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1 Introduction

In this paper we study tree level scattering amplitudes for string theory on AdS backgrounds.
In flat space a standard textbook computation for the bosonic string leads to tree level
amplitudes for any number of tachyons. The result for four points, denoted the Virasoro-
Shapiro amplitude, is one of the most celebrated results in string theory. Superstring
perturbation theory in flat space has been established decades ago [1–3], when four point
scattering amplitudes for massless states were computed. Both the standard Ramond-Neveu-
Schwarz (RNS) as well as the pure spinor [4] worldsheet formalisms can be used to compute
supersymmetric amplitudes at tree level and by now compact expressions exist for any
number of massless legs [5].

In contrast, for curved space-times in the presence of RR-fluxes, the generic backgrounds
of string theory, the computation of amplitudes, even at tree level, has been a major
challenge. In this case the standard RNS formalism cannot be applied [6] and alternative
worldsheet formulations are not yet developed enough to compute, e.g. the analogue of the
Virasoro-Shapiro amplitude. For curved space-times containing AdS factors the AdS/CFT
correspondence provides a definition of on-shell string scattering amplitudes in terms of
correlators of local operators in the CFT at the boundary. This opens up the possibility of
using (higher dimensional) CFT techniques where worldsheet techniques are not available.
Combining CFT techniques with ideas from number theory progress has been made in the
computation of the tree-level amplitude for the scattering of four gravitons in type IIB string
theory on AdS5 × S5, dual to the four-point correlator of stress-tensors in N = 4 SYM in the
planar limit [7–10]. More precisely, the amplitude can be computed in a large radius/small
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curvature expansion, and at each order it takes the form of a genus zero integral involving
special functions introduced in [11] and known as single valued multiple polylogarithms
(SVMPLs). This in turn implies that its low energy expansion contains only single valued
Zeta values. This property has been established for tree-level massless closed superstring
amplitudes in flat space [12–16] and while still a conjecture for AdS, the proposal of [7–10]
passes several non-trivial tests. In particular, the first two curvature corrections to flat
space were computed and the results were shown to reproduce all localisation [17] as well
as integrability [18–20] results, to the relevant order.

A natural question is how to reproduce these results from a worldsheet perspective. In
this endeavour it would be very interesting to have an example where the worldsheet is well
established and we have full computational control of tree-level amplitudes. This is the case
of string theory on AdS3 ×N with pure NSNS fluxes. String theory in AdS3 with pure NSNS
fluxes is interesting mainly for two related reasons. Firstly, it provides a concrete example
in which the theory can be solved on a curved background exactly; i.e., at finite values of
α′. Secondly, it represents a case of AdS/CFT where one can explore the correspondence
exactly; in some cases, establishing the equivalence between bulk observables and boundary
observables. The worldsheet σ-model describing the propagation of strings on AdS3 with
pure NSNS fluxes is given by a SL(2,R) WZW model. This allows one to build up the
spectrum of the theory and calculate correlation functions exactly [21, 22]; see also [23, 24].
In addition, this is an example where the dual CFT is two dimensional which enables one
to employ the standard CFT2 techniques. Early work on AdS3/CFT2 in the context of
string theory allowed to establish the relationship between the worldsheet variables and the
Virasoro symmetries of the dual CFT2 theory [25–27]; see also [28, 29]. The spectrum of
the theory was finally understood in [30], and the analytic structure of correlation functions
was studied in detail in [24]. This enabled the comparison of various observables in the bulk
and at the boundary [31–33]. In recent years there have been several developments in the
study of AdS3 strings in the context of holography, which allowed to understand AdS3/CFT2
more precisely at some points in the moduli space [34–44].

In this paper we consider tree-level scattering amplitudes for string tachyons on AdS3×N
with pure NSNS fluxes, assuming an integer amount of screening charge. We develop an
expansion around flat space and show that in this expansion amplitudes admit integral
representations involving SVMPLs to all orders. This provides an example of an exactly
solvable worldsheet theory, that leads to the structure found in [9, 10]. This paper is organised
as follows. In section 2 we review strings on AdS3 with pure NSNS fluxes, show how to
compute tree level tachyonic amplitudes and give their general expression. In section 3 we
define the low curvature expansion - around flat space - and show that in this expansion
the amplitudes are given by integrals involving SVMPLs, to all orders. We finish with some
conclusions in 4. The proof of SL(2,C) invariance of the amplitudes and a brief description
of SVMPLs are deferred to the appendices.
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2 String amplitudes on AdS3

2.1 Strings on AdS3

We are interested in defining string theory on AdS3 × N , where N is a compact internal
manifold containing a S1 factor. We first focus on the AdS3 part of the geometry. The
metric covering the Poincaré patch of AdS3 is given by

ds2 = R2 dy2 + dx2 − dt2

y2 , (2.1)

where R is the radius of AdS3. The boundary of the space is located at y = 0. Defining
γ = x + t, γ = x − t, y = e−ϕ, the metric reads

ds2 = R2
(
dϕ2 + e2ϕdγdγ

)
, (2.2)

where now the boundary is located at ϕ = ∞.
String theory supports the AdS3 space provided one turns on NSNS and/or RR 2-form

field(s). In this paper we consider the background with purely NSNS B-field flux, with
the configuration being

B = R2 e2ϕ dγ ∧ dγ. (2.3)

Evaluating the Polyakov action on this ansatz, we obtain the classical worldsheet σ-model

SP = R2

2πα′

∫
dz2

(
∂ϕ∂ϕ + e2ϕ∂γ∂γ

)
. (2.4)

It is customary to define the dimensionless quantity

k = R2

α′ , (2.5)

whose square can be regarded as the 3-dimensional analogue to the t’Hooft coupling of
AdS5/CFT4. From the point of view of the action (2.4) the semiclassical limit corresponds
to large k. The action (2.4) for Lorentzian AdS3 can be seen to be equivalent to the level-k
WZW action for the universal covering of the non-compact group SL(2,R). Introducing
two auxiliary fields, β, β, and taking into account quantum corrections, the full action on
AdS3 × S1 takes the form [25]

S[ν] = 1
4π

∫
d2z

∂ϕ∂ϕ −
√

2
k − 2Rϕ + β∂γ + β∂γ − 4πνββe

−
√

2
k−2 ϕ

+ ∂X∂X

 . (2.6)

Let us explain all its ingredients. R is the 2-dimensional Ricci scalar of the worldsheet. The
dilaton term, which is linear in ϕ, is generated by quantum corrections; this can be shown
by carefully analysing the measure in the path integral [25]. There is also a shift k → k − 2,
which is a finite α′ effect. In our conventions, we have canonically normalised the field ϕ by
rescaling it by a factor 1/

√
2k − 4. Also, we have introduced the fields β, β which have no

dynamics. By integrating them, in the large k limit one recovers (2.4). ν can be interpreted as
the inverse of the three-dimensional string coupling constant. It can be absorbed by shifting
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the zero mode of ϕ, but it is convenient to keep it in order to control the coupling dependence.
On the one hand, it is associated to the expectation value of the dilaton field, and, on the
other hand, it enters in the string amplitudes as the genus-dependent KPZ scaling; see (2.11)
below. Finally, the last term in (2.6) is that of a free scalar field X that parameterises the S1

part of the background. For convenience, X has been canonically normalised as well.
The vertex operators that create Virasoro primaries in the worldsheet CFT are of the form

Vj,m,m,p(z, z) = γm−j(z) γm−j(z) e
−
√

2
k−2 jϕ(z,z)+i

√
2pX(z,z)

. (2.7)

These vertices correspond to non-excited, tachyon states. The label j corresponds to the
momentum of the string state in the radial direction ϕ; more precisely, the radial momentum
in string units is j − 1

2 . The angular momentum of the string state around the cylinder at
the AdS3 boundary is given by the difference m − m, while the sum m + m corresponds
to the kinetic energy of the state. p = p is the momentum along the S1 direction in string
units, assumed to be equal for left and right movers. The conformal dimension of the
operator (2.7) is given by

h = h = j(1− j)
k − 2 + p2. (2.8)

The Virasoro constraint h + h = 2 yields the mass-shell condition. In (2.8), p ∈ Z/
√
2R∗,

with R∗ being the radius of the S1.
The complete spectrum in AdS3 was constructed in [30]. This is organised in unitary

representations of the universal covering of SL(2,R) × SL(2,R). Such representations are
labelled by j, m, m. The relevant representations for string theory are the highest- and lowest-
state discrete series D±

j (with j ∈ R< k−1
2

, ±m = j + Z≥0), together with the continuous
principal series Cα

j (with j ∈ 1
2 + iR, α ∈ R, m = α + Z); see [30]. While the states belonging

to discrete series D±
j describe short strings confined in the bulk of AdS3, the states of the

continuous series Cα
j describe long strings that can reach the boundary and thus define an

S-matrix. In addition, the Hilbert space contains spectrally flowed representations, which
are labelled by an extra quantum number ω ∈ Z and correspond to winding string states.
When ω ̸= 0 equation (2.8) receives additional terms that depend on ω, m and m; see [30].
Here, we are going to focus on the non-excited states of the spectral flow sector ω = 0, which
are precisely those created by the operators (2.7).

In this paper we will consider tree level string amplitudes on AdS3 × S1. The tree level
amplitude for n external string states described by the vertex operators (2.7), is given by the
n-point correlator in the SL(2,R)× U(1) WZW model, integrated over the Riemann sphere:

Aj1,...,jn;p1,...pn

m1,...,mn;m1,...mn
=
∫ n∏

i=1
d2zi Vol−1(PSL(2,C))

〈
n∏

i=1
Vji,mi,mi,pi(zi, zi)

〉
, (2.9)

where the expectation value is defined with respect to the action (2.6), namely〈
n∏

i=1
Vji,mi,mi,pi(zi, zi)

〉
=
∫

DϕD2γD2βDX e−S[ν]
n∏

i=1
Vji,mi,mi,pi(zi, zi). (2.10)
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By integrating the zero mode ϕ0 = ϕ − ϕ̃ one can prove that this expression yields [23, 45]〈
n∏

i=1
Vji,mi,mi,pi(zi, zi)

〉
= νs

√
k − 2Γ(−s)

∫ s∏
r=1

d2ur

∫
Dϕ̃D2γD2βDX e−S[0]

×
n∏

i=1
Vji,mi,mi,pi(zi, zi)

s∏
r=1

β(ur)β(ur)e
−
√

2
k−2 ϕ̃(ur,ur)

(2.11)

with
s = 1−

n∑
i=1

ji, (2.12)

which we assume to be a non-negative integer. Here we have used the fact that we are
interested in genus zero (g = 0) amplitudes. For arbitrary genus, (2.12) receives an additional
contribution −g on the right hand side. This, which can be easily seen from the coupling of the
zero mode ϕ0 to the Euler characteristic in the action (2.6), confirms the interpretation of ν

as the inverse of the string coupling constant. In addition we have the following conservation
rules for the amplitude to be non-vanishing

n∑
i=1

mi = 0,
n∑

i=1
mi = 0,

n∑
i=1

pi = 0. (2.13)

These follow from the integration over the other zero modes.
Notice that on the right hand side of (2.11) the expectation value is defined in the theory

with ν = 0. This reduces the computation of the n-string amplitudes to the computation
of (n + s)-point correlators in a free theory consisting of two free scalars X, ϕ –the latter
equipped with background charge– and a (1, 0)-dimension β-γ ghost system. Indeed, that is
the theory to which (2.6) reduces when ν = 0. In this free theory we simply have

⟨ϕ̃(z)ϕ̃(u)⟩ = −2 log |z − u|, ⟨X(z)X(u)⟩ = −2 log |z − u|, (2.14)

together with

⟨γ(z)β(u)⟩ = − 1
(z − u) , ⟨γ(z)β(u)⟩ = − 1

(z − u) . (2.15)

This implies〈
n∏

i=1
e
−
√

2
k−2 jiϕ̃(zi,zi)

e
−
√

2
k−2 ϕ̃(u,u)

〉
=

n∏
i<i′

|zi − zi′ |−
4jiji′
k−2

n∏
i=1

|zi − u|−
4ji

k−2 . (2.16)

and〈
n∏

i=1
γmi−ji(zi)β(u)

〉
=

n∑
i=1

mi − ji

u − zi
,

〈
n∏

i=1
γmi−ji(zi)β(u)

〉
=

n∑
i=1

mi − ji

u − zi
. (2.17)

Putting all together, tree level n-string amplitudes on AdS3 × S1 take the form [45]

Aj1,...,jn;p1,...,pn

m1,...,mn;m1,...,mn
= νs

√
k − 2Γ(−s)

∫ n∏
i=1

d2zi Vol−1(PSL(2,C))
∏
i<i′

|zi − zi′ |
−4jiji′

k−2 +4pipi′

×
∫ s∏

r=1
d2ur

s∏
r=1

n∏
i=1

|zi − ur|
−4ji
k−2

s∏
r<r′

|ur − ur′ |
−4

k−2 X−1 ∂sX

∂u1 . . . ∂us
X

−1 ∂sX

∂u1 . . . ∂us
, (2.18)
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with (2.12)–(2.13) and with X(z, u) = X(z1, . . . , zn;u1, . . . , us) defined as follows

X(z1, . . . , zn;u1, . . . , us) =
s∏

r=1

n∏
i=1

(zi − ur)ji−mi

s∏
l<t

(ul − ut),

X(z1, . . . , zn;u1, . . . , us) =
s∏

r=1

n∏
i=1

(zi − ur)ji−mi

s∏
l<t

(ul − ut).
(2.19)

In addition, we also have the mass-shell condition hi = hi = 1 for each external state,
i = 1, 2, . . . , n. The expression (2.18) is manifestly crossing-symmetric. It is also invariant
under SL(2,C) transformations on the worldsheet, see appendix A. In the case of the 4-
point amplitude (n = 4), we can use this invariance to set z1 = 0, z2 = 1, z3 = z and
z4 = ∞. This yields

Aj1,...,j4;p1,...,p4
m1,...,m4;m1,...,m4

= νs
√

k − 2Γ(−s)
∫

d2z |z|−
4j1j3
k−2 +4p1p3 |1− z|−

4j2j3
k−2 +4p2p3 (2.20)∫ s∏

r=1
d2ur

[
s∏

r<t

|ur − ut|−
4

k−2

s∏
r=1

(
|ur|−

4j1
k−2 |1− ur|−

4j2
k−2 |z − ur|−

4j3
k−2

)

X−1 ∂sX

∂u1 . . . ∂us
X

−1 ∂sX

∂u1 . . . ∂us

]
× δ

( 4∑
i=1

mi

)
δ

( 4∑
i=1

mi

)
δ

( 4∑
i=1

pi

)

with s = 1 − j1 − j2 − j3 − j4 and where now

X(z;u1, . . . , us) =
s∏

r=1

4∏
i=1

uj1−m1
r (1− ur)j2−m2(z − ur)j3−m3

s∏
l<t

(ul − ut), (2.21)

and analogously for its anti-holomorphic counterpart.
The generalisation to internal spaces containing multiple S1 is straightforward. A

prototypical example is AdS3 × S3 × T 4. In this case each pi is a vector and we simply
replace products by inner products

pipj → pi · pj , (2.22)

with the momenta pi conserved along each circle.
Before proceeding, let us make the following remark. The amplitude above involves

4 + s integrals. The s additional insertions can be thought of as the contributions from the
background gravitons to the amplitude. These correspond to excited string states, with j = 1,
p = 0 and level N = 1, so that the on-shell condition

h(j, p, N) = j(j − 1)
k − 2 + p2 + N = 1, (2.23)

is indeed satisfied.

2.2 Tree level amplitudes

Let’s focus on the case n = 4 and write the amplitudes obtained above in the following way

As(t13, t23) =
∫

d2z|z|2t13 |1− z|2t23F j1,j2,j3
s (z), (2.24)
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where we have ignored an overall prefactor, but the conservation rules, as well as the on-shell
conditions are assumed. We have introduced the Mandelstam variables

t13 = − 2j1j3
k − 2 + 2p1 · p3, t23 = − 2j2j3

k − 2 + 2p2 · p3. (2.25)

The amplitude depends also on ji as well as on mi, mi but we have left this dependence
implicit to ease the notation. Fs(z) is an s−fold integral given by

F j1,j2,j3
s (z) =

∫
[du]

s∏
r<t

|ur − ut|
−4

k−2

s∏
r=1

(
|ur|

−4j1
k−2 |1− ur|

−4j2
k−2 |z − ur|

−4j3
k−2

) ∣∣∣∣ 1X ∂sX

∂u1 . . . ∂us

∣∣∣∣2 ,

(2.26)
where the integration measure is [du] =

∏s
r=1 d2ur. Note that (2.24) takes the form of the

Virasoro-Shapiro amplitude in flat space, with the extra insertion of a function F j1,j2,j3
s (z).

The amplitude also has Bose symmetry under the exchange of any two operators. One can
introduce an extra Mandelstam variable such that

t13 + t23 + t43 = −2 + 2j3s

k − 2 , t43 = − 2j4j3
k − 2 + 2p4 · p3. (2.27)

The following properties of the s−fold integral then imply crossing symmetry

F j1,j2,j3
s (1− z) = F j2,j1,j3

s (z),

F j1,j2,j3
s

(1
z

)
= |z|

4j3
k−2 sF j4,j2,j3

s (z),

F j1,j2,j3
s

(
z

z − 1

)
= |1− z|

4j3
k−2 sF j1,j4,j3

s (z),

(2.28)

where the change on the r.h.s, let’s say j1 → j4, also involves the corresponding change
in mi, mi.

2.3 Poles

Let us study the poles of the amplitude in the t13 plane. For the case s = 0 we simply get
the Virasoro-Shapiro amplitude/complex beta function

A0(t13, t23) =
∫

d2z|z|2t13 |1− z|2t23 = Γ(t13 + 1)Γ(t23 + 1)Γ(−1− t13 − t23)
Γ(−t13)Γ(−t23)Γ(2 + t13 + t23)

. (2.29)

Note that for s = 0 the Mandelstam relations (2.27) reduce to

t13 + t23 + t43 = −2, (2.30)

so that the amplitude has indeed the correct crossing symmetries. In the t13 plane it has
a series of poles located at

t13 = −1,−2,−3, · · · (2.31)

The location of these poles can be read off from the explicit answer, but also by considering
the integral on a small disk around z = 0, using polar coordinates. For general s the location
of the poles depends on the small z expansion of F j1,j2,j3

s (z). Consider first the case s = 1

F j1,j2,j3
1 (z) =

∫
d2u|u|−

4j1
k−2 |1− u|−

4j2
k−2 |z − u|−

4j3
k−2× (2.32)

×
(

j1 − m1
u

+ j2 − m2
u − 1 + j3 − m3

u − z

)(
j1 − m1

u
+ j2 − m2

u − 1 + j3 − m3
u − z

)
.
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This type of integrals was considered in [46, 47]. They are single valued in the complex
variable z and satisfy second order differential equations in both z and z (seen as independent
variables). More precisely, introducing the notation

F a,b,c

a,b,c
(z) =

∫
d2u uaua(u − 1)b(u − 1)b(u − z)c(u − z)c, (2.33)

where we assume a − a ∈ Z, etc; one can show(
z(1− z)∂2

z + ((a + b + 2c) z − a − c) ∂z − c(1 + a + b + c)
)

F a,b,c

a,b,c
(z) = 0,(

z(1− z)∂2
z +

((
a + b + 2c

)
z − a − c

)
∂z − c(1 + a + b + c)

)
F a,b,c

a,b,c
(z) = 0.

(2.34)

These equations can be solved in terms of hypergeometric functions. Introducing a basis
of solutions

Ka,b,c
1 (z) = 2F1(−a−b−c−1,−c;−a−c;z), Ka,b,c

2 (z) = za+c+1
2F1(a+1,−b;a+c+2;z),

(2.35)
we can then write F a,b,c

a,b,c
(z) in terms of these. It turns out that the solution is diagonal,

as it will be momentarily shown

F a,b,c

a,b,c
(z) = κ11Ka,b,c

1 (z)Ka,b,c
1 (z) + κ22Ka,b,c

2 (z)Ka,b,c
2 (z). (2.36)

This leads to the following two series in a small z expansion

F a,b,c

a,b,c
(z) ∼ (integer powers) + za+c+1za+c+1 × (integer powers) , (2.37)

where the integer powers are non-negative. The appearance of these two series can also be
understood directly from the integral representation for F a,b,c

a,b,c
(z) and they arise from two

distinct integration regions. This also allows to determine the constants κ11, κ22 and show
the diagonal form of the solution. The first series, in integer powers, arises from the region
of integration where z is small, |z| ≪ |u|. In this region we can expand (u − z)c(u − z)c

in powers of z, z. In particular this also implies

κ11 =
∫

d2uua+cua+c(u − 1)b(u − 1)b, (2.38)

which can be solved in terms of gamma functions for a − a, b − b, c − c integers, which is the
case at hand. The second region corresponds to small z but such that |u| ∼ |z|. In this region
we can change variables u = zu′ so that now |u′| is not small. The integrand then reduces to

za+c+1za+c+1
∫

d2u′u′au′a(zu′ − 1)b(zu′ − 1)b(u′ − 1)c(u′ − 1)c. (2.39)

We can now expand the integrand for small z, producing a series with integer powers times
za+c+1za+c+1. In particular, this also implies

κ22 = (−1)b+b
∫

d2uuaua(u − 1)c(u − 1)c. (2.40)

Provided a − a, b − b, c − c are all integer, the final result for F a,b,c

a,b,c
(z) is single-valued in z,

as expected from the fact that the original integrand is single valued. Going back to the
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series of poles, translating these results back to the case at hand, for s = 1 the amplitude
will have two series of poles, of the form

t13 = −1,−2,−3, · · ·

t13 − 2j1 + j3
k − 2 = −1,−2,−3, · · ·

(2.41)

The same strategy can be applied for general s. In this case there will be s + 1 distinct
regions characterised by how many integration variables are small and how many are not.
Assuming the first n of them are small we can make the change of variables

ur = zu′
r, for r = 1, 2, · · · , n,

ur = u′
r, for r = n + 1, · · · , s,

(2.42)

after which we can expand for small z at the level of the integrand. This will lead to s + 1
distinct series of poles, at locations

t13 − 2j1 + j3
k − 2 n − n(n − 1)

k − 2 = −1,−2,−3, · · · , for n = 0, 1, 2, · · · , s. (2.43)

These poles have the following interpretation. We have a tower of excited intermediate
states at level N and with j = j1 + j3 + n and p = p1 + p3, where n = 0, · · · , s, with s

the number of background gravitons contributing to the amplitude. The on-shell condition
for such a state is then

h(j1 + j3 + n, p1 + p3, N) = 1, (2.44)

with the conformal dimension given by (2.23). Using the on-shell conditions for the external
particles h(j1, p1, 0) = h(j3, p3, 0) = 1 this can be shown to be equivalent to

− 2j1j3
k − 2 + 2p1 · p3 − 2j1 + j3

k − 2 n − n(n − 1)
k − 2 = −1− N, N = 0, 1, 2, · · · (2.45)

which is exactly the location of the poles found above, see (2.43).

3 Expansion around flat space

In this section we will define an expansion where amplitudes display remarkable properties,
very similar to those found in higher dimensions. We want to define a flat space limit and an
expansion around it. We define it in such a way that the radius of AdS3 becomes large, but
so do the quantum numbers ji, such that the Mandelstam variables tii′ remain fixed:

k = R2

α′ ≫ 1, ji ≫ 1, with tii′ = − 2jiji′

k − 2 + 2pi · pi′ = fixed. (3.1)

In particular this implies k ∼ R2, ji ∼ R, pi ∼ 1. We will in addition assume that s

remains fixed in the limit, and consider cases with fixed s = 0, 1, 2, · · · . The integrand in
the amplitudes (2.24) then splits into two factors. One takes the form of the usual Virasoro-
Shapiro amplitude in flat space, and remains fixed in the limit. The other is the s−fold
integral F j1,j2,j3

s (z) whose expansion around flat space we now consider.
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3.1 General prescription

Case s = 1. The first non-trivial case corresponds to s = 1 for which

F j1,j2,j3
1 (z) =

3∑
a,b=1

∫
d2u|u|2a1 |1− u|2a2 |z − u|2a3 ja − ma

u − za

jb − mb

u − zb
, (3.2)

where recall z1 = 0, z2 = 1, z3 = z and we have introduced the ratios ai = −2ji
k−2 , which are

small in the flat space limit. We could obtain the small ai expansion of the above expression
from the result for F j1,j2,j3

1 (z) in terms of hypergeometric functions (see previous section). In
the following, however, we will develop a more powerful method, that will apply to general
s. When expanding in small ai we will find generic terms of the form∫

d2u
logp |u|2 logq |1− u|2 logr |z − u|2

(u − za)(u − zb)
, (3.3)

for some non-negative integers p, q, r. Expressions of this form are single valued in u and
can be written as linear combinations of single valued polylogarithms (SVMPLs) Lw(u),
where the words w are formed by letters in the alphabet {0, 1, z} and have length/weight
p + q + r. See appendix B for a brief account of SVMPLs. We are then led to integrate
expressions of the form ∫

d2u
Lw(u)

(u − za)(u − zb)
. (3.4)

Similar integrations were analysed in [46, 47]. In the present case, the integral can be
performed as follows. First we use the defining property of SVMPLs to write

Lw(u)
(u − za)(u − zb)

= ∂u
Lzaw(u)
u − zb

, (3.5)

and then we use the following theorem [48]∫
d2u∂uf(u) = Resu=∞f(u)− Resu=zb

f(u), f(u) = Lzaw(u)
u − zb

. (3.6)

In particular, to order p + q + r in the small ai expansion we expect SVMPLs of weight
p + q + r + 1. Furthermore, the r.h.s. of that expression can always be written in terms
of SVMPLs in the variable z with words from the alphabet {0, 1}, see [46, 49]. A generic
term in the final expansion will then have the general form

F j1,j2,j3
1 (z) = · · ·+ ap

1aq
2ar

3LW (z) + · · · (3.7)

with W a word formed with letters from the alphabet {0, 1} and weight |W | = p + q + r + 1.
Note that in doing this computation, we have assumed that we can expand the exponentials
for small ai and then integrate term by term. This, however, is not quite true, and one has
to be careful. More precisely for each of the nine contributions in (3.2) there is a non-empty
region of absolute convergence in the (a1, a2, a3) plane. For instance, the term proportional
to (j1 − m1)(j1 − m1) in (3.2) converges absolutely in the region Re(a1) > 0, Re(a2) >
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−1, Re(a3) > −1, Re(a1 + a2 + a3) < 0 which is non-empty. The integral is computed
in this region and then the result extended to the point of interest, ai → 0, which is at
the boundary of this region. This will lead to poles for small ai in the small ai expansion
in (3.7). Indeed, note that the starting point of (3.7) will be a term with |W | = 0, but
this implies p + q + r = −1. In the next section these polar terms, as well as the whole
expansion, will be computed carefully.

General s. For general s we obtain

1
X

∂sX

∂u1 · · · ∂us
=

3∑
i1,··· ,is=1

Ci1,··· ,is

(u1 − zi1)(u2 − zi2) · · · (us − zis)
, (3.8)

where the sum contains 3s terms and Ci1,··· ,is are some constants. The s−fold integral
then takes the form

F j1,j2,j3
s (z) =

∑
i1,··· ,is=1
i1,··· ,is=1

∫
[du]

s∏
r<t

|ur − ut|2µ
s∏

r=1

(
|ur|2a1 |1− ur|2a2 |z − ur|2a3

)
×

× Ci1,··· ,is

(u1 − zi1)(u2 − zi2) · · · (us − zis)
Ci1,··· ,is

(u1 − zi1)(u2 − zi2) · · · (us − zis)
,

(3.9)

where we have introduced the small ratio µ = − 2
k−2 . Note that this ratio is parametrically

smaller than ai in the flat space limit. We will perform the expansion in two steps: first we
expand in powers of a1, a2, a3, µ, and then we insert their explicit 1/R dependence. Very much
as for the case s = 1 when expanding for small ai, µ we will find generic terms of the form∫

[du] Lw(us)
(u1 − zi1)(u2 − zi2) · · · (us − zis)(u1 − zi1)(u2 − zi2) · · · (us − zis)

, (3.10)

where we write the numerator in terms of SVMPLs in the variable us, with words formed
by letters in the alphabet {0, 1, z, u1, · · · , us−1}.1 We can now proceed and perform the
integration over the variable us using precisely the same method we described for s = 1:∫

dus
Lw(us)

(us − zis)(us − zis)
= Resus=∞

Lzis w(us)
u − zis

− Resus=zis

Lzis w(us)
u − zis

. (3.11)

It turns out, see [49], that the right hand side can now be written as a linear combination
of SVMPLs Lw′(us−1) on the variable us−1 with words formed by letters in the alphabet
{0, 1, z, u1, · · · , us−2}. We are now left with the integral∫

du1 · · · dus−1
Lw′(us−1)

(u1 − zi1) · · · (us−1 − zis−1)(u1 − zi1) · · · (us−1 − zis−1)
, (3.12)

but now we can repeat the same procedure to integrate over us−1 and so on, until we perform
all the integrals. A generic term in the final expansion will then be of the form

F j1,j2,j3
s (z) = · · ·+ ap

1aq
2ar

3µtLW (z) + · · · (3.13)
1For example, for s = 2 we would write log |u1 − u2|2 = Lu1 (u2) + log |u1|2Le(u2), with Lu1 (u2) =

log
∣∣1 − u2

u1

∣∣2 and Le(u2) = 1.
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with W a word formed with letters from the alphabet {0, 1} and weight |W | = p+q+r+ t+s.
Again, we have assumed that we can expand the exponentials for small ai, µ and then
integrate term by term. Let us now do this carefully.

3.2 Explicit results

Case s = 1. Let us now tackle the integral for s = 1, eq. (3.2), combining ideas from [46]
with the method spelled out above. In order to do this integral in a small ai expansion, we
would like to expand the exponentials into single valued logarithms, swap the sum with the
integration and integrate term by term. However, the series is not absolutely convergent if
either ai = 0 or a1 + a2 + a3 = 0. To circumvent this issue we first consider the integral
on the region Uϵ = C \ (B0(ϵ) ∪ B1(ϵ) ∪ Bz(ϵ) ∪ B0(ϵ−1)) where Bx(r) is the ball centered
at x of radius r and ϵ > 0. In this region, the exponential series is absolutely convergent,
so we can swap it with the integration, and integrate term by term. We take ϵ → 0 at
the end to obtain the original integral.

Recalling Lzq(u) = logq |1 − u
z |

2/q! for z ̸= 0 and L0p(u) = logp |u|2/p!, together with
the shuffle relations, see appendix B

Lw(z)Lw′(z) =
∑

W∈w�w′

LW (z), (3.14)

we write

F j1,j2,j3
1,ϵ (z) ≡

∫
Uϵ

d2u|u|2a1 |1− u|2a2 |z − u|2a3
3∑

a,b=1

(ja − ma)(jb − mb)
(u − za)(u − zb)

(3.15)

= |z|2a3
3∑

a,b=1
(ja − ma)(jb − mb)

∫
Uϵ

d2u
∞∑

p,q,r=0
ap

1aq
2ar

3
∑

w∈0p
�1q

�zr

Lw(u)
(u − za)(u − zb)

.

Following the idea of the previous subsection we can now identify

∂zf(z) = Lw(u)
(u − za)(u − zb)

⇔ f(z) = Lzaw(u)
u − zb

, (3.16)

and use Stokes theorem to obtain

F j1,j2,j3
1,ϵ (z) = |z|2a3

3∑
a,b=1

(ja − ma)(jb − mb)
∞∑

p,q,r=0
ap

1aq
2ar

3(∮
∂B0(ϵ−1)

−
∮

∂B0(ϵ)
−
∮

∂B1(ϵ)
−
∮

∂Bz(ϵ)

) ∑
w∈0p

�1q
�zr

Lzaw(u)
u − zb

idu

2π
.

(3.17)

The remaining contour integrals along the boundaries of Uϵ receive two types of contributions.
When integrating along ∂Bzc(ϵ), the terms with za = zb = zc have a logarithmic singularity
at u = zc. The second type of contribution are residues from the poles at u = zb and
infinity. Let us first focus on the logarithmic singularity of the term with za = zb = 1. We
observe that the two expressions

∑
w∈0p

�1q
�zr

L1w(u) and
∑

w∈0p
�1q

�zr

L1(u)Lw(u)
q + 1 =

∑
w∈0p

�zr

(
log |1− u|2

)q+1 Lw(u)
(q + 1)! ,

(3.18)
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have the same logarithmic singularity at u = 1, as they both contain the same SVMPLs
whose label starts with 1. Furthermore, the singularity is explicit in the last expression
of (3.18). Now we can use polar coordinates to do the integral.

−
∮

∂B1(ϵ)

∑
w∈0p

�zr

1
(q + 1)!

(
log |1− u|2

)q+1 Lw(u)
u − 1

idu

2π
= −

∑
w∈0p

�zr

(
log ϵ2)q+1

(q + 1)! Lw(1) + O(ϵ).

(3.19)
Plugging this back into (3.17) this contribution gives

−|z|2a3
∞∑

p,q,r=0
ap

1aq
2ar

3
L0(1)p

p!

(
log ϵ2)q+1

(q + 1)!
Lz(1)r

r! = 1
a2

(1−ϵ2a2)|1−z|2a3 → 1
a2

|1−z|2a3 , (3.20)

where in the last step we have sent ϵ → 0, assuming a2 > 0.2 The remaining logarithmic
singularities can be treated similarly and we get a pole for each of the four contour integrals.
Besides this we get contributions from the residues, where we can now safely ignore the
logarithmic singularities as they are already accounted for. The final result is

F j1,j2,j3
1 (z) = (j1 − m1)(j1 − m1)|z|2a3

a1
+ (j2 − m2)(j2 − m2)|1− z|2a3

a2

+ (j3 − m3)(j3 − m3)|z|2(a1+a3)|1− z|2a2

a3
−
∑3

a=1(ja − ma)
∑3

b=1(jb − mb)
a1 + a2 + a3

+ |z|2a3
3∑

a,b=1
(ja − ma)(jb − mb)

∞∑
p,q,r=0

ap
1aq

2ar
3

×
∑

w∈0p
�1q

�zr

(
Resu=∞

Lzaw(u)
u − zb

− Resu=zb

Lzaw(u)
u − zb

)
. (3.21)

The first two lines represent the polar contribution mentioned above. Note that introduc-
ing a4 = − 2j4

k+2 such that a1 + a2 + a3 + a4 = 0 and recalling that for s = 1 we have∑4
i=1 ji =

∑4
i=1 mi =

∑4
i=1 mi = 0, we can write this polar contribution in a completely

symmetric fashion

F j1,j2,j3
1,polar (z) = (j1 − m1)(j1 − m1)|z|2a3

a1
+ (j2 − m2)(j2 − m2)|1− z|2a3

a2

+ (j3 − m3)(j3 − m3)|z|2(a1+a3)|1− z|2a2

a3
+ (j4 − m4)(j4 − m4)

a4
.

(3.22)

Note that each of these four polar contributions could have been computed by focusing on
the relevant regions of integration. Going back to the full answer, to the first two orders

2The contribution under consideration, proportional to (j2 − m2)(j2 − m2) in (3.2) converges absolutely in
the region Re(a1) > −1, Re(a2) > 0, Re(a3) > −1, Re(a1 + a2 + a3) < 0 which is non-empty. The integral is
computed in this region. Then we extend the result to the boundary, which is the limit of interest.
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in the small ai expansion F j1,j2,j3
1 (z) reads

F j1,j2,j3
1 (z) = (j1−m1)(j1−m1)

a1
+ (j2−m2)(j2−m2)

a2

+ (j3−m3)(j3−m3)
a3

−
∑

a(ja−ma)
∑

b(jb−mb)
a1+a2+a3

(3.23)

+ (a1(j3−m3)−a3(j1−m1))(a1(j3−m3)−a3(j1−m1))
a1a3

log |z|2

+ (a2(j3−m3)−a3(j2−m2))(a2(j3−m3)−a3(j2−m2))
a2a3

log |1−z|2+O(ai).

in perfect agreement with the general structure (3.7). In particular, note that the leading
term in the expansion corresponds to weight zero SVMPLs (since it’s independent of z) times
rational functions (simple poles) of degree −1 in the ai.

Case s = 2. For s = 2 we have

1
X

∂2X

∂u2∂u2
=

3∑
i,k=1

(ji − mi)(jk − mk + δi,k)
(u1 − zi)(u2 − zk)

, (3.24)

where z1 = 0, z2 = 1, z3 = z and we have sent z4 → ∞. This leads to several contributions
that can be treated in a similar way. As an example, let us focus on the diagonal term

Ga1,a2,a3,µ
2 (z) =

∫
d2u1d2u2

|u1|2a1 |u2|2a1

|u1|2|u2|2
|1−u1|2a2 |1−u2|2a2 |z−u1|2a3 |z−u2|2a3 |u1 −u2|2µ.

(3.25)
The region of absolute convergence of the integrals is Re(a1) > 0, Re(a2) > −1, Re(a3) >

−1, Re(a1 + a2 + a3 + µ) < 0. As we approach the boundary of this region (by taking ai, µ

small) we then expect two polar terms, one at a1 = 0 and one at a1 + a2 + a3 + µ = 0. The
first pole arises from the region of integration where at least one ui is very small. The second
pole arises from the region where at least one ui is very large. These poles are related by
symmetry. Indeed, by a change of variables in the integral above it can be shown that

Ga1,a2,a3,µ
2 (1/z) = |z|−4a3G−a1−a2−a3−µ,a2,a3,µ

2 (z). (3.26)

Let us compute the residue of the pole at a1 = 0. To do this write an equivalent expression

Ga1,a2,a3,µ
2 (z) = 2

∫
|u1|<|u2|

d2u1d2u2
|u1|2a1 |u2|2a1

|u1|2|u2|2
|1−u1|2a2 |1−u2|2a2 |z−u1|2a3 |z−u2|2a3 |u1−u2|2µ,

(3.27)
and now consider an expansion of the integrand around small |u1|, which we will integrate
term by term using polar coordinates (where the radius is integrated up to |u1| = |u2|).
We obtain the following expansion

Ga1,a2,a3,µ
2 (z) = |z|2a3

a1
G2a1+µ,a2,a3

1 (z) + · · · (3.28)

where · · · represent terms that are regular as a1 → 0 (for generic values of the other
parameters) and we have defined

Ga,b,c
1 (z) =

∫
d2u|u|2a−2|1− u|2b|z − u|2c (3.29)
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As an expansion around a1 = 0 we then find

Ga1,a2,a3,µ
2 (z) = |z|2a3

a1
Gµ,a2,a3

1 (z) + reg. (3.30)

The pole at a1 + a2 + a3 + µ = 0 can then be computed by crossing symmetry. Note
that the integral Gµ,a2,a3

1 (z) was already met when discussing the s = 1 case. It has the
following expansion

Gµ,a2,a3
1 (z) = 1

µ
− 1

µ + a2 + a3
+ a3

µ
log |z|2 + · · · . (3.31)

Plugging this into (3.30) we find an expansion perfectly consistent with (3.13).

3.3 Schematic structure of the expansions

The expansions of the s−fold integrals around flat space have the following schematic structure.
Assume ai ∼ ϵ and µ ∼ ϵ, all small and of the same order for now. Then we find

Fs(z) = R(−s)(ai, µ)L0(z)
ϵs

+ R(−s+1)(ai, µ)L1(z)
ϵs−1 + · · ·+ R(q)(ai, µ)ϵqLs+q(z) + · · · (3.32)

where Lk(z) denote combinations of SVMPLs of weight k in z with words from the alphabet
{0, 1} and R(q)(ai, µ) are rational functions (different for each term in the combination) in
ai, µ of homogeneous weight q. This structure is perfectly consistent with the structure of
poles (2.43). Note that these poles collide in the flat space limit, leading to the usual poles
of the Virasoro-Shapiro amplitude, and split as we take into account corrections. In an
expansion, this splitting leads to higher order poles, which translate into logarithms at the
level of Fs(z). This structure is almost identical to the one found in [9, 10]! At each order in
the curvature expansion we get the Virasoro-Shapiro amplitude in flat space, with the extra
insertion of single-valued functions in exactly the same family. A difference is that here the
weight/transcendentality jumps by one at each successive order in 1/R, while in [9, 10] it
jumps by three at each successive order in 1/R2. In the present case we are also studying
amplitudes in a certain Mellin representation, since our vertex operators are related to vertex
operators in the “x-picture” by the transform

Vj,m,m(z) =
∫
C

d2xVj(z;x)x−j−mx−j−m, (3.33)

where x corresponds to the point on the boundary of Euclidean AdS3 at which the operator
is inserted. The Mellin and Borel transforms used in [9, 10], however, are different. Another
difference is the following. When writing our results in terms of 1/R, we should note that
ai ∼ 1

R while µ ∼ 1
R2 . Hence, in a 1/R expansion terms of different weights will mix, and

the discussion above applies to the highest weight. In [9, 10] the weight is uniform, as the
result of maximal supersymmetry. Another similarity is the appearance of rational functions
in the variables ai of higher and higher degree. This corresponds to the polynomials in the
variables S, T appearing in [9, 10]. A huge advantage of the present case, however, is that
the answer is explicitly known and several properties and questions can be studied for finite
radius. Let us end with the following remark. Rewriting the amplitudes (2.24) as

As(S, T ) =
∫

d2z|z|−2S−2|1− z|−2T−2Fs(z), (3.34)
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our results imply that, to all orders around flat space, the low energy expansion around
small S, T will only contain single valued Zeta values.

4 Discussion and outlook

In this paper we considered tree-level scattering amplitudes for four string tachyons on
AdS3 ×N with pure NSNS fluxes. The worldsheet is described by a SL(2,R) WZW model,
tree level amplitudes can be computed exactly and are given in terms of integral representations.
We show that in a small curvature expansion, which we define, the amplitudes take the form
of Virasoro-Shapiro integrals with the extra insertion of single valued multiple polylogarithms.
This structure is almost identical to the one found in [9, 10] with some differences, having
to do with the somewhat different transforms used in the two problems. Some directions
that would be interesting to explore are the following.

Due to the full computational control of the worldsheet theory, strings on AdS3 ×N with
pure NSNS fluxes offer an ideal arena to study the ideas/structures of [9, 10], both in small
curvature expansions as well as for finite radius. In this context it would be very interesting to
study the fixed-angle and Regge high energy regimes, studied in a small curvature expansion
in higher dimensions in [50, 51].

The results of this paper point to some universality for closed string amplitudes in curved
backgrounds. In particular, single-valuedness plays an important role not only in flat space.
The structure of the amplitudes in the present case imply that their low energy expansion will
contain only single valued zeta values, to all orders. It would be very interesting to understand
whether this is a universal feature of closed string amplitudes on curved backgrounds.

A very interesting question in this general program is how to develop a worldsheet theory
for strings on AdS5 × S5 capable of reproducing tree level amplitudes in a small curvature
expansion. The results of this paper represent a very neat example of how very similar
structures arise from the SL(2,R) WZW model.
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A SL(2,C) invariance

Consider the tree level n−string amplitude we obtained in the body of the paper, and
let’s rewrite it as

Aj,p
m,m = N

∫
[dz][du]

n∏
i<i′

|zi − zi′ |2ti·ti′
s∏

r=1

n∏
i=1

|zi −ur|−
4ji

k−2

s∏
r<r′

|ur −ur′ |−
4

k−2

∣∣∣∣ 1X ∂sX

∂u1 · · · ∂us

∣∣∣∣2
(A.1)
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where [dz][du] =
∏n

i=1 d2zi
∏s

r=1 d2ur, N is a SL(2,C) invariant factor that will play no role
in the following discussion and we have introduced

ti · ti′ = −2 jiji′

k − 2 + 2pi · pi′ . (A.2)

In this notation the on-shell conditions and momentum conservation take the form

ti · ti = 2− 2ji

k − 2 ,
n∑

i=1
ti =

(
i

√
2

k − 2(1− s), 0
)

, (A.3)

where we have introduced a vector notation

ti =
(

i

√
2

k − 2ji,
√
2pi

)
. (A.4)

In particular note

2ti ·
n∑

i′ ̸=i

ti′ = 2ti ·
((

i

√
2

k − 2(1− s), 0
)
− ti

)
= 4jis

k − 2 − 4. (A.5)

Let us now make an SL(2,C) transformation simultaneously in all the integration points zi, ui

zi →
azi + b

czi + d
, ui →

aui + b

cui + d
, ad − bc = 1. (A.6)

Under this transformation the integration measure picks up a factor

d2zi →
d2zi

|czi + d|4
, d2ui →

d2ui

|cui + d|4
, (A.7)

while distances behave as

|x − y|2 → |x − y|2

|cx + d|2|cy + d|2
, (A.8)

where x, y are any of the integration variables. With these properties it is possible to show
that under SL(2,C) transformations∣∣∣∣ 1X ∂sX

∂u1 · · · ∂us

∣∣∣∣2 →
(

s∏
r=1

|cur + d|4
) ∣∣∣∣ 1X ∂sX

∂u1 · · · ∂us

∣∣∣∣2 , (A.9)

the prefactor exactly cancels the factors picked by the integration measure [du]. We are
then left with the extra factor

extra =
(

n∏
i=1

1
|czi + d|4

) n∏
i<i′

1
|czi + d|2ti·ti′ |czi′ + d|2ti·ti′

×

×
(

s∏
r=1

n∏
i=1

|czi + d|
4ji

k−2 |cur + d|
4ji

k−2

) s∏
r<r′

|cur + d|
4

k−2 |cur′ + d|
4

k−2

 .

(A.10)
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By using
∑n

i=1 ji = 1 − s the second line can be simplified to(
n∏

i=1
|czi + d|

4ji
k−2 s

s∏
r=1

|cur + d|
4(1−s)

k−2

)
s∏

r=1
|cur + d|

4(s−1)
k−2 =

n∏
i=1

|czi + d|
4ji

k−2 s. (A.11)

Furthermore, using (A.5) we can see
n∏

i<i′

1
|czi + d|2ti·ti′ |czi′ + d|2ti·ti′

=
n∏

i=1

1

|czi + d|2ti·
∑

i′ ̸=i
ti′

=
n∏

i=1

1

|czi + d|
4jis

k−2−4
, (A.12)

so that all factors precisely cancel and the amplitude is SL(2,C) invariant.

B Single valued multiple polylogarithms

Let us start by defining multiple polylogarithms. These are holomorphic functions Lw(z)
labelled by a word w formed of letters from an alphabet {0, σ1, σ2, · · · }. For the empty word
e and the word with only 0′s we have

Le(z) = 1, L0p(z) = 1
p! log

p z, p = 1, 2, · · · (B.1)

For all other words we demand Lw(z) → 0 as z → 0, which fixes Lw(z) recursively when
supplemented by the differential relations

∂

∂z
Lσiw(z) =

Lw(z)
z − σi

. (B.2)

For instance, at weight one we obtain

Lσi(z) = log
(
1− z

σi

)
, L0(z) = log z. (B.3)

As can be seen from these examples, multiple polylogarithms have branch cuts. It is possible to
show, see [11], that there exists a unique family of single-valued functions Lw(z), denoted single
valued multiple polylogarithms (SVMPLs) given by linear combinations of Lw′(z)Lw′′(z),
which satisfy the same differential relations

∂

∂z
Lσiw(z) =

Lw(z)
z − σi

. (B.4)

such that Le(z) = 1, L0p(z) = 1
p! log

p |z|2, for p = 1, 2, · · · and Lw(z) → 0 as z → 0 for all
other words. For words of length one we obtain

Lσi(z) = log
∣∣∣∣1− z

σi

∣∣∣∣2 , L0(z) = log |z|2. (B.5)

For words of length two and three there are various possibilities, and the resulting expressions
in terms of classical polylogarithms are very complicated. From length four SVMPLs cannot
be written in terms of classical polylogarithms. SVMPLs satisfy beautiful relations. In
particular the shuffle identities

Lw(z)Lw′(z) =
∑

W∈w�w′

LW (z). (B.6)

– 18 –



J
H
E
P
0
3
(
2
0
2
5
)
0
0
2

We are often interested in evaluating SVMPLs at the special values z = σj , where σj is one
of the letters. Lw(σj) is then defined with the regularisation prescription that sets log 0 = 0.
Finally, the following theorem proven in [46, 49] is very useful. Namely

Lw(σj) =
∑
w′

cw′L(σi), (B.7)

where on the r.h.s. we have a finite linear combination of SVMPLs in σi, now seen as the
variable, with words from the alphabet {0, σ1, · · · }/σi excluding σi.
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