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Abstract

Understanding the evolution of the complex magnetic fields found in solar active regions is an active area of research.
There exist many different models for such fields, which range in their complexity due to the number of physical effects
included in them—one common factor being that they all extrapolate the field up from the photosphere. In this study,
we focus on the fact that above the photosphere and below the corona lies the relatively cool and dense chromosphere—
which is often neglected in coronal models, due to it being comparatively thin and difficult to model. We isolate and
examine the effect including this boundary layer has on a 2.5D class of driven MHD models of an active region
eruption. We find that it can result in significant changes to the dynamics of an erupting field far higher in the
atmosphere than the chromosphere itself, generally delaying eruptions and increasing the magnetic energy released in
each eruption. We also test whether these effects can be approximated using a variation of the more computationally
efficient magnetofrictional model, finding a number of simple adaptations of the standard magnetofrictional model,
which capture the effect of the chromospheric stratification well.

Unified Astronomy Thesaurus concepts: Solar corona (1483); Solar atmosphere (1477); Solar coronal mass
ejections (310); Solar transition region (1532)

1. Introduction

Active regions in the solar atmosphere are transient areas of
particularly strong and complex magnetic field structures. The
highly entangled magnetic field in these regions can often release
significant amounts of energy, either as solar flares or bursts of
plasma in the form of coronal mass ejections (CMEs; E. R. Priest
& T. G. Forbes 2002). These events have crucial impacts on space
weather (M. Temmer 2021). The complexity of the magnetic field
in active regions is strongly associated with the occurrence of
flaring and CME activity, and there has been significant interest in
modeling such fields (e.g., C. Jiang et al. 2016; J. E. Leake et al.
2017; Y. Guo et al. 2019; J. Warnecke & H. Peter 2019;
T. Wiegelmann & T. Sakurai 2021; F. Chen et al. 2022;
G. J. M. Vissers et al. 2022; X. Zhu et al. 2022; S. Inoue et al.
2023; S. Toriumi et al. 2023).

The scarcity of observed coronal magnetic field data
necessitates the use of computational models to reconstruct
the solar magnetic field above the photosphere, where
measuring the magnetic field is relatively easy. There are a
variety of models used to achieve this, varying significantly in
complexity. Here, we roughly group these into three different
classes, increasing in complexity.

The first of these represents the magnetic field as an equilibrium
extrapolation from boundary data, which is either observed or
simulated but generally assumed to be located on or near the
photosphere. The most popular and simplest version of this
approach is the “force-free equilibrium,” which assumes the
magnetic field completely dominates the plasma’s behavior (see
T. Wiegelmann & T. Sakurai 2021 for a comprehensive review of
these models). Many of these techniques can also be used to find a
magnetohydrostatic (MHS) equilibrium (e.g., X. Zhu &

T. Wiegelmann 2018; T. Miyoshi et al. 2020; T. Wiegelmann
& T. Sakurai 2021; G. J. M. Vissers et al. 2022; X. Zhu et al.
2022), which takes into account the effect of the plasma pressure
in the solar atmosphere.
The second class of models introduces some time dependence

to the plasma’s evolution. This can mean solving the full set of
magnetohydrodynamic (MHD) equations, subject to magnetic
lower boundary conditions specified by observational photo-
spheric data (C. Jiang et al. 2016; J. E. Leake et al. 2017; Y. Guo
et al. 2019; J. Warnecke & H. Peter 2019; S. Inoue et al. 2023), or
as simulated boundary motions informed by general observations
of flows on the surface (L. Doyle et al. 2019). An alternative time-
dependent approach is the magnetofrictional model, wherein the
fluid equations are replaced with a term that aims to evolve the
field toward a force-free state (Y. Guo et al. 2016; S. L. Yardley
et al. 2018; D. J. Price et al. 2020; O. E. K. Rice &
A. R. Yeates 2023). In the absence of dynamic boundary
conditions, this approach can also be used to recreate static force-
free extrapolations.
These modeling approaches require the assumption of a lower

boundary fixed at the photosphere, with the boundary condition
here not originating self-consistently from the model itself. The
final class of models removes this assumption by also including
flux emergence through this boundary. These attempt to explain
the development of the active regions by simulating the
emergence of the magnetic field (which is often twisted) through
the photosphere and up into the solar corona (M. C. M. Cheung &
H. Isobe 2014; F. Chen et al. 2014, 2022; S. Toriumi &
H. Hotta 2019; P. Syntelis et al. 2019; D. MacTaggart et al. 2021).
The more physically advanced variants include convective motion
below and at the photosphere, which can result in significant
complexity in the field around the polarity inversion lines.
There is thus, in some sense, a hierarchy of magnetic field

models, in terms of the physics that they are each able to
represent. It can roughly be summarized as follows:
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1. The structure of the current density j = μ∇ × B. This is
present in all models except potential field extrapolations,
and is necessary for flaring.

2. The Lorentz force j × B, which is absent in force-free
extrapolations but present in all other models. Magneto-
frictional models act to minimize the Lorentz force, but it
is still present—and is indeed necessary for the evolution
of system.

3. Ambient plasma stratification and gravity. This physics is
absent from force-free extrapolations and magnetofric-
tion. This includes MHD models that make assumptions
such as an isothermal plasma.

4. Full plasma dynamics, including convective flow and a
non-isothermal atmosphere. This approach can accurately
represent the plasma both above and below the transition
region in the same model.

Naturally, more complex models than these exist, which (for
instance) can include the physics on molecular scales.
However, these are of limited use for active region modeling.

In this paper, we focus on the differences between the third
and fourth points, in particular the effect of properly accounting
for a realistic atmospheric stratification in simulations. While
MHD simulations necessarily include density and temperature
distributions, simplifying assumptions are often made that do
not account for the rapid jump in temperature over the
chromosphere and transition region; see, e.g., E. Pariat et al.
(2009), J. E. Leake et al. (2013), and S. Inoue et al. (2018).
Modeling these effects realistically can be difficult, as the
transition region occupies a relatively small proportion of the
full domain required to model eruptions. It is also very difficult
to maintain such stratification self-consistently—indeed, we do
not attempt to do so in this study, but instead mimic the
thermodynamic effects of radiative transfer with a Newton
cooling term. This replaces more sophisticated but computa-
tionally very expensive radiative transfer modeling (e.g.,
S. Toriumi & H. Hotta 2019; D. MacTaggart et al. 2021),
but has been shown to provide realistic active region magnetic
field behavior D. MacTaggart et al. (2021) (i.e., it cannot
capture radiative emission effectively but provides a realistic
field evolution).

In this paper, we have two main aims. The first is to
investigate the effect of the degree of atmospheric stratification
on the evolution of an active region consisting of a magnetic
flux rope. In order to isolate and vary systematically the effect
of the atmospheric stratification over a significant number of
simulations, we use a relatively straightforward 2.5D MHD
model wherein the flux rope is formed from shearing motions
and diffusion on the solar surface (A. A. van Ballegooijen &
P. C. H. Martens 1989). We find that, over a large number of
simulations there is, on average, a significant and increasing
delay to the eruptions as the background atmosphere becomes
increasingly stratified. In turn, this delay leads to a (propor-
tional) increase in the release of magnetic energy with each
eruption.

The second part of this study is to evaluate a series of
modifications to the magnetofrictional model and compare
these with the MHD “ground truth.” We find that the addition
of an extra fictional “pressure” term to the MF equations can
more accurately represent the Lorentz force distribution of full
MHD, and we seek to determine which additions to the model
can accurately capture the effects of increased stratification: the
delay in eruptions and corresponding increase in magnetic

energy release. It is hoped that these modifications will be of
use in developing more realistic global coronal models that
require computational efficiency to ensure that whole solar-
cycle time periods can be modeled.

2. MHD Model and Behavior

We first describe our 2.5D MHD model, which is later used
as a “ground truth” against which our magnetofrictional tests
can be compared. Our setup is based upon the MHD model
used in O. E. K. Rice & A. R. Yeates (2023), which itself is
based upon the LARE2D code (T. D. Arber et al. 2001). The
simulation domain represents a section of the upper layer of the
photosphere, the chromosphere, and the lower corona in
Cartesian space, within which we observe the formation and
eruption of a magnetic flux rope.
Our model requires the assumption of several physical

parameters, such as the fluid density, temperature, and driving
rate at the solar surface. Although we could theoretically
attempt to estimate realistic values for these based on
observations, there would necessarily exist large uncertainties
that would result from this process. Thus, as an alternative, we
instead conduct a reasonably large parameter study, varying
both the degree of background stratification and other
parameters that independently affect the rate of the formation
and eruption of the flux ropes. Due to this need to run many
simulations, we adopt a relatively simple model that is
translationally invariant in the one direction (often known as
2.5D), allowing for far faster computation times than a full 3D
model while still exhibiting realistic behavior.
The domain is chosen to be a square box with dimensions

−0.5 < x < 0.5, 0 < y < 1, where the y-direction is radial/
vertical. The z-direction represents the direction of translational
symmetry. A distance unit is on the order of magnitude of one
solar radius (1 Re), and a time unit is approximately one day.
The majority of the simulation domain lies within the solar
corona, with the transition region and chromosphere only at the
very base of the domain, below a height of y* = 0.0036. At the
resolutions we use in our simulations, this is only on the scale
of one or two grid cells.
In dimensionless form (as is the case throughout this paper),

the MHD equations used by the LARE2D code are
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where the variables are the magnetic field strength B, the
current density j, the fluid (plasma) pressure P, the density ρ,
and the internal energy density ò, which is proportional to the
temperature of the plasma. The ratio of specific heats is taken to
be γ = 5/3, and we choose a constant gravitational field
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strength g = −1. Magnetic diffusivity is represented by the
constant η = 5 × 10−5, chosen to be just high enough to
prevent numerical diffusion dominating. We do not use an
explicit viscosity, although vicious effects naturally occur to
the finite resolution of the code. Our simulations use an evenly
spaced grid at resolution 256 × 256.

In addition to the standard MHD equations, modeling the
atmospheric stratification and the effects it has on the field’s
evolution requires the addition of a dissipative term to the
internal energy density equation:

· ( ) ( )
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r r
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where ò0 is a 1D reference internal energy profile, which will
determine the degree of atmospheric stratification. This profile
has the form
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where E0 is an overall constant factor, Tb is the temperature of
the photosphere relative to the corona, and Δy is a parameter
that determines the rate of the transition between the two
temperatures. This function is plotted in Figure 1 for a variety
of stratification factors S = 1/Tb. Note that these functions
differ only very low in the domain.

This dissipative term encourages the background stratifica-
tion of the internal energy of the system to return to this state,
and it prevents the domain from becoming ever cooler as the
cool, dense material in the chromosphere is sucked upward.
This approach is similar to that of J. E. Leake & T. D. Arber
(2006) and D. MacTaggart & C. Prior (2021), wherein this
simple Newton cooling term is used to represent the complex
nonadiabatic processes that heat the corona, and it was found to
yield realistic field evolution in D. MacTaggart et al. (2021).
We choose the constant parameter τ = 0.1, which is close to
the limit at which this cooling term significantly interferes with
the magnetic field behavior. This limit has been determined
simply by testing a range of values. In the previous work
O. E. K. Rice & A. R. Yeates (2023), this extra term was not
included, corresponding essentially to τ = 0.

2.1. Initial Conditions

As in O. E. K. Rice & A. R. Yeates (2023), we choose the
initial condition for the magnetic field to be a potential (current-
free) arcade, with a simple sinusoidal lower boundary condition

( ) ( ) ( )p= -B x B x, 0 sin , 10y 0

where B0 = 1.0 is a constant (we can still vary the plasma beta
in the simulations by varying the initial energy density). We
also add a small random fluctuation to remove any numerical
symmetry in the system. The initial magnetic field is calculated
using a bespoke numerical PFSS solver, such that the upper
boundary condition on the magnetic field is radial.
The initial conditions for the system are determined by first

allowing the system to relax into a hydrodynamic equilibrium
with no dynamic boundary conditions. The initial internal
energy is a constant E0, irrespective of the degree of
stratification—which is imposed solely using the cooling term
in Equation (8). The initial fluid density ρ0 is then determined
by calculating a hydrostatic equilibrium with ρ0(y1) = 1.0,
where y1 is the upper boundary of the domain.
This system is then allowed to relax with Tb = 1 and no

dynamic boundary conditions, initially from a state with zero
fluid velocity to one with a nonzero vertical “outflow.” Once it
has stabilized, horizontal averages of the vertical fluid velocity
and density are taken to be used as the initial conditions for the
main flux-rope simulations. At this point, we can introduce the
background stratification by reducing Tb (the temperature at
the base of the domain relative to the top). Figure 2 shows the
initial state of the magnetic field and plasma.

2.2. Boundary Conditions

The boundary conditions used for our MHD simulations are
almost identical to those of O. E. K. Rice & A. R. Yeates
(2023), in which there is a more detailed discussion on both
their numerical implementation and the justification of their
ability to emulate physical processes. The magnetic field is
constrained such that there is zero perpendicular current on the
boundaries, and it is also vertical/radial at the sides of the
domain. The internal energy and density have zero-gradient
conditions over all of the boundaries except the lower one,
whereon the density is held at a constant value one cell within
the domain (preventing the system from becoming ever less
dense). The boundary conditions on the fluid velocity are more

Figure 1. Reference energy density functions ò0(y), for varying stratification factors S = 1/Tb. Note the logarithmic scale on the x-axis—the function is constant
throughout almost the entire domain.
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complex, and they allow for an equilibrium state with a
nonzero vertical flow, roughly representing the effect of the
solar wind.

In addition to these static boundary conditions, we impose
dynamic effects at the base of the magnetic field. These
boundary flows provide the additional energy to allow for the
formation of the magnetic flux ropes. The first of these flows is
that of differential rotation, shearing the magnetic arcade in the
out-of-plane direction. The velocity profile

( ) ( )
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( ) ] ( )

=- -
´ - -
- - -

V x x

x

x V
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0.0031 0.041 cos 0.35

0.031 cos 0.35 11
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2

4
0

is added directly onto the fluid velocity at the lower boundary.
This follows from the solar rotation speed profile from
H. B. Snodgrass (1983), assuming the center of our domain
is at a latitude of 0.35 radians. V0 is a reference speed equal to
V0 = Vshear(0.35). This velocity is added directly onto the
plasma velocity field at the base of the domain.

The second dynamic condition we model is an additional
magnetic diffusion term acting on the plane of the lower
boundary (which is naturally a line in our 2.5D model). This
represents the effect of “supergranulation” and serves to bring
the magnetic footpoints of the solar arcade together, which
(combined with the shearing) allows for reconnection above the
polarity inversion line and the formation of a flux rope
(A. A. van Ballegooijen & P. C. H. Martens 1989).

To model this effect, we add an extra term Bdiff directly to
the magnetic field on the lower boundary, where

( ) ( )h= -
D
D

B
t

y

d

dx
B x, 0 12x y0diff

( ) ( )h= DB t
d

dx
B x, 0 , 13y y0

2

2diff

where Δt is the time step and Δy is the numerical resolution in
the vertical direction.

2.3. Model Behavior and the Effects of Stratification

The first stage in the evolution of our model is the gradual
shearing of the magnetic arcade in the out-of-plane (z)
direction, due to the effect of the differential rotation of the
solar surface. The distribution of this out-of-plane field is
shown as the heatmap in Figure 3, which shows a sequence of
snapshots of the magnetic field evolution.
By time t = 4, we observe that the flux rope has begun to

form—the rope itself consists of the field lines near the lower
center of the domain that do not meet the boundary. The rope
forms as the supergranular diffusion term Bdiff essentially
brings the magnetic footpoints closer together at the surface
until they reconnect, forming a twisted structure. As there is no
variance in the z-direction, this rope is essentially infi-
nitely long.
As the model evolves, the rope becomes more well-defined,

with a larger core and more magnetic flux in the region
disconnected from the boundaries. As the flux rope gets larger,
it moves upward, eventually disconnecting itself from the lower
boundary (as seen by time t = 36 in Figure 3). Eventually, the
system is no longer in quasi-equilibrium and an eruption begins
to take place—in this instance, at around t = 65. During this
“liftoff phase,” the rope moves rapidly upwards through the top
boundary of the domain. After this time, either a rope reforms
or the system remains in a stable, uninteresting state. The
timescale and precise nature of the evolution varies consider-
ably, based on the parameters ρ0, E0, and most notably the
supergranular diffusion rate η0. As we cannot meaningfully
estimate physical values for these parameters, we run several
sets of simulations over a range of parameters.
The behavior of the unstratified model is discussed at length

in O. E. K. Rice & A. R. Yeates (2023), but the focus in this
work is on the effects of incorporating a more realistic coronal
stratification profile. To this end, we examine 50 sets of 10
simulations. Within each set, all initial and boundary conditions
and almost all parameters are identical—only the “stratification
factor” S = 1/Tb is allowed to vary. We choose 1 < S < 150,
geometrically scaled, with the highest value essentially

Figure 2. Initial conditions for the MHD simulations. The magnetic field is two-dimensional, with the lines representing the magnetic field lines in the plane. The
initial internal energy is a constant.
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indicating a corona that is 150 times hotter than the base of the
simulation domain (D. MacTaggart & C. Prior 2021). We will
henceforth refer to the S = 1 cases as “unstratified.” The other
variable parameters are the photospheric diffusion rate, which
has values between 1.5 × 10−3 < η0 < 2.5 × 10−3, and the
initial internal energy density, with 2 < E0 < 5.

Figure 4 compares two simulations within the same set, with
η0 = 2.36 × 10−3, E0 = 2 and at time t = 24. At this stage, the
flux rope has formed but is still far from an eruption. This early
in the evolution of the flux rope, the magnetic fields look
ostensibly similar, irrespective of the stratification. However,
we note that the Lorentz force (which is concentrated primarily
around the edge of the flux rope) is marginally stronger in the
stratified case. This is, in fact, generally the case in all our
simulations, as will be discussed in Section 2.4. The
characteristics of the plasma in the upper corona are also

similar in either case. However, near the lower boundary, we
observe significant differences in the internal energy and
density, as may be expected. Most notably, in the stratified
simulations, the boundary later is much thinner, with the
internal energy and density rising far more quickly moving up
through the atmosphere. While this is the case for the open
magnetic field, within the flux rope itself, the density and
temperature are almost identical in both cases.
It appears that this density disparity between the background

field and the rope itself plays a considerable part in affecting
the rope dynamics. In both of the cases shown in Figure 4, the
rope is more dense than the surrounding open field. This extra
“weight,” effectively negative buoyancy, serves to hold the
rope lower in the atmosphere than the equilibrium position
when considering the magnetic field alone. The effect this has
can be approximated using a “rope buoyancy” proxy, which we

Figure 3. Sequence of snapshots showing a flux rope forming and erupting. The heatmap represents the strength of the out-of-plane magnetic field, and the black lines
are the projection of the magnetic field lines into the plane. The flux rope has already formed by the time of the second snapshot, and it erupts shortly after the fifth
snapshot, at around time t = 65. In this simulation, the stratification factor is S = 150, and the other variable parameters are η0 = 2.36 × 10−3 and ò0 = 2.

Figure 4. Comparison of unstratified (top) and stratified (bottom) simulations at the same time during flux-rope formation, with all other parameters identical. This is a
snapshot at time t = 16. The lower pane is the same simulation as shown in Figure 3, and the upper is the unstratified equivalent with S = 1. The magnetic field is
represented in Figure 3, and the fluid density is plotted on a logarithmic scale as it varies over several orders of magnitude.
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define simply as

∬ ( ( ) ( ))

( )

r r= -y x y g dxdyRope Buoyancy , ,

14
Rope Area

back

where the “background density” ρback(y) is the vertical density
profile in a region near the side of the domain where the field is
entirely open, and g is the gravitational acceleration. We plot
this buoyancy, along with the height of the center of the flux
rope and the poloidal rope flux (the flux contained within the
rope in the in-plane direction) in Figure 5, for a selection of
simulations within the same set.

We note that all the simulations behave very similarly
throughout the early stages of the flux-rope formation—and
indeed the poloidal rope fluxes are almost identical up to the
time of the eruption itself. However, we clearly see that the
eruption is delayed when the stratification factor is higher, in
this case by up to around 10 time units. Although the magnetic
field is very similar in all cases up to the point at which
equilibrium is lost (when the rope height increases more
rapidly), the rope buoyancy begins to differ much earlier—at
around t = 20. This additional negative buoyancy in the

stratified cases may influence the point at which the system
becomes unstable and the eruption is triggered.
Although the delay in eruptions due to stratification is clear

in this particular set of simulations, we need to determine if
such a delay is generally the case over a wider range of
parameters. Figure 6 shows the trends in eruption time and
energy release over the entire 50 sets of simulations. Each gray
line in the figure represents a set of simulations with all
parameters kept constant except the stratification factor, which
varies along the x-axis. The left panel shows the time taken
between the formation of the flux rope and its eruption,
determined as the time at which the poloidal rope flux rapidly
falls to near zero. Thus, each gray line represents the difference
in system behavior solely due to the introduction of the coronal
stratification relative to the unstratified case. These eruption
times are normalized relative to the respective unstratified case
to better illustrate the trends—in reality, the unstratified
eruption times vary significantly.
We observe considerable variation in the effect of the

imposed stratification across all 50 sets of runs, which
somewhat justifies the use of such a high number. The median
value across all sets is shown by the thick orange line. The

Figure 5. Diagnostic quantities for the set of simulations with η0 = 2.36 × 10−3, ò0 = 2, showing a variety of stratification factors S. The top pane plots the poloidal
(in-plane) magnetic flux in the rope, the middle pane shows the height of the center of the rope, and the lower pane plots the “rope buoyancy,” defined in
Equation (14).
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general trend toward a delay in eruptions is clear, as with the
specific case shown in Figure 5, but this is not the case for all
choices of parameters. Indeed, in some cases, the introduction
of more stratification causes the flux rope to erupt more
quickly. This scenario is generally due to there being an earlier
failed eruption in the unstratified case, which becomes fully
unstable when stratification is added. This effect is not related
to the overall trend, and we note that increasing the
stratification beyond this point generally causes a delay to the
new eruption time, as expected.

The median case shows that the highest stratification factor on
average delays a flux-rope eruption by around 17%, relative to no
stratification. Perhaps more notable than the delays in eruptions is
the effect on the magnetic energy released in each eruption. It may
be expected that, the longer the rope takes to form, the more
nonpotential energy is stored within it and will hence be released,
and we observe that this is indeed the case. The relative energy
release is plotted on the right-hand pane of Figure 6 and shows a
more coherent trend than the delay in eruptions alone, with
increasing stratification almost always resulting in a higher energy
release, with the median increase being around 21%.

2.4. Effects on the Lorentz Force Distribution

Increasing the imposed atmospheric stratification does not
appear to influence the magnetic field as severely as the
distribution of the plasma (at least while the system is in quasi-
equilibrium), but there are nevertheless some notable effects on
the magnetic field structure, especially close to the lower
boundary. These can be identified perhaps most clearly in the
distribution of the Lorentz force (j × B). When the plasma beta
is low and the magnetic field dominates the dynamics, one
would expect the Lorentz force to be small—as indeed is a
crucial assumption for methods such as magnetofriction to be
valid. However, near the lower boundary in our domain, the
fluid density and pressure are perhaps high enough to require
this assumption to be modified.

Even in 2.5D, The Lorentz force distribution is not trivial to
examine in a meaningful way; due to the nature of our model,

there often temporarily exist very small regions with very high
forces, which would skew any results. Hence, to reduce the
effect of these regions, we adopt the approach of taking 1D
Fourier transforms of the squared L2 norm of the force, taken in
the horizontal direction at a given altitude y:

( ) ∣ ( ) ( )∣ ( ) ( )ò p= ´~
j BL y t x y t x y t m x dx, , , , , cos , 15m

2

with the cosine term appropriately normalized. We then take an
average of this value over all snapshots from all the simulations
at a given stratification factor, up to the time of eruption:

( ) ( ) ( )å å=
~

L y
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L y t
1

, . 16m
t

m
runs snaps all runs

Due to the (rough) symmetry of the system, only even
Fourier modes have any significance. The first three of these
are plotted in Figure 7.
We see that, in all cases, the Lorentz force initially falls

roughly exponentially with height, but then above around
y = 0.25, it flattens out to decay almost linearly, reducing to
zero near the top of the domain. In the case of the higher-order
modes, this dropoff is more rapid. With increasing stratifica-
tion, the overall forces are generally higher (apart from the first
stratification factor plotted here), especially at the base of the
domain, where the lowest mode is 25% higher with
stratification.
Examining the charge in the force relative to the unstratified

cases (the lower panel), we see that stratification only has a
significant effect below an altitude of around 0.5—above this
height, the magnetic field is seemingly unaffected by the
nuances of the lower boundary. However, below this altitude,
we observe quite significant increases in the Lorentz force,
even at altitudes significantly higher than the (very narrow)
boundary layer.
This indicates that incorporating even a thin cool boundary

later can affect the magnetic field much higher in the domain,
increasing the Lorentz force by up to 25% relative to the
unstratified case.

Figure 6. Change in eruption time and energy release with increasing stratification. Each of the thin gray lines represents a sequence of simulations with identical
parameters except for the stratification factor. The left pane plots the time taken for an eruption to occur (after the time of the rope’s formation), and the right pane plots
the magnetic energy released in the eruption. The gray lines are then normalized by the time/energy of the respective unstratified case. The median values are plotted
as the thick orange lines.
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2.5. Discussion

By modifying the LARE2D code to incorporate the effects
of the stratified atmosphere in the solar atmosphere, we have
examined the effects that including this improvement has on
the formation and eruption of magnetic flux ropes in a simple
2.5D model. We have shown that, in general, the presence of a
significantly more dense and cool layer at the base of the
domain (which represents the portion of the solar atmosphere
below the transition region) causes a delay in the eruption of
flux ropes relative to the “unstratified” case, where there is less
of a sharp transition, as the system naturally reaches a
hydrodynamic equilibrium. This delay in eruptions is accom-
panied by a proportional increase in magnetic energy per
eruption, likely simply because the rope has had longer to form
and build up nonpotential energy.

We observe that, in the early stages of the evolution of our
models, the magnetic field appears similar irrespective of the
degree of stratification—the main differences are in the
properties and distribution of the plasma. However, we observe
that generally the Lorentz force low in the corona is stronger
when stratification is imposed, even at altitudes far higher than
the transition region. We note that, while the density of the flux
rope itself is also roughly independent of stratification, the open
field surrounding the rope is less dense in equilibrium when the
cooler boundary layer is imposed. This extra negative buoy-
ancy is likely one of the major factors in the observed delay in
flux-rope eruptions. We hypothesize that this difference may
occur as the cool, dense plasma from the boundary layer
becomes trapped in the flux rope as it forms, whereas the open
field surrounding it is always free to reach a less dense
equilibrium state.

Partially as a precursor to attempting to emulate this
behavior using magnetofriction, we analyze the effect that the
stratification layer has on the Lorentz force, by averaging the
total force at a given height across all 50 sets of simulations in

our study. We find that, above a height of y = 0.6, the
boundary layer has a negligible effect, but below this height,
the Lorentz force can increase by up to 25% relative to the
unstratified case, and this increase extends to altitudes far
higher than the cool, dense layer itself. The distribution of the
Lorentz force can theoretically be used to judge the success of
our modifications to the magnetofrictional model, as discussed
in the remainder of this paper.
Analysis of the terms in the momentum equation

(Equation (5)) can be used to gain additional clarity as to the
reasons behind the observed delays in the eruption when the
boundary layer is thinner and cooler. Given that the system is
in quasi-equilibrium as the rope forms, the force from the
plasma pressure gradient approximately balances the Lorentz
force and gravity. Imposing stratification does not appear to
affect this balance within the rope itself, but does so around its
edge—manifesting as the negative buoyancy described earlier.
However, the increase in the Lorentz force low in the corona as
seen in Figures 4 and 7 is almost completely balanced by more
severe plasma pressure gradients low in the corona, and so we
propose that this change to the magnetic field structure likely
does not affect the overall rope behavior significantly. An
additional effect that may be significant is the nature of the
plasma in the open field surrounding the rope—in the
unstratified simulations, the plasma pressure (in the positive
vertical direction) is higher and extends farther up into the
corona, which may encourage premature eruptions relative to
the more realistic stratified simulations.

3. The Magnetofrictional Model

The magnetofrictional (MF) model (W. H. Yang et al. 1986)
has long been used in modeling the corona as a far less
computationally intense alternative to MHD for a variety of
applications (e.g., A. A. van Ballegooijen et al. 2000,
M. C. M. Cheung & M. L. DeRosa 2012; A. R. Yeates 2014).

Figure 7. The 1D Fourier transforms of the absolute Lorentz force, at a given height y. The upper pane shows the absolute values of the quantity Lm(y), for each of the
stratification factors averaged over all simulation runs. The lower pane plots these quantities relative to the unstratified case with S = 1.
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Unlike in MHD, the fluid equations are disregarded and are
replaced by a “magnetofrictional velocity” v, which in our
“unmodified” model takes the form
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where j is the current density, B is the magnetic field, δ is a
small parameter chosen to avoid problems at magnetic null
points, and vout is an “outflow” function, used to roughly
approximate the effect of the solar wind. The constant
magnetofrictional relaxation rate ν0 can be chosen at will and
varies in our parameter study. Pure magnetofrictional relaxa-
tion (in the absence of an outflow term) serves to return the
system to a state with a low Lorentz force j × B, which is a
good approximation across much of the corona. However, as
discussed in Section 2.4, this assumption is less valid lower in
the atmosphere, where the plasma is more dense.

A key assumption we make in this work is that this
unmodified MF model behaves equivalently to the unstratified
MHD model described in the previous section. This was shown
in O. E. K. Rice & A. R. Yeates (2023), which directly
discusses the criteria for flux-rope eruptions in both MHD and
MF and determines several criteria for eruptions that are the
same in both cases. However, it must be noted that, in that
study, the Newton cooling term (Equation (8)) was not
included, as it is not necessary when the lower boundary is
not constrained to be significantly cooler than the rest of the
domain.

In Section 2, we discussed some of the effects that including
this dense layer can have on the eruption of magnetic flux ropes
in MHD simulations, finding that, on average, eruptions are
delayed and release more magnetic energy. Moreover, there is
an increase in the Lorentz force low in the domain, even at
altitudes well above the transition layer. In this section, we
propose possible modifications to the existing magnetofric-
tional model that could emulate these effects to some degree.

The numerical setup is very similar to the MHD equivalent
described in the previous chapter, with identical domain sizes,
resolutions, and magnetic boundary conditions. This is
deliberately the case, so as to make reasonable comparisons
between the two models. The full set of magnetofrictional
equations we use is
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where the constants not introduced in Equation (17) have the
same meaning as in the MHD model.

The photospheric shearing rate is applied directly to the
magnetofrictional velocity as before. The outflow term vout(y)ey
takes the profile vout(y) = y4, and is added onto the velocity
field only in the region where the magnetic field is open—
determined as the area consisting of field lines that intersect the
top boundary. This new approach is used to encourage a
current density distribution similar to that seen in the MHD
models, although it is only successful to a small degree. The

supergranular diffusion term replaces the electric field on the
lower boundary at each time step:
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essentially increasing the magnetic diffusion rate in the plane/
line of the solar surface.
As in the MHD simulations, we undertake a parameter study to

observe the effect of our modifications on a variety of flux ropes,
varying the supergranular diffusion rate η0 as before, but now also
varying the magnetofrictional relaxation rate ν0, which is difficult
to assign a true physical value. The ranges we choose for these
parameters are 7.5 × 10−4 < η0 < 1.25 × 10−3 and
0.025 < ν0 < 0.1.
We now consider modifications to this model that we

propose could better emulate the effects of atmospheric
stratification.

3.1. Rope Weight

While discussing the influence of the lower boundary layer
in Section 2, we note that, when the imposed stratification is
more prevalent (i.e., the lower boundary is cooler relative to the
corona), the flux rope that forms has a more dense core relative
to the background plasma. We hypothesize that this is due to
the more dense plasma at the base of the domain remaining
trapped in the rope as it forms, whereas in the surrounding open
field, the plasma is free to flow outward and equilibriate at a
lower density. Although the dynamics are very similar during
the formation of the rope, this extra weight eventually serves to
delay the liftoff phase and eruption of the flux rope.
In our simple MF model, it is not particularly difficult to

emulate this effect by adding a negative vertical velocity at
each time step to the flux rope itself (the region that remains
more dense in the MHD simulations). This region is nicely
defined in our 2.5D model, as it comprises the field lines that
never touch the outer boundary. In more complex 3D models,
an equivalent modification would be far more difficult to
achieve, although it could theoretically be possible by
determining a threshold in a topological quantity such as the
field-line helicity (M. A. Berger 1988) or twist (M. A. Berger &
C. Prior 2006), above which the weight mask is applied.
Defining the downward velocity due to the “weight” as vwey,

the magnetofrictional velocity is then explicitly
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where the outflow term is applied only to the region comprising
open field lines, and the weight term is applied only to the flux
rope itself. We find, as expected, that eruptions are delayed by
the addition of vw, and values of vw � 0.05 prevent eruptions
entirely.

3.2. Pressure Current

Although possible in our model, the addition of the “rope
weight” as described here would generally be more difficult
(especially in 3D), due to the somewhat loose definition of
what comprises the flux rope itself. It would thus be preferable
to modify the model in a way that does not rely on such a
definition. One suitable alternative we propose is the addition

9

The Astrophysical Journal, 981:86 (15pp), 2025 March 1 Rice & Prior



of a “pressure current” jp, which depends only on the magnetic
field and a specified scalar function of altitude f (y).

The motivation here is that, low in the corona, we do not
wish the system to return to a force-free state as quickly as it
does higher up. Whereas the magnetofrictional model will (in
the absence of any additional terms in the velocity equation)
tend to an equilibrium with v = 0 and hence j × B = 0, we
wish the system to instead be in equilibrium when the Lorentz
force is balanced by a specified plasma pressure gradient and
gravity. In such an equilibrium, T. Neukirch & T. Wiegelmann
(2019) propose that, when

( )r´ -  - =j B eP g 0, 24y

with P being the plasma pressure, ρ the plasma density, and g
the gravitational acceleration, the current density would take
the form

( ( ) ) ( )a= +  ´j B ef y B , 25y y

where α is a force-free parameter and f (y) is the previously
mentioned “pressure function.” Clearly, if f (y) = 0, we recover
a force-free field as in a standard magnetofrictional equilibrium,
as is the case sufficiently high in the corona.

We wish to modify the magnetofrictional method such that
equilibrium solutions take the form of Equation (25). We can
achieve this simply by defining the “pressure current” as
jp = ∇ × ( f (y)Byey) and subtracting this from the usual current
density, so that the magnetofrictional velocity is now

( ) ( )n

d
=

+
´ - ´

-
d

~v j B j B
B B e

. 26p
0

2
0
2

B
B

2

0
2

It must be noted that, in the absence of dynamic boundaries,
this modified system will not necessarily monotonically
converge to the equilibrium from Equation (25), although
experimentally it does appear that the system tends toward a
similar state, as we will discuss below when examining the
Lorentz force distribution of our simulations.

We consider three forms for the pressure function f (y). The
first is the “exponential” profile

( ) ( )/= -f y e
1

2
, 27y b

exp

with ( )/=b y ln 20 , such that f (0) = 0.5 and f (y0) = 0.25 for a
given cutoff height y0. The use of a function of this form in
magnetohydrostatic (MHS) models of the corona dates back to
B. C. Low (1991), who find a semi-analytic solution where the

vertical eigenmodes are Bessel functions. This function has
also been used extensively for MHD modeling purposes (e.g.,
G. Aulanier et al. 1998; T. Wiegelmann et al. 2015). We see in
Figure 7 that the increase in Lorentz force due to MHD
stratification decays roughly exponentially at low altitudes,
which is in itself good motivation to consider a function of
this form.
The second and third forms we consider are “tanh” profiles:
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The only difference between these is the denominator in the
tanh function, which controls how quickly the pressure current
falls to zero. These three forms of f (y) are plotted in Figure 8,
and we note that the cutoff height y0 is the point at which the
pressure function falls to half its maximum value in every case.
The tanh pressure function was introduced in an MHS

context by T. Neukirch & T. Wiegelmann (2019) and has
several advantages over the exponential equivalent, namely that
there are more degrees of freedom and that these functions
result in MHS fields that appear to match observations more
closely than an exponential decay. In particular, it is noted that
the magnetic field lines become more vertical low in the corona
than the f (y) = 0 equivalent, matching certain observations of
active regions.
We have chosen f (0) ≈ 0.5 for consistency between the three

forms of f (y)—at values much higher than this, the
magnetofrictional scheme is more likely to become numerically
unstable. Naturally, it would be possible to scale any of these
functions by an overall factor, but our interest here lies mainly
in the effects of the shape of the functions and their decay rate,
rather than their overall magnitude.

3.3. The Effects of the Magnetofrictional Modifications

Similarly to the MHD parameter study described in
Section 2, we simulate the formation and eruption of magnetic
flux ropes over a range of parameters (η0, ν0), establishing the
“unstratified” base behavior with f (y) ≡ 0 for each of 50
parameter sets. Within each set, we then introduce either of the
following modifications: adding the “rope weight” or a
“pressure function,” as appropriate, to examine the effect this

Figure 8. Plot of the three forms of the pressure functions we consider, with ( )f yexp in blue, fsmooth(y) in red, and fsharp(y) in green. The three nonzero profiles of each
form correspond to the cutoff height y0 at which the pressure function decays to half of its value at the base of the domain.
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has on the flux-rope behavior. In this study, we vary the rope
weight parameter between 0 < vw < 0.03. While using the
pressure functions, we vary the cutoff height in the range
0 < y0 < 0.3, as shown in Figure 8.

In all of the four modification scenarios, we observe, on
average, a delay in the flux-rope eruptions. For a single set of
parameters, Figure 9 plots the heights of the flux-rope centers
up to the time of the first eruption. Adding the rope weight
modification effectively delays eruptions in a manner that
seems very similar to the “ground truth” LARE simulations
shown in Figure 5, with the ropes initially rising at roughly the
same rate independently of vw and then the lighter ropes rising
more quickly. Increasing vw beyond this range would likely
prevent an eruption entirely. Adding the exponential pressure
function produced perhaps the most unexpected results: for a
low cutoff height y

*

, the eruptions were delayed, but as the
cutoff height increased further beyond around y

*

= 0.1, this
effect lessened and did not further inhibit the rise of the rope.

The addition of the tanh pressure functions had more of an
effect on the dynamics, with notable differences manifesting
themselves earlier on in the simulations than the MHD “ground
truth.” This is particularly the case for the “sharp tanh” profiles,
where the introduction of the pressure current caused
significant changes to the behavior of the rope from as early
as t = 20. Unlike when adding “rope weight,” the addition of
the pressure function does not necessarily result in a lower
equilibrium position at all times. Indeed, we note that the ropes
with higher “sharp” profiles initially rise more quickly than the
unmodified equivalents, although they do ultimately take
longer to erupt.

As an indication of how these modifications affect the flux-
rope structure itself, Figure 10 presents snapshots of the rope
with each of the modifications in turn, each at the same time

t = 75 and with all other parameters kept the same. The
changes to the magnetic field structure are subtle but not
insignificant. When adding the weight term, the flux rope is in
equilibrium lower in the atmosphere, and it is also more
“bottom heavy,” with more area below the center of the rope
than above. This shape appears to be the closest to the MHD
“ground truth” of the options we study. The simulation with an
exponential function will erupt the soonest, and it sits higher
and is more stretched vertically. The two tanh functions are
almost indistinguishable from each other and qualitatively lie
somewhere in between the exponential and rope weight cases.
Also of note is the distribution of the Lorentz force, plotted

in the lower pane of Figure 10. Apart from some areas of high
force near the lower boundary (which are merely an artifact of
how the boundary conditions are applied), most of the Lorentz
force is concentrated within the core of the rope itself, with
some also found around the edge of the rope at the boundary
between the open and closed field (this is more clear in the
MHD simulations shown in Figure 4). Notably, the addition of
the tanh pressure function considerably increases the Lorentz
force in the rope core—far more so than the exponential
function and the rope weight equivalent. This increase is likely
the ultimate cause of the delay in eruptions, given that, unlike
in the MHD case, there are no plasma pressure effects to
consider in the momentum equation.
Similarly to the MHD simulations in Section 2, we test if

these conclusions are generally true across the entire parameter
range of 50 simulation sets. To this end, the relative eruption
times and energy releases are shown in Figure 11. The premise
of this plot is the same as Figure 6, but the data are now colored
based on the respective modification to the MF model.
Adding the rope weight modification always delays erup-

tions, with our maximal parameter value vw sometimes

Figure 9. Plots of the height of the center of the flux rope from the simulations with η0 = 0.001, ν0 = 0.06, showing the delay in eruption due to the effect of the three
modifications to magnetofriction that we test. The runs are color-coded based on the modification parameters used in each case.
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preventing eruptions entirely within the timeframe of our
simulations. To achieve the ≈ 20% delay in eruptions seen in
the MHD simulations, a value of vw ≈ 0.015 is required—
although, at this value, the average increase in eruption energy
release is more modest at 5%, which is much less than the
≈20% seen in the stratified MHD simulations.

The addition of the exponential pressure function has the least
effect on eruption timing or energy release. In fact, as the cutoff
height y* increases beyond around y* ≈ 0.15, the eruptions are
delayed less than for lower cutoff heights, so indeed it is seemingly
the profile and decay rate of the pressure function that ultimately
determines the effect on the system rather than merely its
magnitude. The average energy release follows a similar pattern.

The tanh pressure functions, in contrast, delay eruptions very
effectively when y* is sufficiently large, with the median flux
rope lasting 40% longer when the sharp tanh pressure function
is imposed with y* = 0.3. However, even in this extreme case,
the magnetic energy released still does not increase by as much

as the stratified MHD simulations, with still less than a 10%
increase relative to the unstratified and unmodified simulations.
The general trends of both sharp and gentle tanh functions are
similar, but the sharp profile is far more notable, indicating that
a steep decay in f (y) is crucial for this approach to be effective.
It is notable that, even in this simple model, with a relatively

small range of parameters, each simulation set behaves very
differently, as evidenced by the large variation in the thin
colored lines in Figure 11—only by taking the median value
over a large range can we gain any insight. Thus, it must be
emphasized that, in general, drawing significant conclusions
from simulations that assume a single set of parameters may
often be misguided.

3.4. Magnetofrictional Lorentz Force Distribution

It remains to compare the Lorentz force distribution with the
inclusion of these modifications, and to compare against the

Figure 10. Comparison of the four modifications to the magnetofrictional model, showing the magnetic field (top panes) and the logarithm of the Lorentz force
(bottom panes). The snapshots are taken at time t = 75 from simulations with η0 = 0.001 and ν0 = 0.06. The cutoff height for the respective pressure functions is
y
*

= 0.3, and the rope weight parameter is vw = 0.03.

Figure 11. Plots of the delays in the time of flux-rope eruptions and the respective releases in magnetic energy, as in Figure 6. All three modifications to the MF model
are plotted, and they are colored respectively. All individual simulation sets are plotted as thin lines, with the median values plotted as thick outlined lines.
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MHD equivalents. We once again calculate the 1D Fourier
transform of the Lorentz force with height, using
Equations (15) and (16). The results for the first significant
Fourier mode (m = 2) are plotted in Figure 12. As discussed in
Section 2.4, it is likely that, although adding background
stratification does increase the Lorentz force at low altitudes, it
is unclear whether this directly affects the overall system
behavior. In general, the unmodified MF cases very much
underestimate the Lorentz force at low altitudes, as can be seen
by comparing Figures 7 and 12.

We observe that, although adding the rope weight modifica-
tion could theoretically delay flux-rope eruptions indefinitely,
and appeared to show more MHD-like behavior than the
pressure functions, the overall magnitude of the Lorentz force
remains roughly unchanged at the lower boundary. The
simulations with the highest rope weight parameter did exhibit
a slower decay in the Force than the unmodified case, which is
likely due to the presence of a rope existing at higher altitudes
for longer in this case. Adding the exponential pressure
function predictably resulted in an exponential profile to the
Lorentz force decay—very similarly to that observed in the
MHD simulations and of the correct order of magnitude
(around 5 units at the lower boundary).

The smooth tanh pressure function is not too dissimilar,
although the decay of the Lorentz force with height is a little
faster. Moreover, the absolute magnitude of the force near the
lower boundary is very similar to the MHD simulations, at
around 5 units. Unlike the exponential pressure function, we
also observe a delay in eruption times commensurate with
adding stratification to the MHD model, indicating that this
function may be the best of both worlds. The sharp tanh
pressure function had the most extreme effect on the Lorentz
force, which (as expected) falls rapidly at the cutoff height y

*

.
Both the cutoff height and the sharpness of the cutoff also
significantly affect the maximum force on the lower boundary,

despite the maximum value of the pressure function ( f (0))
being identical in every case.

3.5. Discussion

We have performed a study using the magnetofrictional
(MF) model to determine how a series of new additions to the
model can be used to better emulate full MHD simulations of
magnetic flux-rope eruptions. The principle of the MF model is
that the system exists in a series of quasi-equilibria with a low
Lorentz force, which is a good approximation across much of
the corona, but not necessarily near the solar surface.
We introduce modifications to the model to address both this

shortcoming, and to better represent the effects of the
atmospheric stratification discussed previously in the paper.
The addition of a “pressure current” to the region low in the
corona improves upon the model by increasing the Lorentz
force at these low altitudes. We evaluate three forms of this
current distribution, and determine that the decay rate of the
corresponding “pressure function” makes a large difference to
the model behavior. A sharp cutoff height at which the pressure
function falls quickly to zero delays the formation and eruption
of flux ropes. Of the three pressure profiles considered, an
exponential decay matches the MHD Lorentz force distribution
best, and a “tanh” decay delays flux-rope eruptions in a manner
most similar to the introduction of stratification to the MHD
model. A “smooth tanh” profile as seen in Figure 8 seems to be
a good compromise, with both a realistic Lorentz force
distribution and flux-rope behavior.
An alternative modification we consider is the addition of a

“rope weight,” whereby we simply add a negative velocity to
the region comprising the flux rope. This modification delays
eruptions in a manner physically very similar to the effect of
stratification in MHD, but does not improve upon the
unrealistic lack of current low in the atmosphere. This
modification could of course be combined with a pressure

Figure 12. Plots of the Fourier transform L2(y) of the average Lorentz force across all 50 magnetofrictional simulation sets, for each of the three modifications in turn.
This plot only includes the first significant Fourier mode for each case: m = 2 from Equation (16). The lower panels plot the difference between the modified and
unmodified cases, similarly to Figure 7.
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current to address this problem, emulating the effect of MHD
stratification with both an increase in low-altitude Lorentz force
and a suitable delay in eruptions due to the negative buoyancy
of the flux rope itself.

4. Conclusions

The aims of this paper have been twofold. In the first section,
we described how the addition of a cool, dense boundary layer
affects the formation and eruption of magnetic flux ropes in an
MHD model. This boundary layer represents the presence of
the chromosphere, which is frequently ignored or under-
represented in coronal models. This has the potential to be
problematic, given that the magnetic field structure is often
informed by observations from the photosphere—below this
layer. We find that, even though the chromosphere only makes
up less than 1% of our computational domain, the effects are
significant: flux-rope eruptions are generally delayed by up to
20% (relative to the time of their formation), with a
corresponding increase in the amount of magnetic energy
released in eruptions.

We also find that adding the realistic background stratifica-
tion increases the average Lorentz force at altitudes far higher
than the boundary layer. However, this increased force appears
to be mainly balanced by larger pressure gradients, and so it is
likely not the dominant factor in the altered flux-rope behavior.
We instead hypothesize that the dense material from the
boundary layer becomes trapped within the flux rope, reducing
its buoyancy relative to the open field background. This
principle would theoretically apply to any similar eruptive
scenario where there exists a region of twisted magnetic field
capable of trapping dense plasma for some time.

Although ideally MHD would always be used for such
models, due to its more intense computational nature, it is still
unsuitable for some scenarios (e.g., real-time global modeling
of the corona), and so we wish to see if these findings can be
used to improve upon a frequently used and much simpler
alternative—magnetofriction. In the second section of the
paper, we discuss potential modifications to the magnetofric-
tional model that can more accurately represent the true nature
of the lower corona, where the “force-free” assumption is less
valid. Motivated by existing work on MHS fields, our addition
of a “pressure current” achieves this to a degree, resulting in
Lorentz forces in the lower corona that are very similar to the
MHD equivalents. We show that the decay rate with altitude of
these pressure currents makes a large difference to the flux-rope
dynamics—with a steep dropoff at a given altitude delaying
eruptions very effectively. The most successful of the decay
profiles we considered was the “smooth tanh” option, which
combined a realistic Lorentz force distribution with a reason-
able delay in eruptions. The more commonly used exponential
decay did not perform well in comparison, with barely any
effect on the overall flux-rope dynamics and no average
increase in the energy release during eruptions.

We also consider the addition of a “rope weight” modifica-
tion, introducing an element of the fluid dynamics that is
otherwise absent from the magnetofrictional model. This is
informed by our observation that the introduction of a dense
boundary layer in MHD increases the density of a flux rope
relative to the background field. By applying an additional
negative velocity to the region within the rope (which is easy to
define in our 2.5D models), we can emulate this effect very
effectively. The rope weight addition could theoretically be

combined with a suitable pressure function to produce a more
realistic force distribution, if required. We note that, although
our ropes are well-defined as the region with closed magnetic
field lines, in a 3D system, determining the region to which the
weight is applied would require the use of a proxy such as field-
line helicity or twist, which would increase the computational
complexity somewhat—but still far less so than using
full MHD.
Although the simple 2.5D models we have focused on in this

paper are only suitable for very limited applications, the
modifications that we have discussed have the potential to be
applied to a variety of more complex coronal models. By
showing that the precise nature of the lower boundary layer can
affect dynamics at far higher altitudes, we have identified the
importance of modeling this as accurately as possible in MHD
simulations. In the future, we intend to test whether the delays
in eruptions we observe also occur in full 3D simulations, both
in a coronal jet model (e.g., E. Pariat et al. 2009) and more
complex 3D flux-rope models. We expect that, when the
magnetic field is twisted due to boundary motions, the same
effects are likely to occur as in our simulations here, but it is
not clear whether this would also be the case for models in
which pretwisted flux emerges from the photosphere (e.g.,
D. MacTaggart et al. 2021).
More broadly, the effects of enforcing atmospheric stratifica-

tion in MHD models is reasonably well-studied, and so perhaps
our modifications to the magnetofrictional model may be of
more significance.
The addition of the “pressure current” to existing 3D

magnetofrictional models both globally and for a single active
region (e.g., M. C. M. Cheung & M. L. DeRosa 2012;
G. P. S. Gibb et al. 2014; V. Aslanyan et al. 2024) would be a
relatively simple process, although determining the magnitude
and precise profile of this term may pose challenging. For
simulations of single events or active regions, it may be
possible to apply a similar approach to the MHS simulations of
T. Wiegelmann & M. S. Madjarska (2023), whereby the
optimum parameters are determined algorithmically by com-
parison with emissions from coronal loops. However, this is
likely impossible for global simulations, and the standard trial-
and-error approaches to determining ideal magnetofrictional
parameters (such as the relaxation and hyperdiffusion rates)
would have to be used. Once achieved, it would be desirable to
evaluate the effect this has on eruptive events—specifically to
examine the Lorentz force increase low in the corona and to
examine any changes to the frequency and energy release of
these events. Over long timescales, such as those used in large-
scale flux-transport models (e.g., A. R. Yeates 2014), the
effects on the timing of eruptions and their respective energy
release could build to be quite significant—and potentially have
implications for the space-weather forecasting that such
simulations can be used to inform. The addition of the “rope
weight” modification would also be possible but more difficult
to implement, due to the more vague definition of what
constitutes the rope when working in three dimensions.
We hope that this study can be used to inform the

community of some of the effects that commonly used
assumptions in coronal modeling can have. Of particular note,
we find that incorporating an accurate boundary layer to
represent the chromosphere can have a significant effect on
simulations using magnetic field data from photospheric
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observations, even if this layer comprises a very small
proportion of the computational domain.
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