
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 17 (2021), 107, 34 pages

Clean Single-Valued Polylogarithms

Steven CHARLTON a, Claude DUHR b and Herbert GANGL c

a) Fachbereich Mathematik (AZ), Universität Hamburg, Bundesstraße 55,
20146 Hamburg, Germany

E-mail: steven.charlton@uni-hamburg.de

b) Bethe Center for Theoretical Physics, Universität Bonn, 53115 Bonn, Germany

E-mail: cduhr@uni-bonn.de

c) Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

E-mail: herbert.gangl@durham.ac.uk

Received April 13, 2021, in final form November 28, 2021; Published online December 12, 2021

https://doi.org/10.3842/SIGMA.2021.107

Abstract. We define a variant of real-analytic polylogarithms that are single-valued and
that satisfy “clean” functional relations that do not involve any products of lower weight
functions. We discuss the basic properties of these functions and, for depths one and two,
we present some explicit formulas and results. We also give explicit formulas for the single-
valued and clean single-valued version attached to the Nielsen polylogarithms Sn,2(x), and we
show how the clean single-valued functions give new evaluations of multiple polylogarithms
at certain algebraic points.

Key words: multiple polylogarithms; Nielsen polylogarithms; Hopf algebras; Dynkin opera-
tor; functional equations; single-valued projection; special values

2020 Mathematics Subject Classification: 11G55; 11M32; 33E20; 39B32

1 Introduction

1.1 Background and first definitions

The logarithm function and generalisations of it have originally been studied, having first been
mentioned (in 1696) in correspondence between (Johann) Bernoulli and Leibniz [45, p. 351],
by many mathematicians, notably by Abel [1] and Kummer [41, 42, 43] with regard to their
functional properties, and by Lobachevsky [47] and later by Schläfli in connection with volume
functions in hyperbolic space (for a far more comprehensive list of the early bibliography see
Lewin’s book [46, pp. 349–353]). Over the last 40–50 years, seminal works on the dilogarithm,
pioneered by Bloch [5] in algebraic geometry and algebraic K-theory and by ’t Hooft and Velt-
man [57] in connection with quantum field theory, have led to a renaissance of interest in those
functions and have triggered many new and often unexpected and surprisingly parallel develop-
ments, resulting in “cross-fertilisation” from which both mathematics (keyword “mixed motives
(over a field)”) and physics (keyword “Feynman integrals”) communities have benefited.

The logarithm is a complex multi-valued function on C \ {0}, and it can be defined on its
principal branch C \ (−∞, 0] by the integral

log x :=

∫ x

1

dt

t
, x ∈ C \ (−∞, 0].

This paper is a contribution to the Special Issue on Algebraic Structures in Perturbative Quan-
tum Field Theory in honor of Dirk Kreimer for his 60th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Kreimer.html

mailto:steven.charlton@uni-hamburg.de
mailto:cduhr@uni-bonn.de
mailto:herbert.gangl@durham.ac.uk
https://doi.org/10.3842/SIGMA.2021.107
https://www.emis.de/journals/SIGMA/Kreimer.html

2 S. Charlton, C. Duhr and H. Gangl

The most prominent generalisations of the logarithm function are the so-called classical polylo-
garithms, defined for integers n > 0 by

Lin(x) :=
∞∑
k=1

xk

kn
.

The integer n is called the weight. The series converges for |x| < 1. It can be analytically
continued to a multi-valued function on the whole complex plane via the integral representation

Lin(x) =

∫ x

0
Lin−1(t)

dt

t
, n > 1,

and the recursion starts with Li1(x) = − log(1 − x). Classical polylogarithms are not rich
enough to cover all the generalisations of the logarithm that appear in mathematics and physics.
A broader class of generalisations of the logarithm function are multiple polylogarithms (MPL’s)
(also known as hyperlogarithms), which were first introduced in the works of Poincaré, Kummer
and Lappo-Danilevsky [41, 42, 43, 44] and have recently reappeared in both mathematics [16,
34, 33] and physics [3, 29, 54]. Multiple polylogarithms can be defined by the iterated integral

I(x0;x1, . . . , xn;xn+1) :=

∫
x0<t1<···<tn<xn+1

dt1
t1 − x1

∧ · · · ∧ dtn
tn − xn

, (1.1)

where xi ∈ C. The integer n is again called the weight, and the number of non-zero elements of
(x1, . . . , xn) is called the depth. The notation

Im1,...,mk
(x1, . . . , xk) := I

(
0;x1, {0}m1−1, . . . , xk, {0}mk−1; 1

)
is often employed to write a depth k integral, where {a}n denotes a repeated n times. The
integral implicitly depends on the choice of a path going from x0 to xn+1, where the integration
variables xi are considered to be ordered on the path. Depending on the values of the xi,
the integral in (1.1) may diverge and requires regularisation. This can be done by introducing
suitable tangential base points, cf. [19, Chapter 15]. The class of functions defined by (1.1)
contains the logarithm and classical polylogarithm functions as special cases, e.g., for generic
values of x0, x1, x2,

I(x0;x1;x2) = log

(
x1 − x2
x1 − x0

)
,

I
(
0; 1, {0}n;x0

)
= −Lin+1(x0).

The definition of MPL’s in (1.1) implies that they satisfy the following basic relations common
to all iterated integrals (cf., e.g., [16]):

1. Path reversal (here we assume the same path for both, except that it is being traversed in
opposite directions):

I(xn+1;xn, . . . , x1;x0) = (−1)nI(x0;x1, . . . , xn;xn+1).

2. Path composition (for any x ∈ C and any path from x0 to xn+1 avoiding any xi (1 ≤ i ≤ n)):

I(x0;x1, . . . , xn;xn+1) =
n∑

p=0

I(x0;x1, . . . , xp;x)I(x;xp+1, . . . , xn;xn+1).

3. Shuffle product (in this equality we assume the same path for each iterated integral):

I(x0;x1, . . . , xm;x)I(x0;xm+1, . . . , xm+n;x) =
∑

σ∈Σ(m,n)

I(x0;xσ(1), . . . , xσ(m+n);x),

where Σ(m,n) =
{
σ ∈ Sm+n : σ

−1(1) < · · ·< σ−1(m) and σ−1(m+1) < · · ·< σ−1(m+n)
}

is the set of shuffles of m and n elements, and Sm+n is the group of permutations on m+n
elements.

Clean Single-Valued Polylogarithms 3

1.2 Identities among polylogarithms

The identities at the end of the previous section are special, in the sense that they relate many
different MPL’s evaluated at the same arguments, albeit in a different order. More interesting are
identities involving a single type of function evaluated at different arguments. The most famous
identity involving dilogarithms is arguably the five-term relation due to Abel (cf., e.g., [46,
Chapter 1.5]), a version of which where the order of the five arguments for Li2(z) defines a 5-
cycle (1− zi = zi+2zi−2, indices mod 5) being given by

Li2(x) + Li2(y) + Li2

(
1− x

1− xy

)
+ Li2(1− xy) + Li2

(
1− y

1− xy

)
= ζ2 − log x log(1− x)− log y log(1− y) + log

(
1− x

1− xy

)
log

(
1− y

1− xy

)
, (1.2)

with ζn := Lin(1). Since the logarithm and dilogarithm are multi-valued functions, it is impor-
tant to specify the branches of the functions and the ranges for x and y for which this identity
holds. It is straightforward to check that on the principal branches of the logarithm (branch cut
from ∞ to 0) and dilogarithm (branch cut from 1 to ∞) the identity in (1.2) holds whenever
|x| + |y| < 1. It has often been claimed in the literature, without explicit proof, as a kind of
“folklore” statement, that every functional equation for Li2 with arguments being rational func-
tions in finitely many variables is a linear combination of this five-term relation. Wojtkowiak
proved it for the 1-variable case [61], and for a recent proof of the general statement we refer to
a recent preprint by de Jeu [17].

Seminal non-trivial identities involving logarithms and classical polylogarithms of higher
weight have been found, e.g., by Kummer [41, 42, 43] (in two variables, up to weight 5), Gon-
charov (in three variables, weight 3) [32], Wojtkowiak (in many variables, weight 3) [60] and by
Gangl (in two variables, up to weight 7 [24, 26]; in four variables, weight 4 [27]), as well as many
others, and particularly interesting recent findings are given by Golden, Goncharov, Spradlin,
Vergu and Volovich [31], Charlton [13], Radchenko [52] and Goncharov–Rudenko [37]. No such
results beyond weight 7 are currently known. There are also families of (sometimes called “tri-
vial”) identities in one variable known for all weights relating a specific classical polylogarithm at
different arguments, and possibly products of logarithms, in particular the distribution relations,
valid as power series in the unit disk

Lin(x
m) = mn−1

m−1∑
k=0

Lin
(
xξkm

)
, |x| < 1, ξmm = 1, (1.3)

and the inversion relations,

Lin

(
1

x

)
= (−1)n+1 Lin(x)−

(−2πi)n

n!
Bn

(
1

2
+

log(−x)
2πi

)
, (1.4)

where x ∈ C \ [0,∞) and Bn(α) are the Bernoulli polynomials, defined by the generating series

teαt

et − 1
=

∞∑
n=0

Bn(α)
tn

n!
. (1.5)

Much less is known about identities satisfied by MPL’s of depth greater than one, although
the basic shuffle and stuffle relations were established by Goncharov in [34], along with a gene-
ralisation of the distribution relations to any fixed MPL of depth greater than one, and an
“inversion-reversion” relation [34, Section 2.6, formulas (33) and (34)] valid on the unit m-torus.
The study of MPL identities of depth greater than one has recently obtained new impetus

4 S. Charlton, C. Duhr and H. Gangl

from physics, where MPL’s and their identities play an important role in the computation of
scattering amplitudes in quantum field theory, cf., e.g., [2, 3, 4, 20, 21, 23, 28, 29, 30, 49, 54, 58].
Goncharov [35] introduced the arguably most important invariant for multiple polylogarithms,
its “symbol”. Based on techniques to compute it, developed originally for quantum field theory
calculations [56], new functional identities for polylogarithms of different depth have been found,
for example: a 40-term trilogarithm identity whose arguments arise from a single cluster algebra
is obtained in [31]; a new family of functional equations for Li4 are given in [25], based on a depth
reduction in weight 4; various relations between weight 4 MPL’s of any depths are given in [27],
including a reduction of a certain 5-term combination of I3,1 to depth 1, from which a highly
symmetric 4-variable Li4 functional equation is obtained. Various relations between weight 5
MPL’s of any depths are given in [13], including a reduction of I3,2 to I4,1 and Li5 terms, and an
explicit inversion result relating Ia,b(x, y) and Ia,b

(
x−1, y−1

)
for any depth 2 MPL. Concurrently

an inversion result valid for an MPL of arbitrary depth was given in [49], a clean single-valued
version of which (up to depth 3) we provide in Section 5. Further reductions in weight 4
and 5, focusing on the so-called Grassmannian polylogarithm, are investigated in [14], whereas
identities and reductions involving the so-called Nielsen polylogarithms in weights 5 through 8
are investigated in [15] (also using the clean single-valued version established in Section 6 below).

1.3 Clean single-valued polylogarithms and their identities

As already mentioned, the multi-valuedness of MPL’s implies that identities among them are
to be understood as holding on appropriate branches. In order to circumvent this cumbersome
issue, it is useful to replace any MPL’s by a version of it that, while only real-analytic, has the
virtue that it is single-valued. For example, the original single-valued version of the dilogarithm
was given by Bloch and by Wigner1 [5] and generalised to polylogarithms (implicitly) by Ra-
makrishnan [53] and (explicitly) by Wojtkowiak [59] and Zagier [62]. The latter author proposed
in fact several versions, the most standard one being defined as

Pn(x) := Rn

{
n−1∑
k=0

2kBk

k!
logk |x|Lin−k(x)

}
, (1.6)

where

Rn =

{
Re, if n odd,

Im, if n even,
(1.7)

and Re and Im denote the real and imaginary parts respectively. Moreover, Bk := Bk(0),
are the Bernoulli numbers, defined as the constant terms of the Bernoulli polynomials defined
above. A rather different single-valued version was given by Brown [7, 8]. We will relate the
two explicitly in Section 3.2. The functions in equation (1.6) satisfy a “product-free” variant of
the five-term relation in (1.2)

P2(x) + P2(y) + P2

(
1− x

1− xy

)
+ P2(1− xy) + P2

(
1− y

1− xy

)
= 0, (1.8)

and of the distribution and inversion relations in (1.3) and (1.4),

Pn

(
xm
)
= mn−1

m−1∑
k=0

Pn

(
xξkm

)
,

Pn

(
x−1

)
= (−1)n+1Pn(x), n > 1.

(1.9)

1This is the mathematician David Wigner, as opposed to the arguably better known physicist Eugene (inci-
dentally his father).

Clean Single-Valued Polylogarithms 5

Since the functions Pn(z) are single-valued, the identities in (1.9) are valid for all complex
numbers x ̸= 0, while the five-term relation in (1.8) holds for (x, y) ∈ C2 \ L, where L is the
union of curves defined by x = 0, x = 1, y = 0, y = 1 and xy = 1.

The identities in (1.8) and (1.9) have an additional feature compared to their analogues
in (1.2), (1.3) and (1.4): they do not involve product terms of (poly-)logarithms of lower weights!
We refer to an identity with this property, in line with standard terminology, e.g., [62, Section 6],
as a clean identity. More generally, roughly stated for every identity involving classical poly-
logarithms of weight ≤ n we can obtain a clean identity by replacing Lin by Pn and dropping
all product terms. For the precise statement we refer to [62, Propositions 2 and 3]. For MPL’s
of higher depths, however, in general no real-analytic analogues are known that satisfy clean
versions of identities between the iterated integrals in (1.1). In the classical case, the product-
freeness of relations permits one to mimic the functional behaviour via rather simple general
(linear and multi-linear) algebraic tools, more precisely of quotients of free abelian groups like
the so-called higher Bloch groups. For the latter groups the relations arise from taking only
the non-product terms in a functional equation for Lin, i.e., non-linear contributions are simply
being ignored. In a similar way, one might hope that the clean functions give rise to “simpler”
higher depth analogues of said Bloch groups, without the need to consider products of lower
weight terms. One of the main results of this paper is to define such functions for all weights
and depths. In the remainder of this section we summarise our main result.

It is possible to lift the iterated integrals I(x0;x1, . . . , xn;xn+1), for xi ∈ Q, to motivic
versions Im(x0;x1, . . . , xn;xn+1), which live in a ring of motivic periods Pm

MPL (see, e.g., [9, 10,
12, 35]). The ring Pm

MPL is graded by the weight of the MPL’s, and we denote the subspace
of weight n by Pm

MPL,n, and Pm
MPL,>0 :=

⊕
n>0 Pm

MPL,n. The iterated integrals in (1.1) can be
retrieved from their motivic avatars through the period homomorphism per : Pm

MPL → C, which
is conjectured to be injective [38]. Therefore, it is expected that all relations among MPL’s arise
from relations among their motivic avatars. Within the motivic setting, we prove the following
result in Section 4:

Theorem 1.1. For every Im(x0;x1, . . . , xn;xn+1) there is a real-analytic single-valued function
Icsv(x0;x1, . . . , xn;xn+1) such that for every linear combination of motivic MPL’s that can be
reduced to products,

K∑
k=1

ckI
m(xk,0;xk,1, . . . , xk,n;xk,n+1) ∈ Pm

MPL,>0 · Pm
MPL,>0, ck ∈ Q,

there is a clean identity where products are mapped to zero in going from Im to Icsv, i.e.,

K∑
k=1

ckI
csv(xk,0;xk,1, . . . , xk,n;xk,n+1) = 0.

The paper is structured as follows: In Section 2 we review some basic facts about graded
and connected Hopf algebras and the Dynkin operator. In Section 3 we review the Hopf algebra
on (de Rham) multiple polylogarithms, and we introduce the single-valued projection, which
assigns to every multiple polylogarithm a real-analytic single-valued analogue. In Section 4
we define the clean version of single-valued multiple polylogarithms, and we discuss their basic
properties. In particular, we show that they satisfy Theorem 1.1. In Section 5 we present some
examples of clean single-valued MPL’s in depths 1 and 2, and in Section 6 we explicitly compute
the single-valued and clean single-valued versions of the Nielsen polylogarithm Sn,2. Finally in
Section 7 we derive some explicit numerical evaluations of depth 2 MPL’s using this machinery
and some known functional equations.

6 S. Charlton, C. Duhr and H. Gangl

2 Graded connected Hopf algebras and the Dynkin operator

This section reviews material from [40, 50, 51, 55]. Let H be a graded connected commutative
Hopf algebra over Q. The counit is simply the augmentation map ϵ : H → H0 ≃ Q, and we have
a splitting

H = H0 ⊕H>0, with H>0 := ker ϵ.

The multiplication in H is denoted by m and the coproduct by ∆. For x ∈ H>0 it takes the
form

∆(x) = 1⊗ x+ x⊗ 1 + ∆′(x), ∆′(x) ∈ H>0 ⊗H>0.

The antipode for x ∈ H>0 is uniquely determined in a recursive way by

0 = m(id⊗S)∆(x) = S(x) + x+m(id⊗S)∆′(x).

2.1 The convolution product

Let R be a unital Q-algebra, with multiplication mR and unit uR : Q → R. Let φ,ψ : H → R
be Q-linear maps. Their convolution is the Q-linear map

φ ⋆ ψ := mR(φ⊗ ψ)∆.

The co-associativity of ∆ implies associativity of the convolution product. The set of all Q-linear
maps from H to R equipped with the convolution product forms a unital Q-algebra, whose unit
is uRϵ : H → R. Moreover, if φ : H → R is an algebra morphism, then it is invertible for the
convolution product, and the inverse is simply composition with the antipode, φ⋆−1 := φS.
In particular, the antipode is the inverse of the identity for the convolution product, id⋆−1 = S.

Definition 2.1. We say that a linear map φ : H → H is:

(1) a derivation, if it satisfies φm = m(φ⊗ id+ id⊗φ),
(2) a co-derivation, if it satisfies ∆φ = (φ⊗ id+ id⊗φ)∆,

(3) an infinitesimal character, if it satisfies φm = m(φ⊗ ϵ+ ϵ⊗ φ).

Lemma 2.2. Let H be a graded, connected, commutative Hopf algebra and let φ : H → H be
a derivation. Then S ⋆ φ is an infinitesimal character.

Proof. We denote by τ : H ⊗ H → H ⊗ H the operator that swaps the factors in a tensor
product, τ(a⊗ b) = b⊗ a. We have

(S ⋆ φ)m = m(S ⊗ φ)∆m = m((Sm)⊗ (φm))(id⊗τ ⊗ id)(∆⊗∆)

= m(m⊗m)(S ⊗ S ⊗ φ⊗ id+S ⊗ S ⊗ id⊗φ)(id⊗τ ⊗ id)(∆⊗∆)

= m(m⊗m)(id⊗τ ⊗ id)(S ⊗ φ⊗ S ⊗ id+S ⊗ id⊗S ⊗ φ)(∆⊗∆)

= m((S ⋆ φ)⊗ ϵ+ ϵ⊗ (S ⋆ φ)). ■

2.2 The grading operator and the Dynkin operator

On every graded connected Hopf algebra there is a natural grading operator Y : H → H which
acts on homogeneous elements by multiplication by the weight. It is both a derivation and
a co-derivation:

Y m = m(Y ⊗ id+ id⊗Y),

∆Y = (Y ⊗ id+ id⊗Y)∆.

We now introduce the Dynkin operator D on a graded connected Hopf algebra. For the origin
of the name, see [51] and references therein.

Clean Single-Valued Polylogarithms 7

Definition 2.3. The Dynkin operator on H is defined by

D := S ⋆ Y.

Since id ⋆S = ϵ, we can write the previous equation in the equivalent form

id ⋆D = Y. (2.1)

Since Y is a derivation, D is an infinitesimal character by Lemma 2.2. It is convenient to define
the operator Π which is the identity on H0 and Π = Y −1D on H>0.

Proposition 2.4.

1. The kernel of Π is generated by all non-trivial products, kerΠ = H>0 ·H>0.

2. Π is a projector, Π2 = Π.

Proof. (1) Since D is an infinitesimal character, we have for all x, y ∈ H>0 = ker ϵ,

D(x · y) = D(x) · ϵ(y) + ϵ(x) ·D(y) = 0,

and so Π(x ·y) = 0. Hence H>0 ·H>0 ⊂ kerΠ. Conversely, let x ∈ kerΠ. We can assume without
loss of generality that x ∈ Hn, n > 1. Again writing the coproduct as ∆(x) = 1⊗x+x⊗1+∆′(x),
we find

0 = Π(x) = x+
1

n
m(S ⊗ Y)∆′(x),

and so

x = − 1

n
m(S ⊗ Y)∆′(x) ∈ H>0 ·H>0.

(2) If x ∈ Hn, n > 0, we have

Π2(x) =
1

n
Π
[
nx+m(S ⊗ Y)∆′(x)

]
= Π(x). ■

3 Review of motivic polylogarithms

3.1 Motivic and de Rham periods

In [9, 10, 12], Brown has shown how to lift the iterated integrals I(x0;x1, . . . , xn;xn+1), for
xi ∈ Q, to motivic versions Im(x0;x1, . . . , xn;xn+1). The motivic MPL’s generate a subring
Pm
MPL inside the ring of all motivic periods Pm.2 A detailed review of the definition and con-

struction of motivic and de Rham MPLs would go beyond the scope of this paper. We refer,
e.g., to [12, Section 10.6], for the example of the classical polylogarithms. There is a natural
homomorphism, called the period map, per : Pm → C such that

per
(
Im(x0;x1, . . . , xn;xn+1)

)
= I(x0;x1, . . . , xn;xn+1).

It follows from Grothendieck’s period conjecture that per is expected to be injective.
The motivic MPL’s are equipped with additional structure with respect to their non-motivic

counterparts. In particular, they are equipped with a coaction

∆: Pm
MPL → Pm

MPL ⊗ Pdr
MPL,

2Strictly speaking, Im(x0;x1, . . . , xn;xn+1) defines a family of motivic periods depending on the variables xi,
see [12, Section 7]. Since no confusion arises, we will always simply refer to Im(x0;x1, . . . , xn;xn+1) as a motivic
period.

8 S. Charlton, C. Duhr and H. Gangl

given on motivic MPL’s via the formula [9, 10]

∆
(
Im(x0;x1, . . . , xn;xn+1)

)
=

∑
0=i0<i1<···

<ik<ik+1=n+1

Im(x0;xi1 , . . . , xik ;xn+1)⊗
k∏

p=0

Idr(xip ;xip+1, . . . , xip+1−1;xip+1). (3.1)

The quantities in the second factor of the tensor product are de Rham MPL’s and those span the
ring Pdr

MPL, which can be thought of as the quotient of Pm
MPL by the ideal generated by (2πi)m

(the motivic lift of 2πi). There is a natural projection (see, e.g., [12, Section 4.3]):

πdr
(
Im(x0;x1, . . . , xn;xn+1)

)
= Idr(x0;x1, . . . , xn;xn+1).

Pdr
MPL is a commutative connected Hopf algebra graded by the weight (where the weight of

Idr(x0;x1, . . . , xn;xn+1) is defined as n). The coproduct on Pdr
MPL is given by the same formula

as in (3.1), with Im replaced by Idr everywhere [9, 10, 12, 35],3 and we use the same symbol to
denote the coaction on Pm

MPL and the coproduct on Pdr
MPL. Since Pdr

MPL is graded and connected,
the antipode S is uniquely determined by the coproduct.

3.2 Single-valued projection

Unlike motivic MPL’s, to which the period map assigns a (complex) number, de Rham MPL’s
do not allow for an analogous construction. Instead, they can be equipped with a ring ho-
momorphism sv : Pdr

MPL → Pm
MPL, called the single-valued projection (cf. [12, Section 8.3], and

also [7, 8]). The single-valued projection can be given explicitly in a combinatorial way on
Pdr
MPL [11, 12] (see also [18, Section 3.4]),

sv := m(F∞Σ⊗ id)∆̃,

where m is the multiplication in Pm
MPL, F∞ : Pm

MPL → Pm
MPL is the real Frobenius, which can

be thought of as complex conjugation (i.e., perF∞ = per, where per(x) denotes the complex
conjugate of per(x)) and Σ: Pm

MPL → Pm
MPL is defined by

Σ
(
Im(x0;x1, . . . , xn;xn+1)

)
:= (−1)nS̃

(
Im(x0;x1, . . . , xn;xn+1)

)
.

Here ∆̃ : Pdr
MPL → Pm

MPL ⊗ Pm
MPL and S̃ : Pm

MPL → Pm
MPL are given by the same formulas as the

coproduct ∆ and the antipode S on Pdr
MPL, with the replacement Idr → Im everywhere.

The single-valued projection associates to every Idr(x0;x1, . . . , xn;xn+1) a (family of) motivic
periods, whose image under the period map defines a single-valued function of the xi. We can
compose the single-valued projection with the period map and the projection πdr to associate
to every motivic MPL its single-valued version:

svm := per ◦ sv ◦πdr : Pm
MPL → C.

Example 3.1 (single-valued version of the motivic logarithm). We can apply the previous
construction to the motivic logarithm

logm x := Im(0; 0;x), x ∈ Q \ {0}.

3The “motivic” MPL’s defined by Goncharov in [35] correspond to the de Rham MPL’s defined by Brown
in [9, 10, 12]. Here we consistently follow Brown’s nomenclature.

Clean Single-Valued Polylogarithms 9

We have, with logdr x = πdr(logm x),

∆
(
logdr x

)
= logdr x⊗ 1 + 1⊗ logdr x,

S
(
logdr x

)
= − logdr x.

The single-valued version attached to logm x is therefore

svm(logm x) = log x+ log x = log |x|2.

In particular, letting x = −1, we see that the single-valued version attached to (πi)m is zero, i.e.,

svm
(
(πi)m

)
= 0.

Example 3.2 (single-valued version of the classical motivic polylogarithm). The motivic lift of
the classical polylogarithm of weight n is

Limn (x) := −Im
(
0; 1, {0}n−1;x

)
, x ∈ Q.

The coproduct and the antipode of Lidrn (x) := πdr
(
Limn (x)

)
are

∆
(
Lidrn (x)

)
= Lidrn (x)⊗ 1 + 1⊗ Lidrn (x) +

n−1∑
k=1

Lidrn−k(x)⊗
logdr(x)k

k!
,

S
(
Lidrn (x)

)
= −Lidrn (x)−

n−1∑
k=1

(− logdr x)k

k!
Lidrn−k(x).

(3.2)

The single-valued version attached to the classical motivic polylogarithm of weight n is then

svm
(
Limn (x)

)
= Lin(x)− (−1)n

n−1∑
k=0

(− log |x|2)k

k!
Lin−k(x). (3.3)

Letting x = 1 in (3.3), we obtain the single-valued version associated to the motivic zeta values,
ζmn := Limn (1), n > 1 [11]:

svm(ζmn) = svm
(
Limn (1)

)
=

{
2ζ2m+1, n odd,

0, n even.
(3.4)

These functions are closely related, but not identical, to Zagier’s single-valued version of the
classical polylogarithms from (1.6). The relationship is most conveniently expressed in terms of
the function

Pn(x) :=

n−1∑
k=0

Bk

k!
logk |x|2

(
Lin−k(x)− (−1)n Lin−k(x)

)
=

{
2Pn(x) if n odd,

2iPn(x) if n even.

Proposition 3.3. For n > 0 and x ∈ C \ {0}, we have

svm
(
Limn (x)

)
=

n−1∑
k=0

logk |x|2

(k + 1)!
Pn−k(x).

Proof. We directly compute the right hand side, and show that it gives the expression for
svm(Limn (x)) from (3.3). We have

n−1∑
k=0

logk |x|2

(k + 1)!
Pn−k(x) =

n−1∑
k=0

n−k−1∑
ℓ=0

Bℓ

ℓ!

logk+ℓ |x|2

(k + 1)!

(
Lin−k−ℓ(x)− (−1)n−k Lin−k−ℓ(x)

)
.

10 S. Charlton, C. Duhr and H. Gangl

By reindexing the sum with α = k + ℓ, we find it is equal to

=

n−1∑
α=0

α∑
ℓ=0

Bℓ

ℓ!

logα |x|2

(α+ 1− l)!

(
Lin−α(x)− (−1)n+α−l Lin−α(x)

)
=

n−1∑
α=0

(
α∑

ℓ=0

Bℓ

ℓ!

1

(α+ 1− ℓ)!

)
Lin−α(x) log

α |x|2

− (−1)n
n−1∑
α=0

(
α∑

ℓ=0

(−1)ℓ
Bℓ

ℓ!

1

(α+ 1− ℓ)!

)
(− log |x|2)α Lin−α(x).

(3.5)

We notice

α∑
ℓ=0

Bℓ

ℓ!

1

(α+ 1− ℓ)!
=

1

(α+ 1)!
(Bα+1(1)−Bα+1)

=
1

(α+ 1)!
((−1)α+1Bα+1 −Bα+1)

=

{
1, α = 0,

0, α ̸= 0,

where we have used the symmetry Bα+1(1 − x) = (−1)α+1Bα+1(x), to find that Bα+1(1) =
(−1)α+1Bα+1. The second case above follows by combining the odd α > 0 case where the terms
cancel, and the even α > 0 case where the terms are identically zero. Likewise

α∑
ℓ=0

Bℓ

ℓ!

(−1)ℓ

(α+ 1− ℓ)!
=

(−1)α+1

(α+ 1)!
(Bα+1(−1)−Bα+1).

Now using the symmetry and multiplication theorems for Bernoulli polynomials, we have

Bα+1(−x) = (−1)α+1Bα+1(x) + (α+ 1)(−1)α+1xα+1−1,

so

Bα+1(−1) = (−1)α+1Bα+1(1) + (α+ 1)(−1)α+1 = Bα+1 + (α+ 1)(−1)α+1.

So this sum is equal to

(−1)α+1

(α+ 1)!

(
Bα+1 + (α+ 1)(−1)α+1 −Bα+1

)
=

(α+ 1)

(α+ 1)!
=

1

α!
.

Inserting these evaluations into (3.5) shows that it is equal to

= Lin(x)− (−1)n
n−1∑
α=0

(− log |x|2)α

α!
Lin−α(x) = svm(Limn (x)),

as claimed. ■

Remark 3.4. An alternative construction of single-valued analogues of MPL’s was presented
in [63]. Neither of the single-valued versions from [12] or [63] satisfy exclusively clean functional
equations. For [12] this follows from the functoriality of the construction, for example: applying
the single-valued map to the functional equation

Lim2 (x) + Lim2 (1− x) = −1

2

(
logm(−x)

)2
+ ζm(2)

Clean Single-Valued Polylogarithms 11

produces the following identity between single-valued functions

svm
(
Lim2 (x)

)
+ svm

(
Lim2 (1− x)

)
= −1

2

(
logm |x|2

)2
,

which still retains a product term on the right hand side. For [63], see the explicit example
Section 2.9.3 in loc. cit.

4 Clean single-valued polylogarithms

Throughout this section (and the following) all MPL’s with non-generic arguments are un-
derstood to be regularised by introducing suitable tangential base-points, cf. the comment in
Section 1.1 and [19, Chapter 15].

4.1 Definition

We can apply the construction of the Dynkin operator from Section 2.2 to the commutative
graded connected Hopf algebra Pdr

MPL. We can compose the projector Π with the projec-
tion πdr, the single-valued projection sv and the period map to obtain an algebra morphism
R : Pm

MPL → C:

R := per ◦ sv ◦Π ◦ πdr,

where Π = Y −1D acts as defined in Section 2.2.

Definition 4.1. The clean single-valued multiple polylogarithms Icsv are defined by

Icsv(x0;x1, . . . , xn;xn+1) := Rn

[
R(Im(x0;x1, . . . , xn;xn+1))

]
,

where Rn is defined in (1.7).

Theorem 1.1 follows immediately, from the definition of the clean single-valued multiple
polylogarithms and the properties of R. Indeed, since the latter lie in the image of per ◦ sv, they
are both real-analytic and single-valued functions. Moreover, let

A :=
K∑
k=1

ckI
m(xk,0;xk,1, . . . , xk,n;xk,n+1) ∈ Pm

MPL,>0 · Pm
MPL,>0.

Proposition 2.4 implies that Pm
MPL,>0 · Pm

MPL,>0 ⊆ kerR, and so

0 = Rn [R(A)] =

K∑
k=1

ckI
csv(xk,0;xk,1, . . . , xk,n;xk,n+1),

where Rn was defined above after (1.6).

Remark 4.2. It is possible to use Theorem 1.1 to obtain identities among (non-clean) single-
valued polylogarithms. Indeed, it is often easier to find identities modulo product terms, e.g., by
starting from identities that hold modulo shuffle products at the symbol level (cf. [13, 15]). The
combinatorics involved in R will restore all the product terms necessary to obtain a numerical
identity between single-valued polylogarithms, up to a single constant of integration. In some
cases this may even give hints for valid identities among the non-single-valued analogues, e.g.,
by dropping all terms depending on the complex-conjugated variables, and accounting for fac-
tors of 2 introduced by the single-valued map on real constants (e.g., (3.4)). Conversely, the
combinatorics involved in R can be applied directly to the symbol Hopf algebra to restore the
(functional) product terms in a modulo products identity between functions (of holomorphic
variables) at the symbol level; one can then study product terms involving constants iteratively
via slices of the coaction.

12 S. Charlton, C. Duhr and H. Gangl

Remark 4.3. The restriction to the real (resp. imaginary) part for odd (resp. even) weights in
Definition 4.1 can be motivated by the fact that the other parity can be expressed entirely in
terms of products of lower weights functions. To see this, we start from the following property
of the single-valued projection on de Rham MPL’s (cf., e.g., [18]):

Proposition 4.4. For every x ∈ Pdr
MPL,n, we have

F∞ sv(x) = (−1)n svS(x).

Proof. The following two properties are well known and hold in any commutative, graded and
connected Hopf algebra (see, e.g., [48, Proposition I.7.1] and references therein):

(S ⊗ S)τ∆ = ∆S,

S2 = id .

Since ∆̃ and S̃ = (−1)Y Σ are defined by the same combinatorial formulas as ∆ and S, but
with Idr replaced by Im, it is easy to see that the following identities hold:

(Σ⊗ Σ)τ∆̃ = ∆̃S(−1)Y ,

Σ2 = id .

This gives, with F 2
∞ = id,

F∞ sv = F∞m(F∞Σ⊗ id)∆̃ = m(Σ⊗ F∞)∆̃

= m(id⊗F∞Σ)τ∆̃S(−1)Y = mτ(F∞Σ⊗ id)∆̃S(−1)Y

= svS(−1)Y . ■

Corollary 4.5. Let x ∈ Pdr
MPL,>0. Then

sv(x) + (−1)Y F∞ sv(x) ∈ Pm
MPL,>0 · Pm

MPL,>0.

Proof. Let x ∈ Pdr
MPL,n, n > 0. Proposition 4.4 implies

sv(x) + (−1)nF∞ sv(x) = sv (x+ S(x))

= − svm(S ⊗ id)∆′(x) ∈ Pm
MPL,>0 · Pm

MPL,>0,

where the last equality follows from m(S ⊗ id)∆(x) = 0. ■

4.2 Elementary properties of clean single-valued polylogarithms

4.2.1 Shuffle products, path composition and reversal

The clean single-valued polylogarithms inherit the basic properties of iterated integrals (see
Section 1.1). Using Theorem 1.1, we see that they take the form:

1. Path reversal:

Icsv(xn+1;xn, . . . , x1;x0) = (−1)nIcsv(x0;x1, . . . , xn;xn+1).

2. Path composition:

Icsv(x0;x1, . . . , xn;xn+1) = Icsv(x0;x1, . . . , xn;x) + Icsv(x;x1, . . . , xn;xn+1).

3. Shuffle product:∑
σ∈Σ(m,n)

Icsv(x0;xσ(1), . . . , xσ(m+n);x) = 0.

Clean Single-Valued Polylogarithms 13

4.2.2 Reversal of arguments

Proposition 4.6. For n > 0, we have

Icsv(x0;xn, . . . , x1;xn+1) = (−1)n+1Icsv(x0;x1, . . . , xn;xn+1).

Proof. Consider the shuffle algebra generated by the letters x1, . . . , xn. It is a Hopf algebra
whose coproduct is deconcatenation and the antipode is the reversal of words, up to a sign:

∆sh(w) =
∑
uv=w

u⊗ v,

Ssh(w) = (−1)|w|w̃,

where w̃ is the word w in reverse order, and |w| its length. If msh denotes the shuffle multipli-
cation, we have

0 = msh(Ssh ⊗ id)∆sh(w) = w + (−1)|w|w̃ +msh(Ssh ⊗ id)∆′
sh(w).

If we take w = x1 · · ·xn, we see that x1 · · ·xn + (−1)nxn · · ·x1 must vanish modulo non-trivial
products. This relations must hold in every shuffle algebra, and so in particular the combi-
nation Im(x0;xn, . . . , x1;xn+1) + (−1)nIm(x0;x1, . . . , xn;xn+1) must vanish modulo non-trivial
products, from which we deduce Proposition 4.6 via Theorem 1.1. ■

4.2.3 Unshuffling of leading zeros

Proposition 4.7. For any k ∈ Z≥0 the following holds

Icsv
(
0; {0}k, x1, {0}n1−1, . . . , xr, {0}nr−1;xr+1

)
= (−1)k

∑
i1+···+ir=k

(
n1 + i1 − 1

i1

)
· · ·
(
nr + ir − 1

ir

)
× Icsv

(
0;x1, {0}n1−1+i1 , . . . , xr, {0}nr−1+ir ;xr+1

)
.

Proof. This is proven by induction. The case k = 0 holds trivially wherein both sides are
identical, so we may suppose this formula holds for all n ≤ k. Now observe

Icsv
(
0; {0}k+1, x1, {0}n1−1, . . . , xr, {0}nr−1;xr+1

)
= − 1

k + 1

r∑
j=1

njI
csv
(
0; {0}k, x1, {0}n1−1, . . . , xj , {0}(nj−1)+1, . . . , xr, {0}nr−1;xr+1

)
,

using the shuffle product property (3) above. Substituting the induction assumption into the
second line shows that each term in the result is indexed by a composition i′1 + · · ·+ i′r = k+1,
added to the exponents n1 − 1, . . . , nr − 1 of the original integral. Therefore we need only to
compute the coefficient and check that it matches the one claimed in the formula.

This coefficient is

− 1

k + 1

r∑
j=1

nj(−1)k
(
n1 + i′1 − 1

i′1

)
· · ·
(
(nj + 1) + (i′j − 1)− 1

(i′j − 1)

)
· · ·
(
nr + i′r − 1

i′r

)
,

where i′1 + · · ·+ i′r = k + 1. Observe that

nj

(
(nj + 1) + (i′j − 1)− 1

(i′j − 1)

)
= i′j

(
nj + i′j − 1

i′j

)
,

14 S. Charlton, C. Duhr and H. Gangl

so the coefficient is equal to

(−1)k+1

k + 1

r∑
j=1

i′j

(
n1 + i′1 − 1

i′1

)
· · ·
(
nj + i′j − 1

i′j

)
· · ·
(
nr + i′r − 1

i′r

)

=
(−1)k+1

k + 1

(
r∑

j=1

i′j

)
︸ ︷︷ ︸

k+1

(
n1 + i′1 − 1

i′1

)
· · ·
(
nr + i′r − 1

i′r

)

= (−1)k+1

(
n1 + i′1 − 1

i′1

)
· · ·
(
nr + i′r − 1

i′r

)
,

as claimed. ■

4.3 Recursion and the total holomorphic differential of Icsv

Proposition 4.8. Write the following shorthand

C(x0;x1, . . . , xn;xn+1) := R
[
Idr(x0;x1, . . . , xn;xn+1)

]
, (4.1)

then C satisfies the following recursive formula

C(x0;x1, . . . , xn;xn+1) = Isv(x0;x1, . . . , xn;xn+1)

− 1

n

[∑
0≤i<j≤n
(i,j)̸=(0,n)

(j − i)Isv(x0;x1, . . . , xi, xj+1, . . . , xn;xn+1)C(xi;xi+1, . . . , xj ;xj+1)

]
. (4.2)

Proof. Since Y = id ⋆D, the Dynkin operator satisfies the following recursion, valid in every
graded commutative Hopf algebra H:

D(x) = nx−m(id⊗D)∆′(x)

= nx−m(id⊗(Y ·Π))∆′(x), x ∈ Hn, n > 0. (4.3)

This gives

(sv ◦Π)(Idr(x0;x1, . . . , xn;xn+1)) = Isv(x0;x1, . . . , xn;xn+1)

− 1

n
m(sv⊗(Y · (sv ◦Π)))∆′(Idr(x0;x1, . . . , xn;xn+1)).

Because of the projector Π in the second entry of the tensor product, we only need to consider
terms in the reduced coproduct that have no product in the second entry, cf. (3.1)). This
constraint is described via the infinitesimal coproduct (cf. [10]), and one obtains the recursive
formula directly therefrom, wherein we must exclude the case (i, j) = (0, n) because we have
taken the reduced coproduct. ■

Since Icsv(x0;x1, . . . , xn;xn+1) = Rn

[
C(x0;x1, . . . , xn;xn+1)

]
, (4.2) can be interpreted as

a recursion for the clean single-valued MPL’s.
We recall now that the total differential of an MPL is given by

dI(x0;x1, . . . , xn;xn+1) =

n∑
k=1

I
(
x0;x1, . . . , x̂k, . . . , xn;xn+1

)
dI(xk−1;xk;xk+1).

The function C satisfies a similar formula for the total holomorphic differential ∂. There is
no correspondingly simple formula for the total antiholomorphic differential, though, since the
single-valued map only preserves the holomorphic differential.

Clean Single-Valued Polylogarithms 15

Proposition 4.9. The total holomorphic differential of the function C is given in weight 1 by

∂C(x0;x1;x2) = dI(x0;x1;x2),

and in weight n > 1 by

∂C(x0;x1, . . . , xn;xn+1) =
n− 1

n

[
n∑

k=1

C(x0;x1, . . . , x̂k, . . . , xn;xn+1)dI(xk−1;xk;xk+1)

− C(x0;x1, . . . , xn−1;xn)dI(x0;xn;xn+1)

− C(x1;x2, . . . , xn;xn+1)dI(x0;x1, xn+1)

]
.

Proof. We prove this via the recursion in Proposition 4.8; one can check directly the case n = 1.
Namely, we aim to compute

∂C(x0;x1;x2) = ∂Isv(x0;x1;x2),

where we have computed C(x0;x1;x2) = Isv(x0;x1;x2) either via the recursion in Proposition 4.8
or directly from the definition. The holomorphic derivative is reserved by the single-valued map,
so we immediately obtain

∂C(x0;x1;x2) = sv dI(x0;x1;x2) = dI(x0;x1;x2),

since the total derivative of the weight 1 function is rational, and hence single-valued already.

Note that the total holomorphic differential of Icsv is given by the same formula as for the
total differential of I, with I 7→ Isv but with dI unchanged, namely

∂Isv(x0;x1, . . . , xn;xn+1) =

n∑
k=1

Isv
(
x0;x1, . . . , x̂k, . . . , xn;xn+1

)
dI(xk−1;xk;xk+1).

Now for weight n the recursion implies

∂C(x0;x1, . . . , xn;xn+1) = ∂Isv(x0;x1, . . . , xn;xn+1)

−
∑

0≤i<j≤n
(i,j) ̸=(0,n)

[
j − i

n
· ∂Isv(x0;x1, . . . , xi, xj+1, . . . , xn;xn+1)C(xi;xi+1, . . . , xj ;xj+1)

+
j−i
n

· Isv(x0;x1, . . . , xi, xj+1, . . . , xn;xn+1)∂C(xi;xi+1, . . . , xj ;xj+1)

]
.

Then by taking care of terms which cross the jump xi, xj+1, we can write

∂Isv(x0;x1, . . . , xi, xj+1, . . . , xn;xn+1)

=
i−1∑
k=1

Isv
(
x0;x1, . . . , x̂k, . . . , xi, xj+1, . . . , xn;xn+1

)
dI(xk−1;xk;xk+1)

+

n∑
k=j+2

Isv
(
x0;x1, . . . , xi, xj+1, . . . , x̂k, . . . , xn;xn+1

)
dI(xk−1;xk;xk+1)

+ Isv(x0;x1, . . . , xi−1, xj+1, . . . , xn;xn+1)dI(xi−1;xi;xj+1)

+ Isv(x0;x1, . . . , xi, xj+2, . . . , xn;xn+1)dI(xi;xj+1;xj+2).

16 S. Charlton, C. Duhr and H. Gangl

Correspondingly, by the induction hypothesis, for j − i > 1 we get

∂C(xi;xi+1, . . . , xj ;xj+1)

=
j − i− 1

j − i

[
j∑

k=i+1

C
(
xi;xi+1, . . . , x̂k, . . . , xj ;xj+1

)
dI(xk−1;xk;xk+1)

− C(xi;xi+1, . . . , xj−1;xj)dI(xi;xj ;xj+1)

− C(xi+1;xi+2, . . . , xj ;xj+1)dI(xi;xi+1;xj)

]
,

and for j − i = 1 we find ∂C(xi;xi+1, . . . , xj ;xj+1) = dI(xi;xi+1;xi+2).

Now we note that the dI terms in ∂C occur only with certain fixed patterns, namely
dI(xk−1;xk;xk+1) wherein all arguments are consecutive, and either dI(xi;xi+1;xj) and/or
dI(xi;xj ;xj+1) wherein the first two, respectively last two, are consecutive arguments.

So first we ask what the coefficient of dI(xk−1;xk;xk+1), for fixed k, is. It is seen to be
the following, where the first line arises from differentiating the Isv appearing outside the sum,
the second and third line arise from differentiating the Isv inside the sum, the fourth line from
differentiating C inside the sum, and the last line deals with the edge case where one has
differentiated C(xi;xi+1;xi+1) when j = i + 1, for j = k in order to obtain dI(xk−1;xk;xk+1).
(Note that the corresponding term in line 4 gives 0 in this case, so no extra restriction is necessary
there.)

Isv
(
x0;x1, . . . , x̂k, . . . , xn;xn+1

)
−

∑
0≤i<j≤n
(i,j) ̸=(0,n)

k<i

j − i

n
Isv
(
x0, x1, . . . , x̂k, . . . , xi, xj+1, . . . , xn;xn+1

)
C(xi;xi+1, . . . , xj ;xj+1)

−
∑

0≤i<j≤n
(i,j) ̸=(0,n)
j+1<k

j − i

n
Isv
(
x0, x1, . . . , , xi, xj+1, . . . , x̂k, . . . , xn;xn+1

)
C(xi;xi+1, . . . , xj ;xj+1)

−
∑

0≤i<j≤n
(i,j) ̸=(0,n)
i<k<j+1

j − i

n

j − i− 1

j − i
Isv(x0, x1, . . . , , xi, xj+1, . . . , xn;xn+1)

× C
(
xi;xi+1, . . . , x̂k, . . . , xj ;xj+1

)
− 1

n
Isv(x0, x1, . . . , xk−1, xk+1, . . . , xn;xn+1).

This is nothing but the recursion for C applied to

n− 1

n
C
(
x0;x1, . . . , x̂k, . . . , xn;xn+1

)
.

Now we ask about the coefficient of dI(xk, xk+1;xℓ+1), where k+2 < ℓ+1 for non-consecutive
arguments. This term arises from either differentiating the Isv term in

Isv(x0;x1, . . . , xk, xk+1, xℓ+1, . . . , xn;xn+1)C(xk+1;xk+2, . . . , xℓ;xℓ+1),

where (i, j) = (k + 1, ℓ), or by differentiating the C term in

Isv(x0;x1, . . . , xk−1, xk, xℓ+1, . . . , xn;xn+1)C(xk;xk+1, . . . , xℓ;xℓ+1),

Clean Single-Valued Polylogarithms 17

where (i, j) = (k, ℓ). We note that for each choice of (k, ℓ) ̸= (0, n) such that 0 ≤ k < ℓ ≤ n
with k + 1 < ℓ, both terms contribute to the coefficient. However when (k, ℓ) = (0, n) only
the Isv derivative contributes as (i, j) = (k, ℓ) = (0, n) is excluded from the summation, and
the C derivative therewith.

When (k, ℓ) ̸= (0, n) we find the coefficient of dI(xk;xk+1;xℓ) to be

ℓ− (k + 1)

n
Isv
(
x0;x1, . . . , xk, x̂k+1, xℓ+1, . . . , xn;xn+1

)
C(xk+1;xk+2, . . . , xℓ;xℓ+1)

− ℓ− k

n

ℓ− k− 1

ℓ− k
Isv(x0;x1, . . . , xk−1, xk, xℓ+1, . . . , xn;xn+1)

× C
(
x̂k;xk+1, . . . , xℓ;xℓ+1

)
= 0.

However when (k, ℓ) = (0, n) we find the coefficient of dI(x0;x1;xn+1) to be

ℓ− (k + 1)

n
Isv
(
x0; x̂1;xn

)
C(x1;x2, . . . , xn;xn+1) =

n− 1

n
C(x1;x2, . . . , xn;xn+1).

Exactly the same consideration applies to the coefficient of dI(xk;xℓ;xℓ+1), wherein the terms
pairwise cancel, except for the case (k, ℓ) = (0, n), where only one term occurs which cannot
cancel. This completes the proof of the formula for the total holomorphic derivative of C. ■

We note that this differential formula is closely related to a recursion for the mod-products
symbol Π•S of an iterated integral, as given in [15, equation (4)]

ΠS
(
Idr(x0; . . . ;xn+1)

)
=

n∑
j=1

ΠS
(
Idr(x0;x1, . . . , x̂j , . . . , xn;xn+1)

)
⊗ Idr(xj−1;xj ;xj+1)

−ΠS
(
Idr(x1;x2, . . . , xn;xn+1)

)
⊗ Idr(x0;x1;xn+1)

−ΠS
(
Idr(x0;x1, . . . , xn−1;xn)

)
⊗ Idr(x0;xn;xn+1).

5 Examples in small depths

In this section we present results for clean single-valued polylogarithms in small depths. The
path composition formula, together with Proposition 4.7 and

Icsv(k · x0; k · x1, . . . , k · xn; k · xn+1) = Icsv(x0;x1, . . . , xn;xn+1),

with x1 ̸= x0, xn ̸= xn+1 and k ∈ C \ {0} (this identity follows immediately from the corre-
sponding identity for MPL’s, where it is a direct consequence of the integral representation (1.1)),
imply that it is sufficient to consider the functions

Icsvm1,...,mk
(x1, . . . , xk) := Icsv

(
0;x1, {0}m1−1, . . . , xk, {0}mk−1; 1

)
.

We will also use the objects

I•m1,...,mk
(x1, . . . , xk) := I•

(
0;x1, {0}m1−1, . . . , xk, {0}mk−1; 1

)
, • ∈ {m, dr},

Isvm1,...,mk
(x1, . . . , xk) := svm

(
Im(0;x1, {0}m1−1, . . . , xk, {0}mk−1; 1)

)
.

5.1 Results in depth 1

Proposition 5.1.

Icsvn (x) = Rn

[
Isvn (x) +

1

n
log |x|2Isvn−1(x)

]
,

where we interpret Isvn (x) = 0 when n ≤ 0.

18 S. Charlton, C. Duhr and H. Gangl

Proof. It follows from (2.1) that if x ∈ Pdr
MPL has weight n, we obtain the recursion

D(x) = nx−m(id⊗D)∆′(x).

Proposition 3.2 then implies

Π
(
Idrn (x)

)
= −Π

(
Lidrn

(
1

x

))
= −Lidrn

(
1

x

)
+

1

n

n−1∑
k=1

1

k!
Lidrn−k

(
1

x

)
D

(
logdr

(
1

x

)k)
= Idrn (x) +

1

n
logdr xIdrn−1(x).

(5.1)

The claim follows upon acting with per ◦ sv, and taking the real or imaginary part. ■

The functions Icsvn (x) are real-analytic and single-valued, and they reduce to (single-valued)
zeta values for x = 1 (cf. (3.4)),

Icsv2m (1) = 0,

Icsv2m+1(1) = −2ζ2m+1.
(5.2)

This is a special case of the following more general result:

Corollary 5.2. Let ξN = e2πi/N , and let n > 1 and a be integers. Then

Icsvn

(
ξaN
)
= 2(−1)nCln

(
2πa

N

)
,

where Cln(α) := Rn

(
Lin(e

iα)
)
denotes the Clausen function. The same formula also holds for

n = 1 and a ̸= 0 mod N .

Proof. From Propositions 5.1 and 3.3, we obtain

Icsvn

(
ξaN
)
= −Rn

[
svm

(
Lin

(
ξ−a
N

))]
= −Rn

[
Lin

(
ξ−a
N

)
− (−1)n Lin

(
ξaN
)]

= 2(−1)nRn

[
Lin

(
ξaN
)]

= 2(−1)nCln

(
2πa

N

)
. ■

Icsv2 (x) satisfies a clean version of the five-term relation, and Icsvn (x) satisfies for all n > 1 the
inversion relation

Icsvn

(
1

x

)
= (−1)n+1Icsvn (x).

We see that the functions Icsvn (x) have the same properties and satisfy the same identities as the
Zagier’s single-valued versions of the classical polylogarithms Pn(x) defined in (1.6). However,
the two families of functions are not identical, but we have the relation:

Corollary 5.3. For any x ∈ C \ {0, 1} and any n ∈ Z>1, we have

Icsvn (x) = 2(−1)n

[
Pn(x) +

1

n

⌈n/2⌉−1∑
k=1

(n− 2k − 1)
log2k |x|2

(2k + 1)!
Pn−2k(x)

]
.

Moreover, Icsv1 (x) = −2P1(x)− log |x|2.

Clean Single-Valued Polylogarithms 19

Proof. It suffices to inject the result of Proposition 3.3 into the expression for Isvn (x) =
− svm(Limn (1/x)) from Proposition 5.1. ■

Remark 5.4. Corollary 5.3 shows that, for classical polylogarithms (i.e., in depth 1), it is
possible to define at least two distinct real-analytic single-valued analogues that satisfy clean
functional relations. It would be an interesting question to investigate whether alternative
definitions are also possible in higher depth. As a starting point it could be interesting to clarify
the relationship between our construction of clean single-valued MPL’s and the Lie-period map
defined in [36, Section 2.5]. We are grateful to Clément Dupont for this remark.

5.2 Results in depth 2

Proposition 5.5. For (x1, x2) ∈ C2 \ {(x, y) : x ̸= 0, 1, y ̸= 0, 1, x}, m1,m2 ∈ Z>0, and n =
m1 +m2, we have

Icsvm1,m2
(x1, x2) = Rn

[
Isvm1,m2

(x1, x2)
]
− 1

n
Rn

{
m1I

sv
m1

(
x1
x2

)
Isvm2

(x2)

− log |x2|2Isvm1,m2−1(x1, x2) + log

∣∣∣∣x2x1
∣∣∣∣2[Isvm1−1,m2

(x1, x2)− Isvm1−1

(
x1
x2

)
Isvm2

(x2)

]
+

m2∑
r=1

(−1)m1

(
n− r − 1

m1 − 1

)
Isvr (x1)

[
(n− r)Isvn−r

(
x2
x1

)
+ log

∣∣∣∣x2x1
∣∣∣∣2Isvn−r−1

(
x2
x1

)]

+

m1∑
r=1

(−1)m1−r

(
n− r − 1

m2 − 1

)
Isvr (x1)

[
(n− r)Isvn−r(x2) + log |x2|2Isvn−r−1(x2)

]}
,

(5.3)

where we interpret Isvm1
(x1) = 0 and Isvm1,m2

(x1, x2) = 0 whenever m1 or m2 are negative.

Proof. The recursion (4.2) holds for arbitrary values of the xi. We can now specialise to the
case of depth two with

(x0;x1, . . . , xn;xn+1) =
(
0; y1, {0}m1−1, y2, {0}m2−1; 1

)
.

It is easy to check that in that case (4.2) substantially simplifies, and only those terms contribute
where (xi;xi+1, . . . , xj ;xj+1) takes one of the following values:(

0; y1, {0}m1−1; y2
)
, (y1; 0; 0), (0; 0; y2), (y2; 0; 0),(

y1; {0}m1−1, y2, {0}α; 0
)
, 0 ≤ α < m2 − 1,(

0; {0}β, y2, {0}m1−1; 1
)
, 0 ≤ β < m1 − 1,(

y1; {0}m1−1, y2, {0}m1−1; 1
)
.

We now go through each of these cases in turn.

Case 1: (xi;xi+1, . . . , xj ;xj+1) =
(
0; y1, {0}m1−1; y2

)
. The corresponding term in the sum

in (4.2) is

m1I
sv
(
0; y2, {0}m2−1; 1

)
C
(
0; y1, {0}m1−1; y2

)
= m1I

sv
m2

(y2)C

(
0;
y1
y2
, {0}m1−1; 1

)
.

Using the same argument as in Proposition 5.1, we find

C
(
0; y, {0}m1−1; 1

)
= Isvm1

(y) +
1

m1
log |y|2Isvm1−1(y). (5.4)

20 S. Charlton, C. Duhr and H. Gangl

Hence, we have

m1I
sv
m2

(y2)C

(
0;
y1
y2
, {0}m1−1; 1

)
= m1I

sv
m2

(y2)I
sv
m1

(
y1
y2

)
+ log

∣∣∣∣y1y2
∣∣∣∣2Isvm2

(y2)I
sv
m1−1

(
y1
y2

)
.

These match precisely the first and fourth terms in square brackets in (5.3).

Case 2: (xi;xi+1, . . . , xj ;xj+1) = (y1; 0; 0) or (0; 0; y2). The sum of these two contributions is

Isv
(
0; y1, {0}m1−2, y2, {0}m1−1; 1

)
C(y1; 0; 0) + Isv

(
0; y1, {0}m1−2, y2, {0}m1−1; 1

)
C(0; 0; y2)

= − log |y1|2Isvm1−1,m2
(y1, y2) + log |y2|2Isvm1−1,m2

(y1, y2)

= log

∣∣∣∣y2y1
∣∣∣∣2Isvm1−1,m2

(y1, y2).

This matches the third term in (5.3).

Case 3: (xi;xi+1, . . . , xj ;xj+1) = (y2; 0; 0). We get

Isv
(
0; y1, {0}m1−1, y2, {0}m1−2; 1

)
C(y2; 0; 0) = − log |y2|2Isvm1,m2−1(y1, y2).

This matches the second term in (5.3).

Case 4: (xi;xi+1, . . . , xj ;xj+1) =
(
y1; {0}m1−1, y2, {0}α; 0

)
, 0 ≤ α < m2 − 1. We sum up the

contributions for different values of α to get

m2−1∑
α=0

(m1 + α)Isv
(
0; y1, {0}m2−1−α; 1

)
C
(
y1; {0}m1−1, y2, {0}α; 0

)
=

m2−1∑
α=0

(−1)m1+α(m1 + α)Isvm1−α(y1)C
(
0; {0}α, y2, {0}m1−1; y1

)
.

To proceed, we note that C
(
0; {0}α, y2, {0}m1−1; y1

)
satisfies Proposition 4.7 with Icsv → C

(Icsv is obtained from C by taking the real or imaginary part). Hence

m2−1∑
α=0

(−1)m1+α(m1 + α)Isvm1−α(y1)C
(
0; {0}α, y2, {0}m1−1; y1

)
=

m2−1∑
α=0

(−1)m1(m1 + α)

(
m1 + α− 1

α

)
Isvm1−α(y1)C

(
0; y2, {0}m1+α−1; y1

)
.

After using (5.4) and reindexing the sum via α = m2 − r, this matches all the terms in the first
sum, except for the term r = 1.

Case 5: (xi;xi+1, . . . , xj ;xj+1) =
(
0; {0}β, y2, {0}m2−1; 0

)
, 0 ≤ β < m1 − 1. We proceed in the

same way as for Case 4. We find

m1−1∑
β=0

(n− β − 1)Isv
(
0; y1, {0}β; 1

)
=

m1−1∑
β=0

(−1)m1(n− β − 1)

(
n− β − 2

m1 − β − 1

)
Isvβ+1(y1)C

(
0; y2, {0}n−β−2; 1

)
.

After using (5.4) and reindexing the sum via β = r− 1, this matches all the terms in the second
sum, except for the term with r = 1.

Clean Single-Valued Polylogarithms 21

Case 6: (xi;xi+1, . . . , xj ;xj+1) =
(
y1; {0}m1−1, y2, {0}m2−1; 1

)
. We find, using the path compo-

sition and reversal formulas

(n− 1)Isv1 (y1)C
(
y1; {0}m1−1, y2, {0}m2−1; 1

)
= (n−1)Isv1 (y1)

[
C
(
0; {0}m1−1, y2, {0}m2−1; 1

)
−(−1)nC

(
0; {0}m2−1, y2, {0}m1−1; y1

)]
= (n− 1)Isv1 (y1)

[
(−1)m1−1

(
n− 2

m1 − 1

)
C
(
0; y2, {0}n−2; 1

)
− (−1)m1

(
n− 2

m2 − 1

)
C

(
0;
y2
y1
, {0}n−2; 1

)]
.

Using (5.4) we recover the terms with r = 1 in each of the two sums. ■

The functions Icsvm1,m2
(x1, x2) are real-analytic single-valued functions. For x1 = x2 = 1, they

reduce to zeta values:

Proposition 5.6. For m1,m2 > 0, we have

Icsvm1,m2
(1, 1) =

{
cm1m2ζm1+m2 , m1 +m2 odd,

0, m1 +m2 even,

with

cm1m2 = (−1)m2

(
m1 +m2

m1

)
− 1.

Proof. For n = m1 +m2 even, Icsvm1,m2
(1, 1) vanishes, because it is the imaginary part of a real

number. If n is odd, we need to distinguish two cases depending on the parity of m1 and m2.
If m1 is odd (and thus m2 is even), we have

Icsvm1,m2
(1, 1) = Ren

[
R
(
Im(0; 1, {0}m1−1, 1, {0}m2−1; 1)

)]
= R

(
ζmm2,m1

)
,

where ζmm2,m1
is the motivic lift of the double zeta value

ζm2,m1 =
∑

1≤k1<k2

1

km1
1 km2

2

.

For n odd, m2 > 0 even and m1 > 1 odd we have, with n = 2N + 1 [6],

ζmm2,m1
= ζmm2

ζmm1
+

1

2

[(
n

m2

)
− 1

]
ζmn −

N−1∑
r=1

[(
2r

a− 1

)
+

(
2r

b− 1

)]
ζm2r+1ζ

m
n−1−2r,

while for m2 even and m1 = 1, we have

ζmm2,1 =
m2

2
ζmm2+1 −

1

2

m2−2∑
r=1

ζmr+1ζ
m
m2−r.

Hence, m2 > 0 even and m1 > 0 odd, we have

R
(
ζmm2,m1

)
=

[(
n

m2

)
− 1

]
ζn = cm1,m2ζn.

22 S. Charlton, C. Duhr and H. Gangl

If m1 > 0 is even and m2 > 0 is odd, we start form the well-known stuffle identity for
(motivic) MPL’s:

Imm1

(
x1
x2

)
Imm2

(x2) = Imm1,m2
(x1, x2) + Imm2,m1

(
x1,

x1
x2

)
− Imm1+m2

(x1),

to obtain

Icsvm1,m2
(x1, x2) = Icsvm1+m2

(x1)− Icsvm2,m1

(
x1,

x1
x2

)
.

Hence

Icsvm1,m2
(1, 1) = Icsvn (1)− Icsvm2,m1

(1, 1) = −2ζn −
[(

n

m2

)
− 1

]
ζn = cm2,m1ζn. ■

We can also obtain the inversion relation in depth 2 and for all weights:

Proposition 5.7. With n = m1 +m2, we have

Icsvm1,m2

(
1

x1
,
1

x2

)
= (−1)nIcsvm1,m2

(x1, x2)− (−1)m2

(
n− 1

m1

)
Icsvn (x2)

+ (−1)m1

(
n− 1

m2

)
Icsvn

(
x1
x2

)
− (−1)nIcsvn (x1).

Proof. This identity was shown to hold modulo products and up to a constant in [13] (more
precisely, it was shown to hold modulo products at symbol level). It is thus sufficient to show
that Proposition 5.7 holds at one point, e.g., x1 = x2 = 1.

For even n, both sides of the relation vanish identically at x1 = x2 = 0, and so the constant
is zero. For odd n, the right-hand side evaluated at x1 = x2 = 1 gives

−Icsvm1,m2
(1, 1)− (−1)m2

(
n− 1

m1

)
Icsvn (1)− (−1)m2

(
n− 1

m2

)
Icsvn (1) + Icsvn (1)

= ζn

[
−(−1)m2

(
n

m1

)
+ 1 + 2(−1)m2

(
n− 1

m1

)
+ 2(−1)m2

(
n− 1

m2

)
− 2

]
= ζn

[
(−1)m2

(
n

m1

)
− 1

]
= Icsvm1,m2

(1, 1),

where we used the recursion for the binomial coefficients:(
n− 1

m1

)
+

(
n− 1

m2

)
=

(
n− 1

m1

)
+

(
n− 1

m1 − 1

)
=

(
n

m1

)
. ■

Corollary 5.8. Let ξN = e2πi/N , a, b, m1, m2 integers with n := m1+m2 odd and m1,m2 > 0.
Then

Icsvm1,m2
(ξaN , ξ

b
N) = − Cln

(
2πa

N

)
− (−1)m1

(
n− 1

m1

)
Cln

(
2πb

N

)
+ (−1)m2

(
n− 1

m2

)
Cln

(
2π(a− b)

N

)
.

Proof. For odd n, we have

Icsvm1,m2

(
ξ−a
N , ξ−b

N

)
= Icsvm1,m2

(
ξaN , ξ

b
N

)
,

and we see from the inversion relation and Corollary 5.2 that Icsvm1,m2

(
ξaN , ξ

b
N

)
can be written as

a linear combination of Clausen values. ■

Clean Single-Valued Polylogarithms 23

5.3 Results in depth 3

We recall that the explicit version of the parity theorem given by Panzer [49] in depth 3 is as
follows. Write

Lim1,m2(x, y) = Im1,m2

(
(xy)−1, z−1

)
,

Lim1,m2,m3(x, y, z) = Im1,m2,m3

(
(xyz)−1, (yz)−1, z−1

)
in terms of the iterated integral notation. Let m1,m2,m3 ∈ Z>0, then on the simply-connected
domain C3 \

⋃
1≤i≤j≤3{z : zizi+1 · · · zj ∈ [0,∞)}, which avoids the branch cuts z3, z2z3, z1z2z3 ∈

[0,∞) of any the terms log(−zi · · · z3) therein, the following identity holds,

Lim1,m2,m3(z1, z2, z3) + (−1)m1+m2+m3 Lim1,m2,m3

(
z−1
1 , z−1

2 , z−1
3

)
= Lim1(z1)

(
Lim2,m3(z2, z3)− (−1)m2+m3 Lim2,m3

(
z−1
2 , z−1

3

))
− Lim1+m2,m3(z1z2, z3) + Lim2,m1(z2, z1)Bm3(z3) + Lim2+m3,m1(z2z3, z1)

−
∑

µ+ν+s=m2

Bs(z1z2z3)

(
−m3

µ

)(
−m1

ν

)
Lim3+µ(z

−1
3) Lim1+ν(z1)(−1)m3+µ

−
∑

µ+ν+s=m3

Bs(z1z2z3)

(
−m2

µ

)(
−m1

ν

)
Lim2+µ,m1+ν(z2, z1)

−
∑

µ+ν+s=m1

Bs(z1z2z3)

(
−m2

µ

)(
−m3

ν

)
Lim2+µ,m3+ν

(
z−1
2 , z−1

3

)
(−1)m2+µ+m3+ν ,

where

Bn(z) :=
(2πi)n

n!
Bn

(
1

2
+

log(−z)
2πi

)
and Bn(z) is the Bernoulli polynomial defined in (1.5).

We observe that if s > 0 in any of the above sums, then the resulting summand is a product,
and so vanishes after passing to the clean single-valued functions Licsv. Whereas when s = 0,
the Bernoulli factor is simply B0(z) = 1. Moreover, the first sum is in fact always a product, as
are the first and third terms. After passage to the clean single-valued functions, we obtain the
following version of the parity theorem in depth 3, for the clean single-valued functions.

Proposition 5.9. Let m1,m2,m3 ∈ Z>0, then we have

Licsvm1,m2,m3
(z1, z2, z3) + (−1)m1+m2+m3 Licsvm1,m2,m3

(
z−1
1 , z−1

2 , z−1
3

)
= −Licsvm1+m2,m3

(z1z2, z3) + Licsvm2+m3,m1
(z2z3, z1)

−
∑

µ+ν=m3

(
−m2

µ

)(
−m1

ν

)
Licsvm2+µ,m1+ν(z2, z1)

−
∑

µ+ν=m1

(
−m2

µ

)(
−m3

ν

)
Licsvm2+µ,m3+ν

(
z−1
2 , z−1

3

)
(−1)m2+µ+m3+ν .

6 Clean single-valued Nielsen polylogarithm Sn,2(x)

In this section, we carry out the requisite calculations necessary to explicitly write the single-
valued Nielsen polylogarithm Sn,2, and the clean version thereof. This provides the missing
derivation for a formula for svSn,2(x) already stated in [15] (the main properties of which were
however verified therein).

We recall first the definition of the Nielsen polylogarithm.

24 S. Charlton, C. Duhr and H. Gangl

Definition 6.1 (Nielsen polylogarithm Sn,p). For integers n, p ≥ 0 the Nielsen polylogarithm
Sn,p(x) is defined in terms of iterated integrals as follows

Sn,p(x) = (−1)pI(0; {1}p, {0}n;x).

Correspondingly the motivic Nielsen polylogarithm is

Sm
n,p(x) = (−1)pIm(0; {1}p, {0}n;x).

Note that, for p = 1, we have Sn,1(x) = Lin+1(x), which recovers the classical polylogarithm
as a special case.

6.1 Coproduct of Sdr
n,2(x)

We start by computing the coproduct ∆Sdr
n,2(x) = ∆Idr(0; 1, 1, {0}n;x). We first consider which

terms will contribute, and which can be ignored. We recall that each term in the coproduct
∆Idr(x0;x1, . . . , xn;xn+1) is obtained by selecting a subset S of points x0, x1, . . . , xn, xn+1, where
x0 and xn+1 are always to be included (cf. (3.1), where ij indexes the subset S in the coaction).
The intervals between these points contribute a product of integrals on the right hand side of the
coproduct, the subset itself contributes a single integral of these points on the left hand side of
the coproduct. These terms are often pictorially represented with the mnemonic of arcs joining
the vertices of a semi-circular polygon (see [35, Theorem 1.2] and the remarks thereafter).

If we do not include x1 as part of a term in the reduced coproduct ∆′, then the first point
included is either x2 which contributes Idr(x0;x1;x2) = Idr(0; 1; 1) = 0 (with the upper integra-
tion limit a tangential base-point at 1, giving the required regularisation) to the product side,
or is xk for k ≥ 3, which contributes Idr(x0;x1, . . . , xk−1;xk) = Idr(0; 1, 1, {0}•; 0) = 0 to the
product side:

0
1
1
0
0 0 0 0 0 . . .

0
0
x

. . . = 0,
0
1
1
0
0 0 0 0 0 . . .

0
0
x

. . . = 0.

Hence we must include x1 in the subset. If this is the entire subset, we obtain the following term
in ∆Sdr

n,2(x)

0
1
1
0
0 0 0 0 0 . . .

0
0
x

= Idr(0; 1;x)⊗ Idr(1; 1, {0}n;x).

Suppose now we take some point xj as the next point, and some point xk, k ≥ j as the last
point in the subset. We notice now that we must also take every point xi with j ≤ i ≤ k, else
we will contribute a term Idr(0; 0; 0) = 0 to the product side. Hence the only other terms which
contribute are of the form

0
1
1
0
0 0 0 0 0 . . .

0
0
x

Depending on whether x2 is part of the subset or not, the terms have different forms as functions,
namely

Clean Single-Valued Polylogarithms 25

0
1
1
0
. .
. 0 0 0 0

0 . . .
0
x

= Sdr
n−j,2(x)⊗

(logdr x)j

j!
for j = 1, . . . , n,

0
1
1
0
. .
. 0 0 0 0

0 . . .
0
x

= −Lidrn+2−k−j(x)⊗ ζdrk · (log
dr x)j

j!

for k ≥ 1 odd, j ≥ 0 with k + j ≤ n,

where the term Sdr
0,2(x) = Idr(0; 1, 1;x) is interpreted as 1

2!(log
dr(1− x))2 via the integral repre-

sentation of Sdr
n,2(x) and the shuffle product thereof. Recall also that the terms ζdr2k = 0 vanish

on the right hand factor of the coproduct.
Hence we obtain

∆Sdr
n,2(x) = 1⊗ Sdr

n,2(x) + Sdr
n,2(x)⊗ 1 + logdr(1− x)⊗ Idr(1; 1, {0}n;x)

−
n+1∑
k=3
k odd

n−k∑
j=0

Lidrn+2−k−j(x)⊗ ζdrk · (log
dr x)j

j!
+

n∑
j=1

Sdr
n−j,2(x)⊗

(logdr x)j

j!
.

We note moreover that via decomposition of paths and the regularisation Im
(
1; 1, {0}j−1; 0

)
= ζmj

we have

Idr(1; 1, {0}n;x) = −Lidrn+1(x) +
n+1∑
k=2

ζdrk
(logdr x)n+1−k

(n+ 1− k)!
,

which can be substituted into the above, along the additional restriction “k odd” as ζdr2k does not
contribute to the right hand factor of the coproduct. Then the summation in this term can in
fact be combined with the double-sum given above, as the j = n+ 1− k term of the inner sum,
since log(1−x) = −Li1(x). Overall we obtain (after reversing both j sums for later convenience,
and changing k = k′ + 2)

∆Sdr
n,2(x) = 1⊗ Sdr

n,2(x) + Sdr
n,2(x)⊗ 1− logdr(1− x)⊗ Lidrn+1(x)

−
n−1∑
k=1
k odd

n−k∑
j=1

Lidrj (x)⊗ ζdrk+2

(logdr x)n−k−j

(n− k − j)!
+

n−1∑
j=0

Sdr
j,2(x)⊗

(logdr x)n−j

(n− j)!
.

6.2 Antipode of Sdr
n,2(x)

Next we compute the antipode; the general recursion says

S
(
Sdr
n,2(x)

)
= −Sdr

n,2(x)−m(id⊗S)∆′Sdr
n,2(x).

The only terms appearing on the right hand side of the coproduct, whose antipode we recursively
need, are S(logdr x) = − logdr x, S(ζdrk) = −ζdrk for k odd, as odd Riemann zeta values are
primitives for ∆, and the previously computed

S
(
Lidrn (x)

)
= −Lidrn (x)−

n−1∑
k=1

(− logdr x)k

k!
Lidrn−k(x) = −

n∑
k=1

Lidrk (x)
(− logdr x)n−k

(n− k)!
,

26 S. Charlton, C. Duhr and H. Gangl

as given in (3.2). Since we have these we can directly evaluate the antipode S(Sdr
n,2(x)) to see

S
(
Sdr
n,2(x)

)
=−

n∑
j=0

Sdr
j,2(x)

(− logdr x)n−j

(n− j)!
−

n+1∑
j=1

Lidrj (x) log
dr(1− x)

(− logdr x)n+1−j

(n+ 1− j)!

−
n−1∑
k=1
k odd

n−k∑
j=1

Lidrj (x)ζ
dr
k+2

(− logdr x)n−j−k

(n− j − k)!
.

6.3 Single-valued version svm Sm
n,2(x)

From this we are in a position to write the single-valued version via

svm Sm
n,2(x) = per ◦m(F∞Σ⊗ id)∆̃Sdr

n,2(x).

We shall treat each term of the above coproduct in turn.
Firstly

per ◦m(F∞Σ⊗ id)
(
1⊗ Sdr

n,2(x)− logdr(1− x)⊗ Lidrn+1(x)
)
= Sn,2(x)− log(1− x̄) Lin+1(x).

More complicated is the term

per ◦m(F∞Σ⊗ id)

(
−

n−1∑
k=1
k odd

n−k∑
j=1

Lidrj (x)⊗ ζdrk+2

(logdr x)n−k−j

(n− k − j)!

)

=

n−1∑
k=1
k odd

n−k∑
j=1

(
(−1)j

j∑
ℓ=1

Liℓ(x̄)
(− log x̄)j−ℓ

(j − ℓ)!

)
ζk+2

logn−k−j x

(n− k − j)!
.

Now switch the order of summation between j and ℓ, then set j′ = j − ℓ in the inner-most sum.
We obtain

=

n−1∑
k=1
k odd

n−k∑
ℓ=1

(−1)ℓ Liℓ(x̄)ζk+2

n−k−ℓ∑
j=0

(log x̄)j

j!

(log x)n−k−ℓ−j

(n− k − j − ℓ)!

=
n−1∑
k=1
k odd

n−k∑
ℓ=1

(−1)ℓ Liℓ(x̄)ζk+2
(log |x|2)n−k−ℓ

(n− k − ℓ)!
.

Here we have written log x̄+ log x = log |x|2, and applied the binomial theorem to evaluate the
inner-most sum.

Finally, we can compute (note we take j = n in the sum, accounting also for the Sn,2(x)⊗ 1
term)

per ◦m(F∞Σ⊗ id)

(
n−1∑
j=0

Sdr
j,2(x)⊗

(logdr x)n−j

(n− j)!

)

= −
n∑

j=0

(−1)j

{
j∑

ℓ=0

Sℓ,2(x̄)
(− log x̄)j−ℓ

(j − ℓ)!
−

j+1∑
ℓ=1

Liℓ(x̄) log(1− x̄)
(− log x̄)j+1−ℓ

(j + 1− ℓ)!

−
j−1∑
k=1
k odd

j−k∑
ℓ=1

Liℓ(x̄)ζk+2
(− log x̄)j−ℓ−k

(j − ℓ− k)!

}
(log x)n−j

(n− j)!
.

Clean Single-Valued Polylogarithms 27

Like previously, we interchange the j and ℓ sums, or more accurately move the j sum inside
the ℓ sum for the third term. In each case, the resulting sum of j can be evaluated as a power
of log x+ log x̄ = log |x|2 via the binomial theorem. We obtain

=−
n∑

ℓ=0

(−1)ℓSℓ,2(x̄)
logn−ℓ |x|
(n− ℓ)!

+
n+1∑
ℓ=1

(−1)ℓ Liℓ(x̄) log(1− x̄)
(log |x|2)n+1−ℓ

(n+ 1− ℓ)!

+
n−1∑
k=1
k odd

n−k∑
ℓ=1

(−1)ℓ Liℓ(x̄)ζk+2
(log |x|2)n−k−ℓ

(n− k − ℓ)!
.

We note the simplification −(−1)ℓ+k = (−1)ℓ since k is odd has been used to obtain the last
term. Moreover, the resulting term is exactly the same as already obtained above.

Summing the above 3 contributions, and rewriting slightly, gives the following formula for
svm Sm

n,2(x), as stated in [15, Section 4.3]. Namely

svm Sm
n,2(x) =

(
Sn,2(x) + (−1)n+1Sn,2(x̄)

)
− log(1− x̄)

(
Lin+1(x) + (−1)n Lin+1(x̄)

)
−

n−1∑
j=0

(−1)j

(n− j)!
logn−j |x|2

(
Sj,2(x̄) + log(1− x̄) Lij+1(x̄)

)
+

n−1∑
k=1
k odd

n−k∑
j=1

2(−1)jζk+2

(n− j − k)!
Lij(x̄) log

n−j−k |x|2.

6.4 Clean version of Sn,2(x)

We also briefly repeat the calculation of ΠSdr
n,2(x), which was completed in detail in [15]. Here we

proceed directly via the already calculated coproduct of Sdr
n,2(x), whereas the calculation in [15]

was reduced to an analysis of which terms contribute in the infinitesimal coproduct. From (4.3),
we have

D
(
Sdr
n,2(x)

)
= (n+ 2)Sdr

n,2(x)−m(id⊗(Y ·Π))∆′Sdr
n,2.

Again, because of the projector in the second tensor factor, we are free to ignore all products in
the coproduct while evaluating this. From the calculation above of ∆Sdr

n,2(x), we have

∆′Sdr
n,2(x) ≡ − logdr(1− x)⊗ Lidrn+1(x)−

n−1∑
k=1
k odd

Lidrn−k(x)⊗ ζdrk+2

+ Sdr
n−1,2(x)⊗ logdr x (mod right-⊗-factor products).

Hence

ΠSdr
n,2(x) = Sdr

n,2(x)−
1

n+ 2
m(id⊗(Y ·Π))

(
∆′Sdr

n,2(x)
)

= Sdr
n,2(x)− Sdr

n−1,2(x)
logdr x

n+ 2
+
n+ 1

n+ 2
logdr(1− x) Lidrn+1(x)

− 1

n+ 2
logdr(1− x) logdr(x) Lidrn (x)

+
n−1∑
k=1
k odd

k + 2

n+ 2
ζdrk+2 Li

dr
n−k(x).

Here we have applied the result that ΠLidrn (x) = Lidrn (x) − 1
n logdr xLidrn−1(x), which can be

obtained from (5.1). Likewise, we have also used that Πζdr2k+1 = ζdr2k+1, since ζ
dr
2k+1 is a primitive

for the coproduct.

28 S. Charlton, C. Duhr and H. Gangl

6.5 Clean single-valued Sn,2(x)

Application of the period and the single-valued map to the expression ΠSdr
n,2(x), using the

previous computations of the single-valued versions of Lidrn (x) and ζdr2k+1, and the computation
of Sdr

n,2(x) directly above gives us an expression for RSdr
n,2(x). We can then define the clean

single-valued version of Sdr
n,2.

Definition 6.2. The clean single-valued Nielsen polylogarithm Scsv
n,2(x) is defined by Scsv

n,2(x) :=
RnRSdr

n,2(x), where RSn,2(x) is as follows

RSdr
n,2(x) =

(
Sn,2(x)− (−1)n+2Sn,2(x̄)

)
− log |x|2

n+ 2

(
Sn−1,2(x) + log(1− x) Lin(x)

)
+

1

n+ 2

(
(n+ 1) log(1− x)− log(1− x̄)

)(
Lin+1(x)− (−1)n+1 Lin+1(x̄)

)
+

n∑
j=1

(−1)j

n+2

{
(j + 1)Sj−1,2(x̄)−

(
j log(1−x)−log(1−x̄)

)
Lij(x̄)

} logn−j+1 |x|2

(n− j + 1)!

+
n−1∑
k=1
k odd

2ζk+2

n+ 2

{
(k + 2)Lin−k(x) +

n−k∑
j=1

j(−1)j
logn−j−k |x|2

(n− j − k)!
Lij(x̄)

}
.

These clean single-valued functions (or more precisely the version without Rn, which still
satisfies Theorem 1.1) are used in [15] to obtain numerically verifiable identities and reductions
for Nielsen polylogarithms, including numerical results on their special values.

7 Numerical evaluations

In this last section, we derive a few numerical evaluations of depth 2 MPL’s through use of
the clean single-valued functions. These evaluations would perhaps otherwise not be obtainable
in such a straightforward manner. For the sake of simplicity, we restrict to one identity in
weight 4 and one in weight 5 obtained from the 2-term symmetry of I3,1 relating I3,1(x, y) and
I3,1(1− x, y) and a similar identity for I4,1(x, y). Further treatment of special values of Nielsen
polylogarithms

(
in particular S3,2 at elements of the weight 2 Bloch group, such as S3,2(ϕ) for

ϕ = 1+
√
5

2

)
which were obtained from this clean single-valued procedure, can be found in [15].

7.1 Weight 4

We recall first an identity that “reduces a depth 2 combination to depth 1”, which was pre-
dicted by Goncharov, with Li4-terms first made explicit in [27]. For the following, we note that
Licsv4 (x) = Icsv4 (x), because of the symbol level identity Li4(x) = I4(x) modulo products.

Proposition 7.1. The following identity of clean single-valued functions holds

Icsv3,1 (1− x, y) + Icsv3,1 (x, y)

= Licsv4

(1− x

1− y

)
− Licsv4

(1− y

x

)
− 3Licsv4

(y

1− x

)
− 3Licsv4

(y
x

)
+ Licsv4

(y

y − 1

)
− 1

2
Licsv4

((1− x)y

x(1− y)

)
− 1

2
Licsv4

(xy

(1− x)(1− y)

)
+

1

2
Licsv4

((1− y)y

(1− x)x

)
.

Proof. As indicated above, a (slight variant of the) corresponding identity was given in [27]
on the level of the symbol modulo products, and with Icsv3,1 and Licsv4 replaced by I3,1 and Li4.
Hence the difference of the two sides in the equation stated above is a constant by Theorem 1.1.

Clean Single-Valued Polylogarithms 29

This constant must be 0 since each side vanishes on the real line, as we take the imaginary part
in the definition of the functions. ■

Taking x = 1
2 , y = i (any non-real y will also give a reduction) in the above identity leads to

2Icsv3,1

(1
2
, i
)
=− Licsv4

(−1 + i

2

)
− 6Licsv4 (2i) + Licsv4

(1 + i

4

)
+ Licsv4

(1− i

2

)
− Licsv4 (2− 2i) +

1

2
Licsv4 (4 + 4i).

One can apply the inversion relation Licsv4 (x) = −Licsv4

(
x−1

)
, and the inversion relation (with

x = 1
2 , y = i) from Proposition 5.7, namely

Icsv3,1 (2,−i)− Icsv3,1

(1
2
, i
)
= Licsv4 (i)− 3Licsv4

(
− i

2

)
− Licsv4

(1
2

)
,(

wherein Licsv4

(
1
2

)
= 0 as we take the imaginary part

)
to obtain

2Icsv3,1 (2,−i) = − Licsv4

(−1 + i

2

)
+ 2Licsv4 (i)− 1

2
Licsv4

(1− i

8

)
+ 2Licsv4

(1 + i

4

)
+ Licsv4

(1− i

2

)
.

It is possible to compute explicitly how Icsv3,1 (x, y) is expressed using the classical polylogarithms
and iterated integrals (an implementation is available in the PolyLogTools package [22]). One
then obtains that

2Icsv3,1 (2,−i) = Im

[
4Li3,1

(
− i

2
, i
)
+ 4 log 2Li2,1

(
− i

2
, i
)
+ 2ζ2 Li2(i)

−
(
2Li2

(2 + i

5

)
− 2Li2

(4 + 2i

5

)
+ log

(4 + 3i

5

)
log 2

)
log2 2

]
− π

8

(
Li3

(
−1

4

)
+ 2Li2

(
−1

4

)
log 2 + 4 log3 2− 2 log 5 log2 2

)
,

with

Lim1,m2(x, y) = Im1,m2

(1

xy
,
1

y

)
=

∑
0<n1<n2

xn1yn2

nm1
1 nm2

2

.

Likewise the Licsv4 combination evaluates to

= Im

[
2Li4

(1 + i

2

)
− 4Li4

(1 + i

4

)
− Li4

(1 + i

8

)
− 4Li4(i) + 2Li4

(−1 + i

2

)
+
(
Li3

(−1 + i

2

)
− 5

2
Li3

(1 + i

8

)
− 6Li3

(1 + i

4

)
+ Li3

(1 + i

2

))
log 2

+
(
Li2(i)−

9

2
Li2

(1 + i

4

)
− 25

8
Li2

(1 + i

8

)
+

1

4
Li2

(−1 + i

2

))
log2 2

+
1

96

(
−2iπ + 106 log

(4− 3i

5

)
+ 125 log

(24− 7i

25

))
log3 2

]
.

By equating these two results, one obtains an explicit reduction for the value Im
(
Li3,1

(
− i

2 , i
))

in terms lower depth and products.
(
Moreover, the depth 2 term Li2,1

(
− i

2 , i
)
is expressible

purely in terms of Li3 and products, via the known reduction of all weight 3 MPL’s to depth 1.
This is essentially a consequence of [46, Appendix A.3.5(2)], subsequently also re-established
in [39].)

30 S. Charlton, C. Duhr and H. Gangl

Utilising a well-known lattice reduction algorithm (“LLL”), we can find the following simpler
numerically checked reduction

Li3,1

(
− i

2
, i
)
+ log 2Li2,1

(
− i

2
, i
)

?
= Im

[
3Li4(i) + 28Li4

(1 + i

2

)
− 36Li4

(−1 + i

2

)
+ 14Li3

(1 + i

2

)
log 2

− 18Li3

(−1 + i

2

)
log 2 +

(5
2
log2 2− 1

2
ζ2

)
Li2(i)− 3Li2

(−1 + i

2

)
log2 2

]
+

π

32
Li3

(
−1

4

)
+

π

16
Li2

(
−1

4

)
log 2− 7π

24
log3 2,

where
?
= indicates that this is a conjectural identity checked to several hundreds of digits. One

also notices the following relation amongst the Licsv4 terms above

37Licsv4

(−1+ i

2

)
− 36Licsv4 (i) +

1

2
Licsv4

(1− i

8

)
− 6Licsv4

(1+ i

4

)
− 21Licsv4

(1− i

2

)
?
= 0.

7.2 Weight 5

An identity analogous to the one given in the previous subsection, but now in weight 5, needs
four terms in depth 2 and has been given in [14].

The corresponding clean single-valued identity is as follows. Again, the symbol level identity
Li5(x) = −I5(x), modulo products, implies that Licsv5 (x) = −Icsv5 (x).)

Proposition 7.2. The following identity holds for the clean single-valued functions

1

2

(
Icsv4,1 (x, y) + Icsv4,1

(
x, y−1

))
+

1

2

(
Icsv4,1 (1− x, y) + Icsv4,1

(
1− x, y−1

))
=

1

12
Licsv5

(x2y

(1− x)(1− y)2

)
+

1

12
Licsv5

((1− x)2y

x(1− y)2

)
+

1

6
Licsv5

((1− x)xy2

y − 1

)
+

1

6
Licsv5

((1− y)y

(1− x)x

)
− 1

2
Licsv5

(1− x

x(y − 1)

)
− 1

2
Licsv5

(xy

(1− x)(1− y)

)
− 1

2
Licsv5

((1− x)(1− y)

−x

)
− 1

2
Licsv5

((1− x)y

x(1− y)

)
− 7

4
Licsv5

(y

1− x

)
− 7

4
Licsv5 ((1− x)y)− 7

4
Licsv5

(y
x

)
− 7

4
Licsv5 (xy)

− Licsv5

(1− y

x

)
− Licsv5

(1− x

1− y

)
− Licsv5

((1− x)y

y − 1

)
− Licsv5

(xy

y − 1

)
+

1

2
Licsv5 (1− x) +

1

2
Licsv5

(1
x

)
+ Licsv5

(x− 1

x

)
+ Licsv5

(1

1− y

)
+ Licsv5

(y

y − 1

)
− 2ζ5.

Proof. We infer this result from the exact same identity, where Icsv4,1 and Licsv5 have been replaced
by I4,1 and Li5, respectively, and 2ζ5 removed, which was proved (on the level of the symbol,
and modulo products) in [13] (a slight variant thereof) and [14]. From the previous machinery,
the identity now follows, up to a constant c on the right hand side. Taking x = 1, y = 1 leads to

Icsv4,1 (0, 1) + Icsv4,1 (1, 1) = −3Licsv5 (1) + c,

wherein the terms Licsv5 (0) = 0 = Licsv5 (∞) have disappeared. From the shuffle identity

Icsv4,1 (0, 1) = Icsv(0; 0, 0, 0, 0, 1; 1) = Icsv(0; 1, 0, 0, 0, 0; 1) = −Licsv5 (1) = −2ζ5,

Clean Single-Valued Polylogarithms 31

and the evaluations Licsv5 (1) = −Icsv5 (1) = 2ζ5, and I
csv
4,1 (1, 1) =

(
−
(
5
4

)
− 1
)
ζ5 = −6ζ5 from (5.2),

Corollary 5.2 and Proposition 5.6, we see

c = (−2− 6 + 6)ζ5 = −2ζ5,

as claimed. ■

Now set x = 1
2 , y = −1 in this identity (and apply the inversion results Licsv5 (x) = Licsv5

(
x−1

)
and Icsv4,1 (2,−1)+ Icsv4,1

(
1
2 ,−1

)
= −Licsv5 (−1)−4Licsv5

(
−1

2

)
−Licsv5

(
1
2

)
from Proposition 5.7), and

we obtain

Icsv4,1 (2,−1) = −3

2
Licsv5 (−1) + 5ζ5 +

1

2
Licsv5

(
−1

2

)
− 1

4
Licsv5

(
−1

8

)
+ 2Licsv5

(1
4

)
− 5

2
Licsv5

(1
2

)
.

Using the duplication relation

Licsv5

(1
4

)
= 16Licsv5

(
−1

2

)
+ 16Licsv5

(1
2

)
and that Licsv5 (−1) = −15

16 Li
csv
5 (1), we can simplify this as

Icsv4,1 (2,−1) =
61

16
ζ5 +

65

2
Licsv5

(
−1

2

)
− 1

4
Licsv5

(
−1

8

)
+

59

2
Licsv5

(1
2

)
.

From the implementation in PolyLogTools, we find

Icsv4,1 (2,−1) = 2Li4,1

(
−1

2
,−1

)
+ 2Li3,1

(
−1

2
,−1

)
log 2 +

6

5
Li2,1

(
−1

2
,−1

)
log2 2

+ 2Li4

(1
2

)
log 2− 4

5
Li3

(
−1

2

)
log2 2− 28

15
Li2

(
−1

2

)
log3 2

+
39

20
ζ3 log

2 2 +
3

4
ζ2ζ3 −

14

15
ζ2 log

3 2− 16

15
log5 2 +

16

15
log4 2 log 3.

Likewise, the Licsv5 terms evaluate as

61

16
ζ5 +

65

2
Licsv5

(
−1

2

)
− 1

4
Licsv5

(
−1

8

)
+

59

2
Licsv5

(1
2

)
= 65Li5

(
−1

2

)
− 5

2
Li5
(
−1

8

)
+ 59Li5

(1
2

)
+ 65Li4

(
−1

2

)
log 2

− 3

2
Li4

(
−1

8

)
log 2 + 59Li4

(1
2

)
log 2− 27

10
Li3

(
−1

8

)
log2 2

+ 39Li3

(
−1

2

)
log2 2 +

52

3
Li2

(
−1

2

)
log3 2− 18

5
Li2

(
−1

8

)
log3 2

+
61

16
ζ5 +

1239

40
ζ3 log

2 2− 59

6
ζ2 log

3 2 +
16

15
log4 2 log 3− 9

5
log5 2.

Equating these two results gives an evaluation for Li4,1
(
−1

2 ,−1
)
in terms of products and lower

depth.
Application of the lattice reduction algorithm “LLL” on the set of arising values (after also

introducing ζ4 log 2) leads to the following simpler candidate reduction for Li4,1
(
−1

2 ,−1
)
alone

Li4,1

(
−1

2
,−1

)
?
= − 2Li5

(1
2

)
− 8Li5

(
−1

2

)
− 2Li4

(
−1

2

)
log 2

− 281

64
ζ5 −

3

8
ζ2ζ3 +

31

16
ζ4 log 2 +

3

8
ζ3 log

2 2− 1

4
ζ2 log

3 2 +
1

24
log5 2,

32 S. Charlton, C. Duhr and H. Gangl

along with a similar reduction for Li3,1
(
−1

2 ,−1
)

Li3,1

(
−1

2
,−1

)
?
= − 3Li4

(1
2

)
− 6Li4

(
−1

2

)
− 2Li3

(
−1

2

)
log 2

− 31

16
ζ4 +

3

4
ζ2 log

2 2− 3

4
ζ3 log 2−

5

24
log4 2.

Acknowledgements

We are grateful to Falko Dulat for early collaboration on this project. We would like to thank the
MITP in Mainz, where this work was started, and the HIM in Bonn and the GGI Florence for
hospitality where part of this work was developed. We are particularly grateful to the organisers
of the workshop on “Modular forms, periods and scattering amplitudes” at the ETH Zürich in
April 2019, where some of our results had been first presented. In particular, we are grateful
to Francis Brown and Erik Panzer for pointing out the relevance of the Dynkin operator in the
construction of the clean single-valued analogues of multiple polylogarithms. SC is grateful to
the Max-Planck-Institut für Mathematik in Bonn, for support, hospitality and excellent working
conditions during his stay, where some of this work was undertaken. SC was also partially
supported by DFG Eigene Stelle grant CH 2561/1-1, for Projektnummer 442093436.

References

[1] Abel N.H., Œuvres complètes. Tome I, Éditions Jacques Gabay, Sceaux, 1992, Reprint of the second (1881)
edition.

[2] Ablinger J., Blümlein J., Round M., Schneider C., Numerical implementation of harmonic polylogarithms
to weight w = 8, Comput. Phys. Comm. 240 (2019), 189–201, arXiv:1809.07084.

[3] Ablinger J., Blümlein J., Schneider C., Harmonic sums and polylogarithms generated by cyclotomic poly-
nomials, J. Math. Phys. 52 (2011), 102301, 52 pages, arXiv:1105.6063.

[4] Ablinger J., Blümlein J., Schneider C., Analytic and algorithmic aspects of generalized harmonic sums and
polylogarithms, J. Math. Phys. 54 (2013), 082301, 74 pages, arXiv:1302.0378.

[5] Bloch S.J., Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, CRM Monograph
Series, Vol. 11, Amer. Math. Soc., Providence, RI, 2000.

[6] Borwein D., Borwein J.M., Bradley D.M., Parametric Euler sum identities, J. Math. Anal. Appl. 316 (2006),
328–338, arXiv:math.CA/0505058.

[7] Brown F., Polylogarithmes multiples uniformes en une variable, C. R. Math. Acad. Sci. Paris 338 (2004),
527–532.

[8] Brown F., Single-valued hyperlogarithms and unipotent differential equations, 2004, available at http:

//www.ihes.fr/~brown/RHpaper5.pdf.

[9] Brown F., Mixed Tate motives over Z, Ann. of Math. 175 (2012), 949–976, arXiv:1102.1312.

[10] Brown F., On the decomposition of motivic multiple zeta values, in Galois–Teichmüller Theory and Arith-
metic Geometry, Adv. Stud. Pure Math., Vol. 63, Math. Soc. Japan, Tokyo, 2012, 31–58, arXiv:1102.1310.

[11] Brown F., Single-valued motivic periods and multiple zeta values, Forum Math. Sigma 2 (2014), e25,
37 pages, arXiv:1309.5309.

[12] Brown F., Notes on motivic periods, Commun. Number Theory Phys. 11 (2017), 557–655, arXiv:1512.06410.

[13] Charlton S., Identities arising from coproducts on multiple zeta values and multiple polylogarithms,
Ph.D. Thesis, University of Durham, 2016, available at http://etheses.dur.ac.uk/11834/.

[14] Charlton S., Gangl H., Radchenko D., Explicit formulas for Grassmannian polylogarithms, arXiv:1909.13869.

[15] Charlton S., Gangl H., Radchenko D., On functional equations for Nielsen polylogarithms, Commun. Number
Theory Phys. 15 (2021), 363–454, arXiv:1908.04770.

[16] Chen K.T., Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), 831–879.

[17] de Jeu R., Describing all multivariable functional equations of dilogarithms, arXiv:2007.11014.

https://doi.org/10.1016/j.cpc.2019.02.005
https://arxiv.org/abs/1809.07084
https://doi.org/10.1063/1.3629472
https://arxiv.org/abs/1105.6063
https://doi.org/10.1063/1.4811117
https://arxiv.org/abs/1302.0378
https://doi.org/10.1090/crmm/011
https://doi.org/10.1016/j.jmaa.2005.04.040
https://arxiv.org/abs/math.CA/0505058
https://doi.org/10.1016/j.crma.2004.02.001
http://www.ihes.fr/~brown/RHpaper5.pdf
http://www.ihes.fr/~brown/RHpaper5.pdf
https://doi.org/10.4007/annals.2012.175.2.10
https://arxiv.org/abs/1102.1312
https://doi.org/10.2969/aspm/06310031
https://arxiv.org/abs/1102.1310
https://doi.org/10.1017/fms.2014.18
https://arxiv.org/abs/1309.5309
https://doi.org/10.4310/CNTP.2017.v11.n3.a2
https://arxiv.org/abs/1512.06410
http://etheses.dur.ac.uk/11834/
https://arxiv.org/abs/1909.13869
https://doi.org/10.4310/CNTP.2021.v15.n2.a4
https://doi.org/10.4310/CNTP.2021.v15.n2.a4
https://arxiv.org/abs/1908.04770
https://doi.org/10.1090/S0002-9904-1977-14320-6
https://arxiv.org/abs/2007.11014

Clean Single-Valued Polylogarithms 33

[18] Del Duca V., Druc S., Drummond J., Duhr C., Dulat F., Marzucca R., Papathanasiou G., Verbeek B.,
Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, J. High Energy
Phys. 2016 (2016), no. 8, 152, 103 pages, arXiv:1606.08807.

[19] Deligne P., Le groupe fondamental de la droite projective moins trois points, in Galois Groups over Q
(Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., Vol. 16, Springer, New York, 1989, 79–297.

[20] Duhr C., Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, J. High Energy
Phys. 2012 (2012), no. 8, 043, 46 pages, arXiv:1203.0454.

[21] Duhr C., Scattering amplitudes, Feynman integrals and multiple polylogarithms, in Journeys Through the
Precision Frontier: Amplitudes for Colliders (Boulder, Colorado, June 2–27, 2014), World Scientific, 2015,
419–476, arXiv:1411.7538.

[22] Duhr C., Dulat F., PolyLogTools – polylogs for the masses, J. High Energy Phys. 2019 (2019), no. 8, 135,
56 pages, arXiv:1904.07279.

[23] Duhr C., Gangl H., Rhodes J.R., From polygons and symbols to polylogarithmic functions, J. High Energy
Phys. 2012 (2012), no. 8, 075, 78 pages, arXiv:1110.0458.

[24] Gangl H., Families of functional equations for polylogarithms, in Algebraic K-Theory (Poznań, 1995),
Contemp. Math., Vol. 199, Amer. Math. Soc., Providence, RI, 1996, 83–105.

[25] Gangl H., Some computations in weight 4 motivic complexes, in Regulators in Analysis, Geometry and
number Theory, Progr. Math., Vol. 171, Birkhäuser Boston, Boston, MA, 2000, 117–125.

[26] Gangl H., Functional equations for higher logarithms, Selecta Math. (N.S.) 9 (2003), 361–377,
arXiv:math.KT/0207222.

[27] Gangl H., Multiple polylogarithms in weight 4, arXiv:1609.05557.

[28] Gehrmann T., Remiddi E., Numerical evaluation of harmonic polylogarithms, Comput. Phys. Comm. 141
(2001), 296–312, arXiv:hep-ph/0107173.

[29] Gehrmann T., Remiddi E., Two loop master integrals for γ∗ → 3 jets: the planar topologies, Nuclear
Phys. B 601 (2001), 248–286, arXiv:hep-ph/0008287.

[30] Gehrmann T., Remiddi E., Numerical evaluation of two-dimensional harmonic polylogarithms, Comput.
Phys. Comm. 144 (2002), 200–223, arXiv:hep-ph/0111255.

[31] Golden J., Goncharov A.B., Spradlin M., Vergu C., Volovich A., Motivic amplitudes and cluster coordinates,
J. High Energy Phys. 2014 (2014), no. 1, 091, 56 pages, arXiv:1305.1617.

[32] Goncharov A.B., Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114
(1995), 197–318.

[33] Goncharov A.B., Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998),
497–516, arXiv:1105.2076.

[34] Goncharov A.B., Multiple polylogarithms and mixed Tate motives, arXiv:math.AG/0103059.

[35] Goncharov A.B., Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J.
128 (2005), 209–284, arXiv:math.AG/0208144.

[36] Goncharov A.B., Exponential complexes, period morphisms, and characteristic classes, Ann. Fac. Sci.
Toulouse Math. (6) 25 (2016), 619–681, arXiv:1510.07270.

[37] Goncharov A.B., Rudenko D., Motivic correlators, cluster varieties, and Zagier’s conjecture on ζF (4),
arXiv:1803.08585.

[38] Grothendieck A., On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math.
29 (1966), 95–103.

[39] Kellerhals R., Volumes in hyperbolic 5-space, Geom. Funct. Anal. 5 (1995), 640–667.

[40] Kreimer D., Renormalization & renormalization group, Lecture Notes by Lutz Klaczynski, 2013, available
at https://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/SkriptRGE.pdf.

[41] Kummer E.E., Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entste-
hen, J. Reine Angew. Math. 21 (1840), 74–90.

[42] Kummer E.E., Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entste-
hen (Fortsetzung), J. Reine Angew. Math. 21 (1840), 193–225.

[43] Kummer E.E., Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entste-
hen (Fortsetzung), J. Reine Angew. Math. 21 (1840), 328–371.

[44] Lappo-Danilevsky J.A., Théorie algorithmique des corps de Riemann, Mat. Sb. 34 (1927), 113–148.

https://doi.org/10.1007/JHEP08(2016)152
https://doi.org/10.1007/JHEP08(2016)152
https://arxiv.org/abs/1606.08807
https://doi.org/10.1007/978-1-4613-9649-9_3
https://doi.org/10.1007/JHEP08(2012)043
https://doi.org/10.1007/JHEP08(2012)043
https://arxiv.org/abs/1203.0454
https://doi.org/10.1142/9789814678766_0010
https://arxiv.org/abs/1411.7538
https://doi.org/10.1007/jhep08(2019)135
https://arxiv.org/abs/1904.07279
https://doi.org/10.1007/JHEP10(2012)075
https://doi.org/10.1007/JHEP10(2012)075
https://arxiv.org/abs/1110.0458
https://doi.org/10.1090/conm/199/02474
https://doi.org/10.1007/978-1-4612-1314-7_5
https://doi.org/10.1007/s00029-003-0312-z
https://arxiv.org/abs/math.KT/0207222
https://arxiv.org/abs/1609.05557
https://doi.org/10.1016/S0010-4655(01)00411-8
https://arxiv.org/abs/hep-ph/0107173
https://doi.org/10.1016/S0550-3213(01)00057-8
https://doi.org/10.1016/S0550-3213(01)00057-8
https://arxiv.org/abs/hep-ph/0008287
https://doi.org/10.1016/S0010-4655(02)00139-X
https://doi.org/10.1016/S0010-4655(02)00139-X
https://arxiv.org/abs/hep-ph/0111255
https://doi.org/10.1007/JHEP01(2014)091
https://arxiv.org/abs/1305.1617
https://doi.org/10.1006/aima.1995.1045
https://doi.org/10.4310/MRL.1998.v5.n4.a7
https://arxiv.org/abs/1105.2076
https://arxiv.org/abs/math.AG/0103059
https://doi.org/10.1215/S0012-7094-04-12822-2
https://arxiv.org/abs/math.AG/0208144
https://doi.org/10.5802/afst.1507
https://doi.org/10.5802/afst.1507
https://arxiv.org/abs/1510.07270
https://arxiv.org/abs/1803.08585
https://doi.org/10.1007/BF02684807
https://doi.org/10.1007/BF01902056
https://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/SkriptRGE.pdf
https://doi.org/10.1515/crll.1840.21.74
https://doi.org/10.1515/crll.1840.21.193
https://doi.org/10.1515/crll.1840.21.328

34 S. Charlton, C. Duhr and H. Gangl

[45] Leibniz G.W., Mathematische Schriften. Bd. III/1: Briefwechsel zwischen Leibniz, Jacob Bernoulli, Johann
Bernoulli und Nicolaus Bernoulli, Herausgegeben von C.I. Gerhardt, Georg Olms Verlagsbuchhandlung,
Hildesheim, 1962.

[46] Lewin L., Polylogarithms and associated functions, North-Holland Publishing Co., New York – Amsterdam,
1981.

[47] Lobatschewsky N., Géométrie imaginaire, J. Reine Angew. Math. 17 (1837), 295–320.

[48] Manchon D., Hopf algebras, from basics to applications to renormalization, arXiv:math.QA/0408405.

[49] Panzer E., The parity theorem for multiple polylogarithms, J. Number Theory 172 (2017), 93–113,
arXiv:1512.04482.

[50] Patras F., Dynkin operators and renormalization group actions in pQFT, in Vertex Operator Alge-
bras and Related Areas, Contemp. Math., Vol. 497, Amer. Math. Soc., Providence, RI, 2009, 169–184,
arXiv:0811.4087.

[51] Patras F., Reutenauer C., On Dynkin and Klyachko idempotents in graded bialgebras, Adv. in Appl. Math.
28 (2002), 560–579.

[52] Radchenko D., Higher cross-ratios and geometric functional equations for polylogarithms, Ph.D. Thesis,
Bonn University, 2016, available at https://hdl.handle.net/20.500.11811/6872.

[53] Ramakrishnan D., Analogs of the Bloch–Wigner function for higher polylogarithms, in Applications of
Algebraic K-Theory to Algebraic Geometry and Number Theory, Part I, II (Boulder, Colo., 1983), Contemp.
Math., Vol. 55, Amer. Math. Soc., Providence, RI, 1986, 371–376.

[54] Remiddi E., Vermaseren J.A.M., Harmonic polylogarithms, Internat. J. Modern Phys. A 15 (2000), 725–754,
arXiv:hep-ph/9905237.

[55] Reutenauer C., Free Lie algebras, London Mathematical Society Monographs. New Series, Vol. 7, The Claren-
don Press, Oxford University Press, New York, 1993.

[56] Spradlin M., Volovich A., Symbols of one-loop integrals from mixed Tate motives, J. High Energy Phys.
2011 (2011), no. 11, 084, 12 pages, arXiv:1105.2024.

[57] ’t Hooft G., Veltman M., Regularization and renormalization of gauge fields, Nuclear Phys. B 44 (1972),
189–213.

[58] Vollinga J., Weinzierl S., Numerical evaluation of multiple polylogarithms, Comput. Phys. Comm. 167
(2005), 177–194, arXiv:hep-ph/0410259.

[59] Wojtkowiak Z., A construction of analogs of the Bloch–Wigner function, Math. Scand. 65 (1989), 140–142.

[60] Wojtkowiak Z., The basic structure of polylogarithmic functional equations, in Structural Properties of
Polylogarithms, Math. Surveys Monogr., Vol. 37, Amer. Math. Soc., Providence, RI, 1991, 205–231.

[61] Wojtkowiak Z., Functional equations of iterated integrals with regular singularities, Nagoya Math. J. 142
(1996), 145–159.

[62] Zagier D., Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields, in Arithmetic
Algebraic Geometry (Texel, 1989), Progr. Math., Vol. 89, Birkhäuser Boston, Boston, MA, 1991, 391–430.

[63] Zhao J., Multiple zeta functions, multiple polylogarithms and their special values, Series on Number Theory
and its Applications, Vol. 12, World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2016.

https://doi.org/10.1515/crll.1837.17.295
https://arxiv.org/abs/math.QA/0408405
https://doi.org/10.1016/j.jnt.2016.08.004
https://arxiv.org/abs/1512.04482
https://doi.org/10.1090/conm/497/09777
https://arxiv.org/abs/0811.4087
https://doi.org/10.1006/aama.2001.0795
https://hdl.handle.net/20.500.11811/6872
https://doi.org/10.1090/conm/055.1/862642
https://doi.org/10.1142/S0217751X00000367
https://arxiv.org/abs/hep-ph/9905237
https://doi.org/10.1007/JHEP11(2011)084
https://arxiv.org/abs/1105.2024
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/j.cpc.2004.12.009
https://arxiv.org/abs/hep-ph/0410259
https://doi.org/10.7146/math.scand.a-12272
https://doi.org/10.1090/surv/037/10
https://doi.org/10.1017/S0027763000005675
https://doi.org/10.1007/978-1-4612-0457-2_19
https://doi.org/10.1142/9634

	1 Introduction
	1.1 Background and first definitions
	1.2 Identities among polylogarithms
	1.3 Clean single-valued polylogarithms and their identities

	2 Graded connected Hopf algebras and the Dynkin operator
	2.1 The convolution product
	2.2 The grading operator and the Dynkin operator

	3 Review of motivic polylogarithms
	3.1 Motivic and de Rham periods
	3.2 Single-valued projection

	4 Clean single-valued polylogarithms
	4.1 Definition
	4.2 Elementary properties of clean single-valued polylogarithms
	4.2.1 Shuffle products, path composition and reversal
	4.2.2 Reversal of arguments
	4.2.3 Unshuffling of leading zeros

	4.3 Recursion and the total holomorphic differential of I^{csv}

	5 Examples in small depths
	5.1 Results in depth 1
	5.2 Results in depth 2
	5.3 Results in depth 3

	6 Clean single-valued Nielsen polylogarithm S_{n,2}(x)
	6.1 Coproduct of S^{dr}_{n,2}(x)
	6.2 Antipode of S^{dr}_{n,2}(x)
	6.3 Single-valued version sv^m S^m_{n,2}(x)
	6.4 Clean version of S_{n,2}(x)
	6.5 Clean single-valued S_{n,2}(x)

	7 Numerical evaluations
	7.1 Weight 4
	7.2 Weight 5

	References

