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Abstract
The Matrix-Element Method (MEM) has long been a cornerstone of data analysis in high-energy
physics. It leverages theoretical knowledge of parton-level processes and symmetries to evaluate the
likelihood of observed events. In parallel, the advent of geometric deep learning has enabled neural
network architectures that incorporate known symmetries directly into their design, leading to
more efficient learning. This paper presents a novel approach that combines MEM-inspired
symmetry considerations with equivariant neural network design for particle physics analysis. Even
though Lorentz invariance and permutation invariance over all reconstructed objects are the
largest and most natural symmetry in the input domain, we find that they are sub-optimal in most
practical search scenarios. We propose a longitudinal boost-equivariant message-passing neural
network architecture that preserves relevant discrete symmetries. We present numerical studies
demonstrating MEM-inspired architectures achieve new state-of-the-art performance in
distinguishing di-Higgs decays to four bottom quarks from the QCD background, with enhanced
sample and parameter efficiencies. This synergy between MEM and equivariant deep learning
opens new directions for physics-informed architecture design, promising more powerful tools for
probing physics beyond the Standard Model.

1. Introduction

The search for new physics at the Large Hadron Collider (LHC) is a complex and data-intensive challenge. As
particle collisions produce high-dimensional data, distinguishing between Standard Model events and
potential new physics requires sophisticated analysis techniques. Traditionally, matrix-element methods
(MEM) [1–17] have been used to compare observed data to theoretical predictions by evaluating the
likelihood of various hypothesized processes. In parallel, the advent of deep learning has enabled the
development of powerful algorithms capable of learning complex patterns in data [18–46], often
outperforming conventional methods in classification tasks.

In recent years, geometric deep learning [47–54] has emerged as a promising framework for physics
analysis, incorporating known symmetries of physical laws directly into the neural network architecture. This
approach, which could be called equivariant neural network design, seeks to restrict the learning task to a
smaller yet appropriate class of functions by embedding symmetries such as Lorentz and permutation
invariances into the model structure [55–62]. The general intuition that guides such architecture design is
the invariance of physical observables under group transformations.

Despite the natural synergy between MEM, which explicitly utilises theoretical knowledge of symmetries
through matrix element calculations and equivariant neural networks, a systematic connection between
these two approaches has not been fully established. This work aims to bridge this gap by demonstrating how
MEM-inspired symmetries can guide the design of equivariant neural network architectures for event
classification tasks at the LHC. When deciding on which symmetries to embed in the model, we will show
that the considerations that should guide the choice are the symmetry of the target function rather than the
physical symmetries of the network input. For example, in the case we consider here, the symmetry to use is
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Figure 1. Representing the hierarchy in group invariant function approximation where a larger group (S4) imposes additional
constraints on the weights compared to a proper subgroup (S2 × S2). Although the constraints of S2 × S2 can become those of S4,
the stronger constraints of S4 cannot become a function that is S2 × S2 invariant but not S4 invariant, as its weights lie strictly
outside the red ellipse with the constraint w1 = w2 ̸= w3 = w4. Therefore, even though S4 contains the group S2 × S2, an
S4-invariant function cannot become a purely S2 × S2-invariant function. This holds for general group invariant functions due to
the structure of fibres induced by invariance in the function’s domain (see figure 3).

that of the likelihood ratio and not the full Lorentz invariance of the input momenta. We highlight the
benefits of embedding optimal symmetries derived from the matrix-element calculations into the neural
network to enhance classification accuracy, sample efficiency, and generalisation capabilities.

We begin by discussing the role of symmetries in function approximation, where they manifest
themselves as group orbits in the equivalence classes of a target function’s fibre in section 2. We then explore
optimal symmetry group choices for classification problems using the Neyman–Pearson lemma and their
connection to the fibres of group-equivariant functions in section 3. While the arguments based on group
actions are more general, a simplified example which helps explain the hierarchy of group invariant function
approximation is shown in figure 1. The general intuition can be stated as follows:

In signal vs. background classification tasks, one can infer the (approximate) symmetries of the
target function (not the data) from the specific processes’ underlying likelihood based on the
differential cross-sections. A universally approximating equivariant architecture on the space
of functions with smaller or the same symmetries can approximate the target function but not
one with a strictly larger symmetry.

Incorporating Lorentz symmetry and permutation invariance, essential in evaluating cross-sections,
provides a foundation for developing equivariant architectures. Building on this theoretical groundwork, we
investigate the optimality of the Lorentz invariance and Sn permutation invariance over all n reconstructed
objects for the evaluated MEM-likelihoods in section 4. The former is suboptimal due to the dependence of
the event likelihood on the transfer function, which is invariant only under longitudinal boosts and rotations
along the z-axis. The Sn group is optimal when the final state consists of a single type of reconstructed
object1. Therefore, we devise a longitudinal boost invariant homogeneous2 message passing neural network,
where the smaller permutation symmetries are maintained by concatenated sub-graph readouts.

To illustrate the practical implications of our approach, in section 5, we present a case study of di-Higgs
production with four bottom jets in the final state, a channel of particular interest for probing the Higgs
self-coupling at the LHC. We demonstrate that MEM-inspired symmetries improve network performance in
classification metrics compared to state-of-the-art results [41] and maintain better performance metrics with
up to three orders of magnitude fewer parameters.

Our findings suggest that by integrating the principles of the MEM with modern equivariant deep
learning techniques, we can develop more efficient and physically informed architectures for LHC data

1 Any event-level analyses on reconstructed objects with point cloud architectures which assume Sn invariance is, therefore, suboptimal in
the sense of Neyman–Pearson when there is more than one type of reconstructed object. While their good performance may be due to the
negligible null orbits of finite group symmetries in an uncountable domain, even in this suboptimal situation, they mostly outperform
shallow machine learning on high-level features, which is a testament to the expressibility of modern deep learning algorithms.
2 The requirement of permutation symmetry under separate classes of reconstructed objects allows for a heterogeneous graph construc-
tion. We do not consider such an approach as it has a factorial growth of learnable functions based on the number of edge and node
types.
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analysis. This synergy paves the way for new methodologies in the ongoing search for physics beyond the
Standard Model.

2. Symmetries as strong inductive biases

The theoretical reasoning behind symmetries becomes evident from its relation to conserved quantities, i.e. a
symmetry transformation on a physical system does not change observable quantities. This carries over to
function approximation, as the value of physically meaningful functions should not change under a
symmetry transformation in the input feature space. Even without such symmetry considerations, defining a
function requires each element on its domain to be associated with only one element in its co-domain (not
one-to-many). Therefore, any given function divides the domain into mutually exclusive subsets mapped to
the same element on its co-domain. These subsets called the function’s fibres, are a particular partition of the
input domain unique to a family of functions.

A partition of a set is a collection of subsets that do not have any element in common and, together,
contain all elements of the parent set. Each set in this collection forms an equivalence class in the set we refer
to as blocks. There are infinitely many ways of constructing such partitions of a set with infinite elements.
These are diagrammatically illustrated on the left in figure 2. If a subset of the parent set can be expressed as a
union of blocks of a partition, this subset is said to be saturated in the said partition. If the subset has a
non-empty intersection with a block but without containing all of its contents, it is called unsaturated. For
example, on the top right in figure 2, the yellow rectangle is saturated in the partitions of P1, while the blue
ellipse is unsaturated.

In function approximation, the target function’s fibre corresponds to a unique partition out of all
possible partitions of the input feature space. Therefore, the process of function approximation can be
broken down into two stages:

1. finding a partition on the domain which matches that of the target function
2. matching the target function’s value on these domain partitions over the family of functions having the

same fibres.

By strong inductive biases, we mean the assumption of a partition on the domain, which helps in the first
stage and is related to the specifics of the data representation and its associated architecture. The second part
is related to the actual function finding via an optimisation algorithm where one can include additional
information as weaker forms of inductive biases without hard restrictions on the partitions. For instance,
regularisation terms on the loss function will prioritise a region of the weight space without a hard boundary.
While our definition can be made more general to encompass such biases, we do not consider such a
generalisation since the former is a necessary condition for the latter and is the primary motif of the work.

One can now define a strong inductive bias in terms of assumed partitions on the domain:

Strong Inductive Bias. Given an approximation problem where we want to learn a continuous target
function f :D→H between the domainD and the co-domainH via an approximator f̂ :D→H belonging
to a family of functions Σ, a strong inductive bias is an assumption of a partition of the domainD, such that
f̂(x) has constant value in each block of the partition for all f̂ ∈ Σ.

Let the partitions be represented as P̂= {[x]aΣ : a ∈ I}, with I being a set which indexes each block [x]aΣ.
Since the collection P̂ is a partition of the domain,D =

⋃
a∈I[x]

a
Σ , and [x]aΣ ∩ [x]bΣ = ∅ for a ̸= b and

[x]aΣ = [x]bΣ otherwise. The assumed partitions define the smallest mutually exclusive subsets of the domain,
where an approximated function should be equal. Therefore, a strong inductive bias defines a function space
on the domain where any function’s value has to be constant within a single block while they can be different
in separate blocks as a whole. Additionally, there is no restriction to the functions becoming equal in two
distinct blocks. Therefore, the partitions P̂ are theminimal fibres over the function space Σ.

Given the input feature space, the assumption of a partition reduces the learning process (the
optimisation stage) to learning over single representatives from the equivalence classes. While it is most
straightforward to encode the target function’s fibre as partitions of the domain, their exact fibres are never
known in practice. As a result, partitioning the domain to help achieve the target function’s fibre demands a
notion of compatibility. For a given target function f :D→H, it essentially boils down to the comparison of
two partitions inD:

3
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Figure 2. The left shows some possible partitions of a bounded domainD in 2D out of infinitely many possibilities. On the top
right, the yellow rectangle is a saturated set in P1 while the blue ellipse is not. Consequently, if one restricts the smallest possible
fibres that a function approximator can have to be those in P1, it can accommodate a target function with P2 (bottom left of figure
on the right) as its fibres since all partitions in P2 are saturated under P1. However, if it had P3, no amount of function
approximation on P1 will agree over the whole domainD since all of its fibres are unsaturated in P1. Note that for incompatibility,
one fibre being unsaturated is sufficient for incorrectness of P1.

• The partitions P induced by the target function’s fibres, say [x]f, where the function is equal in each block
[x]f ∈ P

• The smallest possible fibres restricted via the inductive bias in all functions f̂ :D→H represented by the
neural network architecture class, say P̂ ∋ [x]Σ.

In the sense of an exact representation3, the requirement is that a strong inductive bias (or partitions of the
domain) is compatible with a target function if all of its fibres are saturated sets in the assumed partitions i.e.

[x]bf =
⋃
a∈Ib

[x]aΣ

for every [x]bf in P, with Ib an index set for each [x]bf . If this does not hold true, the target function has two

distinct fibres in some partition [x]Σ in P̂ and any f̂ cannot simultaneously become equal to both values in
[x]Σ. Going back to the bottom right of figure 2, an inductive bias of P1 is correct if the target function has
fibres that correspond to P2, and incorrect if its fibres are P3.

In particle physics applications, target functions are generally invariant under a group and therefore,
elements belonging to each partition [x]f are related by symmetry transformations. Due to the nice algebraic
properties of elements in each fibre of the target function, it is comparatively straightforward to construct
architectures which respect these symmetries. Therefore, symmetries play an important role in function
approximation tasks. As we shall see, the main difference to the usual notion of symmetries is that the largest
possible physical symmetry in the input domain is not necessarily the best choice since it enlarges the
minimal fibres compared to its subgroup symmetries.

3. Optimal symmetries in group invariant classification

For a group G with corresponding transformations ρD and ρH on the domain and co-domain, respectively, a
function f :D→H is equivariant with respect to these transformations if

f(ρD (g) x) = ρH (g) f(x) . (3.1)

If the representation ρ(g)H is trivial (ρH(g) = 1∀g ∈ G), then f is called G-invariant. Particle fields in
Quantum Field Theory are classified in terms of their transformation properties under the Lorentz group,
and interacting theories are written down with Lorentz invariant Lagrangians and additional internal
symmetries. This is the origin of the symmetries of the differential cross-section. For instance, take the
transformation

ψ (Λ(g) pν) =W(g) ψ (pν) ,

3 The case involving an ϵ-accurate approximation with ϵ> 0 is more involved and will be touched upon in a future work [63]. For the
present work, it suffices to regard that the exact representation belongs to the restricted function space where the relevant architecture
class with an inductive bias has (or should have) the universal approximation property.
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Figure 3. The difference between the smallest fibres (the set of points in the domain where the function’s value is equal) of a
function invariant under a group G1 and its proper subgroup G2. The smaller squares denote the coarsening of the domain with
similar colours, signifying equality of the function’s value. G1-invariance assumes larger fibres from the start. In contrast,
G2-invariance assumes smaller and compatible partitions with G1-invariance, i.e. they can become enlarged so that the function
becomes equal on the smallest fibres of G1-invariant functions.

of the Weyl spinor ψ(pµ), ψ : R4 → C2, under a Lorentz group element g, whereW(g) and Λ(g), respectively,
are the Weyl and vector representations of the Lorentz group. While the term ‘equivariance’ is seldom used in
QFT textbooks, classically, ψ is a Lorentz equivariant function under the defined group transformations.

The nature of perturbative differential cross-sections already contains a rich structure of symmetries
without going into the specific details of processes. On the other hand, the search for new physics is
essentially a hypothesis test with the null background-only hypothesis vs the alternate signal and background
hypothesis. With optimality of the likelihood ratio, guaranteed by the Neyman–Pearson lemma [64], one can
study the optimality of an imposed group equivariance by checking whether the space of a family of group
equivariant functions contains monotonic functions of the likelihood ratio. We briefly discuss this
connection by describing the structure of fibres of group equivariant functions and its relation to the
Neyman–Pearson optimality of group invariant likelihood ratios. This is essentially a condensed summary of
[65].

3.1. Equivariant function spaces
As mentioned in figure 1, the underlying motivation for choosing correct symmetries is the comparable
constraints of a hierarchical set of group invariant functions. More precisely, there is a set-inclusion
relationship within the space of invariant functions of a group and its subgroup, which goes in the opposite
direction of group inclusions. Take a group G1 and its proper sub-group G2, i.e. G2 ⊊ G1. On the same domain
and a given group action of the group G1, restricting the group elements to those in G2 creates a G2-action.
For group invariance (i.e. trivial action on the co-domain), this creates two invariant function spaces on the
domainD: say FG1 and FG2 . Since all G1 invariant functions are G2 invariant, but not all G2 invariant
functions are G1 invariant, we have : FG2 ⊋ FG1 . This means that functions which are G2 invariant but not G1

invariant do not belong to FG1 . A schematic diagram depicting this inverted hierarchy in the function space
is shown in figure 3. Assuming the target function is always group invariant, a qualitative explanation of why
this happens is given separately for the G-invariant classification and G-equivariant feature extraction.

3.1.1. G-invariance
Suppose a given function f :D→H is invariant under a transformation ρD(g) of a group G. This means that
f(ρD(g)x) = f(x)≡ y for all g ∈ G, i.e. the fibre of an element y in the image of the function Im( f), is at least
as large as all those elements which can be traversed from x via the group action ρ(g)D x. This subset of
elements inD is the orbit of x under the G-action. While a like-for-like comparison between different group
invariant neural networks is highly non-trivial, the structure of the smallest fibres (see figure 3) induced by
group invariance in the input domainD provide a mathematically consistent mechanism of checking the
suitability of a particular group invariance in the input domain even without recourse to the specific detail of
the architecture or the universal approximation property. The important observation which allows such an
inspection is that restricting the group action on the domainD to group elements of a proper subgroup
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generally4 results in smaller minimal fibres as they have smaller orbits. Crucially, larger group invariance
forces a function to be equal in different orbits of the subgroup action and is, therefore, not a correct
symmetry when the target function is invariant only under a proper subgroup but not under the parent
group. On the other hand, since group invariance only fixes the smallest fibres of a function, an expressive
enough invariant network of a smaller group can approximate a function invariant under a larger group. The
state-of-the-art performance of transformers [66] for jet-tagging [67] which match or outperform
equivariant ones [55, 57, 59, 62] is an extreme example of an architecture learning the relevant fibre structure
of the target function without continuous group algebraic constraints in the domain. A diagrammatic
representation of the compatibility of a subgroup invariance for a target function invariant under a larger
group and incompatibility of a larger group invariance for a proper subgroup invariant target function is
shown in figure 3.

3.1.2. G-equivariance
Now consider that the function f :D→H is equivariant with respect to is a corresponding non-trivial
transformation ρH(g) of the group acting on the co-domain, i.e. f(ρD(g)x) = ρH(g) f(x). In such a case, the
function is equal for at least those elements x ′ = ρD(g)x in the domainD, transformed by group elements g
which fixes y= f(x), i.e. y= ρH(g) y. This subgroup of G, dependent on the representation ρH(g) and the
particular element y, is the little group [68] of the group transformation for y. For group invariant binary
classification of signal and background events, one can consider thatH is a hidden representation where we
extract the relevant features as the target function. Within this, there are two extremes depending on the
nature of the representation ρH(g) in the co-domainH. If the action is free, i.e. the little group of every
element inH is the trivial group consisting only of the identity, equivariant feature extraction does not
assume any larger fibres than the one assumed by an invertible function between the input domains.
Therefore, for any noticeable gain in inductive biases, the group action onH should not be free. At the other
extreme, if the little group of all elements inH is the group itself, then f is G-invariant. Therefore, in the case
of group equivariant feature extraction for an invariant target function, the little group of all the elements in
the co-domain should be no larger than the largest subgroup under which the target function is invariant.
One should remember that our discussions relate to the equivariant approximation of an invariant target
function. For equivariant target functions, the purpose of equivariance beyond the assumption of a fibre
structure is an efficient generalisation to unseen input data related via group transformations. Here, a correct
free group action on the co-domain will offer advantages compared to non-equivariant ones in
generalisation capabilities. Moreover, given a free group action on the co-domain, one can build subgroup
invariants out of the equivariant quantities, manually inducing appropriate little groups. Such an approach
would be suitable, for instance, in multi-class classification tasks where the different likelihood ratios are
invariant under different subgroups of a parent group.

3.2. Neyman–Pearson optimality and group equivariance
Consider the binary classification problem of a signal hypothesis PS with the corresponding set of processes
PB from the known sector of the Standard Model forming the background hypothesis. For an observed event
E, each hypothesis H ∈ {S,B} has a normalised probability densities pH(E) =

1
σH

dσH
dE , with dσH and σH , the

differential and integrated cross section for the set of processes PH. From the Neyman–Pearson lemma, an
optimal classifier between the two hypotheses is a monotonic function of the likelihood ratio5

λ(E) = pS(E)/pB(E). Thus, for a group-equivariant neural network to approximate a monotonic function of
the likelihood ratio, the smallest fibres assumed via group equivariance should be comparable to that of the
likelihood ratio. Recalling the nature of group equivariant fibres as discussed above, one can construct the
following guidelines for an optimal choice of the group Ĝ given a G-invariant likelihood ratio:

• Ĝ-invariance: Ĝ can be a subgroup of G but not larger
• Ĝ-equivariance: The little group of the Ĝ-action on the co-domain should not be larger than G.

For the Ĝ-equivariant case, a free action on the codomain will be compatible with any target function. Still, it
will not provide any noticeable gain in generalisation ability compared to non-equivariant architectures.
These guidelines also hold for any general G-invariant target function.

4 Mathematically, the group action should be effective in that any non-identity group element has at least one non-trivial action on an
element of the domain. This property is generally satisfied by group actions utilised in particle physics.
5 Generally, the alternate hypothesis for a signal search at the LHC is the presence of both signal and background processes, in which

case the probability distribution is p1(E) = 1
σS+σB

( dσS

dE
+ dσB

dE
). Therefore, the likelihood ratio is λ(E) = σB

σS+σB
(1+ dσS/dE

dσB/dE
). Our case

considers the behaviour of the non-constant second term as the symmetry properties depend on this term alone.
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The guidelines provide little utility in binary classification tasks when one knows the group G. The real
utility of these guiding principles arises in Ĝ-equivariant feature extraction for multi-class classification
where each class c, has a possibly different Gc-invariant probability distribution. One can then use knowledge
of the invariant probabilities to identify the group invariant likelihood for one-vs-one and one-vs-many
classification scenarios and construct a Ĝ-equivariant function, which contains all these possibilities as its
subgroup and has a compatible action with the final subgroup invariances in the intermediate feature
extraction layers. One can enforce the appropriate little group invariances of the different possibilities at the
final feature extraction layer to feed into the classifier head.

In signal searches, different processes in PH may have a different set of permutation symmetry. For
instance, the event weight in the resonant decay of a Z boson to a pair of leptons will be invariant under their
exchange, while it will not be if they originate from a pair ofW± bosons. Such physical arguments open up
an avenue for the design of equivariant architectures tailored to particular search scenarios, which on top of
theoretically6 being able to approximate a monotonic function of the likelihood ratio will have better
parameter and sample efficiency. They can also be used to modify the architecture of foundation models
before fine-tuning for particular search scenarios.

4. Equivariant architectures from theMEM

In the point cloud representation, one regards the input as a set and learns a permutation-invariant function
for all possible permutations of the elements. They generally utilise sum-decomposition in a latent space to
account for variable cardinalities of the samples, which is known to have universally approximating
properties as set [69] and multi-set [70] functions. However, to study the optimality of the permutation
group action on the squared matrix elements, we will consider a point cloud sample as an ordered n-tuple
where we define functions to be invariant under possibly different permutation groups Sn′ , acting on n ′ ⩽ n
elements. In this section, we first discuss the Lorentz and permutation symmetries of fixed-order differential
cross-sections. We then discuss optimal symmetries that are present in the matrix-element likelihoods and
present a longitudinal boost equivariant architecture which respects these symmetries.

4.1. Symmetries in fixed-order differential cross sections
4.1.1. Lorentz symmetry
Let X= (p1,p2, . . .,pn) be the four-vectors of a measured event at LHC. In addition to these four-vectors, we
have a corresponding vectorH= (h1,h2, ....,hn) containing additional information such as the type of the
reconstructed object, flavour, charge etc. These properties determine the information available on the
partonic process at reconstruction and the permutation symmetry of the differential cross-sections in
addition to the quantum mechanical indistinguishability of identical particles. Representing the combined
observed information of X andH as E= (p1 ⊕h1,p2 ⊕h2, . . .,pn ⊕hn), consider that there are r incoherent
but observationally identical (i.e. at reconstruction) processes P = {a1 b1 → F1,a2 b2 → F2, . . .,ar br → Fr}
that can lead to the production of this event. Here, ai and bi are the incoming partons, and Fi represents the
partonic final state. The leading-order differential cross section dependent on theory parameters θ can be
written as

dσP (q1,q2,E,θ) =
∑

aibi→Fi∈P

ˆ
dx1 dx2

fai (x1) fbi (x2)

2Ecm x1x2
δ(4)

x1q1 + x2q2 −
n∑

j=1

pj


× |Mi (x1q1,x2q2,E,θ) |

2 dΠn , (4.1)

where7 q1 = (0,0,Ecm/2,Ecm/2) and q2 = (0,0,−Ecm/2,Ecm/2) are the incoming proton momenta with
centre-of-mass energy Ecm, |Mi|2 is the Lorentz invariant squared matrix-element for the parton-level
process aibi → Fi, fai and fbi are the proton parton distribution functions of the parton ai and bi, respectively,

and dΠn is the Lorentz invariant phase space (LIPS) of the n-body final state dΠn =
∏n

j=1
d3pj

(2π)32Ej
. Given a

Lorentz group element g, the corresponding transformation of the final state E is

ΛE (g)E= (Λ(g)p1 ⊕h1,Λ(g)p2 ⊕h2, . . .,Λ(g)pn ⊕hn) , (4.2)

where the matrix representation ΛE(g) can be built from the vector representation Λ(g) acting on four
vectors pi, and the trivial identity matrix representation acting on scalars hi. Events correspond to different

6 depending on the universal approximation property of the equivariant architecture class.
7 We use the convention p= (px,py,pz,E) for easier discussion of the transverse and longitudinal components in later sections.
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points in the phase space whose relative weight is determined by the Lorentz invariant matrix-element
squared |Mi|2, i.e. the probability distribution of a given final state signature under a hypothesised process
aibi → Fi is Lorentz invariant. At this point, the sum over all processes is also Lorentz invariant. However,
experimental considerations render event likelihoods that do not respect the full Lorentz invariance. This
will be discussed further in section 4.1.1.

4.1.2. Permutation symmetries
Let the observed event be E= (r1,r2, . . .,rn) such that ri = pi ⊕hi. The action of the n-object permutation
group Sn on E, permutes each ri as a whole

ρ(σ)(r1,r2, . . .,rn) =
(
rσ(1),rσ(2), . . .,rσ(n)

)
,

where ρ : Sn → GL(n× (4+m),R) is a matrix representation of Sn built as ρ(σ) = ρn(σ)⊗ 14+m, out of the
canonical representation ρn(σ) of Sn in GL(n,R), withm being the dimensions of hi. GL(n,R) is the
general linear group of real invertible n× nmatrices. Similarly for some n ′ < n, one can also define the
permutation action on n′ elements via a representation ρn′ : Sn′ → GL(n,R) of Sn′ in GL(n,R). Clearly, there
are
( n
n ′

)
ways of choosing subsets of cardinality n′ from E, each having a particular form of the matrix

ρn′(σ
′) ∈ GL(n,R), σ ′ ∈ Sn′ reflecting the chosen subset. A function f : E →H, where E is the space of

measured events is permutation invariant if

f(ρ(σ)(r1,r2, . . .,rn)) = f(r1,r2, . . .,rn) , (4.3)

for all σ ∈ Sn. The differential cross-section is not symmetric concerning the exchange of distinct particles,
which results in the non-invariance of the likelihood under the exchange of reconstructed objects belonging
to different classes. This will be discussed further in section 4.1.1.

4.2. Optimal symmetries from theMEM
The MEM is a theoretically motivated multivariate data analysis approach which evaluates the likelihood of
an event arising from a set of parton-level processes P . With a slight modification of equation (4.1) to
account for detector effects and implicitly considering momentum conservation, the likelihood of an event E
arising due the ith parton level process in P say ab→ F, is

pi (E|θ) =
1

σi

ˆ
dΠn (P) dx1 dx2

fa (x1) fb (x2)

2Ecm x1x2
|Mi (x1q1,x2q2,P,θ) |

2 T(E,P) . (4.4)

Here, T(E,P) is the transfer function modelling the probability of the event E arising from the final state
four-vectors P of the partonic configuration F. In conjunction with the integration over the parton-level
LIPS dΠn(P), the transfer function accounts for detector effects which decide up to what extent the exact
symmetries of |Mi|2 are carried over to the likelihood pi(E|θ) or add new discrete symmetries by making
quantum mechanically non-identical partons indistinguishable due to experimental considerations. The
likelihood for the hypothesis set PH, with σH =

∑
iσi is

pH (E|θ) =
1

σH

∑
i∈PH

σi pi (E|θ) .

Therefore, in such a set-up, one can construct the likelihood and likelihood ratios of any set of
non-interfering parton level processes. Moreover, for equivariant feature extraction, one can infer the
(approximate) optimal group symmetries from each pi(E|θ).

In this section, we highlight the general structure of symmetries inherent in the likelihoods while
consistently taking resonant and non-resonant production of di-Higgs decaying to four bottom jets as an
example to concretely illustrate the synergy between group equivariant architecture design and the
probabilities pH(E). This is one of the most promising channels for looking into the quartic Higgs
self-coupling at LHC, as it has the highest branching ratios but is plagued by a very high QCD multi-jet
background, and we will consider it for the numerical analysis in the next section.

4.2.1. Continuous symmetry
In most searches, we are interested in a fixed number of primary partons: the four bottom quarks in the
di-Higgs case. Due to the inevitability of additional QCD radiation at the very high energies of LHC, a rigid
cut on the number of jets is sub-optimal as it throws away many possible signal events. To consider many
events, one includes hard processes with additional QCD radiation beyond the four bottom quarks in the
signal and the background sets of processes. Possibly coherent processes in the unresolved regime within
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Figure 4. A Lorentz boost in the direction opposite to the leading jet in a three-jet event (on the left) will transform it into a
two-jet event (on the right). For a baseline selection criteria which allows for more than two jets in the final state, the
MEM-likelihood evaluated as a sum of three jet final state processes and two jet final state processes will not be the same for either
event, making the event likelihood violate Lorentz invariance.

these processes must be matched and merged with the parton-shower-generated additional radiation to
avoid over-counting in the overlapping phase space regions. Additionally, these processes involve a variable
number of final state particles that do not live in the same phase space. Special care needs to be taken to
evaluate such weights [4–7, 10–12]. One mechanism is to introduce kinematic corrections on an
event-by-event basis for manageable number of additional hard radiations, [4, 6, 7] so that the weights are
evaluated in the phase space involving fixed number of primary partons. Such kinematic corrections are
essentially a preprocessing stage in machine learning terminology.

To bring in MEM-inspired symmetries into equivariant architecture design, we do not consider a
kinematic preprocessing stage and consider the group invariance of MEM-weights of the sum over processes
with a variable number of final state particles. In such a case, since the transfer function T(E,P) involves the
reconstruction algorithm and baseline selection criterion, the likelihood pi(E|θ) is not necessarily Lorentz
invariant. For example, commonly used jet algorithms depending on pT and∆R are longitudinal boost
invariant but not fully Lorentz invariant. In figure 4, we show a fully visible final state with three jets on the
left, becoming a two-jet event on the right with an appropriate Lorentz boost. In the three jet event, the green
leading jet has a large transverse momentum compared to the two sub-leading jets, a boost along the
direction opposite to the leading jet will result in its momentum becoming lower with the two sub-leading
jets coming closer. Once the sub-leading jets’ angular separation is reduced to within the jet radius, the event
will become a two-jet event, as shown on the right. The situation becomes more severe for signatures with
invisible particles in the final state where there is no upper limit on the missing transverse momentum as
there are many possible boost directions, which will result in two separated objects becoming unresolvable in
the sample space of selected events since the momentum mismatch in the lab-frame will be regarded as
belonging to the invisible particles and therefore belong to the sample space of selected events.

From this example, one can see that the event likelihood is not Lorentz invariant because of the
non-invariance of the jet algorithm where the radius is kept fixed and the measures∆Rij transform
non-trivially under general Lorentz boosts or rotations. The isolation criteria on other types of reconstructed
objects and the jet algorithm are generally invariant under rotations, and Lorentz boosts along the z-axis,
with the likelihood maintaining invariance under such a sub-group. As a group which mixes the orbits under
longitudinal boosts and rotations along the z-axis, the Lorentz group is strictly larger and, hence, an
incorrect group.

4.2.2. Discrete symmetry
An event consists of sets of different reconstructed objects like leptons, light jets, bottom jets, photons, etc
which may be grouped into a single class or separated depending on the signal and background hypotheses.
Denoting each object type as a vector Eα with each α ∈ {1,2, ..,k} specifying the object type of k classes of
reconstructed objects with cardinality nα, an event is represented as a vector8 E=

⊕
αEα. Since a

Ĝ-invariant function approximator cannot efficiently approximate any G-invariant functions when G is a
proper subgroup, we need to determine the largest possible permutation symmetry of the likelihood and the

8 Strictly speaking, eachEα as well as the full representationE is also a direct sumover ri. However, when considering the object properties,
we will write all capital boldfaced vectors as a tuple of elements ri to avoid confusion between the two situations.
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likelihood ratios. Again, this is entirely determined by T(E,P): for each reconstructed object ri in E, T(E,P)
assigns it all possible parton flavours within a sum. This renders T(E,P) and hence pi(E|θ) invariant under
the exchange of elements within the same reconstructed object class that have no charge information (i.e.
jets, bottom-tagged jets, and photons but not electrons, muons, and tau jets). Therefore, even if two particles
are (considered) indistinguishable at reconstruction, they may be separate particles in the partonic final
states like gluons and quarks. On the other hand, distinguishable particles at reconstruction are always
non-identical at the parton level, and first-principle arguments do not guarantee permutation invariance of
the matrix-element squared under their exchange in the final state. Therefore, if an observed event E with n
objects contains more than one reconstructed object type, or if it contains a single object type with at least two
objects having different observed charges, the process likelihood pi(E|θ) is not Sn-invariant.

As a concrete example, let us consider a signature with two photons and three jets represented as
Eγ = (rγ1 ,r

γ
2 ) and EJ = (rJ1,r

J
2,r

J
3). The largest symmetry in the underlying matrix elements is when all three

jets originate from a gluon at the parton level. For this process, the matrix-element squared
|M(rγ1 ,r

γ
2 ,r

J
1,r

J
2,r

J
3)|2 is permutation invariant under the exchange of the two photons or within the

exchange of gluons amongst themselves but not in the interchange of a photon and a gluon. Therefore, the
MEM-likelihood is not S5 permutation invariant. Almost all point cloud-based architectures studied for
event-level analyses implicitly consider a full permutation invariant representation over the reconstructed
objects regardless of the final state’s composition. Even though this contains the smaller permutation
symmetries of the MEM-likelihood ratio, Sn permutation symmetry is a larger symmetry unless all
reconstructed objects belong to the same type and are, therefore, not a correct symmetry for any given final
state.

A straightforward solution which fixes the non-invariance of the target function under the exchange of
elements belonging to different blocks in any point cloud approach, including graph neural networks, is to
operate a sub-graph readout over the different classes Êα which segregates the reconstructed objects based on
distinguishability and then concatenate these sub-graph representations. For instance, in a mean readout
operation, the event representation

Ê=
k⊕

α=1

(
1

nα

nα∑
i=1

r̂αi

)
, (4.5)

fixes a particular ordering of the reconstructed object classes and is invariant only under permutations that
act separately on each block vector Êα’s constituents. So far, we have considered object reconstruction to
have perfect accuracy. One should relax such rigid division of the reconstructed objects to account for
experimental realities, including the possible absence of some classes in an event depending on the baseline
selection criterion. This can be done by assigning relative weights wα1←α2 ∈ (0,1] not necessarily symmetric,
which controls the relative contribution of class α2 to the readout operation of α1. These weights could be
learnt as an attention mechanism modified with the concatenation operation over the α1 axis. However, as
proof of principle, we do not consider such modifications and set the weights beforehand in the architecture
design for the numerical experiments. Even though the modified structure may not affect the performance of
highly expressive networks, we speculate it will affect the theoretical uncertainties when merging additional
radiations at higher perturbative accuracies. Since understanding such theoretical uncertainties is crucial in
deploying deep learning algorithms for phenomenological studies, we leave an in-depth analysis of such an
impact for independent future work.

4.3. Approximate symmetries under the narrow width approximation (NWA)
As we have seen above, the largest permutation symmetry in an event is the product group⊗k

α=1Snα
permuting elements within the same class of reconstructed objects. However, these symmetries may change
within the NWA where the decay dynamics of a narrow resonance is factorised from its production. For QCD
background processes producing at least four bottom jets, the event weight is S4 permutation invariant. In
contrast, for the SM di-Higgs production within the NWA, out of the three possible partitions into two pairs
of bottom quarks, the phase space volume where more than one of them lies near the mass peak is very small
and hence, for most events, two out of the three distinct parton level pairings will have a negligible
contribution to the overall event weight, giving us a reduced S2 × S2 approximate symmetry. On the other
hand, if instead of the SM di-Higgs production, there is a resonant heavy Higgs with a very small width, the
complete S4 symmetry is approximately restored as the dominant contribution will come from the larger
resonant mass peak of the heavier Higgs boson. The situation becomes increasingly complex when, in a given
set of processes for a hypothesis, some have intermediate resonances while others do not. Nevertheless, such
permutation symmetric arguments could effectively guide architecture design for cascade decays.
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One must, however, be cautious against the limitations of the narrow-width approximation [71]. The
important takeaway message is that smaller group invariant approximations are not as overly constrained as
larger ones: the smallest fibres of smaller group symmetries can become enlarged to those demanded by the
larger one during training, but those of larger group invariant functions can not become smaller. Therefore,
for the case of observationally indistinguishable particles, the restriction to a smaller permutation symmetry
does not induce any additional restrictions beyond the ones dictated by measurements. Enlarging the
symmetry in the case of distinguishable particles at reconstruction, like oppositely charged leptons, imposes
the restrictions of NWA on the feature extraction even when the input data may contain effects beyond the
NWA. An invariant graph readout over oppositely charged leptons, therefore, restricts the network to effects
within the NWA in the case of resonant decays. To combine different processes into hypotheses, we would
choose a permutation symmetry shared by all constituent processes.

4.4. Longitudinal boost equivariant message passing neural network
Let us now construct an equivariant architecture looking into longitudinal boost equivariant quantities for a
given final state E. While the same can be done within the formalism of [55, 56] or that of [62], we choose
the invariant theoretic formalism of [52, 53, 57, 58], where one builds invariants and equivariant functions
out of the basis of

(n
2

)
combinatorial dot products. Before going into detail, let us clarify the nature of the

Lorentz group and its appropriate little groups concerning the fibre structures discussed above to guide the
mathematical form of the architecture.

Since we are eventually interested in invariant quantities, the graph readout should only propagate the
invariant information. Within such an architecture, the feature extraction module by design has the smallest
fibres of an invariant function, and one may erroneously conclude that intermediate equivariant updates are
unimportant. However, the utility of function compositions (i.e. depth) in a neural network is to precisely
induce successive topological changes in the data as evidenced in various studies [72, 73]. Therefore, one
cannot a priori conclude that an invariant message passing update which induces larger minimal fibres of
invariance from the beginning will behave the same as an equivariant update even though there is an
invariant stage as one goes deeper in either network. Now, the equivariant updates of the longitudinal
components (pz,E), already take care of the O(2) symmetry along the z-axis since it is the little group of the
longitudinal boost action of the full Lorentz action, i.e. the longitudinally equivariant update of (pz,E) alone,
make the fibres consists of rotations along the z-axis from the start. If one has a covariant expression of the
complete four-vector update

p ′µ,i = pµ,i +
∑
j

pµ,jΦ(p1,p2, ....) ,

Φ being a longitudinal boost invariant function, the transverse components will respect the vector action of
the O(2) rotations around the z-axis, and hence be able to capture the equivariant information of the
rotation. This is because in the 4× 4 matrix representation, longitudinal boosts and rotations along z-axis
commute, i.e. we can break down the four-vector space as a direct sum of transverse and longitudinal
components pµ = (px,py)⊕ (pz,E). However, in our final experiments, we only updated the longitudinal
components and kept the O(2) invariant fibres from the beginning, as we did not find any additional
performance gain9. As we shall see in section 5.4, a scalar-only update performs just as well as the
scalar-vector update for both the resonant and non-resonant di-Higgs searches.

At the (l+ 1)th stage of message passing, l⩾ 0, let h̃
(l)

i , ẽ(l)ij be Lorentz scalar node-representation and

edge representations, respectively. Similarly, let h(l)i and e(l)ij be longitudinal boost invariant representations.

With x̃(0)i = (px,py) and x
(l)
i = (p(l)z ,E(l))i, the transverse and longitudinal components of the covariant

four-vector p(l)i = (px,py,p
(l)
z ,E(l))i we have

p(l)i = x̃(0)i ⊕ x(l)i . (4.6)

Since all invariants of the Lorentz group are longitudinal boost invariant, let h̄
(l)
i and ē(l)ij be longitudinal

boost invariant quantities that are not fully Lorentz invariant, so that we have h(l)i = h̄i ⊕ h̃i and
e(l)ij = ē(l)ij ⊕ ẽ(l)ij . The transverse component x̃(l)i being longitudinal boost invariant can be included in h̄

(l)
i , if

9 This is done using pi instead of xi in the vector update expression in eq 4.7 since the scalars utilised are invariant under z-axis rotations.
We did not find any difference in performance with such an update compared to the longitudinal-only update reported in section 5.4.
However, no hyperparameter scan was conducted for either choices.
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one chooses only to update the longitudinal components, but must be left out if we want an O(2) equivariant
update of the transverse components.

With the notations clarified and abbreviating p(l)i + p(l)j = p(l)ij , we can construct a longitudinal

equivariant message passing operation which updates h(l)i and x(l)i as

m(l+1)
ij =Φ(l+1)

e

(
h(l)i ,h

(l)
j ,e

(l)
ij , |p

(l)
ij |

2
(1,2),⟨p

(l)
i ,p

(l)
j ⟩(1,2), |p

(l)
ij |

2,⟨p(l)i ,p
(l)
j ⟩
)

,

x(l+1)
i = x(l)i +

∑
j∈N (i)

x(l)j Φ(l+1)
x

(
m(l+1)

ij

)
,

m(l+1)
i =

1

|N (i) |
∑

j∈N (i)

m(l+1)
ij ,

h(l+1)
i =Φ

(l+1)
h (h(l)i ,m

(l+1)
i ) .

(4.7)

Here,N (i) denotes the neighbourhood of node i, while (1, 2) in the subscripts denotes taking the relevant

operation over the x and y axis only. The functions Φ(l+1)
e , Φ(l+1)

x , and Φ
(l+1)
h are multi-layer perceptrons

(MLP), with Φ
(l+1)
x giving a one-dimensional weight after a sigmoid activation on the final layer. While we

have included a node-update function Φ
(l+1)
h , we have usedm(l+1)

i = h(l+1)
i in our experiments as there was

no relative difference in the performance.

5. Illustrative example: Di-Higgs to four bottom jets

We employ the challenging but important di-Higgs search in the four bottom decay channels to test the
methodology developed in the previous section. A recent work [41] utilising Symmetry Preserving Attention
Networks (SPA-NET) [38–40] achieved state-of-the-art performance in the resonant and non-resonant
production channel of the two Higgs boson, where in the former, there is an additional BSM heavy scalar
boson which then resonantly decays to the two SM Higgs. As discussed above, while the final signatures are
the same for both signals, they have inherently different approximate permutation symmetries. Moreover, we
use the same data made public [74] by the authors, with the only essential difference coming from the
network analysis.

5.1. Dataset description
We highlight the important elements of the utilised dataset. Parton level events were generated using
MadGraph5_aMC@NLO (v3.3.1) [75] at Ecm = 13 TeV, which were showered and hadronised with
Pythia8.306 [76]. All stable hadrons went through a detector simulation in Delphes (v3.5.0) [77]. In
the object reconstruction, FastJet (v3.3.4) [78] was used to cluster anti-kt [79] jets with radius R= 0.4
and transverse momentum pT ⩾ 20 GeV.For the resonant analysis, the b-tagging efficiencies were modified at
the 70% working point of the ATLAS MV2c10 b-tagger [80, 81]. In contrast, the non-resonant case was
modified to the 77% working point of ATLAS DL1r tagger [82]. Selected events contain at least four b-tagged
jets with pT > 40 GeV and |η|< 2.5. We refer interested readers to [41] for more data generation and
baseline selection details.

5.2. Preprocessing and data representation
In each event, we use the four hardest b-tagged jets to form the two Higgs candidates using the
∆R+minDhh cut-based pairing motivated by the ATLAS analysis [83] also utilised in the cut-based pairing
in the dense neural network input in [41] with a minor difference. For the∆R requirement, defining the
candidate with leading pT as h1 and the other as h2, one considers the cut

360 GeV

m4j
− 0.5<∆Rh1

bb <
653 GeV

m4j
+ 0.475

235 GeV

m4j
<∆Rh2

bb <
875 GeV

m4j
+ 0.35

(5.1)

ifm4b < 1250 GeV over the possible bottom jet pairings and

0<∆Rh1
bb < 1

0<∆Rh2
bb < 1

(5.2)
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ifm4b > 1250 GeV. For those events having more than one instance of the partitions passing the above
requirements, the one with the minimum Dhh defined as

Dhh =

∣∣∣∣mh1 −
120

110
mh2

∣∣∣∣(1+ 1202

1102

)−1/2
, (5.3)

is chosen to be the Higgs candidate. In contrast to the above-mentioned analyses, we do not drop the event if
no partitions pass the∆R criterion and use the minimum Dhh pair over all possible pairs in such events to
specify the possible Higgs candidates. These possible Higgs candidates segregate the four bottom jets into two
classes of reconstructed objects: H1 and H2. Any other jet in the reconstructed event, including additional
b-jets, is classified under a single jet class J.

After segregating the reconstructed jets into the three classes, we construct a complete graph with edges
connecting all distinct objects, i.e. without self-loops. The input node representations consist of the Lorentz

four-vector p(0)i , and the longitudinal scalar node representation10

h(0)i = (ϕi, logp
t
i, logm

t
i,bi, logmi) ,

consists of the jets’ azimuthal angle ϕi , transverse momentum pti , transverse massmt
i =

√
E2i − p2z , b-tagging

information bi ∈ {−1,1}, and massmi. We set bi = 1 for a b-tagged jet. Each edge has a longitudinal scalar
edge-representation

e(0)ij =
(
logptij, log

(
pti p

t
j

)
,∆ηij,∆ϕij,∆Rij

)
,

where ptij is the transverse momentum of pi + pj,∆ηij is the difference in pseudorapidity,∆ϕij the azimuthal

separation and∆Rij =
√
∆η2ij +∆ϕ2ij. For the O(1,3) network, we consider only the fully Lorentz invariant

node features11, h̃
(0)

i = (bi, logmi) and do not provide any additional edge feature since the message passing
operation automatically evaluates the relevant edge invariants. While one could argue that the Lorentz
invariant model has less information supplied, this is a mandatory requirement: larger group invariances
assume that information contained within the separate orbits of its proper sub-groups are the same and

therefore not relevant. Thus, e(0)ij being O(1,1) invariant but not O (1,3) invariant cannot be used as scalar

edge features in an O(1,3) invariant model12. The classes H1 and H2 undergo a mean global mean readout
either separately (for S2 × S2 group) or together (for S4 group), along with any additional jets which are
uniformly given a weight of wα←J = 0.001 for α ∈ {H1,H2,H1 ∪H2}.

5.3. Network analysis
Looking into graph-based architectures, a segregation of the reconstructed objects allows for a heterogeneous
graph message-passing operation, which preserves all symmetries of the likelihood ratio. On the other hand,
we want to learn the kinematic correlations between the different classes efficiently. This can be achieved in
the heterogeneous set-up with multiple copies of learnable functions for the node and edge type
combinatorics. Since this scales factorially, if we consider edge directions, we choose the simpler
homogeneous message-passing operation with the learnable functions shared between all nodes and edges.
All network analyses uses PYTORCH-GEOMETRIC (V2.5.0) [84] and PYTORCH (V2.0.0) [85]. The training was
done using two NVIDIA A100 GPUs using the inbuilt DistributedDataParallel module with equally
divided batches. We consider three base architectures with different message-passing heads:

1. O(1,1)-S : a scalar-only longitudinal boost invariant message passing head. This is essentially a

EdgeConv [86] network that takes h(0)i and e(0)ij as inputs.
2. O(1,1)-SV : a scalar-and-vector update longitudinal boost equivariant message passing head

3. O(1,3) : a Lorentz Group Equivariant Block [57] modified so that Φe takes |p(l)i + p(l)j |2 instead of their
choice of momentum difference squared inputs and no13 Φh.

10 A statistically negligible amount of events in the dataset had jets with zero mass and were excluded from all numerical analyses.
11 Strictly speaking, the b-tagging information bi being dependent on reconstruction is not Lorentz invariant. However, as is usually done
in most applications, we assume that it reflects the true flavour of the underlying primaeval parton.
12 In general, a proper subgroup has more invariant quantities as a result of the inverted set-inclusion relationship (see figure 3).
13 We did not find any noticeable performance difference with the addition ofΦh.
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Table 1. The best AUC score out of all experiments conducted for each base architecture on the full dataset of each signal scenario. The
mean and standard deviation is taken over ten training instances from random weight initialisation. For comparison, we show the
relevant figures for SPA-NET. The data consists of 1 M train and 100k test samples for the resonant case, while for the non-resonant case
it has 180k train, and 18k test samples.

Arch. Signal Disc. Sym. Num. Param. AUC

O(1,1)-S
Resonant S4 293k 0.9652±0.0002
Non-resonant S4 22k 0.9165±0.0005

O(1,1)-SV
Resonant S4 458k 0.9653±0.0001
Non-resonant S4 33k 0.9169±0.0009

O(1,3)
Resonant S2 × S2 743k 0.9550±0.0016
Non-resonant S2 × S2 743k 0.9000±0.0009

SPA-NET (Reference [41])
Resonant Sn 37.9 M 0.961 ± 0.001
Non-resonant Sn 541k 0.911 ± 0.001

Similar to [57], all inner products and norms go through the function R(x) = sign(x) log(|x|+ 1), so that
the gradient descent is stable for the non-compact metric signature. Each model has a wide variant of 256,
128, and 64 updated scalar-node dimensions and a narrow variant of 64, 32, and 16 updated scalar-node
representations. All MLPs have two hidden layers with the same dimensions as their respective scalar update
dimensions with ReLU activation in the hidden layers. The output layers have Linear activations except for

Φ
(l)
x , which has a Sigmoid activation function. The message functions Φ(l)

e in O(1,1)-SV and O(1,3) models
take additional edge scalar edge features evaluated at each stage l. The O(1,1)-S model consists of only the Φe

function in each stage, which takes the scalar representation h(l)i and h(l)j without any additional edge

features beyond the initial input operation. Additionally, Φ(l)
e in O(1,1)-S and O(1,1)-SV evaluates the

EdgeConv input h(l) ⊕h(l)j −h(l)i from the scalar node representations in each stage l of the message passing
head. All three base architectures have a mean scalar node readout. For all networks, the updated scalar

node-representations h(l)i , for l> 0 undergoes a global mean readout which is either S2 × S2 invariant or S4
invariant depending on the discrete symmetry of the network. Consequently, the final message passing
operation for O(1,1)-SV and O(1,3) does not have a vector update operation. The respective node
representations and the permutation symmetry determine the inputs to the classifier head. The classifier
MLP has two hidden layers of 64 nodes and ReLU activation for the wide message passing head, while the
ones with narrow message passing heads have 32 nodes instead. With a single logit output, the networks are
trained with torch.nn.functional.binary_cross_entropy_with_logits loss function.

Counting the wide and narrow variants of the message-passing heads and the global readout symmetry,
we have four network architectures for each base architecture. These four instances are trained on two
training sizes for the resonant and non-resonant cases: the full dataset and a reduced set containing 100k
samples for the resonant case and 10k for the non-resonant case. We use the test dataset as the validation set
during training and utilise the complete training dataset for the first case14. For the resonant analysis the full
dataset consists of 1 M training and 100k validation/testing samples, while for the non-resonant case it
consists of 180k training and 18k validation/testing samples. Networks in each experiment are trained ten
times after random weight initialisation with the Adam [87] optimiser with an initial learning rate of 0.001
and a batch size of 128 samples-per-batch. A decay-on-plateau condition decays the learning rate if the
validation loss has not improved for five epochs by a factor of 0.1 until it reaches 10−8. The training runs for
a maximum of one hundred epochs and is stopped if the validation loss has not decreased for twenty epochs.

5.4. Performance
For each training experiment, we evaluate the area under the curve (AUC) under the receiver operator
characteristics curve over each training instance from which we form various summary statistics of the
performance metrics. Here, we report the main findings while all results are tabulated in appendix. The best
AUC score for each base architecture over the two datasets, along with the details of the specific architecture,
is shown in table 1. The figures of SPA-NET from [41] are also shown for comparison. Lorentz invariant
classification fares poorly in either scenario compared to O(1,1)-S and O(1,1)-SV and can not match the

14 The difference of 50k and 9k training samples from [41] for the resonant and non-resonant cases, respectively, is not a major difference
for the quoted results as network performance generally scales logarithmically with training size. Concretely, the smallestO(1,1)-S network
with an S4 invariant global readout with 22k trainable parameters reached an AUC of 0.9632 on the test dataset with 600k training samples
on the resonant signal dataset.

14
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Figure 5.Median AUCs for the resonant signal for all architectures and training sizes. The shaded region shows the range, and the
error bars denote the lower and upper quartiles.

Figure 6.Median AUCs for the non-resonant signal for all architectures and training sizes. The shaded region shows the range,
and the error bars denote the lower and upper quartiles.

SPA-NET results, which do not assume any continuous group equivariance. The correct continuous group
symmetric design of O(1,1)-S and O(1,1)-SV outperforms SPA-NET with an order of magnitude reduction in
trainable parameters. This is all the more impressive considering that the numerical experiments for the
SPA-NET based analysis conducted a hyperparameter scan. Additionally, the low parameter-size networks
perform nominally better for the non-resonant scenario than the highly parametrised ones (see table 4
in appendix). This could be due to the lower statistics of the training data in the non-resonant dataset, where
a larger model size performs better with more training statistics. On the contrary, the incorrect invariance in
O(1,3) has the wider network performing better than the smaller network, even with the limited training
statistics of the non-resonant training dataset. This may be due to the assumption of an incorrect exact
invariance in the domain and the presence of noise in the data, which requires more model flexibility to
circumvent the exact symmetric design of the architecture. This intuition could also help explain the better
performance of the smaller S2 × S2 permutation symmetry for O(1,3) for either signal scenario, where the
larger S4 symmetry comparatively over-constrains the fibres of the target function.

The median of the AUC and its lower and upper quartiles as error bars for each base architecture and
training data size are plotted in figure 5 for the resonant scenario and figure 6 for the non-resonant one. For
both signal scenarios, the choice of the discrete symmetry group has nominal differences in the median
values for the O(1,1)-S and O(1,1)-SV architectures that have the correct continuous invariance. The smaller
networks have a larger range for both signal scenarios, suggesting a trade-off between training stability and
parameter complexity. Similarly, the low training statistics cases have larger ranges for the correct continuous
equivariance than the full dataset training. The situation is mostly reversed in the case of O(1,3) networks,
where the continuous symmetry is incorrect. As seen above, the smaller group S2 × S2 has better overall
median AUCs than the larger S4 symmetric readouts, barring the non-resonant large-network experiment in
the low training sample scenario. However, in this situation, both networks have very erratic behaviour over
the ten training instances, as can be seen by the large range and extreme position of the median values.
Interestingly, all networks with the correct continuous symmetry, regardless of the network size and discrete
symmetry group, outperform SPA-NET on the full dataset.

15



Mach. Learn.: Sci. Technol. 6 (2025) 015059 D Maître et al

Table 2. The mean AUC, R30, and R50 with only O(1,3) scalars and four vectors supplied to the O(1,1)-SV model taking the S2 × S2
permutation group invariant graph readout. Without the additional O(1,1)-scalar information, the values indicate the suitability of
O(1,1) invariance over O(1,3) invariance for signal-background classification tasks.

Signal Num. Param. AUC R30 R50

Resonant
485k 0.9651±0.0002 2047±128 368±12
36k 0.9640±0.0004 2150±177 359±11

Non-resonant
485k 0.9167±0.0007 281±37 32±4
36k 0.9162±0.0013 265±24 53±6

To verify that the increase in performance is not solely due the additional O(1,1) invariant information
provided as inputs but due to the architecture itself, we consider the O(1,1)-SV architecture with same inputs
as supplied to the O(1,3) model and S2 × S2 discrete group. Keeping the same hyper-parameters and training
environment, both variants of the network are trained on the complete resonant and non-resonant dataset
ten times from random initialisation. The AUC and inverse of the background acceptance at 30% and 50%
signal acceptance (R30 and R50 respectively) are shown in table 2. The values indicate that the better
performance is not due to the extra inputs supplied but due to suitability of O(1,1) invariance for the
particular task and the O(1,1) invariant information that the network explicitly constructs.

6. Conclusions

In this work, we have established a novel connection between the MEM and equivariant neural network
architecture design, demonstrating how MEM-inspired symmetries can guide the development of deep
learning models for high-energy physics analysis. By incorporating a suitable subgroup of the physical
Lorentz and permutation invariances directly into the architecture, we have shown that neural networks can
achieve improved performance in classification tasks while maintaining lower parameter complexity.

Our approach uses the inherent symmetry properties embedded in fixed-order differential cross-sections
and exploits the optimality of group-equivariant functions for binary classification. We demonstrated that
designing neural networks with MEM-inspired equivariant updates results in architectures that better
capture the kinematic correlations of events, especially for complex final states, such as di-Higgs production
decaying to four bottom jets. The longitudinal boost-equivariant message-passing network proposed in this
work provides a concrete example of how these principles can be applied to practical physics problems,
yielding state-of-the-art performance on benchmark datasets. Moreover, the analysis reveals that smaller
group invariance approximations can effectively generalise to larger symmetries during training, while larger
group invariance constraints might overlook subtle details in the data.

Our findings open several avenues for future research. First, extending these principles to
higher-dimensional final states and more complex processes, such as multi-jet events or processes with
additional intermediate resonances, could further elucidate the benefits of MEM-inspired equivariant
architectures. Additionally, integrating such symmetric architecture designs with other advanced deep
learning techniques, such as transformers or attention mechanisms, could offer even more powerful tools for
particle physics analysis. Furthermore, applying this framework to multi-class classification problems in
physics searches, where different classes exhibit distinct symmetry properties, could improve LHC’s
sensitivity to new physics.

Thus, this study demonstrates that integrating MEM with equivariant deep learning techniques can
significantly enhance neural networks’ capabilities in high-energy physics. By grounding the architecture
design in physical principles, we can improve model interpretability, reduce computational requirements,
and potentially uncover new physics beyond the Standard Model.
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Appendix. Additional results of network analysis

This appendix shows the results of all numerical experiments conducted on the resonant and non-resonant
datasets. Including the AUC, we show the R30 and R50 metrics defined as the inverse of the background
acceptance (false positive rate) at 30 and 50 per cent signal acceptances (true positive rate), respectively.
These are shown for the resonant and non-resonant signals in tables 3 and 4, respectively. One can confirm
that the correct continuous group symmetries, regardless of the network size and permutation symmetries,
outperform SPA-NET on the full dataset.

Table 3. The mean AUC, R30, and R50 for all experiments on the resonant dataset.

Arch. Train. Size Disc. Sym. Num. Param. AUC R30 R50

O(1,1)-S

All
S4

293k 0.9652±0.0002 2135±303 375±14
22k 0.9647±0.0005 2000±139 362±14

S2 × S2
322k 0.9652±0.0002 2037±269 363±18
26k 0.9646±0.0005 2000±227 361±7

100k
S4

293k 0.9572±0.0008 1274±129 257±22
22k 0.9570±0.0004 1357±115 266±12

S2 × S2
322k 0.9567±0.0009 1154±141 259±17
26k 0.9567±0.0009 1287±160 262±11

O(1,1)-SV

All
S4

458k 0.9653±0.0001 2137±260 370±12
33k 0.9648±0.0004 2116±321 356±15

S2 × S2
487k 0.9653±0.0002 2064±291 357±10
36k 0.9644±0.0003 2060±171 367±9

100k
S4

458k 0.9575±0.0003 1281±161 259±13
33k 0.9567±0.0005 1394±123 263±10

S2 × S2
487k 0.9570±0.0004 1149±99 262±10
36k 0.9567±0.0004 1343±103 259±13

O(1,3)

All
S4

715k 0.9512±0.0024 784±100 156±14
48k 0.9536±0.0016 886±82 169±8

S2 × S2
743k 0.9550±0.0016 865±67 180±7
52k 0.9542±0.0011 864±66 171±7

100k
S4

715k 0.9472±0.0006 643±30 141±5
48k 0.9453±0.0008 599±33 135±3

S2 × S2
743k 0.9470±0.0009 618±50 137±4
52k 0.9473±0.0008 630±27 141±4
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Table 4. The mean AUC, R30, and R50 for all experiments on the non-resonant dataset.

Arch. Train. Size Disc. Sym. Num. Param. AUC R30 R50

O(1,1)-S

All
S4

293k 0.9160±0.0009 236±20 49±2
22k 0.9165±0.0005 256±25 50±2

S2 × S2
322k 0.9155±0.0013 231±21 48±2
26k 0.9158±0.001 248±14 49±3

10k
S4

293k 0.8772±0.0023 82±6 22±1
22k 0.8754±0.0087 83±19 22±4

S2 × S2
322k 0.8764±0.0018 78±6 22±1
26k 0.8645±0.0148 67±16 18±4

O(1,1)-SV

All
S4

458k 0.9157±0.001 227±18 50±2
33k 0.9169±0.0009 272±29 50±1

S2 × S2
487k 0.9164±0.0004 238±28 50±2
36k 0.9155±0.0009 243±21 49±2

10k
S4

458k 0.8765±0.004 81±9 22±1
33k 0.8729±0.0076 81±20 20±3

S2 × S2
487k 0.8766±0.0018 81±6 22±1
36k 0.863±0.0167 65±18 18±5

O(1,3)

All
S4

715k 0.8981±0.0022 123±8 31±1
48k 0.8972±0.0014 125±4 30±1

S2 × S2
743k 0.9000±0.0009 130±7 30±1
52k 0.8995±0.0014 129±10 31±1

10k
S4

715k 0.8437±0.0662 82±47 19±9
48k 0.8737±0.0209 92±26 22±5

S2 × S2
743k 0.8219±0.0663 50±32 14±8
52k 0.8793±0.0075 93±15 23±3

ORCID iDs

Daniel Maître https://orcid.org/0000-0003-0414-9497
Vishal S Ngairangbam https://orcid.org/0000-0002-7143-715X
Michael Spannowsky https://orcid.org/0000-0002-8362-0576

References

[1] Kondo K 1988 Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models J.
Phys. Soc. Japan 57 4126

[2] Kondo K 1991 Dynamical likelihood method for reconstruction of events with missing momentum. 2: Mass spectra for 2 —> 2
processes J. Phys. Soc. Japan 60 836

[3] D0 collaboration 2015 Precision measurement of the top-quark mass in lepton+jets final states Phys. Rev. D 91 112003
[4] Alwall J, Freitas A and Mattelaer O 2011 The matrix element method and QCD radiation Phys. Rev. D 83 074010
[5] Soper D E and Spannowsky M 2011 Finding physics signals with shower deconstruction Phys. Rev. D 84 074002
[6] Andersen J R, Englert C and Spannowsky M 2013 Extracting precise Higgs couplings by using the matrix element method Phys.

Rev. D 87 015019
[7] Campbell J M, Giele W T and Williams C 2012 The matrix element method at next-to-leading order J. High Energy Phys.

JHEP11(2012)043
[8] Debnath D, Gainer J S and Matchev K T 2015 Discoveries far from the lamppost with matrix elements and ranking Phys. Lett. B

743 1
[9] Soper D E and Spannowsky M 2014 Finding physics signals with event deconstruction Phys. Rev. D 89 094005
[10] Martini T and Uwer P 2015 Extending the Matrix Element Method beyond the Born approximation: Calculating event weights at

next-to-leading order accuracy J. High Energy Phys. JHEP09(2015)083
[11] Ferreira de Lima D, Petrov P, Soper D and Spannowsky M 2017 Quark-Gluon tagging with shower deconstruction: unearthing

dark matter and Higgs couplings Phys. Rev. D 95 034001
[12] Prestel S and Spannowsky M 2019 HYTREES: combining matrix elements and parton shower for hypothesis testing Eur. Phys. J. C

79 546
[13] Martini T, Kraus M, Peitzsch S and Uwer P 2020 The matrix element method as a tool for precision and accuracy PoS

EPS-HEP2019 P 673
[14] Bury F and Delaere C 2021 Matrix element regression with deep neural networks-Breaking the CPU barrier J. High Energy Phys.

JHEP04(2021)020
[15] Butter A, Heimel T, Martini T, Peitzsch S and Plehn T 2023 Two invertible networks for the matrix element method SciPost Phys.

15 094
[16] Grossi M, Incudini M, Pellen M and Pelliccioli G 2023 Amplitude-assisted tagging of longitudinally polarised bosons using wide

neural networks Eur. Phys. J. C 83 759

18

https://orcid.org/0000-0003-0414-9497
https://orcid.org/0000-0003-0414-9497
https://orcid.org/0000-0002-7143-715X
https://orcid.org/0000-0002-7143-715X
https://orcid.org/0000-0002-8362-0576
https://orcid.org/0000-0002-8362-0576
https://doi.org/10.1143/JPSJ.57.4126
https://doi.org/10.1143/JPSJ.57.4126
https://doi.org/10.1143/JPSJ.60.836
https://doi.org/10.1143/JPSJ.60.836
https://doi.org/10.1103/PhysRevD.91.112003
https://doi.org/10.1103/PhysRevD.91.112003
https://doi.org/10.1103/PhysRevD.83.074010
https://doi.org/10.1103/PhysRevD.83.074010
https://doi.org/10.1103/PhysRevD.84.074002
https://doi.org/10.1103/PhysRevD.84.074002
https://doi.org/10.1103/PhysRevD.87.015019
https://doi.org/10.1103/PhysRevD.87.015019
https://doi.org/10.1007/JHEP11(2012)043
https://doi.org/10.1016/j.physletb.2015.02.020
https://doi.org/10.1016/j.physletb.2015.02.020
https://doi.org/10.1103/PhysRevD.89.094005
https://doi.org/10.1103/PhysRevD.89.094005
https://doi.org/10.1007/JHEP09(2015)083
https://doi.org/10.1103/PhysRevD.95.034001
https://doi.org/10.1103/PhysRevD.95.034001
https://doi.org/10.1140/epjc/s10052-019-7030-y
https://doi.org/10.1140/epjc/s10052-019-7030-y
https://doi.org/10.22323/1.364.0673
https://doi.org/10.1007/JHEP04(2021)020
https://doi.org/10.21468/SciPostPhys.15.3.094
https://doi.org/10.21468/SciPostPhys.15.3.094
https://doi.org/10.1140/epjc/s10052-023-11931-y
https://doi.org/10.1140/epjc/s10052-023-11931-y


Mach. Learn.: Sci. Technol. 6 (2025) 015059 D Maître et al

[17] Heimel T, Huetsch N, Winterhalder R, Plehn T and Butter A 2023 Precision-machine learning for the matrix element method
(arXiv:2310.07752)

[18] de Oliveira L, Kagan M, Mackey L, Nachman B and Schwartzman A 2016 Jet-images-deep learning edn J. High Energy Phys.
JHEP07(2016)069

[19] Cranmer K, Pavez J and Louppe G 2015 Approximating likelihood ratios with calibrated discriminative classifiers (arXiv:1506.
02169)

[20] Dery L M, Nachman B, Rubbo F and Schwartzman A 2017 Weakly supervised classification in high energy physics J. High Energy
Phys. JHEP05(2017)145

[21] Metodiev E M, Nachman B and Thaler J 2017 Classification without labels: learning from mixed samples in high energy physics J.
High Energy Phys. JHEP10(2017)174

[22] Larkoski A J, Moult I and Nachman B 2020 Jet substructure at the large hadron collider: a review of recent advances in theory and
machine learning Phys. Rept. 841 1

[23] Komiske P T, Metodiev E M and Thaler J 2019 Energy flow networks: deep sets for particle jets J. High Energy Phys.
JHEP01(2019)121

[24] Brehmer J, Cranmer K, Louppe G and Pavez J 2018 A guide to constraining effective field theories with machine learning Phys. Rev.
D 98 052004

[25] Guest D, Cranmer K and Whiteson D 2018 Deep learning and its application to LHC physics Ann. Rev. Nucl. Part. Sci. 68 161
[26] Qu H and Gouskos L 2020 ParticleNet: jet tagging via particle clouds Phys. Rev. D 101 056019
[27] Brehmer J, Kling F, Espejo I and Cranmer K 2020 MadMiner: machine learning-based inference for particle physics Comput. Softw.

Big Sci. 4 3
[28] Butter A et al 2019 The machine learning landscape of top taggers SciPost Phys. 7 014
[29] Karagiorgi G, Kasieczka G, Kravitz S, Nachman B and Shih D 2021 Machine learning in the search for new fundamental physics

(arXiv:2112.03769)
[30] Plehn T, Butter A, Dillon B, Heimel T, Krause C and Winterhalder R 2022 Modern machine learning for LHC physicists

(arXiv:2211.01421)
[31] Onyisi P, Shen D and Thaler J 2023 Comparing point cloud strategies for collider event classification Phys. Rev. D 108 012001
[32] Calafiura P, Rousseau D and Terao K 2022 Artificial Intelligence for High Energy Physics (World Scientific)
[33] Brehmer J 2021 Simulation-based inference in particle physics Nat. Rev. Phys. 3 305
[34] Maître D and Truong H 2021 A factorisation-aware Matrix element emulator J. High Energy Phys. JHEP11(2021)066
[35] DeZoort G, Battaglia P W, Biscarat C and Vlimant J-R 2023 Graph neural networks at the Large Hadron Collider Nat. Rev. Phys.

5 281
[36] Ngairangbam V S and Spannowsky M 2024 Interpretable deep learning models for the inference and classification of LHC data J.

High Energy Phys. JHEP05(2024)004
[37] Bhardwaj A, Englert C, Naskar W, Ngairangbam V S and Spannowsky M 2024 Equivariant, safe and sensitive-graph networks for

new physics J. High Energy Phys. JHEP07(2024)245
[38] Fenton M J, Shmakov A, Ho T-W, Hsu S-C, Whiteson D and Baldi P 2022 Permutationless many-jet event reconstruction with

symmetry preserving attention networks Phys. Rev. D 105 112008
[39] Shmakov A, Fenton M J, Ho T-W, Hsu S-C, Whiteson D and Baldi P 2022 SPANet: generalized permutationless set assignment for

particle physics using symmetry preserving attention SciPost Phys. 12 178
[40] Fenton M J et al 2024 Reconstruction of unstable heavy particles using deep symmetry-preserving attention networks Commun.

Phys. 7 139
[41] Chiang C-W, Hsieh F-Y, Hsu S-C and Low I 2024 Deep learning to improve the sensitivity of Di-Higgs searches in the 4b channel J.

High Energy Phys. JHEP09(2024)139
[42] Maître D and Santos-Mateos R 2023 Multi-variable integration with a neural network J. High Energy Phys. JHEP03(2023)221
[43] Rizvi S, Pettee M and Nachman B 2024 Learning likelihood ratios with neural network classifiers J. High Energy Phys.

JHEP02(2024)136
[44] Janßen T, Maître D, Schumann S, Siegert F and Truong H 2023 Unweighting multijet event generation using factorisation-aware

neural networks SciPost Phys. 15 107
[45] Bahl H, Bresó V, De Crescenzo G and Plehn T 2024 Advancing tools for simulation-based inference (arXiv:2410.07315)
[46] Bhardwaj A, Konar P and Ngairangbam V 2024 Foundations of automatic feature extraction at lhc–point clouds and graphs Eur.

Phys. J. Spec. Top. 233 2619–40
[47] Bronstein MM, Bruna J, LeCun Y, Szlam A and Vandergheynst P 2017 Geometric deep learning: going beyond Euclidean data IEEE

Signal Process. Mag. 34 18
[48] Cohen T and Welling M 2016 Group equivariant convolutional networks Proc. 33rd Int. Conf. on Machine Learning (Proc. Machine

Learning Research) vol 48, ed M F Balcan and K QWeinberger (PMLR) pp 2990–9
[49] Kondor R and Trivedi S 2018 On the generalization of equivariance and convolution in neural networks to the action of compact

groups Proc. 35th Int. Conf. on Machine Learning (Proc. Machine Learning Research) vol 80, ed J Dy and A Krause (PMLR)
pp 2747–55

[50] Cohen T, Weiler M, Kicanaoglu B and Welling M 2019 Gauge equivariant convolutional networks and the icosahedral CNN Proc.
36th Int. Conf. on Machine Learning (Proc. Machine Learning Research) vol 97, ed K Chaudhuri and R Salakhutdinov (PMLR)
pp 1321–30
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