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Abstract 9 

Whales generate vocalizations which may, deliberately or not, encode caller identity cues. In this 10 

study, we analyze calls produced by Bryde’s whales and recorded by ocean-bottom arrays of 11 

hydrophones deployed close to the Costa Rica Rift in the Panama basin. These repetitive calls, 12 

consisting of two main frequency components at ~20 and ~36 Hz, have been shown to follow five 13 

coherent spatio-temporal tracks. Here, we use a high-resolution time-frequency transform, the 4th-14 

order Fourier synchrosqueezing transform (FSST4), to extract time-frequency characteristics (ridges) 15 

from each call to appraise their suitability for identifying individuals from each other. Focusing on 16 

high-quality calls recorded less than 5 km from their source, we then cluster these ridges using a 17 

Support Vector Machine (SVM) model resulting in an average cross-validation error of ~11% and 18 

balanced accuracy of ~86 ±5%. Comparing these results with those obtained using the standard 19 

short-time Fourier transform, k-means clustering, and lower-quality signals, the FSST4 approach, 20 

coupled with SVM, substantially improves classification. Consequently, the Bryde’s whale calls 21 

potentially contain individual-specific information, implying that individuals can be studied using 22 

ocean-bottom data.23 
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I. INTRODUCTION 24 

As animals interact with each other, they often, intentionally or not, encode individual-25 

specific information in their communication (e.g., Janik, 2009). There can be different causes of 26 

dissimilarities in acoustic signatures between individuals, such as physical characteristics, 27 

environmental and cultural conditions, and temporal changes in these characteristics and conditions 28 

(Knight et al., 2024). This information can then be used by the animals for various purposes (e.g., 29 

territory definition, conspecifics and offspring identification) and for their study (e.g., population 30 

size, migrations, general behavior). For the study of cetaceans, identifying specific individuals is key 31 

to better understanding species’ ecology and evolution over time, their environment, and 32 

anthropogenic impacts (e.g., climate changes, water and acoustic pollution, shipping operations etc.). 33 

Various approaches to individual identification have been developed over the years, ranging from 34 

visual observations, animal tags, and acoustic tags. Alternatively, passive monitoring of animal 35 

underwater acoustic communications provides an opportunity to monitor cetaceans for longer time 36 

periods and over larger areas, and especially so if individuals can be identified. Large datasets of 37 

acoustical signatures including individual animal attribution are, however, challenging to obtain for 38 

different reasons, such as the labor-intensive nature of using animal tags, source attribution for 39 

passive monitoring studies, signal deterioration for long-range applications, and background 40 

acoustical conditions.  41 

Identifying individuals using acoustic recordings has been applied to a wide range of animals 42 

such as the South Polar skua (Charrier et al., 2001) and gorillas (Salmi et al., 2014) in addition to 43 

cetaceans, where the latter studies include Bottlenose dolphins (Janik & Sayigh, 2013) and Sperm 44 

whales (Gero et al., 2016). Sperm whale vocalizations are characterized by complex signals and 45 

temporal patterns, which define both vocal clans at the scale of an ocean basin and individuals (Gero 46 

et al., 2016; Oliveira et al., 2016; Bermant et al., 2019). In the case of baleen whales, fewer studies of 47 
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individual identification exist, and these are mainly of Humpback whales. However, identifying 48 

individuals is challenging for various reasons, ranging from signal source attribution (Zeh et al., 2024) 49 

to limited knowledge of their vocal repertoire (e.g., White & Todd, 2024), where characteristics are 50 

also species dependent. In the case of Humpback whales, individuals have been identified using 51 

song cepstral content together with a Support Vector Machine (SVM) model (Mazhar et al., 2007), 52 

the use of some signal units in songs and their combinations (Lamoni et al., 2023), and call temporal 53 

patterns and amplitudes (Zeh et al., 2024). In addition, McDonald et al. (2001) suggested that some 54 

specific frequency characteristics of A-B calls of Blue whales could be used to identify individuals, 55 

and that frequency features extracted from spectrograms could provide information on individual 56 

North Atlantic right whales (McCordic et al., 2016).  57 

In this study, we focus on whale calls recorded by Ocean-Bottom Seismographs (OBS) and a 58 

vertical array (VA) of hydrophones deployed in the Panama Basin in January and February, 2015 59 

(Hobbs & Peirce, 2015; Tary et al., 2024) (Figure 1). The calls under consideration are very similar, 60 

short in duration (~3-5 s-long) and consist of two main frequency components: a ~1 s-long 61 

component at ~36 Hz and a ~3 s-long component at ~20 Hz (Figure 2). These calls are identified as 62 

likely corresponding to Be1 calls attributed to Bryde’s whales by Oleson et al. (2003). In this region of 63 

the Eastern Tropical Pacific Ocean, Bryde’s whales are common despite their low abundance (Wade 64 

& Gerrodette, 1993; Palacios et al., 2012). The location of the calls generated by whales within the OBS 65 

network have lateral uncertainties less than a few kilometers (Tary et al., 2024). Some of these calls 66 

occur in spatio-temporal sequences and form trajectories across the network (Figure 1).  67 

Bryde’s whales generally travel as individuals or in pairs, and rarely in larger groups. With the 68 

call localization not having the resolution to distinguish between collocated whales (i.e., whales 69 

separated by distances on the order of 10s to 100s of meters), we assume that each of these 70 

trajectories corresponds to a different individual whale and determine if the associated calls can be 71 
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classified into different groups based on their time-frequency features. If so, this could indicate that 72 

individual information is encoded within these relatively simple calls. 73 

The calls under investigation are relatively short with simple characteristics, which contrasts 74 

with other calls used for individual identification such as those of Humpback whales (White & Todd, 75 

2024). For short and simple calls, general attributes would likely not provide sufficient information 76 

to distinguish between individuals, considering other causes of variability such as animal behaviors, 77 

wave propagation effects, and the impact of background noises (natural or anthropogenic). In order 78 

to capture several attributes at the same time (e.g., signal component durations, mean frequencies, 79 

frequency modulations), here we employ time-frequency representations to classify these calls. 80 

Whale calls are generally analyzed using their spectrogram (e.g., Mellinger & Clark, 2000). In order to 81 

improve the definition of time-frequency information extracted from each call, instead of using the 82 

full time-frequency representations, we extract time-frequency ridges from representations obtained 83 

using a variant of the short-time Fourier transform (STFT), called the high-order synchrosqueezing 84 

transform (FSSTN - Pham & Meignen, 2017).  85 

 86 
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FIG. 1. (Color online). a) Bathymetry map of the survey area showing the ocean-bottom 88 

seismograph (OBS - numbered circles) and vertical hydrophone array (VA - red circle) positions. b) 89 

Location of the survey area (blue rectangle) in the Panama basin, close to the Costa Rica Rift (CRR) 90 

spreading ridge boundary between the Cocos and Nazca tectonic plates. c) Whale call locations from 91 

Tary et al. (2024) (open circles), with color-coded circles corresponding to the high-quality whale calls 92 

included in the support vector machine classification (whale tracks 1: red, 2: yellow, 3: green, 4: 93 

white, and 5: orange). OBS locations are indicated by the black triangles. 94 

 95 

 96 

FIG. 2. (Color online). Whale call recorded by OBS 16 (see Figure 1 for location), contained 97 

within whale track 2 (Figure 1c), at 15:43:30 on January 29, 2015, and its time-frequency 98 

representations obtained using the short-time Fourier transform (STFT – Gaussian window of 99 
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~0.36 s at half-maximum with 97% overlap), the Fourier synchrosqueezing transform (FSST; 4th-100 

order – FSST4). The white arrows locate the fork in frequency discussed in Section III. 101 

 102 

Machine learning methods are generally applied to the detection and classification of whale 103 

calls (e.g., Halkias et al., 2013; Ibrahim et al., 2021; Rasmussen & Širović, 2021; Zhong et al., 2021; Kather et 104 

al., 2024), but seldom to caller identification (Rendell & Whitehead, 2003; Mahzar et al., 2007; Bermant et 105 

al., 2019) which is usually determined through call statistical analysis. Classifying observations in 106 

different categories using machine learning can be realized using unsupervised and supervised 107 

methods (e.g., Bergen et al., 2019). In our case, the whale locations can be transformed into labels to 108 

classify the signals using supervised methods. Of the different existing supervised methods, we 109 

employ support vector machines (SVM) for its demonstrated high performance in various 110 

applications (e.g., Cervantes et al., 2020), high generalization ability, and resistance to outliers and 111 

overfitting, even for high-dimensional data (Kecman, 2005). The SVM method, originally developed 112 

for binary classification, is a large margin classifier aimed at determining the optimal boundary 113 

between a subset of observations called support vectors (Cortes & Vapnik, 1995). To define non-114 

linear decision boundaries between classes, the original data is often mapped to a higher-dimensional 115 

space, called the feature space, using kernels. In the present case, we demonstrate that different 116 

Bryde’s whales can be distinguished using a SVM classifier using the time-frequency content of their 117 

brief calls recorded in ocean-bottom data.  118 

 119 

II. DATA AND METHODS 120 

Between January 26, 2015, and February 17, 2015, 25 OBSs and a VA of 12 hydrophones 121 

were deployed close to the Costa Rica Rift in the Panama basin (Hobbs & Peirce, 2015) (Figure 1). 122 
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This grid of instruments is approximately 20 x 20 km wide, with an instrument spacing of around 5 123 

km. Apart from five OBSs (4, 7, 14, 17, 24) and the VA which recorded during the complete 124 

deployment, the remaining OBSs recorded from January 26, 2015 to their recovery time on February 125 

1 or 2, 2015. The OBSs and VA were equipped with a High-Tech HTI-90-U hydrophone, while 126 

each OBS also had a 3-component short-period geophone package (Sercel L-28 4.5 Hz). Each time 127 

series was sampled at 500 Hz. 128 

This dataset was first analyzed to study the structure of the oceanic lithosphere around the 129 

Costa Rica Rift (e.g., Wilson et al., 2019; Robinson et al., 2020). It was then re-examined to study the 130 

microseismicity (Lowell et al., 2020; Tary et al., 2021) and Bryde’s whale calls (Tary et al., 2024) 131 

observed in this region. Focusing on the whale calls, two types of calls were observed; a repetitive 132 

call of ~4 s and a less common call consisting of brief signals of 0.5-1 s duration. The main 133 

characteristics of the most common, repetitive call, consist of two main signal components; a first 134 

wave packet of ~1 s duration centered at ~36 Hz, followed by a generally lower-amplitude, longer 135 

signal of ~3 s duration centered at ~20 Hz (Figure 2). These calls were then detected using two 136 

different methods; an energy method based on the short-term over long-term average ratio 137 

(STA/LTA), and template matching using the subspace detector applied to the calls detected by the 138 

first method. The arrival times of each call at the different instruments were then manually identified 139 

and all calls were located using a measurement-based 1D velocity model of the water column and 140 

the non-linear, probabilistic method implemented in NonLinLoc (Lomax et al., 2001). The calls were 141 

finally relocated relative to each other using the double-difference technique (Waldhauser & Ellsworth, 142 

2000) (Figure 1c).  143 

In order to examine the whale call characteristics and differences between individuals, we 144 

first focus on the whale calls that are well-recorded by the instruments (call-to-instrument distance < 145 

5 km, calls at stations with manually identified start times), and observed in a single time period 146 
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following a coherent spatial movement. Using these criteria, we identify five whale tracks observed 147 

at various times during the deployment (Figure 1c), whale track 1 with 27 calls recorded 71 times 148 

(January 29, 2015, some calls being recorded by more than one station), whale track 2 with 52 calls 149 

recorded 133 times (January 29, 2015), whale track 3 with 65 calls recorded 199 times (January 29, 150 

2015), whale track 4 with 30 calls recorded 89 times (February 2, 2015), and whale track 5 with 12 151 

calls recorded 38 times (January 26, 2015). All recorded calls for all whale tracks (i.e., 530 152 

waveforms) are then included in the classification. The whale calls are first extracted using a longer 153 

time window of 4.5 s, and aligned using the manually identified start times. They are then re-aligned 154 

using waveform cross-correlation, relative to the event which is the most correlated to all events on 155 

average. Reviewing the call waveforms, the calls were then re-cut to 3 s duration from the call start 156 

times to both include the two main signal components and reject later signal parts with lower signal-157 

to-noise ratio and/or other wave arrivals. The calls are finally down-sampled to a sampling rate of 158 

100 Hz and band-pass filtered between 10 and 45 Hz. 159 

 160 

A. Time frequency analysis: high-order synchrosqueezing transforms 161 

The synchrosqueezing transform (SST) is a time-frequency representation which improves 162 

the readability of some time-frequency representations, such as the Continuous Wavelet Transform 163 

(CWT), by reassigning non-zero time-frequency coefficients to previously determined instantaneous 164 

frequencies (IF) (e.g., Daubechies et al., 2011). The main purpose of this synchrosqueezing operation is 165 

to significantly reduce frequency smearing (e.g., Tary et al., 2014). This has been applied to different 166 

time-frequency transforms such as the STFT (hereafter referred to as the FSST - Thakur & Wu, 167 

2011) and the S-transform (Huang et al., 2015).  168 

The SST was originally developed for slowly-varying, well-separated frequency components 169 

(Daubechies et al., 2011). However, in the case of the STFT, higher-order SSTs were developed, 170 
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improving the time-frequency concentration and mode reconstruction of the FSST for strongly 171 

amplitude-modulated and frequency-modulated multi-component signals (Oberlin et al., 2015; Pham 172 

& Meignen, 2017). In this case, we first consider a signal 𝑠(𝑡) that can be decomposed into a series of 173 

𝐾 frequency components as 174 

𝑠(𝑡) = (𝐴*(𝑡)	𝑒-./01(2)
3

*45

+ 𝜀(𝑡),																																																														(1) 175 

where 𝐴*(𝑡) and 𝜃*(𝑡) are the time-varying instantaneous amplitude and phase of the 𝑘th 176 

component, respectively, and 𝜀(𝑡) is time-varying random noise. Instantaneous frequencies are then 177 

estimated using 178 

𝜔=(𝑡, 𝜂) =
1
2𝜋

𝜕 arg 𝑆F(𝑡, 𝜂)
𝜕𝑡 ,																																																																								(2) 179 

where arg 𝑆F(𝑡, 𝜂) is the argument of the complex valued STFT representation 𝑆F(𝑡, 𝜂) at time 𝑡 180 

and frequency 𝜂. In order to limit the reassignment of noise components, only non-zero frequency 181 

components above a pre-defined threshold 𝜁 are reassigned on H𝑡, 𝜔=(𝑡, 𝜂)I positions following  182 

𝑇F
K(𝑡, 𝜔) =

1
𝑔∗(0)

O 𝑆F(𝑡, 𝜂)𝛿H𝜔 − 𝜔=(𝑡, 𝜂)I	d𝜂
{T,|VW(2,T)|XK}

,																																						(3) 183 

where 𝛿 is the Dirac distribution and 𝑔∗ the complex conjugate of the window function 𝑔. Here, we 184 

focus on the main aspects of the method presented by Pham & Meignen (2017). Focusing on signal 185 

modes of 𝑠 having non-negligible phase derivatives 𝜃([)(𝑡) for 𝑛 ≥ 3, using a high-order Taylor 186 

expansion of eq. 1 in 𝜏 close to 𝑡 for a mode amplitude and phase gives 187 

𝑠(𝜏) = exp b(
1
𝑛! d

[log(𝐴)]([)(𝑡) + 𝑖2𝜋𝜃([)(𝑡)j (𝜏 − 𝑡)[
k

[4l

m	,																						(4) 188 
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where 𝑍([)(𝑡) is the 𝑛th derivative of 𝑍 at 𝑡, and 𝑁 is the order of the Taylor expansion of phase 189 

𝜃(𝜏). Modifying the STFT representation 𝑆F(𝑡, 𝜂) as well as the IF 𝜔=(𝑡, 𝜂) accordingly, this 190 

requires the estimation of a frequency modulation operator 𝑞r[[,k] and leads to the following 191 

definition of a Nth order IF at time t and frequency 𝜂 192 

𝜔sT
[k](𝑡, 𝜂) = t𝜔s(𝑡, 𝜂) +(𝑞rT

[[,k]
k

[4.

(𝑡, 𝜂) d−𝑥[,5(𝑡, 𝜂)j , if	𝑆F(𝑡, 𝜂) ≠ 0	and	𝜕T𝑥z,z{5(𝑡, 𝜂) ≠ 0, 2 ≤ 𝑗 ≤ 𝑁	

𝜔s(𝑡, 𝜂)	otherwise																																																																																																																																				

, (5) 193 

with 194 

⎩
⎪
⎨

⎪
⎧𝑥[,5(𝑡, 𝜂) =

𝑆F2
���(𝑡, 𝜂)
𝑆F(𝑡, 𝜂)

	for	1 ≤ 𝑛 ≤ 𝑁																																	

𝑥[,z(𝑡, 𝜂) =
𝜕T𝑥[,z{5(𝑡, 𝜂)
𝜕T𝑥z,z{5(𝑡, 𝜂)

	for	2 ≤ 𝑗 ≤ 𝑁	and	𝑗 ≤ 𝑛 ≤ 𝑁
.																					(6) 195 

The real part of 𝜔s[k](𝑡, 𝜂) is incorporated into eq. 3 for 𝑇F
K(𝑡, 𝜔) to obtain the Nth order 196 

FSST. Frequency ridges are then extracted from the resulting time-frequency representations by 197 

iteratively searching for energy maxima in the time-frequency plane (Meignen et al., 2017). The 198 

threshold parameter 𝜁 on the STFT representation is set to a small value of 0.001 in order to avoid 199 

removing any signal components. The window function used to calculate the STFT is a Gaussian 200 

function 𝑔 = 𝜎{5𝑒{
���

�� . The parameter 𝜎 controls the width of the Gaussian window and, hence, 201 

the time and frequency localizations of the STFT (e.g., Tary et al., 2014). Its value in our case is 0.11, 202 

corresponding to the minimum of the Rényi entropy of STFT representations of the different whale 203 

calls presented in this study (Stanković, 2001).  204 

To train the SVM model, two ridges are extracted from the 4th order SST representations 205 

(FSST4), corresponding to the two primary IF components of the whale calls (Figure 2). To 206 

transform each whale call into a one-dimensional vector, we only keep the IF of maximum 207 

amplitude for all time samples. As the numbers of training examples per whale is relatively limited, 208 
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we also reduce the number of training attributes by down-sampling this ridge frequency vector by 209 

three (i.e., one point every 0.03 s) resulting in 100 IF measures per whale call (Figure 3). Finally, the 210 

IF data is normalized to obtain values ranging between -1 and 1.  211 

 212 

 213 

FIG. 3. (Color online). (top) Whale call recorded by OBS 24 at 15:43:30 on January 29, 2015, 214 

and contained within whale track 2. (bottom) The time-frequency representation obtained using the 215 

FSST4, together with the extracted ridge values (red dots), of which one in three values were used 216 

for SVM classification. 217 

 218 

B. Classification support vector machine model 219 

The SVM method is a supervised learning method that can be used for multi-class 220 

classification and regression (Boser et al., 1992; Vapnik, 1995). In general terms, the SVM method 221 

seeks to separate training examples based on their features, or these features after (non-)linear 222 

mapping, in a number of classes using the largest margin between some of the training examples 223 
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located close to this margin. These margin-defining training examples are called support vectors and 224 

they define two optimal hyperplane positions separating the two classes. A multi-class classification 225 

using SVM is generally obtained using a series of two-class SVMs and combining their classification 226 

results. An SVM model can then be used to “predict” which class a new training example would 227 

belong to. 228 

Using a training dataset consisting of 𝑀 training examples {𝐱-, 𝑦-}, 𝑖 = 1,… ,𝑀, each 229 

training example 𝐱- is a vector of attributes and has a corresponding class label 𝑦- (𝑦- ∈ {−1,1}). 230 

For linearly-separable data, a vector 𝐰 and a scalar 𝑏 exist so that 231 

𝑦-(𝐰 ∙ 𝐱- + 𝑏) ≥ 1,								𝑖 = 1,… ,𝑀,																																					(7) 232 

is defining an optimal hyperplane defined by  233 

𝐰 ∙ 𝐱 + 𝑏 = 0,																																																																											(8) 234 

that separates the data points into two classes of 𝑦- equal to 1 and -1 with the widest margin 235 

(Cortes & Vapnik, 1995). The geometrical distance of the training examples to the hyperplane is 236 

given by 237 

Δ� =
𝑦-(𝐰 ∙ 𝐱- + 𝑏)

‖𝐰‖ ≥
1
‖𝐰‖,																																																								(9) 238 

where ‖𝐰‖ is the ℓ.-norm of 𝐰. Finding the optimum hyperplane corresponds to 239 

maximizing Δ- for training examples close to the hyperplane or, equivalently, minimizing ‖𝐰‖. The 240 

primal optimization problem can then be expressed as 241 

min
¡,𝐰,¢

1
2
‖𝐰‖.																																																					

s. t.		𝑦-(𝐰 ∙ 𝐱- + 𝑏) ≥ 1,			𝑖 = 1,… ,𝑀.
																																		(10) 242 

Using the Lagrangian of this optimization problem we obtain 243 

ℒ(𝐰, 𝑏, 𝛼) =
1
2
‖𝐰‖. −(𝛼-[𝑦-(𝐰 ∙ 𝐱- + 𝑏) − 1]

¥

-45

,																													(11) 244 
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where 𝛼- are the Lagrange multipliers corresponding to each training example (Cortes & 245 

Vapnik, 1995). Minimizing ℒ(𝐰, 𝑏, 𝛼) implies that 𝐰 = ∑ 𝛼-𝑦-𝐱--  and results in the following dual 246 

optimization problem 247 

max
§

𝑊(𝛼) =(𝛼-

¥

-45

−
1
2 ( 𝑦-𝑦z𝛼-𝛼z𝐱-©𝐱z

¥

-,z45
s. t.		𝛼- ≥ 0,			𝑖 = 1,… ,𝑀																									

															(𝛼-𝑦-

¥

-45

= 0.																																															

																														(12) 248 

Instead of directly using the training example attributes in 𝐱- , they can be transformed to a 249 

higher dimensional feature space using function 𝜙(𝐱-), modifying 𝐰 = ∑ 𝛼-𝑦-𝜙(𝐱-)-  and replacing 250 

the inner product 〈𝐱-, 𝐱z〉 in eq. 12 by 〈𝜙(𝐱-), 𝜙H𝐱zI〉 which corresponds to the definition of a 251 

kernel (Vapnik, 1995). Most common are the linear kernel, the radial basis function (RBF) or 252 

Gaussian kernel, and the polynomial kernel. In addition, for variables that are not linearly separable, 253 

or in the case of data errors, it might not be possible or desirable to obtain a hyperplane that takes 254 

into account all training examples equally.  255 

To overcome these limitations, the optimization problem can be modified to use soft 256 

margins controlled by a boundary parameter. In this case, using ℓ5 regularization, the dual 257 

optimization problem of eq. 12 becomes  258 

max
§

𝑊(𝛼) =(𝛼-

¥

-45

−
1
2 ( 𝑦-𝑦z𝛼-𝛼z𝐱-©𝐱z

¥

-,z45

							

s. t.		0 ≤ 𝛼- ≤ 𝐶,			𝑖 = 1, … ,𝑀																									

						(𝛼-𝑦-

¥

-45

= 0,																																															

																															(13) 259 

where the upper bound parameter 𝐶 defines the maximum penalty on training examples 260 

close to the margin boundaries. Besides SVM classifier optimization, we then have different 261 
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hyperparameters to define to improve the results, namely the choice of kernel function, the upper 262 

bound parameter 𝐶, the kernel scaling parameter 𝛾 for the Gaussian kernel, and the polynomial 263 

order for the polynomial kernel function.  264 

In this study, all data examples are first randomly shuffled and then partitioned into a 265 

training and a test set using a 90% - 10% split. To limit the influence of a particular split on the final 266 

results, we run 50 instances of this procedure using different randomizations and splits. The 267 

classification error is then estimated using the average balanced accuracy and its standard deviation, 268 

taking into account class number imbalance, and average cross-validation classification error 269 

(average of 4-fold, 5-fold and 10-fold cross-validation for the 50 runs). The statistical significance of 270 

all model classifications is assessed using permutation tests (Ojala & Garriga, 2010; Combrisson & 271 

Jerbi, 2015), which compare classifier performances using the original data to its performance using 272 

randomly permuted class labels (i.e., whale track numbers). The model is trained on the training 273 

dataset in the same way as the original model, and its performance measured by its balanced 274 

accuracy on the test set. This procedure is repeated 1000 times to determine the 99.9% percentile 275 

threshold of the balanced accuracy distribution, obtaining a significance level at p < 0.001.   276 

 277 

III. RESULTS 278 

The time-frequency content of whale calls is a key element for whale species identification 279 

and, hence, is useful for other purposes such as for their detection. The time-frequency 280 

representation generally in use is the STFT or the spectrogram. Figure 2 shows a Bryde’s whale call 281 

example with high signal-to-noise ratio, together with its STFT, FSST and FSST4 representations. 282 

As visible in this example, the well-defined, quasi-harmonic components of these whale calls are 283 

highly suited for analysis using the SST (e.g., Daubechies et al., 2011). The frequency reassignment 284 
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sharpens the two main time-frequency components of the signal and, thus, improves the readability 285 

of the representation. Comparing the FSST4 results with those of the other two transforms, the 286 

frequency resolution is higher and lower-amplitude frequency modulations are better delineated 287 

using this method. For example, in Figure 2 the fork in frequency around time 0.5 s is only clearly 288 

visible in the FSST4 representation. This likely arises from the ability of the FSST4 to better handle 289 

frequency modulated signals relative to the FSST (Pham & Meignen, 2017), which translates into a 290 

better estimation of the time-frequency ridges (Figure 3). The ridges compiled from all calls recorded 291 

by the OBSs located less than 5 km away from the whale location show that their time-frequency 292 

attributes exhibit only slight variations (Figure 4).  293 

 294 

 295 

FIG. 4. (Color online). Density plots showing the ridges extracted from FSST4 296 

representations for all high-quality whale calls contained in the five whale tracks (i.e., calls recorded 297 

within 5 km of the OBSs for periods showing coherent movements). These representations show 298 
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the two main signal components (i.e., at ~36 and ~20 Hz), and the similarities and potential 299 

differences of the signals between whale tracks.  300 

 301 

For the first signal component at ~36 Hz, more variability is present for the lower amplitude 302 

parts of the signal at the beginning and end of the component. For most of the calls, the higher 303 

amplitude branch at the beginning of the signal shows increasing frequency between ~36 Hz and 304 

~40 Hz. Less variability is observed for the second signal component. A number of time-frequency 305 

ridges are present at ~36 Hz for the second signal component, which likely correspond to calls with 306 

noisy components of lower amplitudes. Another source of signal variability is the timing of the end 307 

and beginning of the two signal parts between ~1 and ~1.5 s. Each of these variabilities may play a 308 

role in the ability of the classification to distinguish between different whale tracks.  309 

To better demonstrate the advantages of the FSST4 and SVM, we consider the following 310 

four cases:  311 

i) SVM classification using ridges extracted from FSST4 representations,  312 

ii) SVM classification using ridges extracted from STFT representations,  313 

iii) k-means classification using ridges extracted from FSST4 representations, and 314 

iv) SVM classification using ridges extracted from FSST4 representations for lower-quality calls 315 

recorded at distances between 5 and 10 km from the whale location, enabling evaluation of 316 

the influence of signal quality on the classification performance.  317 

The a priori clustering of high-dimensional data can be visualized using the t-Distributed 318 

Stochastic Neighbor Embedding (t-SNE) method (van der Maaten & Hinton, 2008), which performs a 319 

non-linear mapping of the high-dimensional data to lower dimensions. The t-SNE method is applied 320 

to the aforementioned cases using ℓ5 distance as similarity metric and a perplexity of 30 (Figure 5). 321 

The t-SNE visualization shows that the best cluster separation is obtained using the FSST4 together 322 
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with the high-quality signals (calls observed less than 5 km away from its source). No clear clusters 323 

are visible in the case of the lower-quality signals (calls observed 5 to 10 km away from its source). 324 

Interestingly, while calls from whale tracks 3 and 5 are well separated from the other calls, whale 325 

track 1 is slightly separated from whale tracks 2 and 4, and some mixing occurs for whale tracks 2 326 

and 4 and for whale tracks 3 and 5.   327 

The SVM classification models all use Gaussian kernels, the other hyperparameters being 328 

defined through 500 iterations of Bayesian optimization instead of grid search to reduce training 329 

time. Allowed values for the upper bound parameter 𝐶 and the kernel scaling parameter 𝛾 range 330 

between 0.0001 and 10000. In the case of the k-means algorithm, the number of clusters is set to 5 331 

and their initial centroids are set using the k-means++ algorithm (Arthur & Vassilvitskii, 2007). The 332 

final cluster centroids are then obtained by repeating five times the minimization of the sum of 333 

absolute distances between data points and centroids (ℓ5 distance) using different initializations, 334 

keeping the centroids corresponding to the minimum total distance. This procedure reduces the 335 

probability of obtaining centroids corresponding to a local minimum far from the global minimum.  336 

 337 

 338 

FIG. 5. (Color online). t-SNE visualization of the time-frequency ridge data, color-coded by 339 

whale track number (see Figure 1c), for ridges extracted using the FSST4 and high-quality signals 340 

(left), the STFT and high-quality signals (middle), and the FSST4 and lower-quality signals (right). 341 

FSST4 - HQ FSST4 - LQSTFT - HQ
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All three visualizations use a perplexity of 30 and ℓ5 distance, and are similar to those obtained using 342 

higher perplexity values. 343 

 344 

The different classification results are presented in Table I. For SVM using the FSST4 and 345 

high-quality calls observed at less than 5 km from the source (Gaussian kernel, upper bound 𝐶 of 346 

~38.1, kernel scale 𝛾 of ~25.0), we obtain a training error of ~0.4% for the model with the highest 347 

balanced accuracy on the test set (2 calls misclassified out of the 477 calls in the training set), a 348 

training average cross-validation error of ~11%, and a balanced accuracy of ~86 ±5% on the test 349 

set (chance ~25% at p < 0.001). The confusion chart corresponding to this model shows that whale 350 

tracks 1 and 3 are associated with the least misclassification errors (i.e., ~8% and ~5%, respectively), 351 

whereas whale track 5 is associated with the highest misclassification error (~35%) (Figure 6). Using 352 

the STFT instead of the FSST4 slightly increases both the number of incorrectly classified whale 353 

calls during training and the training average cross-validation error to 14% (Gaussian kernel, upper 354 

bound 𝐶 of ~51.5, kernel scale 𝛾 of ~10.2), and decreases the average balanced accuracy to ~78 355 

±8% on the test set (chance ~25% at p < 0.001). The lowest misclassification errors are obtained 356 

for whale tracks 2 and 3, the highest classification error being associated with whale track 5 (~46%). 357 

Using lower quality signals with SVM and the FSST4 (Gaussian kernel, upper bound 𝐶 of ~21.6, 358 

kernel scale 𝛾 of ~9.2), the classification error is ~1% with a higher average cross-validation error of 359 

~38% and an average balanced accuracy of ~53 ±5% on the test set (chance ~27% at p < 0.001). 360 

This might indicate that more overfitting is present in this model. In this case, the misclassification 361 

error is greater than 25% for all whale tracks, with whale track 4 having a misclassification error 362 

reaching ~78%. Lastly, using k-means and ridges extracted from high-quality calls using FSST4, we 363 

obtain a training error of ~39% and a balanced accuracy of ~64% (chance ~64% at p < 0.001). The 364 
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misclassification error is consistently over 30% for all whale tracks, with a maximum of ~49% for 365 

whale track 3 (Figure 6). 366 

 367 

Table I. Classification results for the different cases using either SVM or k-means, FSST4 or 368 

STFT, and high-quality (HQ, calls observed at less than 5 km from its source) or lower-quality (LQ, 369 

calls observed at distances between 5 and 10 km from its source) signals. For each combination, the 370 

training classification error for the model with the highest balanced accuracy on the test set is 371 

shown, together with the average training cross-validation error (C-V error, average of 4-fold, 5-fold 372 

and 10-fold cross-validation for the 50 runs) for SVM, and the balanced accuracy (Bacc, average and 373 

standard deviation over the 50 runs for SVM). 374 

 Training error 

(%) 

C-V error (%) Bacc (%) 

SVM + FSST4 + HQ signals 0.4 11 86 ±5 

SVM + STFT + HQ signals 2 14 78 ±8	

SVM + FSST4 + LQ signals 1 38 53 ±5 

k-means + FSST4 + HQ signals 39  64 

 375 

 376 
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 377 

FIG. 6. (Color online). Multiclass confusion matrices obtained from cross-validating the 378 

SVM models having the highest balanced accuracy on the test set and the k-means results for the 379 

cases listed in Table I. Rows and columns of each matrix contain the number of calls in their actual 380 

class and the number of calls that were classified in each class by the model, respectively. W1, W2, 381 

W3, W4 and W5 correspond to whale tracks 1, 2, 3, 4 and 5, respectively. 382 

 383 
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Focusing on the SVM model using FSST4 and high-quality calls, we calculate SHAP 384 

(SHapley Additive exPlanations) values (Lundberg & Lee, 2017) in order to determine which features 385 

(i.e., frequency values at different time indexes) have the most effect on the final model classification 386 

(Figure 7). Shapley values quantify the changes in model classification due to a feature, for a given 387 

training example. Repeating this process for all features considering all training examples, the mean 388 

absolute Shapley values can be used to calculate SHAP feature importance; larger values 389 

corresponding to features more significant for the model. SHAP values can, however, be biased due 390 

to feature correlation, feature interaction and the small size of the training dataset (Molnar, 2022). 391 

Overall, the most significant features for the model classification are similar for the different whale 392 

tracks (Figure 7). Greater SHAP values are obtained at times from the beginning to ~0.3 s, ~0.6-0.7 393 

s, ~0.8-0.9 s, ~1-1.3 s and most of the 2nd signal component from ~1.5 to ~2.6 s. The final part of 394 

the signal from ~2.6 to 3 s shows lower feature effects for all whale tracks.  395 

 396 

 397 

FIG. 7. (Color online). SHAP feature importance corresponding to mean absolute Shapley 398 

values for each class (i.e., whale tracks), computed using the training set for the SVM model, FSST4 399 

transform, and high-quality signals.  400 

 401 
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IV. DISCUSSION 402 

Time-frequency transforms are important techniques for the study of non-stationary features 403 

of signals emitted by whales. The most commonly used techniques to analyze whale calls are the 404 

STFT and the spectrogram. However, when the signals are constituted by narrow-band time-405 

frequency components, they are well-suited for analysis by the SST (e.g., Daubechies et al., 2011). The 406 

examples presented in Figures 2 and 3 show that the FSST and FSST4 provide time-frequency 407 

representations of whale calls with better resolution than the STFT, which then aids the precise 408 

extraction of their characteristics and their interpretation. These SSTs are reversible which means 409 

that signal modes can be extracted and reconstructed. When signals are strongly frequency-410 

modulated, which is often the case for whale sounds (e.g., for Humpback whales and Blue whales – 411 

White & Todd, 2024), high-order SST can be applied to the signal to better delineate the time-412 

frequency features and avoid some mode mixing (Pham & Meignen, 2017). In this study, the whale 413 

calls consist mostly of two frequency components. As such, in principle, more time-frequency 414 

information could be included in the clustering, for example, more ridges or the full time-frequency 415 

representation. This would result in more feature parameters to be included in the clustering and 416 

would also require more training examples. If the full time-frequency representation of any of the 417 

SSTs is used, the thresholding parameter 𝜁 would need to be better adjusted to remove noise 418 

components.  419 

Using the FSST4 instead of the STFT seems to slightly improve the SVM classification 420 

results. This relatively small improvement might be due to the simple characteristics of the Bryde’s 421 

whale calls. On the contrary, using high-quality calls instead of lower-quality calls, and SVM instead 422 

of k-means, appears to substantially improve the classification results. The large difference in 423 

average cross-validation error and average balanced accuracy, that depends on the signal quality, 424 

suggests that signals recorded close to the whales are needed for their identification. In the present 425 
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case, this requires the signal to be observed by passive acoustic monitoring a few kilometers away 426 

from the calling whale. These conditions might, however, change depending on the method of 427 

analysis and classification, the recording conditions (i.e., sea bottom vs. sea surface, noise levels), and 428 

the type of calls (e.g., using temporal or frequency information, different frequency ranges).  429 

For whales, caller identification is actually usually carried out using hydrophones deployed at 430 

the sea surface, close enough to the whales to enable them to be visually identified as well (e.g., Gero 431 

et al., 2016; Lamoni et al., 2023), and/or using dedicated instruments such as acoustic tags (McCordic et 432 

al., 2016; Oliveira et al., 2016; Zeh et al., 2024). Contrary to other studies performing classification 433 

using frequency measures extracted from spectra or time-frequency representations (e.g., McDonald et 434 

al., 2001; McCordic et al., 2016), the time-frequency ridges included in the classification of the present 435 

study implicitly incorporate various spectral measures such as mean frequencies of the different 436 

signal components, component durations, maximum and minimum frequencies, and frequency 437 

modulations over time. Still, other measures could be combined in the classification such as other 438 

types of calls, call temporal patterns (e.g., codas rhythms for Sperm whales), call amplitudes or data 439 

from other instruments (e.g., from geophones in the present case). Feature selection or grouping, 440 

through dimensionality reduction for instance, could also be applied to the time-frequency ridge 441 

values to decrease the classification model complexity and improve its interpretability. 442 

The large difference between the results of SVM compared with those of k-means could 443 

indicate that models using non-linear decision boundaries are more suitable to correctly classify 444 

high-dimensional representations of whale calls. A disadvantage of SVM relative to k-means is, 445 

however, the difficulty in setting the model hyperparameters (e.g., kernel function, upper bound 446 

parameter). The classification results are mainly limited by the number of training examples 447 

available, especially for whale tracks 1, 4 and 5. The training dataset could be expanded in different 448 

ways including collecting more calls, using data from other instruments, and using data generation 449 
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and augmentation strategies (e.g., Zhu et al., 2020). These strategies could correspond to using the 450 

same call several times with different noise types (real or synthetic), or making a synthetic call using 451 

a statistical description of the call properties (e.g., Socheleau et al., 2015). Another common limitation 452 

is the short observation window for each whale, due to both the temporary nature of most 453 

instrument deployments and the migratory behavior of whales, which often question the 454 

representativeness of the calls recorded.  455 

While the present methodology and SVM model reach an average cross-validation error of 456 

~11% and an average balanced accuracy of ~86 ±5%, more observations and further study would 457 

be needed to test its generalization to a larger population of Bryde’s whales. Whale calls from whale 458 

tracks 1, 2 and 3 were all recorded during the same period (January 29, 2015). These calls can be 459 

separated in three separate tracks based on their locations and amplitudes. Bryde’s whales generally 460 

travel as individuals or in pairs, and seldom in larger groups. In the classification presented in this 461 

study, we assume that each track is generated by a unique vocal whale. The unsupervised t-SNE 462 

clustering seems to show that the observed calls of the different whale tracks are different enough to 463 

define individual clusters. However, the t-SNE clustering also indicates that some calls that are 464 

known to correspond to different whales (i.e., whale tracks 1 and 2 both recorded at the same time 465 

on January, 29, 2015, but localized at different positions) can exhibit similar call features using our 466 

processing. Hence, having more than one vocal whale per whale track is still an open question, 467 

especially for whale track 3 which has the largest number of calls. The close proximity between 468 

whale tracks 1 and 2, shown by their joining tracks (Figure 1c) and the t-SNE visualization, could 469 

also be indicative of a closer connection between these two whales. 470 

Regarding whale tracks 4 and 5 recorded on different days (i.e., February 2 and January 26, 471 

2015, respectively), their changes in signal characteristics resulting in different clusters and 472 

classifications could be interpreted in various ways such as having five different vocal whales, or 473 
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returns of whales also recorded on other days which would involve temporal changes in signal 474 

characteristics due to spatiotemporal changes in underwater signal propagation. More generally, the 475 

observed call differences resulting in their successful classification could arise from morphological 476 

differences between whales, whales belonging to different populations, and spatiotemporal changes 477 

in environmental conditions impacting signal propagation (e.g., Knight et al., 2024). Finally, the SVM 478 

model using subtle differences in call time-frequency characteristics to distinguish between whales, 479 

does not necessarily imply that Bryde’s whales are using this information to identify themselves to 480 

conspecifics (e.g., Gero et al., 2016). 481 

 482 

V. CONCLUSION 483 

The identification of specific whale callers is important information for a range of 484 

applications such as studying whale movements and their change over time, and any external 485 

influence on their behavior. In the present study, we use highly similar low-frequency calls generated 486 

by five Bryde’s whales recorded by ocean-bottom hydrophones and compute time-frequency ridges 487 

using the 4th-order SST (FSST4) to extract the main frequency content of each call (i.e., time-488 

frequency ridges). An SVM model is then trained using these time-frequency ridges to classify the 489 

whale calls. Using calls recorded less than 5 km away from the instruments, the average cross-490 

validation error associated with the SVM model (Gaussian kernel) is ~11% with an average balanced 491 

accuracy of ~86 ±5%. Comparing these results with those using either STFT, lower-quality signals, 492 

or k-means clustering, shows that both the FSST4 and the SVM method improve the final results, 493 

with an increased error when using lower-quality signals and k-means clustering.  494 

These classification results suggest that the short calls produced by Bryde’s whales, and the 495 

time-frequency characteristics embedded in the extracted ridges, contain caller identity cues. They 496 
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also seem to indicate that caller identity can be determined using ocean-bottom data, albeit using 497 

recordings less than a few kilometers away from the source. A larger number of training examples, 498 

coming from a larger number of well-identified whales and observed over a longer time period, 499 

would be needed to confirm these classification results. However, the methodology presented in this 500 

study does, nevertheless, show promising results and could be applied to other call types, improving 501 

the general understanding of whale vocalizations and ecology. 502 
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