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Abstract: The vigorous development of deep learning (DL) has been propelled by big data
and high-performance computing. For brain–computer interfaces (BCIs) to benefit from DL
in a reliable and scalable manner, the scale and quality of data are crucial. Special emphasis
is placed on the zero-shot learning (ZSL) paradigm, which is essential for enhancing the
flexibility and scalability of BCI systems. ZSL enables models to generalise from limited
examples to new, unseen tasks, addressing data scarcity challenges and accelerating the
development of robust, adaptable BCIs. Despite a growing number of BCI surveys in recent
years, there is a notable gap in clearly presenting public data resources. This paper explores
the fundamental data capital necessary for large-scale deep learning BCI (DBCI) models.
Our key contributions include (1) a systematic review and comprehensive understanding
of the current industrial landscape of DBCI datasets; (2) an in-depth analysis of research
gaps and trends in DBCI devices, data and applications, offering insights into the progress
and prospects for high-quality data foundation and developing large-scale DBCI models;
(3) a focus on the paradigm shift brought by ZSL, which is pivotal for the technical potential
and readiness of BCIs in the era of multimodal large AI models.

Keywords: brain–computer interfaces; deep learning; Zero-shot learning; industrial
landscape; conceptualisation

1. Introduction
Neuralink’s ‘Telepathy’ is a new intrusive brain–computer interaction (BCI) device

that places 1024 electrodes in the motor cortex. Unlike non-intrusive EEG technologies,
intrusive methods can fully penetrate the brain for deep coverage. This, combined with
Telepathy’s high electrode count compared to the standard 32 or 64 electrodes for non-
intrusive EEG, provides a quality of data unrivalled by non-intrusive means. Furthermore,
a vast quantity of data can be gathered by devices embedded in a user, unlike EEG devices,
which are typically worn for no more than a day, or MRI machines, which are used for only
a couple of hours at a time. The company has also developed a robot to implant their device,
making it more scalable and accessible by reducing the need for human expertise during
surgery. For these reasons, we believe Neuralink’s technology could mark the beginning of
large-scale and high-quality data capital collection for BCI applications.

That being said, this technology is still in its infancy. At the time of writing, only
two patients have had the Telepathy device implanted, with varying success. Some of the
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64 threads came loose in the first patient, although the user was still able to control a cursor
with their thoughts. Questions remain as to the safety of this technology, as well as its
long-term durability. There is also the cost of the device to consider, as well as the fears
people have about having a chip implanted in their brains; these are further barriers to the
widespread adoption of this device. For this reason, in this paper, we focus on non-intrusive
EEG datasets, which contribute to the majority of existing data capital for BCI applications
due to their price and ease of use compared to other brain-imaging techniques. It is also
unclear if Neuralink, due to its nature as a private company, will release the data capital it
collects to the broader academic community.

The rapid development of deep learning (DL) embraces the prevalence of internet tech-
nology. Increasing internet access and availability accumulate large-scale and diverse data,
stimulating the demand for efficient computing and data storage. The past two decades
have shown a significant shift from theoretical studies toward versatile applications. New
commercial needs encounter technical challenges that, in turn, motivate the establishment
of new theoretical foundations, such as multimodal [1], multi-task [2], interpretable [3],
causality [4], and AI-generated content (AIGC) [5,6]. This paper introduces the industrial
landscape (IL) framework, which generally refers to the physical and visual characteristics
of areas where industrial activities take place, such as factories, mills, refineries, and other
industrial facilities. It can also refer to the broader socioeconomic and cultural impacts of
industrialisation on the surrounding environment and communities, including changes to
land use, infrastructure, and the built environment. Industrial landscapes can vary widely
in appearance and character depending on the type of industry, location, and historical
context, and may include features such as smokestacks, silos, pipelines, and rail yards.
Recent work has shown the IL framework in the context of data capital [7] to help under-
stand the closed loop of theory–application–need and to identify future trends, limitations,
and challenges.

Models and data are the two fundamental pillars of AI development. The origins of AI
models lie in logic formalisation [8]. Alan Turing, building on this foundation, introduced
the Turing machine and the conceptualisation of AI from a deductive perspective. Deduc-
tive or rule-based symbolic systems [9] are characterised by their pursuit of rigour and
precision but often sacrifice flexibility and generalisation capabilities. In contrast, inductive
methods have evolved to follow a data-driven approach, deriving rules and models from
patterns in observed data. Current deep learning (DL) models are primarily grounded in
the inductive paradigm, processing empirical perception signals such as vision, natural
language, and audio [10]. However, while these models excel at pattern recognition and
representation, they are inherently limited to interpreting conscious levels of data, as con-
ceptualised in cognitive theory [11]. According to this theory, an agent’s cognition spans
four levels: unconsciousness, consciousness, awareness, and meta-awareness. Traditional
DL models predominantly operate at the level of behavioural data, reflecting perception
and consciousness. Their goal is to align human attention signals (labels) with input data,
such as semantic attributes. Despite their progress, supervised learning paradigms, which
have dominated AI research for the past two decades, suffer from several limitations.
These include issues such as subjective biases [12], vulnerability to adversarial attacks
and data poisoning [13], data annotation burdens, and significant ethical concerns [14].
These challenges highlight the constraints of existing methods and the need for more
robust approaches. The emergence of self-supervised learning and advances in parallel
computing have prompted industrial efforts to pursue a top-down technological approach.
This involves leveraging large-scale multimodal interactive data to train powerful DL mod-
els that aim to achieve meta-awareness—a higher cognitive representation incorporating
knowledge graphs and causal inference [15]. By addressing the divergence in individual
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awareness and improving moral generalisation, these models offer a pathway to mitigate
bias and ensure more inclusive and fair outcomes. However, this approach relies on the as-
sumption that data collection systems can comprehensively capture diverse users, thereby
addressing the challenges of neurodiversity [16].

Emerging BCI technologies have brought new opportunities and challenges, which
push the AI and deep learning community to the next level. One aim of this technology
is to explain fundamental brain mechanisms beyond perception and consciousness. For
example, rapid serial visual presentation (RSVP) displays users with sequential images
at high speed (e.g., 10 images per second). In face recognition tasks, users are given a
well-known target face to find, e.g., Einstein, before being displayed a high-speed sequence
of faces. A promising result is that the P300 signal, which is triggered when a person
recognizes a face, can be detected from the BCI signal even when human participants
are unaware that the face has been displayed. This shows that signals measured by BCI
devices can indeed detect and analyse unconscious level information and suggests that
BCI technology could lead AI to a new era by exploring the internal behaviour of brain
activities beyond existing cognitive and conscious levels.

In this context, brain–computer interface (BCI) systems represent a critical break-
through. Unlike traditional methods that primarily rely on behavioural and conscious data,
BCI systems have the potential to tap into unconscious levels of cognition, providing a fun-
damentally new layer of supervision for AI. By integrating neural signals directly from the
brain, BCI can reduce the inherent subjectivity of supervised learning and provide richer,
more diverse data inputs. This capability not only mitigates bias and enhances fairness but
also paves the way for a more comprehensive and accurate alignment of AI systems with
human-level cognition, thereby playing an indispensable role in modern AI. Compared
to traditional learning paradigms like few-shot and transfer learning, zero-shot learning
(ZSL) offers a distinct advantage in BCI applications by eliminating the need for extensive
labelled data and enabling generalisation to novel tasks and unseen classes. Few-shot learn-
ing requires limited but labelled examples, and transfer learning depends on pre-trained
models adapted to new tasks, which can be challenging in scenarios with domain-specific
constraints or a lack of domain-aligned data. ZSL, on the other hand, leverages semantic
relationships and knowledge transfer to bridge these gaps, making it uniquely suitable for
BCIs where obtaining task-specific labelled datasets is often impractical. Beyond health-
care applications, ZSL’s potential extends to domains like communication aids, enabling
individuals with neuro-disorders to interact seamlessly, and industrial robotics, where
adaptive neural control can revolutionise task automation. These capabilities highlight the
transformative impact of ZSL in scaling BCIs across diverse real-world scenarios.

However, the key barrier between BCI and contemporary deep learning research is
data foundation. The data-hungry nature of deep models requires vast quantities of training
data that can only be acquired through large-scale deployment. The polarised situation is
that intrusive or fMRI-based data collection can provide high-resolution and reliable results,
but are limited by cost and usability. However, low-cost, lightweight, and commercialised
devices, such as EEGs, ECGs, and EMGs, are still limited in performance. In this paper, we
investigate this problem through the lens of the industrial landscape [7], which provides a
new perspective on data capital. This allows us to understand the progress and predict
the trend of deep neural network development in BCI domains. The contributions of this
paper are threefold:

• First, we use the IL framework to conduct a systematic literature review. We sum-
marise both established and emerging DBCI data capitals which help understand the
progress of each identified core technical milestone of DBCI.
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• Second, the motivation of this article is to put the development of BCI models into the
context of the IL framework. We identify key barriers preventing the development of
large DBCI models in terms of devices, data, and applications.

• Third, we point those unaddressed technical challenges towards cutting-edge zero-
shot learning techniques. Our findings establish a technical roadmap through inter-
sample, inter-person, inter-device, inter-domain and inter-task transfer paradigms,
multimodal visual–semantic neural signal models, and data synthesis and signal
processing for higher SNR and scalable DBCI device adaption.

This paper is organised as follows. In Section 2, we systematically introduce the
research background, the conceptualisation of the industrial landscape, and the current
state of DBCI research. In Section 3, we outline our survey methodology and the data we
collect. Section 4 discusses the survey results of existing BCI datasets and suggests how the
emerging zero-shot neural decoding technique can overcome the barriers identified in the
survey. We finalise our discussion and summarise the main findings in the last Section 5.

2. Research Background
In this section, we introduce the research background of DBCI to put our review

into the context of the industrial landscape [7]. The industrial landscape is a framework
that can analyse the industrial trend of both existing digital technologies and AI. Our
contribution focuses on making a mapping for DBCI development under the IL framework
to understand and predict the progress in parallel with other AI and digital technologies.

To ensure a comprehensive and systematic review of the existing literature on brain–
computer interface (BCI) research, a structured search strategy was employed. An initial
search on Google Scholar yielded over 28,000 results based on a combination of keywords,
including “brain–computer interface”, “brain–machine interface”, “EEG”, “BCI review”,
and “BCI survey”. Boolean operators (AND/OR) were used to refine the search, for exam-
ple, combining terms like “brain–computer interface” AND review and “brain–machine
interface” OR “EEG” AND survey to maximise coverage. The search was restricted to
papers published between 1986 and 2024, written in English, and focused on journal arti-
cles, conference proceedings, and review papers. From this extensive pool, a systematic
screening process was conducted to identify 677 relevant papers. The inclusion criteria
focused on (1) relevance to BCI research, assessed through titles and abstracts; (2) papers
providing foundational insights or discussing recent advancements in BCI technologies,
devices, datasets, and applications; and (3) studies addressing key paradigms, such as
slow cortical potentials (SCPs), P300, sensorimotor rhythms (SMR), and neurofeedback.
This curated selection of 677 papers forms the basis of this review, highlighting milestones,
trends, and gaps in BCI research.

Early work of BCI can be traced back to 1924 [17] when the first-ever electroencephalo-
gram signal was recorded by Hans Berger. Bio–neuro [18] feedback began in the late
1950s. Biofeedback refers to all physiological signals, e.g., blood pressure, heart rate, etc.,
whereas neurofeedback refers to brain signals only. The first seminal work that provided
both a theoretical and technical review of BCI was published in 1973 [19]. Initial research
focused on controlling assistive devices. Operant (instrumental) conditioning refers to
autonomous functions, e.g., blood pressure and heart rate, which can be manipulated by
operant conditions. In 1960 [20,21], Neil Miller conducted the first trial aimed at disrupting
the motor system of rats. The experiment extended to blood pressure, urine production,
and gut control in [22]. Human learning, in contrast, takes the cognitive dimension into
account. Controlling devices with BCI, end-users need to focus their attention throughout
the tasks, which is cognitively demanding.
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One of the primary applications of BCI lies in the neuro-disorder domain. In particular,
locked-in syndrome (LIS), which typically follows a stroke in the basilar artery of the
brainstem, is characterised by the retention of vertical eye movements (e.g., looking up and
down) [23,24]. LIS can also result from amyotrophic lateral sclerosis (ALS), which leads
to the loss of movement or complete motor paralysis. Both LIS and ALS are key target
populations for restoring lost functionality through BCI. Compared to traditional voluntary
assistive technologies, BCI offers four main advantages. First, slow cortical potentials (SCPs)
provide the basis for long-term training, allowing individuals to communicate messages
in the absence of peripheral muscular movement. Second, involuntary eye movements
associated with LIS present a significant challenge for other assistive technologies, which
BCI can bypass. Third, depression caused by LIS often makes it difficult for caregivers to
interpret eye movements or spelling codes, which limits communication. Fourth, BCI elimi-
nates the need for questionnaire-based assessments, providing a more direct and efficient
interface. A more challenging scenario involves complete locked-in syndrome (CLIS) [25],
in which the loss of behavioural output [26] leads to “thought paralysis”. This state, often
resembling a vegetative state, poses limitations to operant learning approaches. Despite
these challenges, contemporary BCI applications have embraced advancements brought by
the AIGC era. For instance, brain painting replaces the traditional P300 matrix with icons
representing painting tools, which are controlled by a cursor. This technology has enabled
ALS patients to create art independently, without requiring researcher supervision [27,28].
Following painting sessions, satisfaction, joy, and frustration are evaluated by the BCI team,
and favourable results have consistently been observed.

Neurophysiology has established key paradigms for BCI signal acquisition, such
as slow cortical potentials (SCPs) and P300, which are widely applied in conditions like
epilepsy and attention deficit hyperactivity disorder (ADHD). Techniques like voluntary
control of alpha activity, sensorimotor rhythms (SMRs), and µ-rhythm have been utilised
in psychological therapy, behavioural studies, and medicine since the 1950s. Event-related
potential (ERP), SMR, SCP, and P300 (a positive potential occurring 300 ms after a stimulus)
are frequently implemented with stimuli approaches like the oddball paradigm. For exam-
ple, a 6x6 letter matrix [29] enables letter selection, while N400 (a negative potential 400 ms
after stimulus) is used for face recognition tasks. Operant learning is commonly employed
to increase SMR activity (8–15 Hz), which reflects event-related desynchronisation (ERD).
ERD was introduced for cursor control in 1991 and later expanded to motor imagery, al-
though it requires users to learn to regulate their brain responses. The S1–S2 paradigm (S1:
warning stimulus, S2: imperative stimulus requiring a motor response) is also used, where
SCP measures slow EEG shifts, such as contingent negative variation (CNV). For instance,
a negative shift occurring 800 ms before finger movement can be observed. SCP shifts are
also associated with large negative DC shifts during epileptic seizures, and voluntary SCP
modulation may help prevent them. These methods were first implemented for locked-in
patients in 1999 [30] and remain foundational for smooth BCI control.

Several traditional barriers are preventing BCI from being widely applied. The first
is the signal-noise rate (SNR). SNR reflects the strength of the signal of interest in relation
to artefacts like breathing and muscular movement [31]. These noise artefacts remain
a fundamental challenge today. Second, BCI training is required for users, decreasing
accessibility [32]. In 2010, usability and user-centred design (UCD) set the ISO 9241-210 [33]
as the usability standard. This norm requires BCI-controlled applications to be evaluated by
user experience in terms of (1) effectiveness, which considers the accuracy and completeness
users can achieve; (2) satisfaction, which measures comfort and acceptability while using
the device; and (3) usability measurement. The information transfer rate (ITR) is also a
key parameter to measure BCI accessibility. From the early work of 2 min per letter [30],
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P300-based BCI progressed to 10 letters per min in [34]. However, it is still not suitable
for independent home use. Device design is also an important factor. The trend in BCI
technology development is moving towards lightweight, cost-effective solutions, ranging
from compact RRG amplifiers integrated into caps [35], to artefact rejection techniques
for smartphone applications during walking [36], and behind-the-ear designs [37]. We
summarise the key milestones as follows:

• 1924: Hans Berger records the first electroencephalogram (EEG) signal.
• 1950s: Bio–neuro feedback was introduced, focusing on physiological and brain signals.
• 1960: Neil Miller demonstrates operant conditioning for controlling autonomic func-

tions, like blood pressure and heart rate, in rats.
• 1973: First theoretical and technical review of brain–computer interfaces (BCIs).
• 1991: Event-related desynchronisation (ERD) is introduced for cursor control.
• 1999: Slow cortical potentials (SCPs) are applied to control devices for locked-in patients.
• 2000s: Development of P300-based BCIs for communication and control tasks.
• 2010: Adoption of ISO 9241-210 usability standards for BCI evaluation, focusing on

effectiveness, satisfaction, and usability.
• 2020s: Emergence of advanced applications like brain painting for ALS patients and

other neurofeedback-based tools.

The literature review highlights the essential need for advancements in machine
learning, communication, and interaction technologies [38]. The key objectives are as
follows: (1) reducing training costs for both users and models, (2) developing robust
filters to improve signal-to-noise ratio (SNR), and (3) creating transferable and generalised
BCI systems that do not require prior calibration. This presents a classic chicken-and-
egg dilemma. On the one hand, machine learning, particularly deep learning, requires
large-scale data to achieve reliable transferability and generalisation. On the other hand,
transferability and generalisation are essential features that must be established before a
BCI device can be widely adopted. For instance, no long-term studies involving locked-in
patients have been conducted using machine learning. Historically, neurofeedback studies
required significant time investments, such as 288 h per user [39], or in 1977, 2.5 years of
SMR data collected over 200 sessions. These efforts represent a foundational investment in
data capital, which we consider critical for driving progress in models, devices, paradigms,
and accessibility. We will further explore how data capital underpins these aspects in the
context of the IL framework.

Industrial Landscape

The fast growth of internet companies and new technologies has resulted in a stark
contrast to the traditional industrial landscape conceptualisation. The traditional labour
theory of Karl Marx conceptualises economic development with key components of labour,
value, property, and production relationships. David Harvey [40] provides a modern
interpretation with a significant influence on academic and political debates around the
world. The work on urbanisation and the political economy of cities has been particularly
influential and has been a vocal critic of the neoliberal policies that have shaped urban
development in many parts of the world. The work has often addressed the intersections
between political economy, social inequality, and environmental degradation. In this paper,
we present recent advancements in applying the IL framework to the context of AI and
data capital [7]. We provide a consistent illustration of the IL framework, drawing on the
work of David Harvey, and extend it to the new contexts of data capital, as illustrated in
Figure 1.
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Figure 1. Comparison between the traditional industrial landscape and the new contexts of digital
technology. The new data capital model provides a roadmap to guide the DBCI development.

The driving power in the traditional industrial landscape conceptualisation is money
capital, which meets producer-effective demands. This process combines with the “free
gifts of nature” to facilitate labour and the means of production. Produced commodities
stimulate the realisation of value in monetary form after deducting wage goods and the
cost of the means of production. The production, reproduction, and destruction of human
nature and culture shape the “free gift” of human nature, as well as fundamental wants,
needs, and desires. The resulting consumer effective demands are matched to the realisation
of value in money form through marketing activities and create distribution to the producer,
consumer, and back-to-money capital. In this IL framework, the key gateways to control
the flow of money capital are the means of production and distribution.

In the new contexts of data capital [7], particularly in the era of recent AIGC ad-
vancements and large-scale models, internet platforms have emerged as fundamental
infrastructure. The updated IL framework is especially valuable for understanding the
technical development of contemporary AI, including fields such as computer vision and
natural language processing. This framework focuses on the differences and commonalities
between the traditional bourgeoisie and the new bourgeoisie, referred to as neo-bourgeoisie.
The traditional bourgeoisie owns the means of production and has high fixed costs, while
the neo-bourgeoisie owns the means of connection and has low fixed costs. For example,
digital products, such as online videos and games are not limited by their physical forms
and can serve the scalable needs of customers. The factors involved in production for the
traditional bourgeoisie are land, labour, and capital, while for the neo-bourgeoisie, they
are data and information. For example, many online services and products are free to
use as the owner of a digital gateway can gather valuable data and information. Data
can be used to supply further development for business analysis and AI training while
information is essential in controlling information distribution and matching market needs.
Both data capital and money capital have monopoly power and high economic rents. The
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framework also discusses the differences and commonalities between the proletariat and
the neo-proletariat. The former is paid for labour hours, while the latter receives free
services in exchange for personal data and cognitive workloads.

Our work focuses on analysing the progress and perspective of DBCI technologies in
the context of the IL framework. Unlike previous surveys that were technique-driven, this
paper provides a hybrid paradigm. Firstly, we derive the survey structure using a scoping
review approach and the IL framework. Based on the derived structure, we then match the
development of DBCI models and data using the systematic literature review approach.
Meta-analysis is also provided to compare key parameters, such as DBCI applications, data
statistics, and BCI devices.

3. Methodology
3.1. Conceptualisation of DBCI Industrial Landscape

More than 600 BCI survey papers were published between 1986 and 2024. However,
none of these surveys has contextualized the technical development of BCI within the
industrial landscape, which is crucial to understanding how the factors of data, devices,
commercialisation, etc., shape research. Therefore, we introduce the recent IL framework [7]
as an initial scoping review to narrow down and identify the following key topics. Our
review methodology is summarised in Figure 2. To narrow down the selection of datasets,
we employed a further two-stage manual filtering process. In the first stage, we performed
a relevance-based screening of the initial 677 papers to identify 229 that aligned with the
industrial landscape barriers, specifically focusing on applications, utility, cognitive work-
load, and data/model ownership. This stage involved evaluating abstracts, keywords, and
methodologies for relevance. In the second stage, we conducted a quality assessment of the
229 papers, applying inclusion criteria such as the accessibility of datasets, reproducibility
of experimental methods, and overall methodological rigour. This final step reduced the
selection to 38 papers that met the highest standards of quality and relevance, forming the
basis of our review. This systematic approach ensured that only datasets with substantial
value for advancing DBCI research were included. As a result, there are a total of 44 datasets
included in this paper. The four barriers, i.e., applications, utility, cognitive workload, and
data and model ownership, were derived from the principles and insights outlined in the
IL framework. This framework conceptualises the progression of digital technologies and
AI through the lens of data capital, a critical resource that underpins innovation, scalability,
and economic value in modern industries. In the context of DBCI, these barriers emerge
as follows:

DBCI applications: These applications consider the impact of big data and artificial intelli-
gence (AI) on the economic, social, and political systems of the world. AI has increased the
ability to produce more for economic growth and development while also making human
labour obsolete. This creates a trajectory where capitalism remains the ultimate system,
controlling the lives of labour through big data. However, the growth of AI also promotes
technological innovation and investment, leading to economic growth. The profit-driven
technological singularity of AI creates social challenges and potentially fatal economic
impacts under a neoliberal economic system. AI also creates a digital divide and poten-
tially expands existing societal rifts and class conflicts. It is essential to develop policies to
protect labour, privacy, trade, and liability and reduce the consequences of AI’s impact on
employment, inequality, and competition. DBCI may create opportunities for individuals
to monetise their personal data and potentially transfer control and ownership to actual
data producers in a passive way, i.e., the mind activity and focused time consumption.
Application is, therefore, a key parameter in evaluating the maturity and progress of the
DBCI industrial landscape.
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The utility of DBCI: The economic landscape has undergone major changes in the past
few decades with the emergence of new internet technologies and the creation of value
through business model innovation using data and information. The factors of production
have been redefined with data and information being recognised as new variables that
have been made possible by technological breakthroughs in information and communi-
cations technology. The cost of computing power, data storage, and Internet bandwidth
has decreased significantly, enabling the creation of increasingly rich digital information.
This has given rise to new phenomena such as big data analytics and Internet platform
companies. The democratisation of information and knowledge has also increased the
bargaining power of workers and consumers whilst impacting Marxist philosophy in two
areas related to the value-creation process. The commodification of cognitive labour is the
foundation of the new capitalist system in which modes of control over production, con-
sumption, distribution, and exchanges are very different from earlier forms of capitalism in
history. This new economy of capitalist transformation is referred to as ‘cognitive capital-
ism’ [41]. This work provides empirical evidence supporting the role of cognitive abilities
and intellectual resources in driving innovation, productivity, and economic growth. By
aligning the discussion of DBCI utility with the principles outlined, we establish a stronger
connection between the theoretical framework of cognitive capitalism and the practical im-
plications of DBCI technologies. This addition strengthens our argument and highlights the
transformative potential of DBCI within the broader economy and the industrial landscape.
Value of cognitive workload: The traditional idea that the value of products and services
is measured in labour hours has been challenged by the process of datafication, which
involves dematerialisation, liquefaction, and density. Digitisation has made it possible for
companies like Netflix to offer on-demand services and gather data on user behaviour.
Digital products are also non-rivalrous and non-excludable, which means that they can be
used by many individuals at the same time without reducing their availability to others.
The availability of free digital services and products also challenges the use of labour
hours to value a product or service, as many are provided through advertising or other
business models. The concept of the prosumer [7] further undermines the traditional
value-creation process. The definition of prosumer originates from the fact that most
online content uploaded onto technology platforms today is actually produced by the
consumer, free of charge. This means that the traditional value-creation process is rendered
obsolete. While existing AIGC technologies have provided the premises for creation, the
cognitive workload in DBCI provides one step further. The research on cognitive workload
can potentially encourage a healthy and fair ecosystem for DBCI and other large models
for real-world applications.
Data and model ownership: The scoping review discusses how the traditional Marxist
dichotomy between bourgeoisie owners of the means of production and proletariat workers
has been upended by the emergence of platform-based internet companies. These compa-
nies, such as Amazon, Google, and Facebook, do not own the means of production but
rather the means of connection to the internet, and they leverage large amounts of customer
data to create value. This article also discusses the democratisation of information and the
shift in power from traditional owners to individuals and entrepreneurs, as well as the
emergence of the sharing economy and the de-linking of assets from value. In the AIGC era,
the AI ecosystem is moving from the traditional data capital to the current model capital
paradigm, such as ChatGPT. Large-scale deep models, whether they are open-source or
not, are no longer accessible to common users for model fine-tuning. Deep model APIs or
MLaaS have become dominant practices. In DBCI research, deep learning models are in the
early stages of this model capital wave. Our review will discuss the influence of existing
data and AI model capitals on the DBCI domain.
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Figure 2. A total of 607 survey and dataset papers were collected from our initial search. After a
screening and eligibility check, we found 229 papers to check whether they significantly contributed
to our conceptual framework. As a result, 44 benchmarks from 38 papers are included in this study.

3.2. DBCI Data Capital Liquidation Process

The data asset liquidation process is intrinsically linked to the broader landscape of
DBCI applications, encompassing their utility, the value of cognitive workload, and data
and model ownership. By systematically evaluating and managing data assets, we can
maximise their potential in driving forward DBCI applications, which rely heavily on
high-quality and extensive datasets to develop and refine models that enable innovative
solutions in healthcare, neurorehabilitation, and beyond. Understanding the utility of
DBCI involves assessing the cost-effectiveness and accessibility of devices and paradigms,
ensuring that the technology can be widely adopted and utilised. Moreover, the value of
the cognitive workload emphasises the importance of accurately measuring and leveraging
cognitive data to enhance user experience and productivity, making it crucial to manage and
assess data quality effectively. This comprehensive approach to data asset liquidation not
only supports the advancement of DBCI technologies but also addresses the multifaceted
challenges and opportunities within the industry.

We summarise our assessment factors in Table 1. Specifically, for BCI devices, fre-
quency (Hz) indicates how often signals are sampled per second. Higher frequencies
capture finer temporal resolution, which is crucial for tracking rapid brain activities. EEG
channels represent the number of electrodes used in data collection. A higher number of
channels offers better spatial resolution, capturing data from more regions of the brain. For
DBCI Applications, high-frequency and multi-channel devices enable applications requir-
ing precise brain activity mapping, such as neurorehabilitation and emotion recognition.
For BCI utility, devices with higher frequency and channel count are more versatile but can
be costlier and less portable. Optimising these metrics balances performance and usability
in real-world settings. For the value of cognitive workload, accurate frequency and spatial
resolution improve the fidelity of cognitive workload measurements, enabling deeper
insights into attention, fatigue, and performance. For data and model ownership, high-
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resolution devices are often proprietary, with access to raw data or model training pipelines
controlled by manufacturers. This raises questions about open standards and accessibility.

Table 1. Mapping metrics of devices, data, and applications to the DBCI industrial landscape. Note
that trials refer to trials per user.

Aspect Metric Why It is Used Connection to Industrial Landscape

Devices Frequency (Hz) Captures temporal reso-
lution of brain activity.

Enables high-precision DBCI applications,
and improves cognitive workload modelling,
but is often tied to proprietary devices.

EEG Channels Indicates spatial resolu-
tion of brain activity.

Supports diverse applications, increases util-
ity and workload fidelity, but raises owner-
ship challenges.

Data Length (s)
Determines duration
of captured data for
each trial.

Supports long-term applications, increases
utility, and enhances workload assessment
across varied contexts.

Trials Reflects dataset robust-
ness and reliability.

Ensures applicability in diverse scenarios, in-
creases model reliability, and requires careful
ownership considerations.

Users
Represents diversity
and generalisability of
the dataset.

Enables cross-population applications, im-
proves utility, and raises ethical issues about
ownership and privacy.

Applications Stimuli Defines the context of
recorded brain activity.

Links directly to DBCI use cases, increases
task-specific utility, and impacts workload
relevance and accessibility.

Task
Defines the dataset’s rel-
evance to specific DBCI
applications.

Drives model training for targeted use cases,
improves cognitive workload insights, and
ties to ownership of annotations.

Response

Determines modalities
available for analysis
(e.g., EEG, behavioural
responses).

Increases flexibility across applications, im-
proves model utility, but raises accessibility
challenges due to ownership.

The second metric we consider is data. For DBCI applications, longer trial lengths
and diverse participant pools make the datasets applicable to a wider range of use cases,
such as personalised neurofeedback or cross-cultural studies. For BCI utility, more trials
and participants increase the dataset’s statistical power but also its complexity and storage
requirements. This impacts its usability for researchers and practitioners. For the value of
cognitive workload, repeated trials and diverse user data improve the accuracy and gener-
alisability of cognitive workload models, ensuring they work effectively across different
scenarios. And, for data and model ownership, datasets with longer trials and diverse users
often require substantial investment. Ownership can dictate access, limiting opportunities
for public or collaborative research. Specifically, we use length (s) for the duration of each
recorded trial, which impacts the total data volume and its utility in capturing prolonged
cognitive states. Trials reflect the number of repetitions per user, affecting dataset reliability
and robustness. Users indicate the number of participants in a dataset, determining its
diversity and generalisability across populations.

Finally, we consider applications in terms of stimuli, task, and response as metrics.
The type of stimuli (e.g., visual, auditory) presented to participants defines the context of
the dataset and its relevance to specific applications. The task describes what participants
were asked to do (e.g., motor imagery, attention tasks), directly linking the dataset to
specific DBCI use cases. Response refers to the recorded data types (e.g., EEG signals,
behavioural responses), which determine the modalities available for model training and
application. For DBCI applications, stimuli, tasks, and responses define the real-world
scenarios where the dataset can be applied. For example, datasets with motor imagery
tasks are crucial for prosthetics, while emotional stimuli datasets are vital for affective
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computing. For utility, datasets with diverse stimuli and task types are more flexible but
require sophisticated annotation and preprocessing, impacting ease of use. The value of
a cognitive workload is often associated with the stimuli and task types that influence
cognitive demands, making these metrics critical for accurately modelling workload and
designing adaptive systems. Data and model ownership can be reflected by datasets with
complex stimuli and multimodal responses. These datasets are often proprietary due to the
cost and effort involved in their collection, limiting broader accessibility and collaboration.

4. Survey Results
Our survey results are summarised in Table 2. The table summarises a comprehensive

survey of BCI datasets, focusing on metrics across devices, data, and applications. These
metrics provide a valuable foundation for understanding the current landscape of BCI
data capital and its alignment with key technical and industrial challenges. Below are the
general descriptions of the dataset characteristics based on the metrics presented.

For devices, the datasets span a wide range of sampling frequencies, from low fre-
quencies, such as 128 Hz in the neuromarketing dataset, to very high frequencies, like
2048 Hz in the statistical parametric mapping dataset. High-frequency datasets, such as
ThingsEEG-Text (1000 Hz), are ideal for capturing rapid neural dynamics, essential for de-
coding precise temporal brain activity. Lower frequencies are generally sufficient for static
tasks or simple signal processing, such as motor imagery. The number of EEG channels
varies significantly, ranging from 1 channel (e.g., synchronised brainwave) to 256 channels
(e.g., HeadIT dataset). Multi-channel setups are crucial for high spatial resolution, sup-
porting applications like emotion recognition (SEED dataset) or complex neural decoding
(GOD-Wiki).

In the data category, trial durations vary widely, with some datasets focusing on short,
event-related trials (e.g., DIR-Wiki (2 s)) and others providing longer continuous recordings
(e.g., sustained attention (5400 s)). Shorter trials are suitable for tasks like P300 spellers,
whereas longer recordings are necessary for sustained attention or neurofeedback studies.
Trials and users: The number of trials and participants reflects the dataset’s diversity and
robustness. For instance, DIR-Wiki includes 2400 participants, making it highly suitable
for inter-person generalisability. ThingsEEG-Text provides 8216 trials per user, supporting
inter-sample learning for robust model training. Smaller datasets, like the BCI Competition
IV dataset 1 (7 participants), are ideal for exploring targeted applications or algorithms.

For applications, the datasets incorporate a variety of stimuli types, such as visual
cues, audio cues, and videos, to simulate diverse cognitive and sensory tasks. For example,
HCI Tagging utilises both images and videos for emotion recognition. GOD-Wiki integrates
images and text, making it a prime example for visual–semantic decoding applications.
Most datasets focus on motor imagery, a staple task in BCI research. However, emerging
tasks like neural decoding (e.g., GOD-Wiki) and emotion recognition (e.g., SEED, DEAP)
indicate a growing interest in expanding the scope of BCI applications. multimodal datasets
that include EEG and additional modalities (e.g., EEG, fMRI, image, and text in GOD-Wiki)
are increasingly prevalent. These datasets support advanced tasks like zero-shot neural
decoding and multimodal integration, critical for expanding BCI applications.

Summary of dataset contributions and support for BCI applications: Overall, mo-
tor imagery remains the most common task, providing a benchmark for BCI algorithm
development. Novel tasks like neural decoding and emotion recognition reflect the evo-
lution of BCI datasets toward more complex and versatile applications. Datasets with
high temporal properties (e.g., ThingsEEG-Text) and spatial resolution (e.g., HeadIT) are
critical for improving utility in advanced modelling techniques. Large participant pools
(e.g., DIR-Wiki) ensure generalisability across diverse populations. Multimodal datasets
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like SEED and HCI Tagging are invaluable for studying cognitive workload in realistic
scenarios, enabling adaptive DBCI systems. Datasets with diverse trial designs and stimuli
improve the fidelity of cognitive workload modelling. Open datasets like BCI Competition
and BraVL promote accessibility and collaborative research. Proprietary datasets with
restricted access, particularly those involving high-cost modalities like fMRI, highlight the
ongoing need for equitable data-sharing practices.

The diversity and richness of datasets summarised in the table provide a strong
foundation for advancing DBCI research. The wide range of device specifications, data
configurations, and application contexts ensures that these datasets are well-suited to
address the challenges of generalisability, scalability, and adaptability in BCI systems. Next,
we provide an in-depth analysis with enhanced insights for each category.

Table 2. Summary of BCI datasets surveyed, classified into devices, data, and applications categories.
The columns under “Devices” (e.g., frequency and channels) highlight the technical capabilities of
each dataset, which contribute to their utility and cognitive workload studies. The columns under
“Data” (e.g., length, trials, and users) reflect the robustness, diversity, and scale of data, essential for
generalisability and data ownership considerations. The columns under “Applications” (e.g., stimuli,
task, and response) demonstrate the range of BCI applications supported by the datasets, including
neurofeedback, motor imagery, and emotion recognition. N/A indicates Not Available.

Devices Data Application

Dataset Name Freq Chan Len Tri Use Stimuli Task Response

WAY-EEG-GAL(https:
//www.kaggle.com/
competitions/grasp-and-
lift-eeg-detection/data) [42]

500 32 10 328 12 Visual Cue Motor Imagery
EEG, EMG, Event Timings,
Object Positions,
Object Forces

GigaDB-EEG-MI (http://
gigadb.org/dataset/100295)
[43]

512 64 3 260 52 Visual Cue Motor Imagery
EEG, EMG, EOG, Hand
Movement Data,
Questionnaire

PhysioNet-EEG-MI (https:
//www.physionet.org/
content/eegmmidb/1.0.0/)
[44]

160 64 120 12 109 Visual Cue Motor Imagery EEG, Annotations

Large-scale-EEG
(https://figshare.com/
collections/A_large_
electroencephalographic_
motor_imagery_dataset_
for_
electroencephalographic_
brain_computer_interfaces/
3917698) [45]

200 19 3 900 13 Visual Cue Motor Imagery EEG

BCI Comp II dataset 1a
(https://www.bbci.de/
competition/) [46]

256 6 3.5 293 1 Visual
Feedback Motor Imagery EEG

BCI Comp II dataset 1b
(https://www.bbci.de/
competition/) [46]

256 6 4.5 200 1
Visual
Feedback,
Audio

Motor Imagery EEG

BCI Comp II dataset 2a
(https://www.bbci.de/
competition/) [46]

160 64 30 60 3 Visual
Feedback Motor Imagery EEG

BCI Comp II dataset 3
(https://www.bbci.de/
competition/) [46]

128 3 9 280 1 Visual
Feedback Motor Imagery EEG

BCI Comp II dataset 4
(https://www.bbci.de/
competition/) [46]

1000 28 0.5 416 1 None Motor Imagery EEG, Typing

BCI Comp III dataset 1
(https://www.bbci.de/
competition/) [46]

1000 64 3 378 1 N/A Motor Imagery ECoG
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Table 2. Cont.

Devices Data Application

Dataset Name Freq Chan Len Tri Use Stimuli Task Response

BCI Comp III dataset 2
(https://www.bbci.de/
competition/) [46]

240 64 2.5 92 2 Character
Matrix P300 EEG

BCI Comp III dataset 3a
(https://www.bbci.de/
competition/) [46]

240 64 7 80 3 Visual Cue,
Audio Cue Motor Imagery EEG

BCI Comp III dataset 3b
(https://www.bbci.de/
competition/) [46]

125 2 8 40 3 Visual Cue Motor Imagery EEG

BCI Comp III dataset 4
(https://www.bbci.de/
competition/) [46]

1000 118 3.5 280 2 Visual Cue Motor Imagery EEG

BCI Comp III dataset 5
(https://www.bbci.de/
competition/) [46]

512 32 240 4 3 Audio Cue Motor Imagery EEG

BCI Comp IV dataset 1
(https://www.bbci.de/
competition/) [46]

1000 64 3.5 42 7 None Motor Imagery EEG, Artificial EEG

BCI Comp IV dataset 2
(https://www.bbci.de/
competition/) [46]

250 22 6 576 9 Audio Cue Motor Imagery EEG, EOG

High-Gamma (https:
//github.com/robintibor/
high-gamma-dataset) [47]

500 128 4 880 14 Visual Cue Motor Imagery EEG

Planning-Relax (https:
//archive.ics.uci.edu/ml/
datasets/Planning+Relax)
[48]

256 8 5 10 1 Audio Cue Motor Imagery EEG, EOG

DAEP
(http://www.eecs.qmul.ac.
uk/mmv/datasets/deap/)
[49]

512 32 60 40 32 Music,
Video

Emotion
Recognition

Face Recordings,
Questionnaire, EOG, EMG,
Blood Pressure, GSR,
Respiration

HeadIT
(https://headit.ucsd.edu/
studies/3316f70e-35ff-11e3
-a2a9-0050563f2612) [50]

256 256 218 15 32 Audio Emotion
Recognition EEG, ECG, Infra-ocular

Enterface06 (http://www.
enterface.net/results/) [51] 1024 54 2.5 450 5 Image Emotion

Recognition
EEG, fNIRS, GSR,
Respiration, Video

Neuromarketing
(https://drive.google.com/
file/d/17XhqRXtMWvk8R_
iZt-mjn_C0HjgqClaO/
view?usp=sharing) [52]

128 14 4 42 25 Image Neuromarketing EEG, Questionnaire

SEED (https://bcmi.sjtu.
edu.cn/seed/seed.html)
[53]

1000 62 240 45 15 Video Emotion
Recognition

EEG, Eye Movement, Self
Assessment Questionnaire

HCI Tagging
(https://mahnob-db.eu/
hci-tagging/) [54]

512 32 135 20 30 Image,
Video

Emotion
Recognition

EEG, GSR, ECGG, Eye
Tracking, Audio, Video,
Questionnaire

Regulation of Arousal
(https://ieee-dataport.org/
open-access/regulation-
arousal-online-
neurofeedback-improves-
human-performance-
demanding-sensory) [55]

500 64 45 24 18 Audio,
Simulation Neurofeedback

EEG, ECG, EDA,
Respiration, Pupil Diameter,
Eye Tracking

BCI-NER Challenge
(https://www.kaggle.com/
c/inria-bci-challenge) [56]

600 56 10.51 340 26 Character
Matrix P300 EEG, MEG
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Table 2. Cont.

Devices Data Application

Dataset Name Freq Chan Len Tri Use Stimuli Task Response

Face-House (https://purl.
stanford.edu/xd109qh3109)
[57]

1000 N/A 0.8 300 7 Image Neural
Decoding ECoG, ERPS

Synchronised Brainwave
(https://www.kaggle.com/
datasets/berkeley-
biosense/synchronized-
brainwave-dataset) [58]

512 1 319 1 30 Video Neural
Decoding EEG

Target vs Non-target
(https://github.com/
plcrodrigues/py.BI.EEG.20
14a-GIPSA) [59]

512 16 300 3 64 Character
Matrix P300 EEG

Impedance (https:
//erpinfo.org/impedance)
[60]

1024 10 1.5 1280 12 Text Neural
Decoding EEG, EOG

Sustained Attention (https:
//figshare.com/articles/
dataset/Multi-channel_
EEG_recordings_during_a_
sustained-attention_
driving_task/6427334/5)
[61]

500 30 5400 2.5 27 Simulation Driving EEG, Questionnaire

Dryad-Speech
(https://datadryad.org/
stash/dataset/doi:
10.5061/dryad.070jc) [62]

512 128 105 20 92 Audio N400 EEG

SPIS Resting State (https:
//github.com/mastaneht/
SPIS-Resting-State-Dataset)
[63]

256 64 300 1 10 None Resting State EEG, EOG

Alpha-waves (https:
//zenodo.org/record/2348
892#.Y2ZRYOzP23I) [64]

512 16 10 10 20 None Resting State EEG, Questionnaire

Music Imagery Retrieval
(https://github.com/
sstober/openmiir) [65]

400 14 11.5 12 10 Music Music Imagery EEG

EEG-eye State (https:
//archive.ics.uci.edu/ml/
datasets/EEG+Eye+State)
[66]

128 14 117 1 1 None Eye state EEG

EEG-IO (https://gnan.ece.
gatech.edu/eeg-eyeblinks/)
[67]

250 19 3.5 25 20 N/A Eye state EEG, Annotations

Eye State Prediction
(http://suendermann.com/
corpus/EEG_Eyes.arff.gz)
[68]

N/A 14 117 1 1 None Eye state EEG, Video, Annotations

Classifying Phonological
Categories (https://pdfs.
semanticscholar.org/5480
/d270cc92b284e8ee7db7c6
af8a3dec58e163.pdfl) [69]

1024 64 2100 1 8 Text, Audio Speech Imagery EEG, Video, Audio

MNIST Brain Digits
(http://mindbigdata.com/
opendb/index.html) [70]

161 11 2 1,206,611 1 Image Neural
Decoding EEG

ImageNet Brain (http:
//www.mindbigdata.com/
opendb/imagenet.html) [70]

128 5 3 14,012 1 Image Neural
Decoding EEG
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Table 2. Cont.

Devices Data Application

Dataset Name Freq Chan Len Tri Use Stimuli Task Response

EEGLearn (https:
//github.com/pbashivan/
EEGLearn/tree/master/)
[71]

500 64 3.5 240 13 Text Neural
Decoding EEG

Deep Sleep Slow Oscillation
(https://challengedata.ens.
fr/challenges/10) [72]

125 N/A 10 1261 N/A None Slow Oscillation
Prediction

EEG, Sleep Stage, Time
Sleeping

Genetic Predisposition to
Alcoholism (https:
//archive.ics.uci.edu/ml/
datasets/EEG+Database)
[73]

256 64 1 120 122 Image Neural
Decoding EEG

Confusion During MOOC
(https://www.kaggle.com/
datasets/wanghaohan/
confused-eeg) [74]

2 1 60 10 10 Video Education
Feedback EGG, Questionnaire

TUH EEG Corpus
(https://isip.piconepress.
com/projects/tuh_eeg/)
[75]

250 31 167 1.56 10,874 None Seizure
Detection EEG, Clinician Report

Predict-UNM (http:
//predict.cs.unm.edu/) [76] 500 64 3.6 200 25 Medication,

Audio
Neural
Decoding EEG

ERP CORE (https:
//erpinfo.org/erp-core) [77] 1024 30 600 6 40

Image,
Video,
Audio

Face Perception EEG, ERP

Statistical Parametric
Mapping (https://www.fil.
ion.ucl.ac.uk/spm/data/)
[78]

2048 128 1.8 172 1 Image,
Audio Face Perception EEG, fMRI, MEG, sMRI,

EOG

GOD-Wiki (https:
//figshare.com/articles/
dataset/BraVL/17024591)
[79]

N/A N/A 3 590 5 Image Neural
Decoding fMRI, Image, Text

DIR-Wiki (https:
//figshare.com/articles/
dataset/BraVL/17024591)
[79]

N/A N/A 2 2400 3 Image Neural
Decoding fMRI, Image, Text

ThingsEEG-Text (https:
//figshare.com/articles/
dataset/BraVL/17024591)
[79]

1000 64 0.235 8216 10 Image Neural
Decoding EEG, Image, Text

4.1. Device

The scatter plot in Figure 3, illustrating the relationship between frequency (Hz) and
the number of EEG channels, was generated using the dataset information provided in the
table. Both frequency and channel data were transformed into a log-2 scale to allow for
a more interpretable comparison across datasets with varying magnitudes. The dataset
“Confusion During MOOC”, which had an unusually low frequency of 2 Hz, was excluded
to avoid distortion of the plot. The x-axis represents the log-2 of the number of channels,
while the y-axis represents the log-2 of the frequency. Each point on the scatter plot
corresponds to a dataset, allowing us to visualise the distribution and clustering of datasets
based on their device configurations. This approach highlights key patterns and outliers in
the data, such as datasets with exceptionally high temporal or spatial resolution, facilitating
deeper analysis of trends in DBCI devices.

https://github.com/pbashivan/EEGLearn/tree/master/
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https://www.kaggle.com/datasets/wanghaohan/confused-eeg
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https://erpinfo.org/erp-core
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https://figshare.com/articles/dataset/BraVL/17024591
https://figshare.com/articles/dataset/BraVL/17024591
https://figshare.com/articles/dataset/BraVL/17024591
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Figure 3. The frequency of each dataset plotted again the number of channels on a log-2 scale. The
Confusion During MOOC (https://www.kaggle.com/datasets/wanghaohan/confused-eeg) [74]
dataset was an outlier with a frequency of only 2Hz, and so was cut off from this graph.

Analysing the scatter plot reveals several notable trends and insights into the cur-
rent state of device metrics in DBCI datasets. The majority of datasets cluster around
32–64 channels and 128–512 Hz frequencies, reflecting the most common experimental
setups in EEG research. This range balances temporal and spatial resolution, making it
suitable for general-purpose applications such as motor imagery, emotion recognition, and
cognitive workload studies. A few datasets stand out as outliers. For example, HeadIT
features an exceptionally high number of channels (256), which enhances spatial resolution
and is particularly valuable for advanced applications like high-resolution neural decoding
or emotion recognition. On the other hand, datasets like Enterface06 (1024 Hz) and statisti-
cal parametric mapping (2048 Hz) offer exceptionally high temporal resolution, enabling
precise tracking of rapid neural dynamics. These high-frequency datasets are critical for
applications such as speech imagery, real-time neurofeedback, or fine motor control.

Interestingly, there is a moderately positive correlation of 0.554 between the frequency
and number of channels. This trend could be explained if the bandwidth of devices has
improved over time, meaning more modern devices have both a higher frequency and a
larger number of channels. Alternatively, assuming the bandwidth of devices increases
with price, this trend could be explained by the financial limitations of the groups gathering
data instead. As this survey does not record the price or release data of the devices used in
each dataset, we are unable to provide a definitive answer to this question. This highlights
a limitation of our study and we leave it to future work to investigate how the prices of
BCI devices have changed over time.

From an industrial landscape perspective, the clustering of datasets—at around
32–64 channels and 128–512 Hz frequencies—reflects the standardisation of EEG devices.
This standardisation ensures compatibility and widespread usability across research and
clinical settings, contributing to the utility of these devices. However, datasets that rely on
higher-channel and higher-frequency devices often involve proprietary equipment, raising
challenges related to data and model ownership. Furthermore, datasets with extreme
configurations, such as high-channel or high-frequency setups, cater to niche applications
but may face scalability and cost-effectiveness challenges in real-world DBCI deployment.
Overall, the diversity in device configurations highlights the ongoing need to balance
spatial and temporal resolution to meet the varying demands of DBCI applications. While
standard configurations dominate due to their general usability, high-resolution setups
offer unique opportunities for advanced research, albeit with limitations in accessibility
and scalability.

https://www.kaggle.com/datasets/wanghaohan/confused-eeg
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4.2. Data

The pie chart in Figure 4 was created to represent the proportion of accumulated data
for each task, such as seizure detection, emotion recognition, and neural decoding, based
on the provided formula:

time = channels × trial length × trials per subject × subjects

Figure 4. The fraction of data belonging to each task, measured in years. In total, the datasets we
looked at had 71.4 years of data. Tasks with less than 1.5 years of data were merged into ‘Other’.

This formula calculates the total recording time for each dataset in years by multiplying
the number of EEG channels, the length of each trial, the number of trials per subject, and
the number of subjects. The datasets were then grouped by task, and the total recording
time for each task was summed. Tasks with less than 1.5 years of data were combined into
the ”Other” category to simplify the visualisation. The total accumulated data across all
tasks was 71.4 years, and the pie chart shows the fraction of this total for each task. We
summarise our findings according to the IL framework:

Applications: The pie chart analysis highlights the dominance of seizure detection, ac-
counting for 37.8% of the total data. This reflects the clinical priority of seizure detection
in healthcare, where its applications in epilepsy diagnosis and monitoring are highly es-
tablished. It is worth noting that the data for seizure detection comes from a single large
data set, the TUH EEG Corpus (https://isip.piconepress.com/projects/tuh_eeg/) [75]. The
impressive size of this dataset shows that a large volume of data can be gathered when a
device is widely deployed. Furthermore, this is a very diverse dataset with data coming
from over 10,000 patients, meaning that a model trained on these data will be robust due
to the high inter-subject variability. These factors combined make the dataset well-suited
for real-world deployment, showing that seizure detection is a mature task in the DBCI
application landscape. On the other hand, tasks like emotion recognition (18.2%) and
neural decoding (13.3%) represent expanding frontiers in BCI research. These emerging ap-
plications cater to the rising demand for adaptive systems in mental health, emotion-aware
technologies, and cognitive analysis, showcasing their growing relevance in the industrial
framework. However, tasks like driving (4.7%) and P300 paradigms (2.6%) remain under-
represented despite their direct applicability to safety-critical applications and assistive
devices, indicating the need for further investment to enhance their practical deployment.
Utility: The dataset distribution underscores the significant utility of core tasks like motor
imagery (9.7%) and N400 (10.6%) in the DBCI landscape. Motor imagery serves as a corner-
stone for neurorehabilitation and prosthetic control, while N400 supports applications in
linguistic processing and cognitive workload analysis. Their substantial data representation

https://isip.piconepress.com/projects/tuh_eeg/
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highlights their importance for developing reliable and scalable BCI systems. In contrast,
the other category (3%) and specialised tasks like driving-related paradigms reflect limited
utility due to insufficient data accumulation. Expanding data collection efforts for these
under-represented areas could significantly enhance their scalability and integration into
diverse real-world applications, fostering a more balanced utility across the DBCI domain.
Value of cognitive workload: The significant proportion of datasets dedicated to emotion
recognition and neural decoding reflects a growing emphasis on modelling cognitive
workload within the DBCI landscape. These tasks enable the development of systems that
adapt to users’ cognitive and emotional states, supporting advanced applications such as
emotion-aware interfaces, cognitive workload management, and mental health monitoring.
However, the limited data availability for tasks in the other category suggests missed
opportunities for expanding cognitive workload research into less-explored domains. A
more diversified dataset ecosystem could provide deeper insights into user cognition and
behaviour, enhancing the adaptability and personalisation of DBCI systems.
Data and model ownership: The dominance of seizure detection datasets highlights a
relatively mature ecosystem for data collection, sharing, and model development in this
domain. This maturity offers opportunities to refine data-sharing frameworks, ensuring
equitable access and fostering collaborative research. However, the limited representation
of lesser-explored tasks, grouped under the other category, presents challenges related to
data ownership and accessibility. Addressing these challenges requires the establishment
of robust frameworks for data sharing and ownership, particularly for under-represented
tasks. This would support a more equitable and innovative landscape for developing
open-access datasets and models across the DBCI spectrum.

4.3. Application

To analyse the distribution of stimuli, tasks, and responses across datasets, three bar
charts were created. For stimuli, the bar chart shows the number of times each type of
stimulus (e.g., visual cues, audio cues, video) is featured in a dataset. For tasks, another
bar chart represents the frequency of each task (e.g., motor imagery, emotion recognition,
seizure detection) in the datasets. For responses, the chart depicts the number of datasets
that recorded various responses (e.g., EMG, EOG, fMRI). EEG, being the dominant response
type, is excluded from the responses chart to avoid overshadowing other data modalities.
In total, the analysis considers 47 datasets that recorded EEG, allowing for a detailed
exploration of how stimuli, tasks, and responses are distributed in the DBCI landscape.

Figure 5 shows that the distribution of stimuli reveals a strong focus on visual stimuli,
which dominate the datasets. Visual cues feature heavily in tasks like motor imagery,
whilst images appear more in tasks that require more complicated stimuli, like neural
decoding and emotion recognition. However, the inclusion of audio cues and video
stimuli in several datasets reflects the expanding diversity of applications, such as emotion
recognition and cognitive workload assessment, which demand multimodal data to mimic
real-world environments. The growing use of diverse stimuli suggests a shift toward
broader applicability of DBCI systems, including multimedia interactions and adaptive
user interfaces.

The analysis of tasks in Figure 6 underscores the dominance of foundational paradigms,
like motor imagery and seizure detection, which are critical for clinical and rehabilitative
applications. However, the emergence of tasks like emotion recognition and neural decod-
ing signals the diversification of DBCI utility into consumer-oriented applications, such
as mental health monitoring and cognitive enhancement tools. These trends indicate that
DBCI research is moving beyond traditional clinical use cases toward more general-purpose
systems that align with evolving user needs and technological capabilities.
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Figure 5. Bar chart showing the number of times each stimulus is featured in a dataset.

Figure 6. Bar chart showing the number of times each task is featured in a dataset.

The response data in Figure 7 highlight the inclusion of multimodal recordings, such as
EOG, EMG, and fMRI, alongside EEG. The use of these additional modalities supports the
modelling of complex cognitive and emotional states, which are critical for understanding
cognitive workloads in diverse scenarios. For example, datasets incorporating fMRI and
EOG responses provide high-resolution insights into brain activity and eye movements,
respectively, enriching the development of adaptive and context-aware DBCI systems. This
multimodal approach aligns with the growing emphasis on cognitive workload evaluation,
ensuring that systems can dynamically respond to users’ mental states.
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Figure 7. Bar chartshowing the number of times each response is featured in a dataset. EEG was
removed as the other data became dwarfed. In total, we looked at 47 datasets that recorded EEG.

Finally, the growing inclusion of alternative responses such as EMG and fMRI in-
dicates a diversification of data modalities, which has implications for data and model
ownership. Proprietary restrictions associated with high-cost modalities like fMRI may
limit accessibility and collaboration. On the other hand, the widespread use of EEG reflects
a more open ecosystem, promoting data sharing and model development. Addressing
ownership challenges for multimodal datasets is crucial for fostering equitable innovation
in the DBCI domain.

4.4. Zero-Shot Neural Decoding for Prospective DBCI

The analysis of DBCI data capital highlights a critical turning point in addressing
limitations in devices, data, and applications. While traditional deep learning and ma-
chine learning approaches often face challenges with limited resources and generalisability,
prospective zero-shot neural decoding (ZSND) [79] techniques offer transformative po-
tential. ZSND enables models to generalise to unseen tasks and novel classes without
requiring extensive labelled data, making it a pivotal approach for scaling DBCI appli-
cations. Recent advancements in ZSND leverage large-scale, multimodal datasets from
adjacent fields, such as natural language processing (NLP) and computer vision (CV), to
enhance generalisation across domains. This ability to bridge domains and tasks is critical
for addressing the barriers identified in the DBCI IL framework:

• Applications: ZSND extends the reach of DBCI systems by enabling flexibility in
adapting to diverse and novel use cases, such as neurofeedback, emotion recognition,
and motor control, without retraining.

• Utility: The incorporation of transfer learning and pre-trained multimodal models
reduces reliance on expensive and proprietary datasets, enhancing scalability and
reducing costs.

• Cognitive workload: By enabling adaptive and user-independent neural decoding, ZSND
reduces the cognitive demands on users, facilitating broader accessibility and usability.

• Data and model ownership: ZSND aligns with the open-sourced large AI models and
multimodal publicly available datasets and fostering collaborative research for ethical
and inclusive model development.
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ZSND techniques enable DBCI systems to generalise across unseen samples, indi-
viduals, devices, domains, and tasks without extensive retraining. These capabilities are
made possible by cutting-edge frameworks such as BraVL, which integrates brain activity
with visual and linguistic information through trimodal learning approaches. The use of
multimodal data ensures that models can transfer knowledge effectively, mitigating the
following challenges:

The inter-sample and inter-person transfer ZSND datasets, such as DIR-Wiki (with
2400 participants) and ThingsEEG-Text (with 8216 trials per participant (10 participants)),
provide the diversity necessary for robust inter-person generalisation. These datasets en-
able models to adapt to neural variability across individuals, a critical requirement for DBCI
applications such as personalized neurorehabilitation. Inter-sample transfer is enhanced
by the trial-level richness of datasets, as seen in ThingsEEG-Text, which captures high
temporal resolution (1000 Hz) data across multiple conditions.
Inter-device and inter-domain transfer By incorporating multiple modalities such as
EEG, fMRI, image, and text, ZSND datasets bridge the gap between invasive and non-
invasive techniques, facilitating inter-device adaptability. For example, BraVL supports
the alignment of brain signals recorded via EEG or fMRI with visual and semantic stimuli,
ensuring models remain functional across diverse hardware environments. Inter-domain
transfer is critical for applying DBCI systems in new contexts, such as transitioning from
laboratory settings to real-world applications. The multimodal design of GOD-Wiki and
DIR-Wiki exemplifies how datasets can support cross-domain learning.
Inter-task transfer Neural decoding tasks in datasets like GOD-Wiki and ThingsEEG-Text
demonstrate the capability of ZSND techniques to generalise across tasks. Models trained
on image decoding tasks can seamlessly adapt to semantic decoding tasks due to shared
latent representations. This inter-task flexibility is crucial for multi-purpose DBCI systems,
enabling applications ranging from motor imagery control to emotion recognition.
Utility enhancement frameworks like BraVL leverage multimodal data integration to
create robust visual–semantic neural signal models. These models align brain activity with
both visual and linguistic information, expanding the scope of DBCI applications to include
cognitive workload assessment, attention monitoring, and adaptive feedback systems. The
inclusion of high-resolution data (e.g., 64-channel EEG in all datasets and 1000 Hz sampling
in ThingsEEG-Text) enables advancements in signal processing techniques to improve
signal-to-noise ratio (SNR). Enhanced SNR is essential for the scalable adaptation of DBCI
devices in real-world environments.

Beyond the ZSND techniques, the high-quality data published have also established a
foundation for DBCI progression. Our proposed metrics highlight the contributions of the
datasets to the IL framework, as follows:

• Devices: High-frequency datasets, such as ThingsEEG-Text, ensure precise temporal
resolution for decoding dynamic neural activity. The consistent use of 64-channel setups
across datasets provides the spatial granularity necessary for diverse applications.

• Data: Datasets like DIR-Wiki, with its 2400 participants, address the need for diversity
in neural data, improving inter-person generalisability.

• Applications: Multimodal stimuli in GOD-Wiki and DIR-Wiki datasets, including
image and text, expand the applicability of DBCI systems to multimodal tasks. Neural
decoding tasks recorded in these datasets align directly with the practical needs of ap-
plications such as neurorehabilitation, cognitive monitoring, and emotion recognition.

Overall, our work establishes a roadmap for DBCI research by identifying key barriers
and demonstrating how ZSND techniques and dataset metrics address them. ZSND
datasets and techniques enable generalisation across diverse stimuli and tasks, expanding



Electronics 2025, 14, 508 23 of 27

the applicability of DBCI systems. The inclusion of diverse participants and trials increases
dataset reliability and usability, supporting scalable and robust model training. Multimodal
data and advanced signal processing improve the fidelity of workload modelling, ensuring
adaptive and context-aware systems. While proprietary aspects of devices and datasets
remain a challenge, open frameworks like BraVL and publicly available datasets mitigate
access barriers, fostering collaboration and innovation.

While ZSND techniques and datasets provide significant advancements, further work
is needed to fully realise the potential of DBCI systems. Future efforts could focus on
(1) Expanding modalities: Incorporating additional data modalities such as MEG or wear-
able EEG devices to enhance data diversity and usability. (2) Self-supervised learning:
Leveraging unsupervised techniques to reduce dependency on large-scale annotated data,
improving efficiency and scalability. (3) Standardisation: Establishing universal standards
for dataset annotation and evaluation to enable seamless integration and benchmarking
across research groups. By leveraging ZSND techniques and metrics, this roadmap pro-
vides a clear pathway for overcoming barriers and advancing the industrial framework of
DBCI systems.

5. Conclusions
In this work, we introduce the IL framework for data capital to understand and

evaluate the development of the DBCI domain. This framework highlights how data
capital is established within the DBCI domain, identifying four key barriers: applications,
utility, data and model ownership, andcognitive workload. We further demonstrate how
publicly available datasets can be assessed through metrics categorised into devices, data,
and applications. Using this measurement approach, we identified and analysed 53 top
DBCI datasets to reflect the progression of the DBCI industrial landscape. Moreover, we
emphasised the role of emerging techniques, such as zero-shot neural decoding, which
has shown significant potential in mitigating the barriers by enabling more generalisable,
scalable, and efficient utilisation of DBCI data.

While our study provides a comprehensive assessment of the current state of DBCI
data capital, further work is needed to address the limitations and expand the scope of this
research. Future directions include exploring the integration of additional data modalities,
such as fMRI or MEG, into the IL framework to ensure a more holistic understanding of data
capital. Additionally, the framework can be extended to evaluate existing DBCI models and
accessibility challenges associated with data and model ownership. Advancements in self-
supervised learning [80] and federated learning [81] techniques also present opportunities
for enhancing data capital by improving data efficiency and privacy. Lastly, establishing
an open standard for dataset annotation and evaluation could foster collaboration across
academia and industry, accelerating innovation in DBCI applications.

To address equitable data-sharing while balancing privacy and accessibility, we pro-
pose the adoption of federated learning frameworks in the future to enable collaborative
research without exposing sensitive raw data, adherence to robust data privacy protocols
such as anonymisation and compliance with GDPR, and the establishment of tiered access
models to share sensitive datasets under controlled conditions. Additionally, incentivizing
open science practices through funding agencies and journals and creating a centralised
data commons for high-quality open-access datasets, e.g., BCI Competition, can promote
collaboration while safeguarding privacy. These measures ensure ethical data-sharing,
foster inclusivity, and accelerate innovation in DBCI research.
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81. Konečný, J.; McMahan, H.B.; Ramage, D.; Richtárik, P. Federated optimization: Distributed machine learning for on-device
intelligence. arXiv 2016, arXiv:1610.02527.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://isip.piconepress.com/projects/tuh_eeg/
http://dx.doi.org/10.3389/fninf.2017.00067
http://www.ncbi.nlm.nih.gov/pubmed/29209195
http://dx.doi.org/10.1016/j.neuroimage.2020.117465
http://dx.doi.org/10.1109/TPAMI.2023.3263181
http://www.ncbi.nlm.nih.gov/pubmed/37030711

	Introduction
	Research Background
	Methodology
	Conceptualisation of DBCI Industrial Landscape
	DBCI Data Capital Liquidation Process

	Survey Results
	Device
	Data
	Application
	Zero-Shot Neural Decoding for Prospective DBCI

	Conclusions
	References

