𝑊 ⧵ (𝑋 ∪𝑋⊕01 ∪𝑋⊕10)| is even and so a perfect matching exists (recall, we assumed that 𝑛 is even); however, as
stated, we require that our perfect matching 𝑀 has a specific property which we describe below.

• The set of directed edges 𝐸1 is defined as {(𝑟, 𝑥𝑖) ∶ 1 ≤ 𝑖 ≤ 3𝑛}; that is, as {𝑟} ×𝑋.

Now for our perfect matching 𝑀 .

Claim 1. There is a perfect matching 𝑀 of 𝑊 ⧵ (𝑋 ∪𝑋⊕01 ∪𝑋⊕10) so that if (𝑢, 𝑣) is in the matching then there is no static link joining 𝑢
and 𝑣.

Proof. Define a perfect matching 𝑀 on 𝑊 as follows. First, match every node in 𝑉4𝑚 with the node 𝑣 that differs from 𝑢 in every
bit; that is, 𝑣 = �̄�.

Consider some node 𝑧�̄�𝑧�̄�𝑧�̄�𝑧�̄� of 𝑋. Its matched node is �̄�𝑧�̄�𝑧�̄�𝑧�̄�𝑧 which is either in 𝑋 or outside 𝑋. Suppose it is the latter.
Suppose also that some other node 𝑤�̄�𝑤�̄�𝑤�̄�𝑤�̄� is in 𝑋 and its matched node �̄�𝑤�̄�𝑤�̄�𝑤�̄�𝑤 lies outside 𝑋. Note that the distance
between the two matched nodes �̄�𝑧�̄�𝑧�̄�𝑧�̄�𝑧 and �̄�𝑤�̄�𝑤�̄�𝑤�̄�𝑤 is at least 8. We amend our matching 𝑀 by removing all matched
pairs of nodes of 𝑋 and choose an arbitrary matching on the remaining matched nodes (note that there is an even number of such
matched nodes). Any pair of nodes in 𝑀 is such that there is no static link joining them and every node of 𝑉4𝑚 ⧵𝑋 is involved in 𝑀 .

Extend 𝑀 with a matching so that every node of 𝑉4𝑚−1 ⧵ (𝑋⊕01 ∪𝑋⊕10) is matched with a node in 𝑉4𝑚+1 ⧵ (𝑋⊕01 ∪𝑋⊕10). This
is possible as |𝑉4𝑚−1| = |𝑉4𝑚+1| and |𝑉4𝑚−1 ∩ (𝑋⊕01 ∪𝑋⊕10)| = |𝑉4𝑚+1 ∩ (𝑋⊕01 ∪𝑋⊕10)|. Further extend 𝑀 with a matching so that:
every node of 𝑉4𝑚−2 (resp. 𝑉4𝑚−3) is matched with a node in 𝑉4𝑚+2 (resp. 𝑉4𝑚+3). The claim follows. □

The digraph 𝐷′ can be visualized in Fig. 7. The rows are intended to illustrate nodes in different 𝑉𝑖 ’s, although the rows labelled
𝑉3𝑚−1∕3𝑚+1 and 𝑉4𝑚−1∕4𝑚+1 contain all nodes of 𝑉3𝑚−1 ∪ 𝑉3𝑚+1 and 𝑉4𝑚−1 ∪ 𝑉4𝑚+1, respectively (this is where the associate clause
nodes and the associate element nodes lie, respectively). We have not shown all directed edges; just enough to give a flavour of
the construction. Directed edges from 𝐸𝛽 are shown as solid directed edges with the directed edges corresponding to the clause
𝑐1 = {𝑥1, 𝑥𝑛, 𝑥2}, for example, depicted (the grey nodes are the associate clause nodes in order 𝑐⊕001

1 , 𝑐
⊕010
1 , 𝑐

⊕100
1 , 𝑐

⊕001
2 ,… from left

to right). Directed edges from 𝐸𝛼 are shown as dotted directed edges and the grey rectangle contains all nodes from 𝑊 involved in
directed edges of 𝐸𝛼 . The white nodes within this rectangle are the element nodes and the associate element nodes (that is, the nodes
of 𝑊 that are not incident with directed edges from 𝐸𝛼). Finally, the dashed directed edges depict the directed edges from 𝐸1 and
the port nodes and clause nodes are also shown in white.

In order to complete our instance (𝐻,𝜇,𝐷,𝜅), we define 𝜇 to be any fixed (rational) value in the interval (0,1) and 𝜅 = 𝜅𝛽 +𝜅𝛼 +𝜅1
where:

• 𝜅𝛽 =
|𝐸𝛽 |
3 (𝜇𝛽) +

2|𝐸𝛽 |
3 ((𝜇 + 1)𝛽) = 3𝑛𝜇𝛽 + 6𝑛(𝜇 + 1)𝛽

• 𝜅𝛼 = |𝐸𝛼|𝜇𝛼
• 𝜅1 = |𝐸1|(𝑚+ 1 + 2𝜇) = 3𝑛(𝑚+ 1 + 2𝜇).

Theoretical Computer Science 1038 (2025) 115154

13

D.C. Kutner and I.A. Stewart

𝑟𝑜𝑜𝑡 = 𝑟

𝑉1

𝑉2

… …
𝑝1 𝑝2

…
𝑝𝑛 𝑧

…
𝑧 𝑧

…
𝑧

𝑉𝑚

𝑐1 𝑐2
…

𝑐𝑛 𝑐𝑛+1
…

𝑐3𝑛
… 𝑉3𝑚

𝑉3𝑚−1∕3𝑚+1

𝑉4𝑚−1∕4𝑚+1

𝑥1 𝑥2

…

𝑥𝑛 𝑥𝑛+1

…

𝑥3𝑛

… 𝑉4𝑚

�̄� �̄��̄��̄�

𝑉7𝑚

�̄� �̄�

𝑉1

�̄� �̄� �̄� �̄�

�̄�

Fig. 7. The graph 𝐷′ .

Suppose that there is an exact cover ′ = {𝑐𝑗𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} ⊆ of . Let the set of clause nodes 𝐶 ′ ⊆ 𝐶 be {𝑐𝑗𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}. We
define a configuration 𝑁 by choosing dynamic links as follows.

• For some arbitrary bijection 𝑓 from 𝑃 to 𝐶 ′, {(𝑝,𝑓 (𝑝)) ∶ 𝑝 ∈ 𝑃 } is a set of 𝑛 dynamic links.

• For each clause 𝑐𝑗 = {𝑥𝑗1, 𝑥
𝑗

2, 𝑥
𝑗

3} ∈ ′, there are dynamic links (𝑐⊕001
𝑗

, 𝑥
𝑗

1), (𝑐
⊕010
𝑗

, 𝑥
𝑗

2) and (𝑐⊕100
𝑗

, 𝑥
𝑗

3); so, all nodes of 𝑋 are
incident with a dynamic link as are all associate clause nodes of {𝑐⊕001

𝑗
, 𝑐

⊕010
𝑗

, 𝑐
⊕100
𝑗

∶ 𝑐𝑗 ∈ 𝐶 ′}. Note that these dynamic links
result from the directed edges of 𝐸𝛽 incident with the associate clause nodes of the clause nodes of 𝐶 ′ .

• All directed edges of 𝐸𝛼 result in dynamic links. In particular, there is no dynamic link from a node outside 𝑊 to a node inside
𝑊 except possibly incident with the element nodes and the associate element nodes; indeed, the element nodes are already
incident with such ‘external’ dynamic links.

• Consider the node 𝑥1 ∈𝑋. The element 𝑥1 appears in two clauses of ⧵′, say 𝑐𝑖1 and 𝑐𝑖2 . Suppose, for example, that the element
𝑥1 appears as the second element of clause 𝑐𝑖1 and as the first element of clause 𝑐𝑖2 . If so then include a dynamic link from each
of 𝑐⊕010

𝑖1
and 𝑐⊕001

𝑖2
to 𝑥⊕01

1 and 𝑥⊕10
1 . Alternatively, if, say, the element 𝑥1 appears as the third element of clause 𝑐𝑗1 and as the

third element of clause 𝑐𝑗2 then include a dynamic link from each of 𝑐⊕100
𝑗1

and 𝑐⊕100
𝑗2

to 𝑥⊕01
1 and 𝑥⊕10

1 . Proceed similarly and
analogously with all remaining element nodes of 𝑋 ⧵ {𝑥1}. On completion of this iterative process, there is a dynamic link from
every associate clause node to a unique element node or associate element node; that is, these dynamic links depict a bijection
from the associate clause nodes to the element nodes and the associate element nodes.

This constitutes the configuration 𝑁 .

Consider some 𝛽-demand of our workload. For some node 𝑐𝑗 ∈ 𝐶 ′, all such workloads originating at the nodes 𝑐⊕001
𝑗

, 𝑐⊕010
𝑗

and
𝑐
⊕100
𝑗

can be served via a flow-path consisting of a solitary dynamic link at workload cost 𝜇𝛽. For some node 𝑐𝑗 ∈ 𝐶 ⧵ 𝐶 ′, suppose
that there is a demand 𝐷[𝑐⊕001

𝑗
, 𝑥𝑖1] = 𝛽. This demand exists because the element 𝑥𝑖 is the first element of clause 𝑐𝑗 . As the element

𝑥𝑖 is the first element of clause 𝑐𝑗 , there is a dynamic link from 𝑐⊕001
𝑗

to a neighbour of 𝑥𝑖 in {𝑥⊕01
𝑖

, 𝑥
⊕10
𝑖

}, which w.l.o.g. we may

Theoretical Computer Science 1038 (2025) 115154

14

D.C. Kutner and I.A. Stewart

assume to be 𝑥⊕01
𝑖

; hence, the demand can be served via the flow-path 𝑐⊕001
𝑗

, 𝑥
⊕01
𝑖

, 𝑥𝑖 at workload cost (𝜇 + 1)𝛽. Defining other
flow-paths analogously means that we can find flow-paths corresponding to the directed edges of 𝐸𝛽 the total workload cost of which
is 3𝑛𝜇𝛽 + 6𝑛(𝜇 + 1)𝛽 = 𝜅𝛽 .

All 𝛼-demands can be served via a flow-path consisting of a solitary dynamic link at total workload cost |𝐸𝛼 |𝜇𝛼 = 𝜅𝛼 .

Consider some 1-demand 𝐷[𝑟, 𝑥𝑖] = 1. Let the clause 𝑐𝑗 ∈ ′ be such that 𝑥𝑖 is an element of 𝑐𝑗 ; hence, there is a dynamic link
from some port node 𝑝𝑗′ of 𝑃 to 𝑐𝑗 and a dynamic link from some neighbour of 𝑐𝑗 from {𝑐⊕001

𝑗
, 𝑐⊕010, 𝑐⊕110} to 𝑥𝑖. Consequently,

there is a static path from 𝑟 to 𝑝𝑗′ of weight 𝑚, a dynamic link from 𝑝𝑗′ to the node 𝑐𝑗 , a static link from 𝑐𝑗 to the above neighbour in
{𝑐⊕001

𝑗
, 𝑐⊕010, 𝑐⊕110} and a dynamic link from this neighbour to 𝑥𝑖. Hence, the demand 𝐷[𝑟, 𝑥𝑖] = 1 can be served via a flow-path of

workload cost 𝑚+ 1 + 2𝜇 with all 1-demands served via flow-paths at a total workload cost 3𝑛(𝑚 + 1 + 2𝜇) = 𝜅1. Consequently, our
instance (𝐻,𝜇,𝐷,𝜅) is a yes-instance of 1-switched RRP(𝜎 = 3).

Conversely, suppose it is the case that (𝐻,𝜇,𝐷,𝜅) is a yes-instance of 1-switched RRP(𝜎 = 3) and that 𝑁 is a configuration and
𝐹 a set of flow-paths witnessing that the total workload cost is at most 𝜅.

Claim 2. Every directed edge (𝑢, 𝑣) of 𝐸𝛼 is necessarily such that (𝑢, 𝑣) ∈𝑁 and the total workload cost of flow-paths serving the 𝛼-demands
is exactly 𝜅𝛼 .

Proof. Suppose that at least one of the 𝛼-demands is served via a flow-path at a workload cost of more than 𝜇𝛼; so, it must be at
a workload cost of more than (1 + 𝜇)𝛼 as we cannot traverse a dynamic link followed immediately by another dynamic link (recall,
Δ𝑆 = 1) and by Claim 1, if 𝐷[𝑢, 𝑣] = 𝛼 then there is no static link (𝑢, 𝑣). Hence, the total workload cost of flow-paths serving the
𝛼-demands is at least (|𝐸𝛼| − 1)𝜇𝛼 + (1 + 𝜇)𝛼 = 𝜅𝛼 + 𝛼. We have that 𝜅𝛽 + 𝜅1 = 3𝑛𝜇𝛽 + 6𝑛(𝜇 + 1)𝛽 + 3𝑛(𝑚 + 1 + 2𝜇) < 3𝑛𝛽 + 12𝑛𝛽 +
3𝑛(3𝑛 + 3) = 15𝑛𝛽 + 9𝑛2 + 9𝑛 < 𝛼. Hence, the total workload cost of all flow-paths of 𝐹 is strictly greater than 𝜅 which yields a
contradiction and the claim follows. □

Call the dynamic links corresponding to the directed edges of 𝐸𝛼 the 𝛼-dynamic links.

Claim 3. Exactly 3𝑛 (resp. 6𝑛) 𝛽-demands are served by a flow-path of workload cost 𝜇𝛽 (resp. (1 + 𝜇)𝛽) exactly; that is, exactly 3𝑛 (resp.
6𝑛) flow-paths serving the 𝛽-demands consist of a dynamic link (resp. a dynamic link and a static link). Hence, the total workload cost of the
flow-paths serving 𝛽-demands is exactly 𝜅𝛽 .

Proof. All 𝛽-demands are from a unique associate clause node to an element node. As Δ𝑆 = 1, at most 3𝑛 dynamic links can be incident
with an element node. So, at most 3𝑛 𝛽-demands are served by a flow-path consisting of a solitary dynamic link. If a 𝛽-demand is
served by a flow-path that does not consist of a solitary dynamic link then the flow-path has workload cost at least (1 + 𝜇)𝛽.

Suppose there are less than 3𝑛 𝛽-demands that are served by a flow-path consisting of a solitary dynamic link. So, the total workload
cost of flow-paths serving 𝛽-demands is at least (3𝑛−1)𝜇𝛽 +(6𝑛+1)(1+𝜇)𝛽 = 9𝑛𝜇𝛽+6𝑛𝛽+𝛽. By Claim 2, 9𝑛𝜇𝛽+6𝑛𝛽+𝛽 ≤ 𝜅𝛽 +𝜅1 =
3𝑛𝜇𝛽 + 6𝑛(𝜇 + 1)𝛽 + 3𝑛(𝑚 + 1 + 2𝜇); that is, 𝛽 ≤ 3𝑛(𝑚 + 1 + 2𝜇) which yields a contradiction. So, there are exactly 3𝑛 𝛽-demands
served by a flow-path consisting of a solitary dynamic link.

Suppose that there is a 𝛽-demand served by a flow-path of workload cost neither 𝜇𝛽 nor (1 + 𝜇)𝛽. Such a flow-path has workload
cost at least 𝛾𝛽 where 𝛾 =min{2,1+ 2𝜇}. As before, the total workload cost of flow-paths serving 𝛽-demands is at least 3𝑛𝜇𝛽 + (6𝑛−
1)(1+𝜇)𝛽+ 𝛾𝛽 = 9𝑛𝜇𝛽+6𝑛𝛽+(𝛾 −1−𝜇)𝛽. By Claim 2, 9𝑛𝜇𝛽+6𝑛𝛽+(𝛾 −1−𝜇)𝛽 ≤ 𝜅𝛽 +𝜅1 = 3𝑛𝜇𝛽+6𝑛(𝜇+1)𝛽+3𝑛(𝑚+1+2𝜇); that
is, (𝛾 −1− 𝜇)𝛽 ≤ 3𝑛(𝑚+1+ 2𝜇). If 𝛾 = 2 then 𝛽 ≤

3𝑛(𝑚+1+2𝜇)
1−𝜇 ; and if 𝛾 = 1+ 2𝜇 then 𝛽 ≤

3𝑛(𝑚+1+2𝜇)
𝜇

. Whichever is the case, we obtain
a contradiction. Hence, there are exactly 6𝑛 𝛽-demands served by a flow-path of workload cost (1 + 𝜇)𝛽. Each of these flow-paths
consists of a dynamic link and a static link and the claim follows. □

By Claim 3, each element node 𝑥 is incident via a dynamic link to a unique associate clause node of some clause 𝑐 so that the
element 𝑥 ∈ is in the clause 𝑐 ∈ . Consider some 𝛽-demand served by a flow-path of weight 1+𝜇; that is, a flow-path 𝑓 consisting
of a static link and a dynamic link. By Claim 2, every node of 𝑊 ⧵ (𝑋 ∪𝑋⊕01 ∪𝑋⊕10) is incident with a dynamic link incident with
some other node of 𝑊 ⧵ (𝑋 ∪𝑋⊕01 ∪𝑋⊕10). So, no node of 𝑊 ⧵ (𝑋 ∪𝑋⊕01 ∪𝑋⊕10) can appear on 𝑓 . Also, no associate clause node
is adjacent via a static link to any other associate clause node. Hence, 𝑓 must be of the form 𝑐′, 𝑥′, 𝑥𝑖, where 𝑐′ is an associate clause
node, of some clause 𝑐, that is adjacent via a dynamic link to the associate element node 𝑥′ which is adjacent via a static link to the
element node 𝑥 and where the element 𝑥 ∈ is in the clause 𝑐 ∈ . In particular:

• for every 𝑥𝑖 ∈ , if 𝑥𝑖 ∈ 𝑐𝑖1, 𝑐
𝑖
2, 𝑐

𝑖
3, with 𝑐𝑖1, 𝑐

𝑖
2, 𝑐

𝑖
3 ∈ , then there are 3 dynamic links incident with a unique node of {𝑥𝑖, 𝑥

⊕01
𝑖

, 𝑥
⊕10
𝑖

}
and incident with exactly one node of each of the sets of associate clause nodes of 𝑐𝑖1, 𝑐𝑖2 and 𝑐𝑖3

• if there is a dynamic link from an element node 𝑥 or one of its associate element nodes to an associate clauses node of some
clause 𝑐 then the element 𝑥 ∈ is in the clause 𝑐 ∈ .

Call these dynamic links the 𝛽-dynamic links. Also, by Claim 3, the total workload cost of the flow-paths serving the 𝛽-demands is 𝜅𝛽 .
Our aim now is to show that there are 𝑛 clauses with the property that every associate clause node of any of these clauses is incident
with a 𝛽-dynamic link incident with an element node. Doing so would result in our instance of RXC3 being a yes-instance.

Theoretical Computer Science 1038 (2025) 115154

15

D.C. Kutner and I.A. Stewart

Consider some flow-path 𝑓 that services some 1-demand. Our preliminary aim is to show that every such flow-path 𝑓 has weight
at least 𝑚+ 1 + 2𝜇.

Suppose that 𝑓 involves 2 dynamic links. Hence, the structure of 𝑓 is 𝑠∗𝑑𝑠+𝑑 or 𝑑𝑠+𝑑𝑠∗, where 𝑠 (resp. 𝑑) denotes a static (resp.
dynamic) link and ∗ (resp. +) denotes at least 0 (resp. at least 1) occurrence (in a regular-language style); recall that 𝜎 = 3.

• If 𝑓 has structure 𝑠∗𝑑𝑠+𝑑 then the second dynamic link must be of the form (𝑐′ , 𝑥), where 𝑐′ is an associate clause node and 𝑥 is
an element node. If the first dynamic link is not an 𝛼- or 𝛽-dynamic link then the initial prefix of static links has weight at least
𝑚. Hence, the total weight of 𝑓 is at least 𝑚 + 1 + 2𝜇. Alternatively, suppose that the first dynamic link is an 𝛼- or 𝛽-dynamic
link.

– If it is an 𝛼-dynamic link and is of the form (𝑧, �̄�), for some 𝑧 ∈ 𝑉≤𝑚 ⧵𝑃 , then the total weight of 𝑓 is at least 𝑖+𝜇+5𝑚− 𝑖−1+𝜇,
for some 0 ≤ 𝑖 ≤𝑚; that is, at least 5𝑚− 1 + 2𝜇 > 𝑚+ 1 + 2𝜇.

– If it is an 𝛼-dynamic link and is of the form (𝑢, 𝑣), for some 𝑢,𝑤 ∈𝑊 , then the total weight of 𝑓 is at least 4𝑚−1+𝜇+1+𝜇 =
4𝑚+ 2𝜇 > 𝑚+ 1 + 2𝜇.

– If it is a 𝛽-dynamic link then the total weight of 𝑓 is at least 3𝑚− 1 + 𝜇 + 1 + 𝜇 = 3𝑚+ 2𝜇 > 𝑚+ 1 + 2𝜇.

• If 𝑓 has structure 𝑑𝑠+𝑑𝑠∗ then the first dynamic link must be (𝑟, �̄�).
– Suppose that the first sub-path of static links has weight less than or equal to 𝑚 with the second dynamic link being an 𝛼-dynamic

link of the form (�̄�, 𝑧). Then the total weight of 𝑓 is at least 𝜇+ 𝑖+𝜇+4𝑚− 𝑖, for some 0 ≤ 𝑖 < 𝑚; that is, 4𝑚+2𝜇 > 𝑚+1+2𝜇.

– Suppose that the first sub-path of static links has weight exactly 𝑚 with the second dynamic link not an 𝛼- or 𝛽-dynamic link.
As all nodes of 𝑊 are already incident with a dynamic link, we must have that the weight of 𝑓 is at least 𝜇 + 𝑚 + 𝜇 + 4 =
𝑚+ 4 + 2𝜇 > 𝑚+ 1 + 2𝜇.

– Suppose that the first sub-path of static links has weight greater than 𝑚. The weight of 𝑓 must be at least 𝜇 +𝑚+ 1 + 𝜇 + 1 =
𝑚+ 2 + 2𝜇 > 𝑚+ 1 + 2𝜇.

Suppose that 𝑓 involves 1 dynamic link; so, the structure of 𝑓 is 𝑠∗𝑑𝑠∗. If the dynamic link is an 𝛼- or 𝛽-dynamic link then no
matter which dynamic link this is, the weight of 𝑓 is greater than 3𝑚−1+𝜇 > 𝑚+1+2𝜇. If the dynamic link is not an 𝛼- or 𝛽-dynamic
link then the weight of 𝑓 is at least 𝑚+ 𝜇 + 4 > 𝑚+ 1 + 2𝜇, as this dynamic link cannot be incident with any node of 𝑊 . Finally, if
𝑓 does not involve a dynamic link then the weight of 𝑓 is at least 4𝑚 > 𝑚+ 1 + 2𝜇. Hence, every flow-path serving some 1-demand
has weight at least 𝑚+ 1+ 2𝜇 and when it has weight exactly 𝑚+ 1+ 2𝜇, it takes the form of a static path from 𝑟 to some port node
of 𝑃 , augmented with a dynamic link to some neighbour of an associate clause node, augmented with a static link to the associate
clause node, and augmented with a dynamic link from the associate clause node to some element node. As the total workload cost of
all flow-paths serving 1-demands is at most 𝜅1 = 3𝑛(𝑚+ 1+ 2𝜇), every such flow-path has weight exactly 𝑚+1+ 2𝜇 and is therefore
of the form just described.

There are 3𝑛 1-demands yet only 𝑛 dynamic links from a port node to some neighbour of an associate clause node. Hence, these
𝑛 neighbours of associate clause nodes must lie on 3𝑛 flow-paths. Consequently, these neighbours of associate clause nodes must
actually be clause nodes. Let these clause nodes be 𝐶 ′ = {𝑐𝑗1 , 𝑐𝑗2 ,… , 𝑐𝑗𝑛}. Thus, we have that there is a dynamic link from every
associate clause node of each 𝑐𝑗𝑖 to some element node and we have a subset of clauses ′ = {𝑐𝑗1 , 𝑐𝑗2 ,… , 𝑐𝑗𝑛} so that every element of
 lies in exactly one clause of ′; that is, (,) is a yes-instance of RXC3. The result follows as our instance (𝐻,𝜇,𝐷,𝜅) can clearly
be constructed from (,) is time polynomial in 𝑛. □

We emphasize the relevance of the hypercube as a prototypical model of interconnection networks (see, e.g., [16]) and the fact
that we obtain hardness here for any choice of fixed dynamic link weight 𝜇 between 0 and 1.

Taken together our results comprehensively establish the computational hardness of RRP in practically relevant settings. In par-

ticular, we establish that the problem remains intractable in several cases where the demand matrix is sparse, the hybrid network is
highly structured (in fact node-symmetric) and the weights of links depend only on their medium.

3.1. The case of 𝛿 = 1

This section is devoted to the restriction of RRP where the dynamic link limit 𝛿 is set to 1 - where any flow-path must use no more
than a single dynamic link. We shall require substantially different techniques from those we have used up until now so to prove our
main result in the remainder of the paper, which entails that the problem 1-switched RRP(𝜎 = 1) is NP-complete for various graph
classes including hypercubes, grids and toroidal grids. The intention is that this section provides a convenient template for proving
hardness of the problem for other practically interesting classes beyond the ones explicitly considered here.

3.1.1. Additional definitions

We begin with some basic definitions from graph theory. Let 𝐺 = (𝑉 ,𝐸) be a simple undirected graph. We define the open
neighbourhood of a vertex 𝑣 to be 𝑁(𝑣) ∶= {𝑢 ∶ (𝑢, 𝑣) ∈𝐸}, and its closed neighbourhood 𝑁[𝑣] ∶=𝑁(𝑣) ∪ {𝑣}. Likewise for any set of
vertices 𝑆 , we define 𝑁[𝑆] ∶= ∪𝑣∈𝑆𝑁[𝑣] and 𝑁(𝑆) ∶=𝑁[𝑉] ⧵ 𝑆 . A dominating set in 𝐺 is a set of vertices 𝑠 such that each vertex
in 𝐺 is either in 𝑆 or adjacent to a vertex in 𝑆 . The domination number of 𝐺, denoted 𝛾(𝐺), is the least number of vertices in any
dominating set of 𝐺. Dominating Set is the decision problem asking, for input 𝐺 and 𝑘, whether 𝛾(𝐺) ≤ 𝑘.

Theoretical Computer Science 1038 (2025) 115154

16

D.C. Kutner and I.A. Stewart

Where 𝑆 ⊆ 𝑉 is a set of vertices in the graph, we denote 𝐺[𝑆] the subgraph of 𝐺 induced by 𝑆 . That is, 𝐺[𝑆] has 𝑆 as its set of
vertices and as edges exactly those edges of 𝐺 with both endpoints incident to a vertex in 𝑆 . Also, dist𝐺(𝑢, 𝑣) is the number of edges
on the shortest path between 𝑢 and 𝑣 in 𝐺.

Definition 1 (Ball, Sphere). Where 𝐺 is a graph, we denote 𝐵𝐺(𝑣, 𝑟) (resp. 𝑆𝐺(𝑣, 𝑟)) the ball (resp. sphere) with center 𝑣 and radius 𝑟
in 𝐺. Formally these are sets of vertices defined as:

𝐵𝐺(𝑣, 𝑟) ∶= {𝑢 ∶ dist𝐺(𝑢, 𝑣) ≤ 𝑟}

𝑆𝐺(𝑣, 𝑟) ∶= {𝑢 ∶ dist𝐺(𝑢, 𝑣) = 𝑟}

We shall also make use of the following (likely non-standard) definitions.

Definition 2 (Restriction of decision problems to a graph class). Let Π be a decision problem which takes one or many inputs, exactly one
of which is a simple undirected graph. We denote by Π() the restriction of Π to the graph class . That is, Π() has as yes-instances
(resp. no-instances) exactly those yes-instances (resp. no-instances) of Π where the graph portion of the input belongs to .

We introduce a new graph problem, which is subtly different from the classic Dominating Set, and which has the property that
it may remain hard even when the graph portion of the input is highly structured. This subtlety will become important presently -
note that the property is precisely that which we wish to study for 1-Switched RRP(𝛿 = 1).

Partial Domination

Input: Simple undirected graph 𝐺 = (𝑉 ,𝐸); set 𝑇 ⊆ 𝑉 ; integer 𝑘.
Question: Is (𝐺[𝑇], 𝑘) a yes-instance of Dominating Set? Equivalently, is there some set 𝑋 ⊆ 𝑇 with |𝑋| ≤ 𝑘 such that
𝑇 ⊆𝑁𝐺[𝑋]?

3.1.2. Hardness of Partial Domination on (toroidal) grids and hypercubes

We now show that Partial Domination is NP-complete for several graph classes of interest to us, namely grids and hypercubes.
This computational hardness (together with another graph class property we shall come to later) provides the foundation for our
proof of Theorem 8. We note that Dominating Set is trivially tractable for grids, though the same cannot be said of hypercubes;
even 𝛾(𝑄10) is unknown [21]. This subsection leverages several results from the literature, which more or less straightforwardly yield
the desired results.

Theorem 5 ([8] Theorem 5.1). Dominating Set(Induced subgraphs of grids) is NP-complete.

Note that the corollary below relies on some subtle properties of the proof applied in [8] (namely, that the construction provided
explicitly describes an embedding into some grid). It is in general NP-hard, given some graph, to determine whether it is an induced
subgraph of a grid (and also to produce its vertices’ coordinates in a grid - see [18] and references therein).

Corollary 2. Partial Domination(Grids) is NP-complete.

We now turn to the other graph class of interest to us - the hypercubes . Although it is straightforward to show that every grid
is the induced subgraph of some hypercube, we require for technical reasons that, more strongly, the hypercube in question is at
most polynomially larger than the contained grid. Fortunately, we are able to rely here on the extensive literature surrounding the
so-called snake-in-the-box problem, which consists in finding large induced cycles in hypercubes. The following result belongs to that
body of work.

Theorem 6 (Abbott and Katchalski [1,2]). For any 𝑑 ≥ 2, the hypercube 𝑄𝑑 contains an induced path on 77
2562

𝑑 vertices. Given 𝑑, the
coordinates of such a path may be produced in time polynomial in 2𝑑 .

In their work, Abbott and Katchalski state that there is an induced cycle on strictly more than 77
256 2

𝑑 vertices, which entails an
induced path on exactly 77

256 2
𝑑 vertices. The authors do not discuss the runtime of their construction in their work. However, it is

clear from their proof that their description of the induced cycle can be realized as a recursive algorithm with a runtime as stated in
the theorem. Their result has the following consequence, which shall be useful to us towards proving the computational hardness of
Partial Domination().

Corollary 3. For any 𝑑 ≥ 2, the hypercube 𝑄2𝑑 contains an induced grid on (77
2562

𝑑)2 vertices. Given 𝑑, the coordinates of such a grid may
be produced in time polynomial in 2𝑑 .

Theoretical Computer Science 1038 (2025) 115154

17

D.C. Kutner and I.A. Stewart

Proof. Given 𝑑, produce coordinates of a path 𝑃 = {𝑝1, 𝑝2,… , 𝑝𝓁} of length 𝓁 = 77
256 2

𝑑 in 𝑄𝑑 by applying Theorem 6. Note that each
(node) 𝑝𝑖 is a bitstring of length 𝑑 exactly. Then the set {𝑝𝑖𝑝𝑗 ∶ 𝑖, 𝑗 ∈ [𝓁]} is an induced grid of size (77

256 2
𝑑)2 in 𝑄2𝑑 , and the result

follows. □

It remains to combine the above results.

Theorem 7. Partial Domination() is NP-complete.

Proof. Let (𝐺,𝑇 ,𝑘) be an instance of Partial Domination(Grids). We assume without loss of generality that 𝐺 is an 𝑛× 𝑛 grid (if
necessary, by extending 𝐺 in some dimension and retaining the same set 𝑇). We shall denote each vertex in 𝐺 by 𝑣𝑖,𝑗 with 𝑖, 𝑗 ∈ [𝑛].
Let 𝑑 = ⌈log2(256𝑛77)⌉. Applying Corollary 3, we may efficiently produce a mapping from 𝑉 (𝐺) (vertices of the 𝑛 × 𝑛 grid) to 𝑉 (𝑄2𝑑).
Denote this mapping 𝑓 . Let 𝐺′ =𝑄2𝑑 , and 𝑇 ′ = {𝑓 (𝑡) ∶ 𝑡 ∈ 𝑇 }. Then 𝐺′[𝑇 ′] =𝐺[𝑇] (so 𝛾(𝐺′[𝑇 ′]) = 𝛾(𝐺[𝑇]) also) and (𝐺′, 𝑇 ′, 𝑘) is an
instance of Partial Domination(). The construction of 𝐺′ and 𝑇 ′ is feasible in polynomial time, and the result follows. □

A reader interested in showing that some other graph class (e.g. subcubic graphs) is hard for 1-Switched RRP may substitute
the above for a proof that Partial Domination() is NP-complete. As briefly alluded to earlier, this is one of two properties we
shall require of a graph class in the proof of Theorem 8; we turn to the second property presently.

3.1.3. Lunar graph classes

We have chosen to adopt a celestial metaphor to aid intuition, since in defining the class we make use of spheres, balls, large
distances, and vast differences in size. The reader may find Figs. 8 and 9 helpful in illustrating the definition.

Definition 3 (Moon, Planet, Sun). We say a graph 𝐺 is the moon in some graph 𝐻 if:

• There is some set 𝑀 ⊂𝑉 (𝐻) with 𝐻[𝑀] =𝐺. We also call 𝑀 the moon in 𝐻 .

• There is some 𝑜 ∈ 𝑉 (𝐻) and integer 𝑟 such that the set 𝑃 ∶= 𝑆(𝑜, 𝑟) is a sphere of cardinality at least |𝑀| and 𝑃 ∶= 𝐵(𝑜, 𝑟) is the
ball with the same center and radius. We call 𝑃 the planet and 𝑃 the planet surface (or, briefly, surface) in 𝐻 .

• 𝑁[𝑀] ∩𝑁[𝑃] = ∅ (the planet and the moon are far apart).

• |𝑃 | ≥ |𝑀| (the surface is bigger than the moon).

• There is some set 𝑆 ⊂ 𝑉 (𝐻) (the sun in 𝐻) such that |𝑆| ≥ |𝑁[𝑃]| + |𝑁[𝑀]| (the sun is bigger than the moon and planet
together) and 𝑁[𝑆] is disjoint from 𝑁[𝑃] (the sun and planet are far apart). Moreover any node in 𝑆 is at distance at least 2𝑟
from any node in 𝑀 (the sun and moon are very far apart).

We continue with an astronomical theme for the naming of the graph class of interest itself:

Definition 4 (lunar graph class). We say a graph class is lunar in a graph class if, for each 𝐺 ∈ , there exists some 𝐻 ∈ such
that 𝐺 is the moon in 𝐻 . We further require that such a graph 𝐻 (and vertex sets 𝑀,𝑃 ,𝑆 within it) can be constructed in polynomial
time from 𝐺 (which entails that 𝐻 is at most polynomially larger than 𝐺). We say a graph class is lunar in itself (or simply lunar)
if the above holds for = .

For this definition to be useful, we still need to show that it holds for those graph classes which we are interested. The previously
hypothesized reader interested in proving NP-completeness of 1-Switched RRP(𝛿 = 1) restricted to, e.g., subcubic graphs, may find
the following a useful blueprint to prove that subcubic graphs are lunar.

Lemma 2. The class of grid graphs is lunar in itself.

Proof. The reader may find the illustrative example in Fig. 8 helpful. Let 𝐺 be some 𝑛×𝑚 grid (w.l.o.g. 𝑛 ≥𝑚, so |𝐺| is polynomial
in 𝑛).

We shall use the fact that a sphere of radius 𝑟 ≥ 1 in a grid (which does not spill over the grid’s boundary) has size 4𝑟.
Let 𝑟 = ⌈ 𝑛𝑚

4 ⌉. Let 𝑥 = 2(𝑛+ 2𝑟+ 1) and let 𝑦 = 2(𝑚+ 2𝑟). We choose 𝐻 to be the 𝑥 × 𝑦 grid. Then we identify:

• The moon: 𝑀 = 𝑉 (𝐺) (vertices of the 𝑛 ×𝑚 grid are also vertices of 𝑥 × 𝑦 grid).

• The planet: 𝑜 = (𝑛+ 𝑟,𝑚+ 𝑟), 𝑃 = 𝑆(𝑜, 𝑟), 𝑃 =𝐵(𝑜, 𝑟).
• The sun: 𝑆 = {(𝑖, 𝑗) ∶ 𝑖 ≥ 𝑛+ 2𝑟+ 3}.

It is easy to verify that the neighbourhoods of the moon, planet and sun are disjoint; that the sun and moon are at distance at least 2𝑟;
that the size of the planet exceeds that of the moon; and that the size of the sun exceeds that of the moon and planet’s neighbourhoods
combined. Since our construction may be carried out in polynomial time, the result follows. □

Theoretical Computer Science 1038 (2025) 115154

18

D.C. Kutner and I.A. Stewart

Fig. 8. Illustration of our construction where 𝑛 = 5,𝑚 = 3, 𝑟 = 4. The 28 × 11 grid contains the 5 × 3 grid as a moon. Marked are: the moon 𝑀 (square vertices);
𝑜 = (𝑛 + 𝑟,𝑚 + 𝑟) = (7,9), together with the planet 𝑃 = 𝐵(𝑜, 𝑟) (𝑜 and disk and circle vertices) and its surface 𝑃 = 𝑆(𝑜, 𝑟) (circle vertices); the sun 𝑆 = {(𝑖, 𝑗) ∶ 𝑖 ≤ 8}
(cross vertices).

The 𝑥× 𝑦 grid is an induced subgraph of the 2𝑥×2𝑦 toroidal grid, with the notable property that every shortest path in the former
remains a shortest path in the latter. Applying this fact, the proof above can straightforwardly be adapted to obtain the following
corollary:

Corollary 4. The class of grid graphs is lunar in the class of toroidal grid graphs.

Note that the class of toroidal grid graphs is not lunar in itself. We now turn to the protagonist of this paper, the class of hypercubes.

Lemma 3. The class of hypercubes is lunar in itself.

Proof. Note that we reuse some of the notation from our proof of Theorem 4. Let 𝐺 ∈ be some hypercube of dimension 𝑑, i.e.
𝐺 =𝑄𝑑 for some 𝑑. We define:

• Let 𝓁 = 6𝑑 + 9 and 𝐻 =𝑄𝓁 .

• Let 𝑀 ∶= {05𝑑+9𝑥 ∶ 𝑥 ∈𝑄𝑑}.

• Let 𝑜 ∶= 04𝑑+612𝑑+3 and 𝑟 = 𝑑. Recall we denote the planet 𝑃 =𝐵(𝑜, 𝑟) and its surface 𝑃 = 𝑆(𝑜, 𝑟).
• Let 𝑆 ∶= {𝑥 ∶ 𝑥 ∈𝑁[𝑃] ∪𝑁[𝑀]}. Intuitively, the sun nodes are the reflection of the neighbourhoods of planet nodes and moon

nodes.

The illustration in Fig. 9 will be helpful in verifying the following:

• 𝐻[𝑀] =𝐺.

• The sphere 𝑃 = 𝑆(𝑜, 𝑟) has cardinality at least |𝑄𝑑 | (easy to see by considering {𝑜 ⊕ 04𝑑+9𝑥𝑥 ∶ 𝑥 ∈𝑄𝑑}, which clearly contains
only vertices at distance exactly 𝑑 from 𝑜 and so is a subset of 𝑃).

• 𝑁[𝑀] and 𝑁[𝑃] are disjoint.

• 𝑁[𝑀] and 𝑁[𝑃] contain only vertices with at most 3𝑑 + 4 ones.

• |𝑆| ≥ |𝑁[𝑃]|+ |𝑁[𝑀]| (by applying both two points above).

• 𝑁[𝑆] is disjoint from 𝑁[𝑀] and 𝑁[𝑃].
• Moreover any node in 𝑆 is at distance at least 2𝑟 from any node in 𝑀 .

Note that 𝑄𝓁 has size 26𝑑+9 = 29 ⋅ (2𝑑)6 which is polynomial in the size of 𝑄𝑑 . The result follows. □

3.1.4. The main result

We are now able to state and prove the main result of this subsection.

Theorem 8. For any fixed 𝜇 ∈ (0,1), and any graph classes and with lunar in , the problem Partial Domination() is polynomially
reducible to the problem 1-switched RRP(𝛿 = 1) restricted to instances (𝐻,𝜇,𝐷,𝜅) satisfying:

• 𝐻 ∈ , and

• the workload matrix 𝐷 is sparse and all values in it are polynomial in |𝐻|.

Theoretical Computer Science 1038 (2025) 115154

19

D.C. Kutner and I.A. Stewart

Fig. 9. Illustration of our proof hypercubes are lunar, showing the weights (number of ones in any vertex label) for different sets of vertices. The midsection of the
hypercube (separating majority-1 vertices from majority-0 vertices) is shown as a dashed line.

Fig. 10. Illustration of the demands described in our reduction, for the instance (𝐺,𝑇 ,4) of Partial Domination(Grid graphs). Nodes of 𝑇 (and 𝑇 ′ in 𝐻) are shown
as black squares; other nodes of 𝐺 (and 𝑀 in 𝐻) are shown as boxes. Other nodes are shown as in Fig. 8 earlier. Moonlight demands are shown as solid blue curves.
The sunlit nodes �̆� are those in orange shaded regions (note exactly 4 nodes of 𝑃 are not sunlit - these are the moonlit nodes �̆�). Sunlit demands are drawn as dashed
orange arcs (for clarity, only a few are shown). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Proof. We are given an instance (𝐺,𝑇 ,𝑘) of Partial Domination(), with 𝐺 ∈ , a set of vertices 𝑇 ⊆ 𝑉 (𝐺), and integer 𝑘. We
shall produce an instance (𝐻,𝜇,𝐷,𝜅) of 1-Switched RRP(𝛿 = 1). 𝜇 is some prescribed value between 0 and 1, as in the theorem
statement.

The graph 𝐻 , along with vertex sets 𝑀,𝑃 ,𝑃 ,𝑆 , the vertex 𝑜, and the integer 𝑟, are obtained by applying the definition of a lunar
class. We denote by 𝑇 ′ the set of vertices in 𝐻 to which 𝑇 is mapped, so that 𝐻[𝑀][𝑇] =𝐻[𝑇 ′] =𝐺[𝑇].

In order to describe our demands 𝐷, we identify some useful sets of vertices in 𝐻 :

• Target vertices are exactly the set 𝑇 ′ = {𝑡′1, 𝑡
′
2,… , 𝑡′|𝑇 |}.

• The set of moonlit nodes �̆� = {�̆�1, �̆�2,… , �̆�𝑘} is some arbitrary subset of 𝑃 with cardinality 𝑘 exactly.

• The set of sunlit nodes �̆� ∶=𝑁[𝑀] ∪𝑁[𝑃] ⧵ (𝑇 ∪ �̆�).

The intention is that our construction will ensure that, in any configuration 𝑁 of interest to us, the moonlit nodes �̆� (resp. sunlit
nodes �̆�) will be connected by a dynamic link to moon nodes 𝑀 (resp. sun nodes 𝑆).

Consider a new graph: the complete bipartite graph with �̆� ∪𝑆 as vertices and �̆� ×𝑆 as edges. Let 𝐸𝑆 be an arbitrary maximum
matching in this bipartite graph. Note that |𝑆| ≥ |�̆�| by construction, and so |𝐸𝑆 | = |�̆�| exactly and each sunlit vertex is incident to
exactly one edge in 𝐸𝑆 . Note that by construction 𝐸𝑆 ∩𝐸(𝐻) = ∅, because none of the sunlit nodes are adjacent to any sun node (by
applying a property of lunar graphs). That is, if (𝑢, 𝑣) is an edge in 𝐸𝑆 then 𝑢 and 𝑣 are not adjacent in 𝐻 .

Let 𝛼 = (𝑟+ 𝜇 + 1)|𝑇 |. Our demand matrix 𝐷 is fully described by the following:

• 𝐷[𝑢, 𝑣] = 𝛼 for each (𝑢, 𝑣) ∈𝐸𝑆 (sunlight demands),

• 𝐷[𝑜, 𝑡] = 1 for each 𝑡 ∈ 𝑇 (moonlight demands), and

• all other entries of 𝐷 are zero.

It remains for us to define 𝜅. As before, we define this as 𝜅𝛼 + 𝜅1, with 𝜅𝛼 = 𝜇𝛼|𝐸𝑆 | and 𝜅1 = |𝑇 |(𝑟 + 𝜇) + |𝑇 | − 𝑘. We note that
𝛼 > 𝜅1. This completes our construction of the instance (𝐻,𝜇,𝐷,𝜅).

Theoretical Computer Science 1038 (2025) 115154

20

D.C. Kutner and I.A. Stewart

Fig. 11. Detail of an optimal configuration 𝑁 for the instance shown in 10. Only moonlight demands (solid blue arcs) and dynamic links serving them (dashed red
lines) are shown. Note that all moonlit demands are served at cost exactly 𝜅1.

Claim 4. If (𝐺,𝑇 ,𝑘) is a yes-instance of Partial Domination then (𝐻,𝜇,𝐷,𝜅) is a yes-instance of 1-Switched RRP(𝛿 = 1).

Proof. An illustration of an optimal configuration is shown in Fig. 11. Let 𝑋 be a dominating set of 𝐺[𝑇] of cardinality 𝑘. Denote
also by 𝑋′ = {𝑥′1, 𝑥

′
2,… , 𝑥′

𝑘
} the corresponding set of vertices in 𝐻 .

Let 𝑁 ∶= 𝐸𝑆 ∪ {(𝑥′
𝑖
, �̆�𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑘}. Clearly, under 𝑁 each sunlight demand is served at cost exactly 𝜇𝛼 and so all sunlight

demands cumulatively are served at cost |𝐸𝑆 |𝜇𝛼 = 𝜅𝛼 .

Further, the 𝑘 demands from each node 𝑥′
𝑖

to 𝑜 are each served at cost exactly 𝜇 + 𝑟 (by the path 𝑥′
𝑖
⇢ �̆�𝑖 ⇝𝑟 𝑜), and the moonlit

demand for each of the |𝑇 | − 𝑘 other nodes 𝑡 ∈ 𝑇 is served at cost exactly 1 + 𝜇 + 𝑟 (by the path 𝑡 ⇝1 𝑥
′
𝑖
⇢ �̆�𝑖 ⇝𝑟 𝑜). The claim

follows. □

Conversely, suppose that (𝐻,𝜇,𝐷,𝜅) is a yes-instance of 1-switched RRP (𝛿 = 1) and that 𝑁 is a configuration and 𝐹 a set of
flow-paths witnessing that the total workload cost is at most 𝜅.

Claim 5. Each sunlit node has a line of sight (optic link) to a sun node. Formally, every edge (𝑢, 𝑣) of 𝐸𝑆 is necessarily such that (𝑢, 𝑣) ∈𝑁

and the total workload cost of flow-paths serving the 𝛼-demands is exactly 𝜅𝛼.

Proof. Suppose that at least one of the 𝛼-demands is served via a flow-path at a workload cost of more than 𝜇𝛼; so, it must be at
a workload cost of more than (1 + 𝜇)𝛼 as we cannot traverse a dynamic link followed immediately by another dynamic link (recall,
Δ𝑆 = 1) and by our construction, if 𝐷[𝑢, 𝑣] = 𝛼 then there is no static link (𝑢, 𝑣). Hence, the total workload cost of flow-paths serving
the 𝛼-demands is at least (|𝐸𝛼 |−1)𝜇𝛼 + (1+𝜇)𝛼 = 𝜅𝛼 + 𝛼. We have that 𝜅1 < (𝑟+𝜇+1)|𝑇 | = 𝛼. Hence, the total workload cost of all
flow-paths of 𝐹 is strictly greater than 𝜅 which yields a contradiction and the claim follows. □

Claim 6. Each moonlight demand is served at cost at least 𝜇+ 𝑟. Furthermore, at most 𝑘 moonlight demands are served at cost 𝜇+ 𝑟 exactly.

Proof. Consider some moonlight demand; necessarily it has form 𝐷[𝑡, 𝑜] = 1 for some 𝑡 ∈ 𝑇 .

We first show each moonlight demand is served at cost at least 𝜇+ 𝑟. Suppose for contradiction that 𝐷[𝑡, 𝑜] is served at cost strictly
less than 𝜇+ 𝑟. Since 𝑡 and 𝑜 are at distance at least 𝑟+3, the flow-path from 𝑡 to 𝑜 must make use of some dynamic link 𝑢⇢ 𝑣 at cost
𝜇. The static portion of the path therefore must have cost at most 𝑟 − 1, which entails that 𝑣 ∈ 𝐵(𝑜, 𝑟 − 1) ⊊ �̆� (that is, 𝑣 is a sunlit
node). Applying Claim 5 𝑣 is connected by dynamic link to some sun node, so 𝑢∈ 𝑆 necessarily. Then the path from 𝑡 to 𝑢 has length
at least 2𝑟, yielding the desired contradiction.

Now observe that 𝐷[𝑡, 𝑜] can be served at cost exactly 𝜇 + 𝑟 if and only if the dynamic link 𝑡⇢ �̆� exists, for some �̆� ∈ �̆� . Since
|�̆�| = 𝑘 exactly by construction, we obtain that this may be the case for at most 𝑘 nodes in 𝑇 . The claim follows. □

Since 𝜅1 = (𝑟+ 𝜇)(𝑘) + (𝑟+ 𝜇 + 1)(|𝑇 |− 𝑘), we immediately obtain that exactly 𝑘 moonlight demands are served at cost 𝑟+ 𝜇 and
all remaining moonlight demands are served at cost 𝑟 + 𝜇 + 1 exactly.

Claim 7. The set 𝑋 = {𝑢 ∶ (𝑢, 𝑣) ∈𝑁 and 𝑣∈ �̆� is a moonlit node} is a dominating set of 𝐻[𝑀].

Theoretical Computer Science 1038 (2025) 115154

21

D.C. Kutner and I.A. Stewart

Proof. Suppose for contradiction that there is some vertex 𝑡 ∈ 𝑇 ′ which is neither in 𝑋 nor adjacent to any vertex in 𝑋. We show that
the cost of serving the demand 𝐷[𝑦, 𝑜] = 1 is strictly greater than 𝑟 + 𝜇 + 2. Denoting arbitrary nodes 𝑚′ ∈𝑁[𝑀], 𝑝′ ∈𝑁[𝑃], 𝑝 ∈ 𝑃 ,
this flow is routed either:

• Via static links only, along a path of length at least 𝑟 + 3 > 𝑟+ 𝜇 + 1: 𝑦⇝≥1 𝑚
′ ⇝≥1 𝑝

′ ⇝1 �̃�⇝𝑟 𝑜, or

• Via static links and one dynamic link 𝑢⇢ 𝑣 with:

– 𝑣 in 𝑃 , at cost at least 𝑟+ 𝜇 + 2 > 𝑟+ 𝜇 + 1: 𝑦⇝≥2 𝑢⇢ 𝑣⇝𝑟 𝑜

– 𝑢 and 𝑣 both outside 𝑁[𝑃], at cost at least 𝑟+ 𝜇 + 2 > 𝑟+ 𝜇 + 1: 𝑦⇝≥0 𝑢⇢ 𝑣⇝≥1 𝑝
′ ⇝1 �̃�⇝𝑟 𝑜

– either 𝑢 or 𝑣 in 𝑁[𝑃] ⧵ 𝑃 (and the other in 𝑆), at cost at least 2𝑟+ 𝜇 (recall all vertices in 𝑆 are distance at least 2𝑟 from any
vertex in 𝑀).

This contradicts our earlier claim (that all moonlight demands are served at cost at most 𝑟 + 𝜇 + 1) and the result follows. □

We note that the construction described takes polynomial time, and the main result follows. □

Applying our earlier results on lunar graph classes (Lemmas 3 and 2, Corollary 4) together with Theorem 7 we obtain that RRP
remains hard even when the number of dynamic links admitted on any path is limited to 1.

Corollary 5. 1-switched RRP(𝛿 = 1)() is NP-complete if is: the class of hypercubes; the class of grid graphs; or the class of toroidal
grid graphs.

We emphasize again the value of hypercubes as a prototypical model of interconnection networks, and additionally note that
grids and toroidal grids exhibit additional properties which may have been expected to yield a tractable setting, such as planarity and
bounded degree. The restriction to 𝛿 = 1 in our setting also implies a restriction to 𝜎 = 2 (as 3 alternations along a path would entail a
minimum 2 dynamic links along the same) but the converse does not hold; we expect that the case of 1-Switched RRP(𝜎 = 2, 𝛿 = 2)
can be shown to be intractable through similar proof techniques, but leave this for future work.

4. Discussion and future work

Taken together, our results comprehensively establish the computational hardness of RRP in practically relevant settings. We
establish that the problem remains intractable in several cases where the demand matrix is sparse, the hybrid network is highly
structured (in fact node-symmetric) and the weights of links depend only on their medium. Furthermore, in all of our hardness
results, the instrument used to “express” NP-completeness is the demand matrix 𝐷. In the real world, the computational workload for
the network is generally expected to vary significantly with time, unlike the network’s hardware, which (in addition to its structural
properties already discussed) does not rapidly change. Our results are in this sense closely relevant to the hardness of the real world
reconfigurable routing problem.

We take this opportunity to identify some specific questions we have left open, as well as several more general avenues for future
work in this area. First, it would be interesting to study the restriction of the problem to cases where Δ𝑆 is greater than 1 and 𝜇 is a
fixed constant. Results in this setting would “bridge the gap” between Theorems 1 and 2, and Theorems 4 and 8. Analogously, there
is a gap for 1-Switched RRP on hypercubes between 𝜎 = 0 (which is solvable in polynomial time) and 𝜎 = 3 (which is an intractable
case). The complexity of the problem with 𝜎 = 1 and 𝜎 = 2 remains open for hypercubes (note that results for arbitrary networks do
exist when 𝜎 = 2, as shown in Table 1). Our Theorem 8 in some sense sits between these two open cases, since the restriction to 𝜎 = 1
entails a restriction to 𝛿 = 1, which itself entails a restriction to 𝜎 = 2.

Secondly, the present work considers only exact computation. In [11] the authors establish inapproximability within Ω(log𝑛) for
RRP in a more permissive setting (making use of variable link weights). However, the empty solution (there are no dynamic links and
all demands are routed through the static network only) is a log𝑛

𝜇
-approximation for Δ𝑆 -Switched RRP on hypercubes. (This follows

straightforwardly from hypercubes having logarithmic diameter.) It would be interesting to see what (in)approximability results can
be derived in our model with fixed link weights, with and without restrictions to realistic topologies.

Lastly, parameterized algorithms may provide more fine-grained insights into the computational complexity of reconfigurable
routing. Our Theorems 1 and 2 establish that structural parameters of the static network, such as treewidth, are insufficient to yield
fixed-parameter tractable (fpt) algorithms (unless P=NP). However, it would be interesting to see whether it is possible to obtain
an fpt algorithm by additionally parameterizing by the sum of the demand matrix 𝐷; some structural parameters for the digraph
representation of the demands, 𝐷′; the dynamic link weight 𝜇; or a combination of these.

CRediT authorship contribution statement

David C. Kutner: Conceptualization, Investigation, Writing – original draft, Writing – review & editing. Iain A. Stewart: Con-

ceptualization, Investigation, Supervision, Writing – original draft, Writing – review & editing.

Theoretical Computer Science 1038 (2025) 115154

22

D.C. Kutner and I.A. Stewart

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Harvey L. Abbott, M. Katchalski, On the construction of snake in the box codes, Util. Math. 40 (1991) 97–116.

[2] Harvey L. Abbott, Meir Katchalski, On the snake in the box problem, J. Comb. Theory, Ser. B 45 (1) (1988) 13–24.

[3] Mohammad Al-Fares, Alexander Loukissas, Amin Vahdat, A scalable, commodity data center network architecture, Comput. Commun. Rev. 38 (2008) 63–74.

[4] Chan Avin, Stefan Schmid, Toward demand-aware networking: a theory for self-adjusting networks, Comput. Commun. Rev. 48 (2019) 31–40.

[5] Piotr Berman, Marek Karpinski, Approximation hardness of bounded degree MIN-CSP and MIN-BISECTION, in: Proc. of 29th Int. Colloq. on Automata, Languages
and Programming (ICALP), 2002, pp. 623–632.

[6] Charidimos Chaintoutis, Behnam Shariati, Adonis Bogris, Paul V. Dijk, Chris G.H. Roeloffzen, Jerome Bourderionnet, Ioannis Tomkos, Dimitris Syvridis, Free
space intra-datacenter interconnects based on 2d optical beam steering enabled by photonic integrated circuits, Photonics 5 (3) (2018).

[7] Tao Chen, Xiaofeng Gao, Chen Guihai, The features, hardware, and architectures of data center networks: a survey, J. Parallel Distrib. Comput. 96 (2016) 45–74.

[8] Brent N. Clark, Charles J. Colbourn, David S. Johnson, Unit disk graphs, Discrete Math. 86 (1–3) (1990) 165–177.

[9] L.H. Clark, R.C. Entringer, The bisection width of cubic graphs, Bull. Aust. Math. Soc. (1988) 389–396.

[10] Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, Anaïs Villedieu, Efficient non-segregated routing for reconfigurable demand-aware networks, in: Proc. of
IFIP Networking Conf, IEEE Press, 2019, pp. 1–9.

[11] Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, Anaïs Villedieu, Efficient non-segregated routing for reconfigurable demand-aware networks, Comput.
Commun. 164 (2020) 138–147.

[12] Klaus-Tycho Foerster, Manya Ghobadi, Stefan Schmid, Characterizing the algorithmic complexity of reconfigurable data center architectures, in: Proc. of Symp.
on Architectures for Networking and Communications Systems (ANCS), ACM Press, 2018, pp. 89–96.

[13] Klaus-Tycho Foerster, Maciej Pacut, Stefan Schmid, On the complexity of non-segregated routing in reconfigurable data center architectures, Comput. Commun.
Rev. 49 (2019) 2–81.

[14] Klaus-Tycho Foerster, Stefan Schmid, Survey of reconfigurable data center networks: enablers, algorithms, complexity, ACM SIGACT News 50 (2019) 62–79.

[15] Teofilo F. Gonzalez, Clustering to minimize the maximum intercluster distance, Theor. Comput. Sci. (1985) 293–306.

[16] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, Chen Tian, Yongguang Zhang, Songwu Lu, BCube: a high performance, server-centric
network architecture for modular data centers, Comput. Commun. Rev. 39 (2009) 63–74.

[17] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, Songwu Lu, DCell: a scalable and fault-tolerant network structure for data centers, in: Proc.
of ACM SIGCOMM Conf. on Data Communication, 2008, pp. 75–86.

[18] Siddharth Gupta, Guy Sa’ar, Meirav Zehavi, Grid recognition: classical and parameterized computational perspectives, J. Comput. Syst. Sci. 136 (2023) 17–62.

[19] Matthew Nance Hall, Kalsu-Tycho Foerster, Stefan Schmid, Ramakrishnan Durairajan, A survey of reconfigurable optical networks, Opt. Switching Netw. 41
(2021) 100621.

[20] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das, Jon P. Longtin, Himanshu Shah, Ashish Tanwer, Firefly: a reconfigurable wireless
data center fabric using free-space optics, in: Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, Association for Computing Machinery,
New York, NY, USA, 2014, pp. 319–330.

[21] OEIS Foundation Inc., Entry A000983 in the on-line encyclopedia of integer sequences, Published electronically at https://oeis.org/A000983, 2024.

[22] Igor Pak, Radoš Radoičić, Hamiltonian paths in Cayley graphs, Discrete Math. 309 (17) (2009) 5501–5508, Generalisations of de Bruijn Cycles and Gray
Codes/Graph Asymmetries/Hamiltonicity Problem for Vertex-Transitive (Cayley) Graphs.

[23] Ankit Singla, Chi-Yao Hong, Lucian Popa, P. Brighten Godfrey, Jellyfish: networking data centers randomly, in: Proc. of 9th USENIX Conf. on Networked Systems
Design and Implementation, 2012, pp. 225–238.

[24] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, Michael Schapira, Xpander: towards optimal-performance datacenters, in: Proc. of 12th Int. Conf. on Emerging
Networking Experiments and Technologies, 2016, pp. 205–219.

[25] Shaojuan Zhang, Xuwei Xue, Eduward Tangdiongga, Nicola Calabretta, Low-latency optical wireless data-center networks using nanoseconds semiconductor-

based wavelength selectors and arrayed waveguide grating router, Photonics 9 (3) (2022).

http://refhub.elsevier.com/S0304-3975(25)00092-1/bib3029D419D4BD6798F8CB8F7DDA58DA7Cs1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib099C49C879ABCDAD8E73F973F9277689s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibAD065DC3263FC2AA702BFC30C7C1AD9As1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib5C5D7D7287B49681E904D61F7767B8A0s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib66C605BB55EF01584CE08C22EDD34A04s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib66C605BB55EF01584CE08C22EDD34A04s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib1084A958B989DC255A12690DCC8EBE7Fs1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib1084A958B989DC255A12690DCC8EBE7Fs1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibE7AD21E2F56D4CF03B3788D3032CA799s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib2B862FB67E35631863D407B601977B8Ds1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib70DA11F782D4CA856444A822E79F1C75s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib49B3773D0A6C8F99E3915EB0EA0C8989s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib49B3773D0A6C8F99E3915EB0EA0C8989s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib4FFEE85BEC0BF5F2214CC1C137C4DAE1s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib4FFEE85BEC0BF5F2214CC1C137C4DAE1s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibB42D6CEEBCB132F67870BC21F8DF2C4Es1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibB42D6CEEBCB132F67870BC21F8DF2C4Es1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibB77C0996FB11EBB747CB0C2F98C11068s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibB77C0996FB11EBB747CB0C2F98C11068s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibF50C7FC54B951F80711003089C86DD2As1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibC693F015CA1A3A77A465B2BC9D53E46Es1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib6C4F06497A16130A619B4419F3F3B4D3s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib6C4F06497A16130A619B4419F3F3B4D3s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib3B002C0C7547A79D5114D758065284B8s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib3B002C0C7547A79D5114D758065284B8s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibF17784C4167E39C902FDD719C2863DC9s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibF9A192A2034D045342CBE5337A4F6CBAs1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibF9A192A2034D045342CBE5337A4F6CBAs1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibDAB869E273B2D23B62A4B3332F509675s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibDAB869E273B2D23B62A4B3332F509675s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bibDAB869E273B2D23B62A4B3332F509675s1
https://oeis.org/A000983
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib1524C03CC9DF7EEA6E47C0DAB31790E2s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib1524C03CC9DF7EEA6E47C0DAB31790E2s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib34FF6DECD9D09417E08C94302DFA1D38s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib34FF6DECD9D09417E08C94302DFA1D38s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib57AF5A90F1F9328392DF61FDC469FF4Cs1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib57AF5A90F1F9328392DF61FDC469FF4Cs1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib543DFABE77F6552F58C23A1FCF930E47s1
http://refhub.elsevier.com/S0304-3975(25)00092-1/bib543DFABE77F6552F58C23A1FCF930E47s1

	Reconfigurable routing in data center networks
	1 Introduction
	2 Problem setting
	2.1 Hybrid networks, (re)configurations and (segregated) routing
	2.2 Routing in hybrid networks
	2.3 The reconfigurable routing problem

	3 Results
	3.1 The case of δ=1
	3.1.1 Additional definitions
	3.1.2 Hardness of Partial Domination on (toroidal) grids and hypercubes
	3.1.3 Lunar graph classes
	3.1.4 The main result

	4 Discussion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	References

