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ABSTRACT
The Material Point Method (MPM) is widely used to analyse coupled (solid-water) problems under large deformations/
displacements. However, if not addressed carefully, MPM u-p formulations for poromechanics can be affected by two major sources
of instability. Firstly, inf-sup condition violation can arise when the spaces for the displacement and pressure fields are not chosen
correctly, resulting in an unstable pressure field when the equations are monolithically solved. Secondly, the intrinsic nature of
particle-based discretisation makes the MPM an unfitted mesh-based method, which can affect the system’s condition number and
solvability, particularly when background mesh elements are poorly populated. This work proposes a solution to both problems.
The inf-sup condition is avoided using two overlapping meshes, a coarser one for the pressure and a finer one for the displace-
ment. This approach does not require stabilisation of the primary equations since it is stable by design and is particularly valuable
for low-order shape functions. As for the system’s poor condition number, a face ghost penalisation method is added to both the
primary equations, which constitutes a novelty in the context of MPM mixed formulations. This study frequently makes use of
the theories of functional analysis or the unfitted Finite Element Method (FEM). Although these theories may not directly apply
to the MPM, they provide a robust and logical basis for the research. These rationales are further supported by four numerical
examples, which encompass both elastic and elasto-plastic cases and drained and undrained conditions.

1 | Introduction

Since its initial publications [1, 2], the Material Point Method
(MPM) has become a widely used method for modelling solid
materials undergoing extreme deformations while maintaining
a Lagrangian description of the equations. This versatility has
been tested in several engineering applications, including snow
avalanches [3, 4], ice dynamics [5, 6], slope stability [7, 8], soft
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robots [9], and biomedical applications [10], to name a few. How-
ever, the MPM has also been appreciated beyond its engineering
purposes, especially in computer graphics simulations [11, 12].

Among the different applications, fields such as geotechnics and
biomechanics deal with porous solid materials, whose mechan-
ical behaviour is strongly influenced by the presence of an
interstitial fluid. These materials are the subject of the study
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of poromechanics [13]. MPM-based analyses investigating the
behaviour of these materials have dramatically increased in the
last few years, as the recent review papers by Zheng et al. [14] and
Ceccato et al. [15] demonstrate. The choices available to run these
studies are numerous, and they can be grouped into three main
categories (see, in this regard, Soga et al. [16]), which depends on:
(i) the selected primary variables; (ii) the number of sets of Mate-
rial Points (MPs); and (iii) the temporal discretisation (explicit vs.
implicit schemes).

The use of different primary equations, point (i), distinguishes
between 𝒖 − 𝑝(𝑓 ), 𝒗 −𝒘, and 𝒖 − 𝑝(𝑓 ) −𝒘 formulations, where
these formulations are labelled after the name of the primary
unknowns (𝒖 or 𝒗 is the displacement or velocity of the solid body,
𝑝(𝑓 ) is the fluid pressure, and 𝒘 the fluid velocity).

Since MPM formulations are based on a point-based discretisa-
tion (these are indeed the MPs), it is possible to choose how
many sets of MPs can be employed in a poro-mechanical simu-
lation (point (ii) of the above). In one case, one set of MPs can be
considered, simultaneously keeping track of both phases of the
mixed body. In the other, the solid and the fluid phases are sep-
arately represented by two sets of MPs. The best application of
each combination of primary variables and the number of MP sets
firmly depends upon the considered problem, and assessing these
is beyond the scope of this work, which adopts a one-set 𝒖 − 𝑝(𝑓 )

formulation. The reader interested in a detailed explanation and
classification of the above options can refer to these recent theses
and references therein [17–19].

Point (iii) concerns the chosen temporal discretisation, which
divides explicit from implicit formulations. On the one hand,
explicit formulations (see, e.g., [20, 21]) are straightforward to
implement, but their stable time-step selection is bounded (see
[16]). Moreover, these schemes do not require updating of vari-
ables simultaneously and can, therefore, employ fractional-step
(or staggered) schemes. Conversely, implicit schemes (see, e.g.,
[22]) are more computationally expensive and burdensome
implementation-wise, but they can deal with larger time steps.
These formulations employ monolithic solvers, where updated
variables are computed at the same time. When close to
nearly-undrained conditions, the system of equations solved in
implicit formulations can suffer from the violation of inf-sup
condition and exhibit oscillating pressure values. Alternatively,
semi-implicit methods represent a hybridisation between explicit
and implicit formulations. Generally speaking, these employ
staggered schemes, where the displacement unknown is explic-
itly computed, while the pressure can be implicitly solved (see,
for instance, the scheme used in a 𝒖 − 𝑝(𝑓 ) − 𝒗 formulation
by Kularathna et al. [23], or its extension to thermal prob-
lems studied by Yu et al. [24, 25]). However, depending on the
predictor-corrector scheme, the use of a fractional-step technique
might or might not suffer from the inf-sup instability (see, for
instance, Hidano et al. [26]).

The source of the inf-sup instability is the selected combination of
spaces for the displacement and the pressure fields (i.e., the vio-
lation of the Ladyzhenskaya-Babuška-Brezzi (LBB) condition).
There are a number of solutions to this issue in the litera-
ture. Taylor-Hood elements [27] employ higher-order interpolant
functions for the displacement field while using lower ones for

the pressure field. While attractive when using high-order inter-
polant functions, Taylor-Hood elements do not represent the best
options when lower-order functions are desired. Formulations
using reduced integration schemes (see e.g., [28]) are particu-
larly attractive for ease of implementation. However, these solu-
tions cannot fully solve the pressure oscillation in proximity to
nearly undrained conditions (see [24]). Stabilised formulations
(see, for instance, [22, 29]) represent an alternative way to com-
ply with the LBB condition, which is achieved by adding a sta-
bilising term to the set of primary equations. Since these terms
often are pre-multiplied by a constant quantity (which guaran-
tees the compliance of the physical units with the other terms in
the equations), it can be difficult to select these values, especially
in correspondence with non-linear behaviour. Moreover, these
stabilising terms represent an additional computational cost not
required by the physical laws governing the problem. Another
option is to adopt stable-by-design elements, such as Qk 𝑆𝐷-Qk
elements (where the subscript 𝑆𝐷 stands for Sub-Divided, while
𝑘 is the degree of the shape functions polynomials). These employ
the same order of interpolant function for the displacement and
the pressure field on meshes of different sizes. In particular, the
mesh used for the displacement field has a characteristic length
of half that of the mesh employed for the pressure. This solu-
tion is particularly attractive when low-order shape functions are
desired, which motivates their use for an implicit formulation in
this manuscript.

Another important consideration is that an MP-based discretisa-
tion inevitably leads to small overlaps between the stencils of the
shape functions and the physical domain of the MPs (and their
role as quadrature points; see [30]). In the literature, this problem
often goes under the name of the small-cut problem, which rep-
resents a second source of instability for the MPM tackled in this
paper. If the overlap between the shape function’s stencil and the
physical MP-based domain is practically infinitesimal, the sys-
tem matrix can become ill-conditioned. A possible remedy com-
ing from the unfitted FEM literature, that is, the ghost penalty
method, is therefore introduced and adapted to the Qk𝑆𝐷-Qk for-
mulations under consideration. It must be noted that these two
sources of instabilities (i.e., the inf-sup condition and the small
cut issue) are not restricted to the MPM and to a 𝒖 − 𝑝(𝑓 ) formu-
lation for poromechanics: similar findings have been pointed out,
for instance, by Burman and Hansbo [31] in the context of unfit-
ted FEM for Stokes problems and the applicability of the method-
ologies discussed in this manuscript go well beyond the MPM.

After briefly introducing mixture theory in Section 2, Section 3 of
this manuscript is devoted to illustrating the necessary require-
ments for solvability in the continuum context. These include
compliance with the inf-sup condition and the effects that the
small-cut issue causes in regard to these requirements. Section 4
introduces the MPM algorithm. Following this, a description of
the small-cut issue in the MPM context follows in Section 4.2
and a remedy proposed in Section 4.3. Section 4.4 is devoted
to the design of a stable MPM Qk𝑆𝐷-Qk formulation, which
includes linear Lagrange polynomial functions and GIMPM
(Generalised Interpolation MPM, see, for instance, [32, 33]) inter-
polant functions. Two- and three-dimensional examples are given
in Section 5.
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It must be noted that the lack of a formal analysis (see, for
instance, Nguyen et al. [34]) of the MPM inhibits some results,
which are pivotal and well-acknowledged in the FEM theory.
However, the similarities between the two methods can be quite
substantial in some aspects. This point has been raised by dif-
ferent authors (see, for instance, [35, 36]), especially in light of
seeing the MPM as a FEM where quadrature points are allowed
to move independently from the mesh across different time steps.
Exploiting these similarities in some circumstances permits us to
refer to functional analysis and the (unfitted) FEM theory and
inherit results that, even if not formally applicable, are practi-
cally helpful in the MPM context. This idea of falling back to the
FEM theory for MPM analyses, even if not rigorous, is motivated
by rationales provided throughout the paper and supported by
numerical examples in Section 5.

2 | Fundamentals of Mixture Theory

To formalise the mechanics of a two-phase (solid/fluid) mate-
rial modelled with one set of MPs, this section briefly details the
underlying continuum formulation for mixture theory.

2.1 | Kinematics of the Phases

The kinematics assumptions considered in this work are as fol-
lows:

1. the fully saturated porous material is treated as two (solid
and fluid) juxtaposed continua;

2. for simplicity, only one fluid material constitutes this phase;

3. thermal effects and viscosity are neglected; and

4. the porous material undergoes finite strains and rotations in
the elasto-plastic regime.

Having introduced the founding assumptions, let the mixed
body  occupy a volume Ω in the original configuration (at
time 𝑡 = 0) and a volume 𝜔 in the current configuration (at the
generic time 𝑡). Owing to Assumption 1, each infinitesimal vol-
ume belonging to a mixed body contains a solid and a unique (as
implied by Assumption 2) fluid phase. These phases are mapped
through the different configurations via the invertible mappings
𝜑(𝑝ℎ)(𝑿(𝑝ℎ), 𝑡

)
, with 𝑝ℎ = 𝑠, 𝑓 (standing for solid and f luid), and

𝑿(𝑝ℎ) indicating the initial position of each phase. These continua
can evolve differently in different configurations over time, which
raises the question of which phase to trace. In this sense, the
mapping of the solid configuration is de facto privileged over the
mapping of the fluid phase, which is mostly indirectly traced by
considering the relative velocity between the phases. Given this
consideration, the solid material particle of initial mixed volume
𝑑Ω occupies a volume 𝑑𝜔 = 𝐽 𝑑Ω in the current configuration,
where the Jacobian 𝐽 is given by the determinant of the solid
phase deformation gradient1, this being

𝑭 ⋅ 𝑑𝑿(𝑠) = 𝑑𝒙, with 𝐹𝑖𝐼 =
𝜕𝜑

(𝑠)
𝑖

𝜕𝑋
(𝑠)
𝐼

. (1)

In the above equation, 𝒙 denotes the material particle position
in the current configuration obtained using the solid mapping

(i.e., 𝒙 = 𝝋(𝑠)(𝑿(𝑠), 𝑡)). The indices 𝑖 = 1, . . . , 3 and 𝐼 = 1, . . . , 3
indicate the components of the matching Cartesian basis vectors
𝒆𝑖 = 𝑬𝐼 in the current (𝒆𝑖) and reference (𝑬𝐼 ) configurations.

As proposed by Kröner [37], Lee [38] and Mandel [39] and con-
sidered in Assumption 4, the deformation gradient is multiplica-
tively decoupled into an elastic and plastic part as follows

𝑭 = 𝑭 𝑒 ⋅ 𝑭 𝑝 (2)

where, due to Assumption 3, no other effects contribute to the
deformation gradient. Other measures of strain used in this work
are based on the deformation gradient (or its elastic/plastic part),
such as the left Cauchy-Green strain 𝒃 ∶= 𝑭 ⋅ 𝑭 𝑇 and the logarith-
mic strain 𝝐 ∶= 1

2
ln 𝒃.

To describe the volume fractions of each phase, the Eulerian
porosity 𝑛 is defined as the ratio between the current fluid vol-
ume of the material particle 𝑑𝜔(𝑓 ) and its current mixed volume
𝑑𝜔, that is, 𝑛 ∶= 𝑑𝜔(𝑓 )

𝑑𝜔
. E contrario, (1 − 𝑛) gives the volume frac-

tion of the material particle occupied by the solid phase, that
is, (1 − 𝑛) = 𝑑𝜔(𝑠)

𝑑𝜔
. The initial value of the Eulerian porosity is

denoted by 𝑛0. As can be seen, the Eulerian porosity satisfies the
property

0 < 𝑛 < 1 (3)

where the extremes are excluded to always consider coexisting
phases in the material.

The displacements are defined as the difference between the cur-
rent and the original positions. Given the choice of matching
Cartesian basis vectors, displacements can be defined as

𝒖(𝑝ℎ) ∶= 𝝋(𝑝ℎ)(𝑿(𝑝ℎ), 𝑡
)
−𝑿(𝑝ℎ). (4)

The total time derivative of the current position gives the material
velocities

𝒗(𝑝ℎ) ∶= 𝑑

𝑑𝑡

|||(𝑝ℎ)𝝋(𝑿(𝑝ℎ), 𝑡
)

(5)

where 𝑑

𝑑𝑡

|||(𝑝ℎ)(•) indicates the time derivative of (•) following the
𝑝ℎ − phase.

2.2 | Mass Conservation

On top of the principle of mass conservation, these further
assumptions are introduced:

5. the constituents do not exchange mass;

6. both constituents are incompressible; and

7. the porosity network is homogeneous and connected across
the material.

Assumption 5 permits writing the conservation of the mixture
separately for each phase, that is,

𝑑

𝑑𝑡

||||(𝑠) ∫𝜔(𝑠)
𝜌(𝑠)(1 − 𝑛)𝑑𝑣 = 0 (6)

𝑑

𝑑𝑡

||||(𝑓 ) ∫𝜔(𝑓 )
𝜌(𝑓 )𝑛 𝑑𝑣 = 0 (7)
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where 𝜌(𝑝ℎ) indicates the mesoscopic density of the 𝑝ℎ− phase,
which, according to Assumption 6, is constant, that is, 𝜌(𝑝ℎ) =
𝜌
(𝑝ℎ)
0 . The exclusion of a double porosity network by Assumption 7

allows the fluid mass balance to be written as in Equation (7), that
is, considering only one type of porosity, approximately homo-
geneous in size and shape in the medium under investigation.
Owing to the arbitrary nature of the integration volume and
the incompressibility of the solid phase (part of Assumption 6),
Equation (6) can also be expressed as follows

𝑛 = 1 − 1
𝐽

(
1 − 𝑛0

)
. (8)

Two other equations are employed to express Equation (7) in a
convenient way. The former is given by the relationship between
material time derivatives relative to the two different phases (see
Thorpe [40]), that is,

𝑑

𝑑𝑡

||||(𝑓 )(•) = 𝑑

𝑑𝑡

||||(𝑠)(•) + grad(•) ⋅
(
𝒗(𝑓 ) − 𝒗(𝑠)

)
(9)

where grad indicates the gradient with respect to the current
position 𝒙. The second equation stems from the property relative
to the derivation of determinants of second-order tensors, and it
is given by

𝑑

𝑑𝑡

||||(𝑝ℎ)𝐽 = 𝐽 div ⋅ 𝒗(𝑝ℎ) (10)

where div is the divergence with respect to the current position
𝒙. Invoking the arbitrary nature of the integration domain again,
and using Equations (8) to (10), the fluid mass conservation given
by Equation (7) can be re-written as

𝜌
(𝑓 )
0

𝑑𝐽

𝑑𝑡

||||(𝑠) + 𝐽 div ⋅ 𝒒(𝑓 ) = 𝜌
(𝑓 )
0 �̇� + 𝐽 div ⋅ 𝒒(𝑓 ) = 0 (11)

where the shorthand notation ̇(•) = 𝑑

𝑑𝑡

|||(𝑠)(•) and 𝒒(𝑓 ) is the rela-
tive flux defined as

𝒒(𝑓 ) ∶= 𝜌
(𝑓 )
0 𝑛

(
𝒗(𝑓 ) − 𝒗(𝑠)

)
. (12)

2.3 | Balance of Rate of Linear Momentum

Let us further assume that

8. inertia effects are negligible.

Under this Assumption 8, the balance of the rate of the linear
momentum for the mixed body can be expressed as follows

div ⋅ 𝝈 + 𝜌 𝒃 = 𝟎 (13)

where 𝝈 is the total Cauchy stress, 𝜌 ∶= 𝜌
(𝑠)
0 (1 − 𝑛) + 𝜌

(𝑓 )
0 𝑛 is the

current density of the porous material, and 𝒃 are the body forces per
unit mixed weight. The stress introduced in the above equation
can be further characterised. As demonstrated by Borja and Alar-
cón [41], considering a perfect fluid (included in Assumption 3)
and an incompressible solid phase (Assumption 6) allows the
Terzaghi effective stress decomposition2 to hold even in the finite
strain context, this being

𝝈 = 𝝈′ − 𝑝(𝑓 )𝟏 (14)

where 𝟏 is the second-order identity tensor. In the above equation
and throughout this manuscript, the dash (•)′ denotes the effec-
tive quantities of stress, that is, those obeying a constitutive rela-
tionship with the solid strains 𝝈′(𝒖(𝑠)), while 𝑝(𝑓 ) is the Cauchy
fluid pressure.

2.4 | Constitutive Relationships

To introduce the necessary constitutive relationships, it is
assumed that

9. the material is isotropic; and

10. the fluid flow exhibits Low Reynolds number.

Assumption 9 has two consequences. On the one hand, it results
in isotropic elasto-plastic behaviour relating the effective stress
and the solid strains. In particular, this work adopts the improved
Hencky material suggested in Pretti et al. [42] to avoid negative
values of the Eulerian porosity and to conserve solid mass. The
effective free energy function Ψ′ per unit initial volume of this
material is given by

Ψ′(𝝐,𝜶) = 𝐾

2 𝑛

(
𝜖𝑒
𝑣

)2 + 3
2
𝐺
(
𝜖𝑒
𝑞

)2
+ Ψ̃′(𝜶) (15)

where 𝐾 > 0 and 𝐺 > 0 are the bulk parameter and the shear
modulus, while Ψ̃′ defines a part of the free energy function
responsible for the kinematic hardening, based on a set of inter-
nal variables 𝜶. A few invariants of the logarithmic strains have
also been employed in the above equation, which are defined as

𝜖𝑣 ∶= 𝝐 ∶ 𝟏; 𝒆 ∶= 𝝐 −
𝜖𝑣

3
𝟏; 𝜖𝑞 ∶=

√
2
3
𝒆 ∶ 𝒆 (16)

with ∶ being the double contraction operator between tensors.
If isotropic permeability is assumed (consequence of Assump-
tions 7 and 9) together with Assumption 10, the Darcy-Weisbach
law relates the relative flux to the fluid pressure gradient and body
forces as follows

𝒒(𝑓 ) = −κ
𝑔

(
grad 𝑝(𝑓 ) − 𝜌

(𝑓 )
0 𝒃

)
(17)

with κ being the hydraulic conductivity and 𝑔 the magnitude of
the gravitational force. The Kozeny-Carman formula is assumed
to account for the dependency of the hydraulic conductivity on
the porosity, that is,

κ = 𝑐1
𝑛3

(1 − 𝑛)2 (18)

with 𝑐1 being a constant parameter. As for the fluid constitutive
behaviour, Assumption 3 excludes the dependence of the fluid
part on the viscosity, indicating that the fluid cannot bear any
deviatoric stress. However, as embedded in Assumption 6, the
fluid pressure is also unrelated to any constitutive relationship,
thus entirely ruling out a constitutive behaviour for the fluid
phase. This circumstance was discussed by Miehe et al. [43], who
recognised the role played by the fluid pressure as a Lagrange
multiplier that shifts the dependency of stresses on strain (i.e., the
idea of effective stress) depending on the water mass conservation
constraint (i.e., drained/undrained conditions). This observation
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has direct consequences on the mapping processes detailed in
Section 4.6, since the fluid pressure does not relate to any form
of energy.

3 | Continuum Weak Form and Arising
Requirements

This section introduces a weak statement of the equations for a
𝒖 − 𝑝(𝑓 ) formulation, which results in a saddle point formulation
(Section 3.1). As is well-acknowledged, this kind of problem can
be solved only under specific conditions.

3.1 | From Strong to Weak Form of Equations

The primary equations employed in an updated Lagrangian
𝒖 − 𝑝(𝑓 ) formulation are given by the mixture equilibrium
Equation (13) and the fluid mass conservation Equation (11),
these being

div ⋅
(
𝝈′ − 𝑝(𝑓 ) 𝟏

)
+ 𝜌 𝒃 = 𝟎 in 𝜔 (19)

𝜌
(𝑓 )
0 �̇� − 𝐽 div ⋅

(
κ
𝑔

(
grad 𝑝(𝑓 ) − 𝜌

(𝑓 )
0 𝒃

))
= 0 in 𝜔(𝑓 ) (20)

where the Terzaghi effective stress decomposition Equation (14)
and the Darcy-Weisbach law Equation (17) have been substituted.
The current boundary 𝛾 = 𝜕𝜔 of the considered mixed body is
partitioned as follows

𝛾 = 𝛾�̄� ∪ 𝛾𝑡 = 𝛾𝑝 ∪ 𝛾𝑞 (21)

𝛾�̄� ∩ 𝛾𝑡 = Ø = 𝛾𝑝 ∩ 𝛾𝑞 (22)

where 𝛾 (•) is a particular portion of the boundary. Prescribed
boundary conditions (BCs) are given on these parts and are as
follows

𝒖 = 𝒖 on 𝛾�̄� (23)

𝝈 ⋅ 𝒏 = 𝒕 on 𝛾𝑡 (24)

𝑝(𝑓 ) = 𝑝 on 𝛾𝑝 (25)

𝒒(𝑓 ) ⋅ 𝒏 = 𝑞 on 𝛾𝑞. (26)

The above equations constitute the Dirichlet, Equations (23)
and (25), and the Neumann, Equations (24) and (26), BCs for
the mixture equilibrium (19) and fluid mass conservation (20),
respectively.

The weak form of the above problem is obtained by introducing
test functions belonging to the required function spaces and inte-
grating over the relative domains3. By applying the divergence
theorem and using Neumann BCs (24) and (26), the weak form
can be stated as follows: find 𝒖 ∈ 𝒱𝒖 and 𝑝(𝑓 ) ∈ 𝒲𝑝 such that, for
𝑡 ∈ [0, 𝑡],

𝛿Π𝑒𝑞
((
𝒖; 𝑝(𝑓 )

)
; 𝛿𝒘

)
∶= ∫𝜔

grad(𝛿𝒘) ∶
(
𝝈′ − 𝑝(𝑓 )𝟏

)
𝑑𝑣

− ∫𝜔

𝜌𝛿𝒘 ⋅ 𝒃𝑑𝑣 − ∫𝛾𝑡
𝛿𝒘 ⋅ 𝒕𝑑𝑎 = 0, ∀𝛿𝒘 ∈ 𝒱0

(27)

𝛿Πcons((𝒖; 𝑝(𝑓 )); 𝛿𝜂) ∶= ∫𝜔

𝜌
(𝑓 )
0 𝛿𝜂

�̇�

𝐽
𝑑𝑣

+ ∫𝜔

κ
𝑔

grad(𝛿𝜂) ⋅
(

grad𝑝(𝑓 ) − 𝜌
(𝑓 )
0 𝒃

)
𝑑𝑣 − ∫𝛾𝑞

𝛿𝜂𝑞𝑑𝑎 = 0, ∀𝛿𝜂 ∈ 𝒲0

(28)

giving the initial condition 𝒖(𝑡 = 0) = 𝒖0. The potentials Π𝑒𝑞 and
Πcons and their first variation 𝛿(•)(( . . . ); 𝛿(•̃)) with respect to
their argument (•̃) have been above employed, while the spaces
of trial functions are defined as follows

𝒱𝒖 =
{
𝒖 ∈

[
𝐻1(𝜔)

]𝑛dim |||𝒖 = 𝒖 on 𝛾�̄�
}

(29)

𝒲𝑝 =
{
𝑝(𝑓 ) ∈

[
𝐻1(𝜔)

]|||𝑝(𝑓 ) = 𝑝 on 𝛾𝑝
}

(30)

where 𝐻1(𝜔) denotes the Sobolev space of degree one on 𝜔. The
spaces of the test functions 𝛿𝒘 and 𝛿𝜂 are denoted by 𝒱𝟎 and 𝒲0
and follow similar definitions as the above, with the exception
of being zero on the Dirichlet boundary. It is well-known (see, for
instance, Dortdivanlioglu et al. [44]) that the above weak problem
Equations (27) and (28) can be given by the stationarity of the
following saddle point problem

inf
𝒘∈𝒱𝟎

sup
𝑞∈𝒲0

Π(𝒘; 𝜂) (31)

with Π(𝒘; 𝜂) = Π𝑒𝑞(𝒘; 𝜂) − Πcons(𝒘; 𝜂).

3.2 | Linearisation

Equations (27) and (28) represent a non-linear system of
equations in 𝒖. This is primarily due to having set the problem
in the context of finite strain mechanics. On top of this, other
non-linearities, such as elasto-plastic behaviour or constitutive
equation (15), can be included too. To solve these equations, the
Newton-Raphson (NR) method stipulates that linearisation of
Equations (27) and (28) at a solution

(
�̌�; �̌�(𝑓 )

)
is required, this

being

0 = 𝛿Π((�̌�; �̌�(𝑓 )); (𝛿𝒘, 𝛿𝜼))

≈ 𝛿Π
(
(𝒖; 𝑝(𝑓 )); (𝛿𝒘, 𝛿𝜼)

)
+ 𝛿((𝛿Π((𝒖; 𝑝(𝑓 )); (𝛿𝒘, 𝛿𝜼))); (𝛿𝒖, 𝛿𝒑(𝑓 )))

= 𝛿Π𝑒𝑞 ((𝒖; 𝑝(𝑓 )); (𝛿𝒘)) − 𝛿Πcons((𝒖; 𝑝(𝑓 )); (𝛿𝜂))

+ 𝛿((𝛿Π𝑒𝑞 ((𝒖; 𝑝(𝑓 )); 𝛿𝒘)); (𝛿𝒖, 𝛿𝒑(𝑓 ))) − 𝛿((𝛿Πcons((𝒖; 𝑝(𝑓 )); 𝛿𝜂)); (𝛿𝒖, 𝛿𝒑(𝑓 ))).
(32)

The second variations appearing in the above equations can be
expressed as follows

𝛿((𝛿Π𝑒𝑞((𝒖; 𝑝(𝑓 )); 𝛿𝒘)); (𝛿𝒖, 𝛿𝒑(𝑓 ))) − 𝛿((𝛿Πcons((𝒖; 𝑝(𝑓 )); 𝛿𝜂)); (𝛿𝒖, 𝛿𝒑(𝑓 )))

=
[
𝛿𝒘, 𝛿𝜂

][ A B(1)

B(2) C

]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

∶=J

[
𝛿𝒖

𝛿𝑝(𝑓 )

]

(33)
where J indicates the Jacobian matrix. Under the assumptions
made so far, the submatrix C4 is symmetric, that is, C = C𝑇 .

In the small strain regime, the above linear system also sat-
isfies the useful properties A = A𝑇 and

(
B(1))𝑇 = B(2). In this

context, the Jacobian matrix can exhibit two situations that are
well-acknowledged for saddle-point problems. On the one hand,
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in the case of drained or partially drained processes, the above
Jacobian is as follows

J =

[
A B𝑇

B C

]
. (34)

The solvability (uniqueness of solution) of the above linear sys-
tem is guaranteed if the bilinear forms associated with the subma-
trices A and B are continuous, and A and C are coercive (see, for
instance, Boffi et al. [45], Proposition 4.3.1). On the other hand,
the process can take place in nearly undrained conditions. Physi-
cally speaking, these circumstances can occur when load rates are
rapidly applied with low values of hydraulic conductivity or when
BCs do not allow for drainage. These cases result in the following
Jacobian

J =

[
A B𝑇

B 𝜖 C̃

]
(35)

where C = 𝜖 C̃ with 0 < 𝜖 ≪ 1 indicates that the submatrix C
contains small entries compared to the other submatrices. In the
above condition, solvability is guaranteed (see, e.g., Boffi et al.
[45], Theorem 4.3.4) if the bilinear form associated with A and
C is continuous and A is coercive. Furthermore, the solution to
Equation (35) is stable if B𝑇 is such that its bilinear form satisfies
the inf-sup condition, that is,

inf
(𝛿𝜂∈𝒲0)

sup
(𝛿𝒘∈𝒱𝟎)

∫
𝜔
𝛿𝜂 div ⋅ 𝛿𝒘 𝑑𝑣||𝛿𝜂||𝐻0 ||𝛿𝒘||𝒱𝟎

≥ 𝛼 > 0 (36)

where the L-2 norm ||(•)||𝐻0 must be considered even for
poro-mechanical problems (see the discussions in Mira et al. [46]
and Dortdivanlioglu et al. [44]). Furthermore, the use of this
norm in Equation (36) allows use of the numerical test proposed
by Chapelle and Bathe [47] for incompressible elasticity or Stokes
problems.

From the above discussions on drained and undrained cases, it
emerges that three requirements are necessary for inverting the
Jacobian matrix without incurring unstable solutions (neglect-
ing for the moment the continuity of bilinear forms of submatri-
ces A and C). These conditions are the coercivity of the bilinear
forms associated with A and C, and the satisfaction of the inf-sup
condition for the bilinear form associated with B.

It must also be stressed that adopting the improved Hencky
material defined by Equation (15) has important consequences
for the coercivity of C, since it avoids negative values of the
Eulerian porosity, as detailed in Pretti et al. [42]. While this
criterion does not come from the numerical requirements of the
problem under investigation, its physically based nature substan-
tially affects numerical outcomes. This constraint and its relative
consequences hold even in the case of compressible material.
In this case, the reader is invited to refer to the work of Nedjar
[48, 49] on circumventing negative values in Eulerian porosity.
Owing to the adoption of the improved Hencky material in this
work, this physical constraint will not be discussed further.

4 | Stable MPM Discretisation

This section introduces an MPM 𝒖 − 𝑝(𝑓 ) formulation and dis-
cusses when the conditions for solvability introduced in the
previous section are not fulfilled. Remedies to mitigate the effects
of these losses are also proposed.

4.1 | MPM Algorithm

Figure 1 shows the phases in the overall MPM algorithm. The
MPM-based discretisation stipulates that the considered body of
global volume 𝜔 is discretised by a cloud of Material Points (MPs),
that is, 𝜔 ≈ ∪𝑁𝑚𝑝

𝑚𝑝=1
𝑚𝑝𝜔 ∶ =𝑀𝑃𝜔; the MPs carry all the information

necessary to run the analysis. These points are immersed into
a (usually Cartesian) grid/mesh  discretising a portion of the
Euclidean space  of 𝑛dim dimensions, which fully contains the
considered body 𝜔 (Phase (i) in Figure 1).

Finite-dimensional test and trial functions are defined on a mesh
of generic length ℎ̃. ℎ̃, when employed as a superscript, denotes
finite-dimensional quantities. The trial and test functions are
interpolated with the help of nodal shape functions, similar to
the FEM. The finite-dimensional spaces of the trial functions are
given by

ℎ̃𝒱𝒖 =

{
ℎ̃𝒖 ∈

[
𝐶𝑚

(
ℎ̃𝜔

)]𝑛dim ||| ℎ̃𝒖(𝒙) = Nℎ̃,𝑢
𝑎

(𝒙)u𝑎

with 𝑎 ∈ clos
(
ℎ̃ act

)
, ℎ̃𝒖 = 𝒖 on ℎ̃𝛾

�̄�
}

(37)

ℎ̃𝒲𝑝 =
{

ℎ̃𝑝(𝑓 ) ∈ 𝐶𝑚
(
ℎ̃𝜔

)||| ℎ̃𝑝(𝑓 )(𝒙) = Nℎ̃,𝑝
𝑎

(𝒙) p𝑎 with 𝑎 ∈ clos
(
ℎ̃ act

)}
(38)

where ℎ̃𝜔 =
(⋃

𝑇∈ℎ̃ act 𝑇
)

denotes the volume defined by the set
of active grid elements ℎ̃ act, that is,

ℎ̃ act = {𝑇∈ℎ̃ |∃ 𝑚𝑝 ∶ Nℎ̃
𝑎
(𝒎𝒑𝒙) > 0 ∀𝑎 ∈ clos(𝑇 )} (39)

with Nℎ̃
𝑎

being the generic low-order shape functions at the 𝑎-th
node belonging to the element 𝑇 and clos(•) denotes the clo-
sure of the entity (•)5. As detailed below in Section 4.4, this work
assumes two kinds of shape functions. The first choice is given
by first-order Lagrange polynomials, and results in 𝐶0(ℎ̃𝜔) func-
tions (i.e., 𝑚 = 0). Since they were first adopted in the original
MPM formulation (see Sulsky et al. [1, 2]), these shape func-
tions are labelled sMPM (standard MPM). On the other hand,
GIMPM shape functions, resulting in piecewise first-order and
second-order polynomials, are also considered, giving 𝐶1(ℎ̃𝜔)
functions (i.e., 𝑚 = 1).

To initialise the grid with the required information, a mapping
from the MPs to the grid nodes is usually required (Phase (ii) in
Figure 1). This procedure is named Point-2-Grid (P2G) mapping
and, for the current formulation, is addressed in Section 4.6.

The (standard) assembly process of the Lagrangian equations
(Phase (iii) in Figure 1) takes place at the grid nodes and employs
the MPs as quadrature points. In the case of the considered 𝒖 −
𝑝(𝑓 ) formulation, the equations become (dropping the dependen-
cies from the position)

∫𝑀𝑃 𝜔

δw𝑎 grad
(

Nℎ̃,𝑢
𝑎

)
∶
(
𝝈′ − Nℎ̃,𝑝

𝑏
p𝑏 𝟏

)
𝑑𝑣

− ∫𝑀𝑃 𝜔

(
δw𝑎 Nℎ̃,𝑢

𝑎

)
⋅ 𝜌𝒃 𝑑𝑣 − ∫𝛾𝑡

(
δw𝑎 Nℎ̃,𝑢

𝑎

)
⋅ 𝒕 𝑑𝑎 = 0, ∀δw𝑎 ∈ ℎ̃𝒱𝟎 (40)

∫𝑀𝑃 𝜔

(
δη𝑎 Nℎ̃,𝑝

𝑎

)
𝜌
(𝑓 )
0

�̇�

𝐽
𝑑𝑣

+ ∫𝑀𝑃 𝜔

κ
𝑔

δη𝑎 grad
(

Nℎ̃,𝑝
𝑎

)
⋅
(

grad
(

Nℎ̃,𝑝

𝑏

)
p𝑏 − 𝜌

(𝑓 )
0 𝒃

)
𝑑𝑣 − ∫𝛾𝑞

(
δη𝑎 Nℎ̃,𝑝

𝑎

)
𝑞 𝑑𝑎

+ 𝛾pen ∫𝛾𝑝

(
δη𝑎 Nℎ̃,𝑝

𝑎

)(
Nℎ̃,𝑝

𝑏
p𝑏 − 𝑝

)
𝑑𝑎 = 0, ∀δη𝑎 ∈ ℎ̃𝒲0 (41)
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FIGURE 1 | MPM step phases. (i) Immersion of the MPs in the grid. (ii) P2G mapping. (iii) Equation assemblying on the grid. (iv) Solve for nodal
variables. (v) G2P mapping. (vi) Grid disposal.

where the volume integrals are approximated as follows

∫𝑀𝑃 𝜔

(•)𝑑𝑣 ≈
𝑁𝑚𝑝∑
𝑚𝑝=1

𝑚𝑝𝜔(•(𝑚𝑝𝒙)). (42)

As for the boundary integrals, this work follows the procedure
explained by Bird et al. [50], leveraging the MPs’ corners (see
Bird et al. [50] for more details). This method is also exploited
for non-conforming pressure Dirichlet BCs, represented by the
penalty term in Equation (41), with 𝛾pen being a penalty param-
eter. Conversely, this work always considers mesh-conforming
displacement BCs, as assumed in Equation (37). Equations (40)
and (41) are solved for the nodal unknowns (Phase (iv) in
Figure 1), and this work considers an iterative Newton-Raphson
(NR) scheme based on the discrete counterpart of Equation (32)
(see Appendix A). Since the updated solution lies on the grid, a
subsequent mapping from this to the MPs is required to update
the solution at the MPs level (Phase (v) in Figure 1). This is called
the Grid-2-Point (G2P) mapping and is discussed in Section 4.6.
The grid is discarded at the end of the step (Phase (vi) in Figure 1),
and a further step can start with an undistorted grid.

4.2 | The Small-Cut Issue in the MPM

As clear from the description of the phases of the MPM, the
immersion of the clouds of MPs into a mesh and their use

as quadrature points generates an intrinsically unfitted method
since 𝑀𝑃𝜔 ⊆ ℎ̃𝜔. Moreover, an extremely small overlap between
the shape function’s stencil and the MP’s domains can lead to
ill-conditioned systems. This problem, named the small-cut issue
is exacerbated especially for those elements on the domain’s
boundaries. As demonstrated by Burman [51] in the context of
unfitted FEM, this issue provokes the loss of the coercivity for the
bilinear forms computed on these elements and the consequent
impossibility of solving the relative linear (or linearised) system
of equations.

To manage this issue, Burman [51] has proposed adding a penalty
term, named the ghost penalty stabilisation, which extends the
coercivity of the bilinear forms to the partially filled boundary
elements. While strictly enforcing coercivity in an MPM formu-
lation is difficult to prove (properties such as continuity or coer-
civity rely on norms that, in turn, are based on quadrature rules
more precise than Equation (42)), it is nonetheless possible to
limit the condition number of the matrices by the use of the ghost
penalty method (see Coombs [30]). The addition of the ghost
penalty restores to some degree coercivity on those elements suf-
fering from the small-cut issue. Hence, while formalisms must
be dropped for the above-mentioned causes, MPM-based discrete
linear systems can be inverted independently from the small-cut
issue, as long as the ghost penalty (or a similar technique, see the
discussion in Section 4.3) is introduced.
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Among the ghost penalties introduced in the literature for the
unfitted FEM (see Burman et al. [52]), the face ghost penalty6 has
been introduced to the MPM by Coombs [30], and an extension
to a 𝒖 − 𝑝(𝑓 ) formulation for the unfitted FEM has been proposed
by Liu et al. [53]. The following section extends the face ghost sta-
bilisation for the 𝒖 − 𝑝(𝑓 ) MPM formulations introduced above.

4.3 | Face Ghost Stabilisation

In the case of low-order shape functions, the face ghost stabilisa-
tion states that the following bilinear form must be added to the
considered primary equations, that is,

𝑗𝐹
(
ℎ̃𝛿𝒗, ℎ̃𝒗

)
∶= ℎ̃∫ℎ̃𝛾𝐹

[[(
grad

(
ℎ̃𝛿𝒗

)
⋅ n

)]]
⋅
[[(

grad
(
ℎ̃𝒗

)
⋅ n

)]]
𝑑𝑎 (43)

where ℎ̃𝒗 and ℎ̃𝛿𝒗 are the generic trial and test functions and
[[grad(•) ⋅ n]] is the jump in the normal gradient across a shared
facet 𝐹 . The procedure to select these facets (listed inℱ ) describ-
ing the surface ℎ̃𝛾𝐹 is outlined in Algorithms 1 and 2. In par-
ticular, since the MPM retains no explicit representation of the
boundary, Algorithm 1 is necessary to track which grid elements
constitute the domain’s boundary ℎ̃ 𝜕ℎ̃𝜔. To read this algorithm,
it is necessary also to introduce the set of inactive elements ℎ̃ 𝑖𝑛,
defined as ℎ̃ 𝑖𝑛 ∶= ℎ̃ ⧵ ℎ̃ act. Among the facets belonging to the

set of boundary elements ℎ̃ 𝜕ℎ̃𝜔, Algorithm 2 selects those satis-
fying one of the following criteria:

• the facet is shared between one boundary element and one
active non-boundary element; or

• the facet is between two adjacent boundary elements.

While selecting the former set of facets (criterion at the first bullet
point) is justified by prolonging the coercivity from the bulk of the
material, the latter (criterion at the second bullet point) is mainly
required for boundary corner elements not directly connected to
an active non-boundary element. The union of the selected facets,
that is,

ℎ̃𝛾𝐹 =
⋃
𝐹∈ℱ

𝐹 (44)

constitutes the surface ℎ̃𝛾𝐹 necessary for Equation (43). Unlike
the volume integrals in Equation (42), Equation (43) is integrated
via the Gauss-Legendre quadrature rule using Gauss points
seeded on the grid.

Algorithms 1 and 2 (as well as Equation (43)) are relevant to
sMPM and GIMPM shape functions. Unlike the unfitted FEM,

ALGORITHM 1 | Selection of the boundary elements belonging to ℎ̃ 𝜕ℎ̃𝜔.

ℎ̃ 𝜕ℎ̃�̄� ← []
el_count ← 1
foreach element 𝑇 ∈ ℎ̃ act do // loop over active elements

face_count ← 1
foreach facet 𝐹 ∈ clos(𝑇 ) do // loop over facets of the selected active element

if 𝐹 ∈ clos(ℎ̃ 𝑖𝑛) then // check if facet is also shared with an inactive element

Add 𝑇 to ℎ̃ 𝜕ℎ̃�̄�;
end
face_count ++

end
el_count ++

end

ALGORITHM 2 | Selection of the facets for the face ghost penalty.

ℱ ← []
el_count ← 1
foreach element 𝑇𝑖 ∈ ℎ̃ 𝜕ℎ̃�̄� do // loop over boundary elements

face_count ← 1
foreach facet 𝐹 ∈ clos(𝑇𝑖) do // loop over facets of the selected boundary element

if 𝐹 ∈ clos
(
ℎ̃ 𝜕ℎ̃�̄� ⧵ 𝑇𝑖

)
then // check if facet is shared with another boundary element

Add 𝐹 to ℱ ;
end
if 𝐹 ∈ clos

(
ℎ̃ act ⧵ ℎ̃ 𝜕ℎ̃�̄�

)
then // check if facet is shared with active non-boundary element

Add 𝐹 to ℱ ;
end
face_count ++

end
el_count ++

end
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in which the boundary elements constitute a single layer of ele-
ments, high-order MPMs can contain multiple layers of bound-
ary elements due to the stencil of these high-order shape func-
tions, which cover multiple elements simultaneously. This situ-
ation can also occur for the GIMPM. However, since only two
layers of boundary elements can be active simultaneously in the
worst-case scenario for the GIMPM, Algorithms 1 and 2 prove to
be sufficient (see Examples 5.2 and 5.4).

As stabilising multiple layers can be quite burdensome, Yam-
aguchi et al. [54] adapted the Extended B-splines (EBS, see Höllig
et al. [55, 56]) technique to stabilise MPM formulations employ-
ing B-spline shape functions. Another interesting technique
has been proposed by Badia et al. [57] for the unfitted FEM,
which aggregates elements on the boundary suffering from the
small-cut issue. However, these techniques can be problematic
to integrate into the current framework: on the one hand, the
EBS-MPM cannot be used for the considered low-order shape
functions, while aggregating can be particularly difficult, espe-
cially in light of the inf-sup stable overlapping meshes adopted
in this manuscript. These are explained in the following section.

4.4 | Qk𝑺𝑫 -Qk Spatial Discretisation

To comply with the inf-sup requirement, the concept of Qk𝑆𝐷-Qk
elements from the FEM is here adapted to the MPM. This is
achieved by overlapping a coarser grid for the pressure field (of
length ℎ) on a finer mesh for the displacement field (of length
ℎ∕2)7. For simplicity, both these meshes are Cartesian.

Qk𝑆𝐷-Qk elements are well-acknowledged in the FEM (see,
for instance, Dortdivanlioglu et al. [44] for a 𝒖 − 𝑝𝑓 formula-
tion), and the idea can be traced at least back to Bercovier and
Pironneau [58], who gave the first error estimate for two- and
three-dimensional FEM of these kinds of elements. In the case
of an MPM formulation, to the best of the authors’ knowledge,
the Qk𝑆𝐷-Qk concept has been applied only to problems
involving incompressible elasticity and with B-spline shape
functions [59].

Using Qk𝑆𝐷-Qk elements implies that the finite-dimensional
spaces (37) and (38) for the trial functions become

ℎ∕2𝒱𝒖 =
{

ℎ∕2𝒖 ∈
[
𝐶𝑚

(
ℎ∕2𝜔

)]𝑛dim ||| ℎ∕2𝒖(𝒙) = Nℎ∕2
𝑎

(𝒙)u𝑎

with 𝑎 ∈ clos
(
ℎ∕2 act), ℎ∕2𝒖 = 𝒖 on ℎ∕2𝛾

�̄�
}

(45)

ℎ𝒲𝑝 =
{

ℎ𝑝(𝑓 ) ∈ 𝐶𝑚
(
ℎ𝜔

)||| ℎ𝑝(𝑓 )(𝒙) = Nℎ
𝑎
(𝒙) p𝑎 with 𝑎 ∈ clos

(
ℎ act)} (46)

and similar definitions follow for the spaces of test functions
ℎ∕2𝒱𝟎 and ℎ𝒲𝟎. Using Qk𝑆𝐷-Qk-inspired meshes and includ-
ing the face ghost stabilisation Equation (43), the weak form
becomes: find ℎ∕2𝒖 ∈ ℎ∕2𝒱𝒖 and ℎ𝑝(𝑓 ) ∈ ℎ𝒲𝑝 such that, for 𝑡 ∈
[0, 𝑡],

∫𝑀𝑃 𝜔

δw𝑎 grad
(
Nℎ∕2

𝑎

)
∶
(
𝝈′ − Nℎ

𝑏
p𝑏 𝟏

)
𝑑𝑣

− ∫𝑀𝑃 𝜔

(
δw𝑎 Nℎ∕2

𝑎

)
⋅ 𝜌𝒃 𝑑𝑣 − ∫𝛾𝑡

(
δw𝑎 Nℎ∕2

𝑎

)
⋅ 𝒕 𝑑𝑎

+ 𝛾𝐴 ℎ

2 ∫ℎ∕2𝛾𝐹
δw𝑎

[[(
grad

(
Nℎ∕2

𝑎

)
⋅ n

)]]
⋅
[[(

grad
(

Nℎ∕2
𝑏

)
⋅ n

)]]
u𝑏 𝑑𝑎 = 0,

∀δw𝑎 ∈ ℎ∕2𝒱𝟎 (47)

∫𝑀𝑃 𝜔

(
δη𝑎 Nℎ

𝑎

)
𝜌
(𝑓 )
0

�̇�

𝐽
𝑑𝑣 + ∫𝑀𝑃 𝜔

𝜅

𝑔
δη𝑎 grad

(
Nℎ

𝑎

)
⋅
(

grad
(
Nℎ

𝑏

)
p𝑏 − 𝜌

(𝑓 )
0 𝒃

)
𝑑𝑣

− ∫𝛾𝑞

(
δη𝑎 Nℎ

𝑎

)
𝑞 𝑑𝑎 + 𝛾pen ∫𝛾𝑝

(
δη𝑎 Nℎ

𝑎

) (
Nℎ

𝑏
p𝑏 − 𝑝

)
𝑑𝑎

+ 𝛾𝐶ℎ∫ℎ𝛾𝐹
δη𝑎

[[(
grad

(
Nℎ

𝑎

)
⋅ n

)]][[(
grad

(
Nℎ

𝑏

)
⋅ n

)]]
p𝑏 𝑑𝑎 = 0

∀δη𝑎 ∈ ℎ𝒲0 (48)

giving the initial condition ℎ∕2𝒖(𝑡 = 0) = 𝒖0. In the above
equations, 𝛾𝐴 and 𝛾𝐶 are the coefficients used to the scale the
effect of the ghost penalty terms and to match the physical units
of the equations. For this latter purpose, the units of 𝛾𝐴 must be
similar to a stress measure, while the units of 𝛾𝐶 should be the
same as those of the κ∕𝑔.

Figure 2a shows the application of the face ghost stabilisation to
the finer mesh of length ℎ∕2 for the displacement field (i.e., ghost
penalty term added to Equation (47)), distinguishing between
inactive and active elements, boundary elements, and boundary
facets. Similarly, Figure 2b illustrates the same quantities for the
coarser mesh of length ℎ employed for the pressure field (i.e., the
ghost penalty term added to Equation (48)). The combined result
of the different stabilised surfaces for the displacement and pres-
sure fields is represented in Figure 2c.

Equations (47) and (48) represent a stable scheme for implicit
low-order 𝒖 − 𝑝(𝑓 ) formulation, which is inf-sup stable by design
(as required by submatrix B) and guarantees a solution thanks to
submatrices A and C coercivity.

For the sake of completeness, it must be acknowledged that a
plethora of inf-sup stabilised elements exist in the literature, and
covering the complete literature on this subject is beyond the
scope of this work. As for the FEM, the reader can refer to, for
instance, Leborgne [60] for a recent publication discussing the
inf-sup condition for different mixed formulations (and possible
remedies) or to the monograph of Boffi et al. [45] for a complete
discussion. The nature of Qk𝑆𝐷-Qk elements makes its adapta-
tion straightforward to use in the MPM, especially if low-order
shape functions are used. On top of this, stable elements by
design possess the advantage of not adding terms to the primary
equations. This is particularly advantageous if the NR method
is employed to solve the implicit primary equations, since fewer
terms can be considered in the Jacobian matrix. In the following
section, Qk𝑆𝐷-Qk meshes are diversified for the sMPM and the
GIMPM, and their inf-sup stability is investigated.

4.4.1 | sMPM Shape Functions

Having selected a Cartesian mesh composed of quadrilateral
(or hexahedral, if 𝑛dim = 3) elements, the basis functions are
constructed using the tensor product of one-dimensional func-
tions. In the case of sMPM for the generic mesh of length ℎ̃,
first-order Lagrange polynomials are employed, that is,

Nℎ̃,1
𝑎
(𝜉) =

{
1 + 𝜉∕ℎ̃, if − ℎ̃ < 𝜉 ≤ 0

1 − 𝜉∕ℎ̃, if 0 < 𝜉 ≤ ℎ̃
(49)

where 𝜉=𝑚𝑝𝑥−ℎ̃𝑥𝑎 denotes the one-dimensional local coordinate
computed as the difference between the material point’s coor-
dinate and the grid nodal coordinate. The use of these shape
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FIGURE 2 | Algorithmic selection of boundary elements and facets (top row) for finer (left) and coarser (right) meshes, and stabilised facets (bottom
row). (a) Application of Algorithms 1 and 2 to the finer mesh for ℎ∕2𝒖. (b) Application of Algorithms 1 and 2 to the coarser mesh for ℎ𝑝(𝑓 ). (c) Final result
of facets where face ghost stabilisations are applied.

functions for a Q1𝑆𝐷-Q1 FEM 𝒖 − 𝑝(𝑓 ) formulation has been
tested in Dortdivanlioglu et al. [44], employing the patch test pro-
posed by Chapelle and Bathe [47] for mixed FEM formulations.
Employing this result and given the similarities between the FEM
and the MPM, it can be concluded that Q1𝑆𝐷-Q1 mesh-based
solutions for sMPM discretisation inherit inf-sup stability from
their FEM counterpart. This conclusion is also substantiated by
Example 5.1.

4.4.2 | GIMPM Shape Functions

The GIMPM shape functions in 1D are obtained via the convo-
lution of a constant function denoting the length of the parti-
cle 2𝑙𝑝 (named the characteristic function) with the sMPM shape
function given by Equation (49). The reader is referred to Bar-
denhagen et al. [32] or Charlton et al. [33] for this convolution
integral procedure. The one-dimensional GIMPM shape func-
tions defined on a mesh of length ℎ̃ are given by

Sℎ̃
𝑎
(𝜉) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
ℎ̃ + 𝑙𝑝 + 𝜉

)2∕
(
4ℎ̃𝑙𝑝

)
, if − ℎ̃ − 𝑙𝑝 < 𝜉 ≤ −ℎ̃ + 𝑙𝑝

1 + 𝜉∕ℎ̃, if − ℎ̃ + 𝑙𝑝 < 𝜉 ≤ −𝑙𝑝

1 − 𝜉2∕
(
2ℎ̃𝑙𝑝

)
− 𝑙2

𝑝
∕
(
2ℎ̃𝑙𝑝

)
, if − 𝑙𝑝 < 𝜉 ≤ 𝑙𝑝

1 − 𝜉∕ℎ̃, if 𝑙𝑝 < 𝜉 ≤ ℎ̃ − 𝑙𝑝(
ℎ̃ + 𝑙𝑝 − 𝜉

)2∕
(
4ℎ̃𝑙𝑝

)
, if ℎ̃ − 𝑙𝑝 < 𝜉 ≤ ℎ̃ + 𝑙𝑝

(50)

with 𝜉=𝑚𝑝𝑥−ℎ̃𝑥𝑎 as above.

Figure 3 shows that three combinations of the polynomials
are locally available when using the GIMPM shape functions
for Qk𝑆𝐷-Qk meshes: Q2𝑆𝐷-Q2, Q1𝑆𝐷-Q1, and Q2𝑆𝐷-Q1. As
for the case of linear polynomials in Section 4.4.1, these ele-
ments have been separately tested by Dortdivanlioglu et al. [44]
for the FEM using the patch test in Chapelle and Bathe [47].
When examined independently, each of these elements has been
shown to be inf-sup stable. While it is not possible to apply
this test directly to an MPM formulation (patch tests cannot
be adapted to the MPM), a thought experiment can be built
by employing shape functions in Equation (50) to construct
an FEM discretisation and using the results from Dortdivanli-
oglu et al. [44]. The test proposed by Bathe and Chapelle [47]
checks an eigenvalue-eigenvector problem using matrices rela-
tive to discrete bilinear forms. This test is repeated for differ-
ent decreasing mesh sizes, and it is considered as passed when
the minimum eigenvalue does not decrease with finer grids. The
same matrices for the eigenvalue-eigenvector problem employ-
ing shape functions in Equation (50) are a linear combination
of the above elements. This holds since each integration point
singularly contributes as Q2𝑆𝐷-Q2 or Q1𝑆𝐷-Q1 or Q2𝑆𝐷-Q1 to
its element, and the assembling process sums each integration
point’s contribution. Hence, the boundedness of the minimum
eigenvalue resulting from this FEM-like discretisation using
shape functions in Equation (50) follows since it is linear alge-
bra (eigenvalue problem) applied to matrices of bilinear forms.
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FIGURE 3 | Combination of GIMPM functions on overlapping
meshes. Thick grey lines illustrate the finer mesh, while white dashed
lines represent the coarser one.

This rationale is confirmed by numerical Examples 5.3 and 5.4,
which adopt GIMPM shape functions and exhibit stable pressure
values.

4.5 | Time Discretisation

In addition to the spatial discretisation introduced above, a tem-
poral discretisation is required and this work considers the fol-
lowing implicit Backward-Euler time integration relative to the
divergence of the velocity field

div ⋅ 𝒗 = �̇�

𝐽
= (ln 𝐽 )⋅ ≈

(
ln 𝐽𝑛+1 − ln 𝐽𝑛

)
Δ𝑡

(51)

where the subscript 𝑛 + 1 denotes the current time step and 𝑛 the
previous one.

The literature (see, for instance, Sun et al. [61] or Zhao and Choo
[22]) recognises the role played by the above time discretisation
to avoid negative values of the Jacobian. However, the current
formulation considering an incompressible solid phase imposes
a more severe constraint on the Jacobian than 𝐽 > 0. This can be
quickly verified if inequalities (3) relative to the Eulerian poros-
ity are substituted in solid mass conservation Equation (8). The
reader can refer to Pretti et al. [42] for further details and conse-
quences of the above inequalities. Despite this consideration, the
above formula possesses another desirable feature for the MPM,
discussed below in Section 4.6, and it is thus employed.

4.6 | Mapping Processes and MPs’ Domain
Update

As mentioned in Section 4.1, two mapping processes take place
in an MPM step. The Point-to-Grid (P2G) mapping (phase (ii) in
Figure 1) initialises the nodal grid unknowns, transferring the
information from the MPs. This mapping process is required to
conserve physical properties of interest relative to the mapped
information. In the context of the dynamics of a solid body, for

instance, the velocity mapped from the MPs to the grid is expected
to conserve, as much as possible, momenta (linear and angular)
and kinetic energy to avoid numerical dissipation (see Love and
Sulsky [62] or Pretti et al. [63]). A similar rigorous procedure
should be expected for a poro-mechanical problem. However,
mapping the velocity can be avoided for a quasi-static problem
using Equation (51), since the Jacobian 𝐽 is not required on
the grid for computational purposes. As for the other primary
variable, the fluid pressure relates to a form of energy stored in
the fluid body only if the considered material is compressible,
as pointed out by Miehe et al. [43]. Owing to Assumption 6,
this work considers an incompressible fluid constituent, which
is not required to be mapped as the pressure acts as a Lagrange
multiplier, which does not entail any form of energy. Overall, it
emerges that G2P mapping is not required in this context, that
is, quasi-static simulations considering an incompressible fluid
phase. However, this procedure can take place for estimating bet-
ter predictors for the NR scheme, but these estimates are free from
consideration of numerical dissipation.

Once the grid solution is achieved, this must be mapped to the
MPs before grid disposal (phase (v) in Figure 1). Unlike the
P2G mapping, the Grid-2-Point (G2P) mapping must always take
place, as it is the MPs’ role to store information necessary to run
the analysis through different steps. Under the same assumptions
considered in the above paragraph for the P2G mapping (i.e.,
quasi-static simulations involving an incompressible fluid), the
G2P mapping is not required to conserve physical quantities of
interest for the same reasons outlined above. Hence, the shape
functions can be straightforwardly used to map the values of the
unknowns from the grid nodes to the MPs, that is,

𝑚𝑝𝒖𝑛+1=𝑚𝑝𝒖𝑛 + Nℎ∕2
𝑎

(
𝑚𝑝𝒙𝑛+1

)
Δu𝑎 (52)

𝑚𝑝𝑝𝑛+1 = Nℎ
𝑎

(
𝑚𝑝𝒙𝑛+1

) (
p𝑛+1

)
𝑎

(53)

where Δu𝑎 is the difference in the time step of the grid displace-
ments, that is, Δ(•) ∶= (•)𝑛+1 − (•)𝑛. The above updates exploit
the considerations drawn so far: on the one hand, the initial dis-
placement on the grid

(
u𝑎

)
𝑛

is not reconstructed with the P2G
mapping (the unknown of the system of primary equations can
directly be Δu𝑎); on the other, the pressure field can be re-written
both at the MP and grid levels because it is not related to an energy
measure.

While the update of the mixed volume for the sMPM follows the
standard procedure for volume update using the Jacobian, the
length of the characteristic function for the GIMPM requires an
update that can differ for the different Cartesian directions. This
work follows the corner update procedure proposed by Coombs
et al. [36]. The reader is referred to this reference for further
details on its implementation and the exhibited advantages over
the other techniques.

5 | Numerical Examples

The model detailed in Section 2, formulated in a weak sense
in Section 3, and discretised in Section 4, is below investigated
via four different examples, each exploring a particular feature
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of the proposed formulation. The implementation of the out-
lined model has been carried out in an extended version of
AMPLE [64].

5.1 | Terzaghi Mono-Dimensional
Consolidation

Example Scope

The numerical investigation provided by the Terzaghi
mono-dimensional consolidation (see Figure 4 and, for com-
parison, [65]) delivers a two-fold goal. A comparison considering
two meshes is made between the Qk𝑆𝐷-Qk meshes (specifically
using sMPM, that is, Q1𝑆𝐷-Q1) and the Polynomial Pressure
Projection (PPP) with a single mesh. The PPP is one of the most
widely adopted stabilisation techniques in the literature for
𝒖 − 𝑝(𝑓 ) (see White and Borja [66] for the FEM and Zhao and
Choo [22] for its adaptation to the MPM). The results on the two
meshes are compared near zero consolidation time versus an
established critical time for 𝒖 − 𝑝(𝑓 ) formulations (see Vermeer
[67]). This critical time states that the coarser simulation shows
oscillating pressure, while the finer analysis does not. While the
simulations with Q1𝑆𝐷-Q1 meshes agree with these predictions,
it is shown that the analyses employing the PPP exhibit pressure
instability for both meshes. Furthermore, in the case of the
coarser unstable simulation, it is investigated how this instability
dissipates over time for the simulation using Q1𝑆𝐷-Q1 meshes.

The analytical values of pressure are well-known in the
small-strain regime and are given by (see, for instance, [65])

𝑃 (𝑍, 𝑇 ) =
∞∑

𝑚=0

2
𝑀

sin(𝑀𝑍) exp
(
−𝑀2 𝑇

)
with 𝑀 = 𝜋

2
(2𝑚 + 1) and 𝑚 = 0, 1, · · · ∈ ℕ0 (54)

where the adimensional quantities in the above equation are
defined as follows

𝑃 ∶= 𝑝(𝑓 )

𝑤
; 𝑍 ∶= 𝑧

𝐻
; 𝑇 ∶=

𝑐𝑣

𝐻2 𝑡 (55)

FIGURE 4 | Illustration of the Terzaghi mono-dimensional problem.
Permeable surfaces are designed by the dashed line.

with 𝑤 being the magnitude of the overburden and 𝐻 the height
of the column. The relationship between the coefficient of con-
solidation 𝑐𝑣 and other hydro-mechanical parameters is given by

𝑐𝑣 =

(
𝐾

𝑛0
+ 4

3
𝐺
)

𝜌
(𝑓 )
0 𝑔

κ (56)

where 𝐾

𝑛0
is the initial tangent modulus of the improved Hencky

material described by Equation (15).

Setup

The hydro-mechanical parameters are the same as those
employed by Zhao and Choo [22] and are reported in Table 1.
Owing to the assumed parameters, it is expected that the numer-
ical values, computed in the finite strain context, can reproduce
the analytical results set in the small strain theory. Two MPs
per direction are initially positioned for each element of the
finer mesh. Owing to this initial discretisation and given that
small displacements are expected, the small-cut issue detailed in
Section 4.2 does not occur in this example. Thus, the ghost sta-
bilisation included in Equations (47) and (48) are not considered
for this problem.

As mentioned above, two different vertical discretisations have
been considered, and the initial selected time step is 𝑡0 = 0.1 s.
These discretisations have been designed to comply with (in the
case of 𝑛els

𝑦
= 320) and violate (in the case of 𝑛els

𝑦
= 160) at the first

time step the time value prescribed by Vermeer and Verruijt [67]
for implicit 𝒖 − 𝑝(𝑓 ) formulations, this being

𝑡 ≥ Δℎ2
𝑦

6 𝑐𝑣

{
≈ 0.09 s if 𝑛els

𝑦
= 320

≈ 0.36 s if 𝑛els
𝑦

= 160
(57)

To avoid unnecessary computational time and still provide a
good description of the consolidation phenomenon, the time-step
partition observes the geometric series to complete the consolida-
tion process (i.e., 𝑇 = 1)

𝑛−1∑
𝑝=0

𝑐𝑝𝑡0 ≈ 𝐻2

𝑐𝑣
(58)

where the common ratio 𝑐 = 1.01673 has been selected to run the
simulation in 𝑛 = 550 time-steps.

TABLE 1 | Summary of the parameters considered in the analysis of
the Terzaghi mono-dimensional consolidation.

Parameter settings

Material
parameters

𝐾

𝑛0
, 𝐺 1 × 106 Pa, 6 × 105 Pa

κ0 10−7 m s−1

𝜌
(𝑓 )
0 1000 kg/m3

Geometry
and loading

𝐻 1 m
𝑤 100 kPa
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The analyses have been run using sMPM shape functions
(Q1𝑆𝐷-Q1 meshes). However, given that small displacements
are expected, no appreciable difference could be noticed if the
GIMPM shape function should have been employed.

The parameter for the PPP vector is 1
2𝐺

, which is widely
adopted in the literature (see Zhao and Choo [22] and references
therein).

Results Discussion

From a comparison between Figures 5a and 5b, it is clear that
the formulation proposed in this paper (green line) agrees with
the prediction of unstable (Figure 5a) and stable (Figure 5b)
time provided by Equation (57). Conversely, the PPP (red line)
exhibits unstable behaviour even for the predicted stable discreti-
sation with 𝑛els

𝑦
= 320. Moreover, it can be seen that the insta-

bility caused by the PPP propagates through more vertical ele-
ments than its Q1𝑆𝐷-Q1 counterpart for both situations. It must
be observed that these results comply with the literature: Preisig
and Prevost [29] stated that the PPP is unable to remove pres-
sure oscillation near the draining boundary, and Monforte et al.
[68], adopting a 𝒖 −𝒘 − 𝑝(𝑓 ) formulation, showed pressure oscil-
lating behaviour for a high-frequency wave propagation problem.
These studies confirm that the PPP was not designed to stabilise
poromechanical problems in which the pressure field belongs
to 𝐻1(𝜔): the original application of the PPP (see Dohrmann
and Bochev [69]) was Stokes problems, which requires the pres-
sure field to be 𝐻0(𝜔). The peaks shown in Figures 5a and 5b
(and confirmed by the literature) correspond with sharp pres-
sure gradients (i.e., with the phenomenon progressively passing
from undrained to drained), which the PPP was not designed to
stabilise.

Figure 6 (particularly its magnification) investigates the persis-
tence of the spurious peak for the Q1𝑆𝐷-Q1 formulation in the

unstable case (i.e., 𝑛els
𝑦

= 160). The numerical results agree with
Equation (57), which prescribes a stable time bigger than≈ 0.36 s.
For the adimensional time 𝑇 ≈ 1.33 ⋅ 10−5 (corresponding to
≈ 0.74 s), the peak is practically extinguished. Its pressure value is
2.14% bigger than its analytical one, which is significantly lower
than the one exhibited in Figure 5a for 𝑇 ≈ 1.8 ⋅ 10−6 (corre-
sponding to≈ 0.1 s), this being 17.5% bigger compared to the ana-
lytical value. For the 𝑇 ≈ 1.05 ⋅ 10−4 (corresponding to ≈ 5.83 s),
there is no appreciable difference between the numerical and the
analytical solution. This overlap between the numerical inves-
tigation and the analytical solution for the excess pore pressure
isochrones continues for the rest of the simulation, until consol-
idation has entirely taken place.

5.2 | Investigation of the Face Ghost Penalty

Example Scope

While the previous example focused on the stabilising effect
given by Q1𝑆𝐷-Q1 elements, this numerical exercise (illustrated
in Figure 7) is particularly aimed at investigating the beneficial
role of the ghost penalties when applied to the matrices A and C
appearing in the Jacobian matrix. If adopting (as is the case in this
example) Qk𝑆𝐷-Qk meshes, the drained case requires coercivity
of both these bilinear forms associated with the above matrices to
guarantee solvability.

The effectiveness of the face ghost stabilisation applied to
Equations (47) and (48) is investigated for different values of the
parameters 𝛾𝐴 and 𝛾𝐶 . The spanned values of these parameters
have been chosen to be not too small, resulting in insignificant
effects, nor too high, leading to potential locking phenomena
(see Badia et al. [70]). This example bears similarities with other
numerical tests proposed by Coombs [30] in the MPM context and
by Kothari and Krause [71] and Sticko et al. [72] for the unfit-
ted FEM.

FIGURE 5 | Graphical comparison between analytical formula and numerical solutions obtained with the PPP stabilisation and Q1𝑆𝐷-Q1 meshes.
(a) Excess pore pressure isochrones comparison at the time 𝑇 ≈ 1.8 × 10−6 s for the case with 𝑛els

𝑦
= 160. (b) Excess pore pressure isochrones comparison

at the time 𝑇 ≈ 1.8 × 10−6 s for the case with 𝑛els
𝑦

= 320.
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FIGURE 6 | Excess pore pressure isochrones for the case with 𝑛els
𝑦

= 160.

FIGURE 7 | Geometry and initial setup for the considered ellipse.
Each initial setup consists of seeding the MPs discretising the ellipse in
a different position, described by the coordinate 𝑎, while keeping the
meshes (finer in grey, coarser dashed in white) fixed. New MP setups are
generated for different values of 𝑎. Drained conditions are applied at the
top of the mesh (dashed black line).

Setup

The half of an ellipse illustrated in Figure 7 is made of an ideal
porous material, whose parameters are listed in Table 2. Since the
scope of this investigation lies in the examination of the small-cut
issue (and its remedy), the geometrical aspect, that is, the over-
lap between the physical domain and shape functions’ stencil,
is examined. This justifies two aspects: on the one hand, the
assumption of ideal, non-descriptive, hydro-mechanical param-
eters; on the other, the use of a geometry such as an ellipse. This
form combines a periodic behaviour along the coordinate 𝑎 (see
Figure 7) and aggravates the small-cut problem at the bottom
limit of the ellipse.

Three MPs per direction are initially equally distributed for each
element of the finer mesh. The MPs lying outside the analytical
shape described by the half of the ellipse are then removed. This
setup is repeated for different values of the coordinate 𝑎, which
is varied progressively for each simulation. For each of these dis-
cretisations, the submatrices A and C in the Jacobian are assem-
bled so that the effect of the ghost stabilisation can be assessed for
different physical MP-based domain-mesh interactions.

TABLE 2 | Summary of the parameters considered in the investiga-
tion of the ghost penalty example.

Parameter settings

Material
Parameters

𝐾

𝑛0
, 𝐺 1 Pa, 1 Pa

κ0 1 m s−1

𝜌
(𝑓 )
0 1 kg/m3

Geometry 𝐻𝑥, 𝐻𝑦 8 m, 3 m
𝑟𝑥, 𝑟𝑦 2 m, 2.15 m

Grid Δℎ𝑥, Δℎ𝑦 1 m, 1 m

It must be noted that, for the sMPM, it is not possible to assign an
element to an MP when this lies precisely on an element bound-
ary. Since this occurs for the finer mesh when 𝑎 = Δℎ𝑥

4
∗ 𝑝, with

𝑝 = 1, 2, · · · ∈ ℕ, these sampling locations are avoided for the
sMPM. This choice explains the rupture of periodic behaviour,
which is particularly evident in Figure 8a. Nonetheless, it must
be underlined that this situation is due to the specificity of the
setup and is highly unlikely to occur in standard simulations.

Results Discussion

As it can be appreciated from Figure 8, there is considerable dif-
ference in the condition numbers (denoted by κ(•), with (•) being
the considered submatrix) for unstabilised sMPM and GIMPM,
with the latter showing on average three orders of magnitude
higher condition number for the same setup. This behaviour is
due to the shape functions stencil, which is more extended for
the GIMPM.

Figure 8a highlights how the lowest value of ghost penalty (𝛾𝐴 =
𝐸 ⋅ 10−4) does not contribute significantly to the submatrix A
condition number in the case of sMPM. Diversely, in the case
of the GIMPM in Figure 8c, the effect of the ghost penalty for
𝛾𝐴 = 𝐸 ⋅ 10−4 reduces the peak values by approximately an order
of magnitude, even though the general pattern follows similarly
that of the unstabilised version. These peaks are more levelled
for the case of 𝛾𝐴 = 𝐸 ⋅ 10−2 and entirely smoothed for the case
of 𝛾𝐴 = 𝐸, which exhibits condition numbers approximately 4.5

14 of 24 International Journal for Numerical Methods in Engineering, 2025
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FIGURE 8 | Effects of the applied ghost penalty parameters on the condition number of submatrices A (left column) and C (right column) in the case
of sMPM (top row) and GIMPM. (bottom row). (a) Condition numbers for the A sub-matrix for translating domains, sMPM. (b) Condition numbers for
the C sub-matrix for translating domains, sMPM. (c) Condition numbers for the A sub-matrix for translating domains, GIMPM. (d) Condition numbers
for the C sub-matrix for translating domains, GIMPM.

orders of magnitude lower than the peaks of the unstabilised ver-
sion. Back to Figure 8a for the sMPM, it can be seen how 𝛾𝐴 = 𝐸

leads to overall smooth behaviour, with the condition number
being approximately 1.5 orders of magnitude below the unsta-
bilised peaks. The value 𝛾𝐴 = 𝐸 ⋅ 10−2 contributes less signifi-
cantly to stabilising the sMPM than its GIMPM counterpart. Sim-
ilar trends can be seen for the condition number of the submatrix
C in the case of sMPM (Figure 8b) and GIMPM (Figure 8d).

Owing to the previously mentioned lack of rigorous analysis for
the MPM, the condition numbers of the submatrices A and C,
even if they benefit from the ghost stabilisation, are still depen-
dent to some degree on the intersection between the shape func-
tions’ stencil and the MP-based physical domain. This aspect
diversifies the MPM from the unfitted FEM, where, once sta-
bilised, the domain’s cuts do not play a role in the condition num-
ber (as proved in Burman [51] and numerically demonstrated in

Kothari and Krause [71]). This difference amplifies the impor-
tance of carefully choosing the correct value of the stabilisation
parameter, as some selections, even though effective, might not
give the desired limitation on the condition number.

5.3 | Flexible Strip Foundation

Example Scope

The scope of this numerical test is to support the rationale pro-
vided in Section 4.4.2 regarding the stability of the different com-
binations of polynomial functions employed by the GIMPM for-
mulation with Qk𝑆𝐷-Qk meshes. To demonstrate that the pres-
sure field is free from oscillations, a flexible footing loading
has been applied at the top of a fully saturated porous mate-
rial in plane-strain conditions (see Figure 9). Elastic and the
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elasto-plastic cases have been considered. Since the application of
the loading causes the considered body to displace substantially,
it is expected that all the combinations of polynomials that the
GIMPM basis functions exhibit will be met through the analysis,
even if not uniformly or simultaneously.

Setup

Hydro-mechanical parameters are reported in Table 3, and the
considered elastic material shares similarities with the one pre-
sented in Armero [73] in a very similar example. The modified
Cam clay 𝛼 − 𝛾 yield surface proposed by Collins and Hilder [74]
has been considered for the elasto-plastic case (see, for instance,
[75] for implementation details).

To apply the non-conforming pressure BCs, a penalty value of
𝛾pen = 5 ⋅ 106∕κ0 was employed, where the hydraulic conductiv-
ity appears at the denominator for a matter of consistency with
the physical units. The load has been linearly increased from zero
to the value shown in Table 3. The elastic case can complete the

FIGURE 9 | Illustration of the flexible strip foundation problem. Per-
meable surfaces are designed by the dashed line.

TABLE 3 | Summary of the parameters considered in the analysis of
the flexible strip foundation.

Parameter settings

Material Parameters 𝐾, 𝐺 1.062 × 108 Pa, 9.8 × 107 Pa
𝛼, 𝛾, 𝑀, 𝑝𝑐 0.6, 0.9, 0.364, 7.5 × 107 Pa

κ0 2.07 ⋅ 10−3 m s−1

𝑛0 0.5
𝜌
(𝑓 )
0 1000 kg/m3

Geometry and
loading

𝐿, 𝐻, 𝑙 20 m, 16 m, 8 m
𝑤 2.5 × 108 Pa

Time and time-step T 10 s
Δ𝑡 0.5 s

Grid and MPs Δℎ𝑥, Δℎ𝑦 0.25 m, 0.25 m
MPs per element

(finer mesh)
4

simulation in 20 time steps, while the plastic case reaches the
limit load in correspondence with the 4𝑡ℎ time step, where it is
stopped.

Given the low number of MPs per element and the substan-
tial displacements expected in this simulation, the ghost penal-
isation has been included. Based on the observations made in
Example 5.2, the selected parameters for the penalty values are
𝛾𝐴 = 𝐸 ⋅ 10−1 and 𝛾𝐶 = κ0

𝑔
⋅ 10−1.

Results Discussion

As can be seen from the contours shown throughout the anal-
ysis in Figure 10 for the elastic case, the fluid pressure does
not present oscillations typical of violating the inf-sup condition.
Even though showing spatially different distributions of pres-
sure, these values are equally smooth for the final step of the
elasto-plastic case shown in Figure 11b. As Figure 11a shows,
plastic strains arise in correspondence with the footing angle,
forming the expected wedge shape. This shape is also visible for
the pressure field in Figure 11b, where the GIMPM Qk𝑆𝐷-Qk
meshes handle this horizontal gradient without interruptions or
oscillations. Due to the continuity demonstrated for the differ-
ent fields and situations in Figures 10 and 11, the chosen ghost
parameters have proved suitable for stabilising the submatri-
ces’ conditioning number and achieving the continuous expected
results.

Overall, the exhibited smooth values of pressure substantiate
the explanation provided in Section 4.4.2 for the GIMPM shape
functions, showing that these described Qk𝑆𝐷-Qk stable meshes
deliver oscillating-free solutions.

5.4 | Flexible Loading Applied to an
Unconstrained Cube

Example Scope

The final example presented in this paper considers the
three-dimensional flexible loading of an unconstrained cube, as
illustrated in Figure 12, and compares the formulation proposed
in this work, labelled (𝑎), with formulation (𝑏), which offers dif-
ferent characteristics. To be more specific,

• Simulation (𝑎) includes the beneficial effects of the ghost sta-
bilisations and the Qk𝑆𝐷-Qk elements, as in Equations (47)
and (48);

• Simulation (𝑏) does not consider ghost stabilisations and
employs equal-order interpolating functions over the same
finer mesh.

For these specific simulations, the contribution to the stability of
the Qk𝑆𝐷-Qk elements and that of the ghost stabilisation mostly
occur at two different stages. On the one hand, the presence of
the overlapping grids avoids the pressure instability in nearly
undrained conditions, when the material is mostly incapacitated
to change its volume. On the other hand, the ghost stabilisation
critically improves the condition number of the submatrices A
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FIGURE 10 | Contours of the pressure field across the simulation for the flexible footing loading, elastic case. (a) Contours of the fluid pressure
field, 1𝑠𝑡 time step. (b) Contours of the fluid pressure field, 5𝑡ℎ time step. (c) Contours of the fluid pressure field, 10𝑡ℎ time step. (d) Contours of the fluid
pressure field, 15𝑡ℎ time-step. (e) Contours of the fluid pressure field, 20𝑡ℎ time-step.

and C when the overlap between the shape functions’ stencil and
the background grid is minimal. Since the initial setup of these
simulations considers conforming meshes, this small-cut situa-
tion occurs when the MPs move across the background mesh,
that is, at a later stage of the simulation. Hence, the time-step
segmentation of these when simulations has been designed to
capture the initial nearly-undrained conditions (where Qk𝑆𝐷-Qk
elements can be appreciated) and, later on during the simula-
tion, the large displacements taking place when the consolidation
process kicks in significantly (and the ghost penalties are essen-
tial for a stable solution).

Setup

Figure 12 shows the initial setup of the problem, where roller
boundary conditions are applied on the planes described by the
equations 𝑥 = 0, 𝑦 = 0, and 𝑧 = 0. Similarly to Example 5.3, zero
atmospheric pressure is applied on the cube’s external planes,
using the corner penalty technique explained in Bird et al. [50]
with a penalty factor 𝛾pen = 2.2 ⋅ 106∕κ0. GIMPM shape functions
are used for all of the analyses. The external load 𝑤 is linearly
increased from time 0 to time 𝑇 of the simulation, ramping from
0 to the value reported in Table 4. The total time of the simulation
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FIGURE 11 | Contours of different fields at the last time-step for the flexible footing loading, plastic case. (a) Contours of the plastic volumetric part
of the logarithmic strain, last time-step. (b) Contours of the fluid pressure field, last time-step.

FIGURE 12 | Illustration of the flexible loading applied to an uncon-
strained cube. Rollers are applied on the grey-shaded surfaces, while
zero atmospheric pressure is applied on the external surface of the slope,
marked by the light blue colour. The load is applied on the top patterned
area.

is 𝑇 ≈ 657 s. Time-step segmentation follows the geometric series
given by the left-hand side of Equation (58), which is equal to
the total time of the simulation 𝑇 . This is achieved by setting
𝑡0 ≈ 0.1206 s and 𝑐 ≈ 1.0234, so that the simulation is run in 210
time steps. Table 4 reports the other parameters used in the simu-
lations. The ghost penalty parameters used in Simulation (𝑎)were
𝛾𝐴 = 𝐸0 ⋅ 10−2 and 𝛾𝐶 = κ0

𝑔
⋅ 10−2.

Results Discussion

Figure 13 shows the mean condition number of the sub-matrices
A (Figure 13a) and C (Figure 13b), from the 150𝑡ℎ to the 210𝑡ℎ

time-step. The preceding steps are not considered in the graphs
since the MPs practically conform to the mesh, as confirmed by
the approximately constant initial values of the condition num-
bers shown in Figure 13. The absence of the ghost stabilisation in
Simulation (𝑏) makes the simulation stop at the 205𝑡ℎ time-step.
This failure in the convergence of the NR is explained by the
poor condition numbers exhibited by the submatrices A and C for
Simulation (𝑏), which do not permit the inversion of the Jacobian.
The peak values of A and C condition numbers obtained by

TABLE 4 | Summary of the parameters considered in the
three-dimensional slope stability example.

Parameter settings

Material
Parameters

𝐾, 𝐺 1.92 × 104 Pa, 9 × 104 Pa
𝛼, 𝛾, 𝑀, 𝑝𝑐 0.6, 0.9, 0.364, 8 × 104 Pa

κ0 1 × 10−3 m s−1

𝑛0 0.2
Geometry and
load

𝐿, 𝐻 8 m, 6 m 6 m
𝑙𝑤 6 m||𝒘|| = 𝑤𝑧 −8.52 × 103 Pa

Grid and MPs
(coarser mesh)

Δℎ𝑥 = Δℎ𝑦 = Δℎ𝑧 0.167 m
MPs per element 64

Simulation (𝑏) are approximately 19 and 15 orders of magnitude
above the initial value (when the physical domain conformed to
the mesh). For Simulation (𝑎), these values are 9 and 4 orders of
magnitude above the conforming value, which allows the inver-
sion of the Jacobian throughout the analysis. In both simulations,
condition numbers start to increase from the conforming value
when plastic deformations occur, that is, with MPs undergoing
considerable displacement from their original position, trigger-
ing the small-cut issue. It can also be noticed from Figure 13
that this mechanism occurs later in Simulation (𝑎). This is due
to the higher number of pressure degrees of freedom for Simu-
lation (𝑏), which permits a faster consolidation, where the total
load is progressively more distributed to the effective part of the
stress. The delay of plastic deformations in Simulation (𝑎) is con-
firmed by Figures 15a and 15b. These contours are taken at the
same time-step but show a more extensive portion of volumetric
plastic strain in the case of Simulation (𝑏).

As for the beneficial role played by Qk𝑆𝐷-Qk elements, this can be
appreciated in Figure 14, which reports the normalised pressure
for different time steps in the row of MPs closest to the 𝑧-axis (i.e.,
𝑥 = 0, 𝑦 = 0). In particular, Figure 14a shows how the pressure is
highly oscillating in the case of Simulation (𝑏), while Simulation
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FIGURE 13 | Comparisons of the mean condition numbers of submatrices A (left) and C (right) for simulations (𝑎) and (𝑏), from the 150𝑡ℎ to the
210𝑡ℎ time step. 𝑟 is defined as the counter of the NR iterations for each time-step, with 𝑁𝑟 being its total value. Asterisks mark the final time step of
simulation (𝑏), where the NR algorithm fails to converge. (a) Mean condition numbers for the A sub-matrix for translating domains, 𝜅(A) = 1

𝑁𝑟

∑𝑁𝑟

𝑟=1𝜅(A).
(b) Mean condition numbers for the C sub-matrix for translating domains, 𝜅(C) = 1

𝑁𝑟

∑𝑁𝑟

𝑟=1𝜅(C).

FIGURE 14 | Normalised pressures at the MPs located closest to the 𝑧-axis plotted along the depth of the cube. (a) Plot taken at the 1𝑠𝑡 time-step,
𝑡 ≈ 0.12 s. (b) Plot taken at the 5𝑡ℎ time-step, 𝑡 ≈ 0.63 s. (c) Plot taken at the 10𝑡ℎ time-step, 𝑡 ≈ 1.34 s.

(𝑎) is able to represent the peak of the pressure at the top of the
column without instabilities. In the case of Simulation (𝑏), these
instabilities are progressively removed from the simulation with
time, when conditions become progressively more drained (see
Figures 14b and 14c). While these instabilities seem to be entirely
removed in Figure 14c, the contours of pressure in Figure 15d
show that these are not entirely removed in some parts of the
domain, even more towards the end of the simulation. This is not
the case of Figure 15c for Simulation (𝑎), where the pressure field
appears smooth due to the Qk𝑆𝐷-Qk discretisation.

6 | Conclusions

This manuscript has highlighted two sources of instability that
can arise for the MPM in the case of mixed formulations and
proposed a new approach that overcomes both issues for cou-
pled (solid-fluid) problems. The intrinsic nature of the MPM as

an unfitted method and its resulting small-cut issue can lead to
ill-conditioned matrices. For mixed formulations, this small-cut
issue affects both the submatrices appearing on the main diag-
onal of the Jacobian (i.e., A and C), especially in drained condi-
tions. The treatment of this instability has been the use of the face
ghost penalty method on both the displacement and fluid pres-
sure meshes, which, even though it does not guarantee coercivity
for the MPM, limits the condition number of these submatrices
(see Examples 5.2 and 5.4), thus permitting the inversion of the
Jacobian matrix.

Furthermore, in nearly undrained conditions, the choices of the
spaces of test and trial functions relative to displacement and
pressure can violate the inf-sup condition. This work has adapted
the use of Qk𝑆𝐷-Qk elements to the MPM. The resulting over-
lapping meshes, while maintaining low-order shape functions
(as is the case with the sMPM and the GIMPM), are stable by
design (see Examples 5.3 and 5.4). This is in contrast to the widely
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FIGURE 15 | Contours of different quantities for Simulation (𝑎) (left) and (𝑏) (right). These contours are computed at the 183𝑟𝑑 time-step (top row),
𝑡 ≈ 350 s, and at the last time-step of Simulation (𝑏) (bottom row), 𝑡 ≈ 572 s. (a) Contours of the volumetric plastic strain for Simulation (𝑎), 183𝑟𝑑

time-step. (b) Contours of the volumetric plastic strain for Simulation (𝑏), 183𝑟𝑑 time-step. (c) Contours of the fluid pressure for Simulation (𝑎), 204𝑡ℎ

time-step. (d) Contours of the fluid pressure for Simulation (𝑏), 204𝑡ℎ time-step.

adopted PPP formulation (see Example 5.1), which is unable
to stabilise poromechanical problems, especially near drained
boundaries, due to the 𝐻1(𝜔) nature of the pressure field [29].

The key contribution offered by this paper is a stable, implicit
MPM formulation for large deformation coupled problems,
including elasto-plastic material behaviour in two and three
dimensions. While a rigorous analysis or even the patch test are
not available for the MPM, the rationales provided throughout
the paper are substantiated via the similarities between the MPM
and the unfitted FEM and tested with the considered numerical
examples.
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Endnotes
1 For the sake of completeness, a second Jacobian relative to the fluid

phase could be introduced, this being given by 𝐽 (𝑓 ) = det𝑭 (𝑓 ), with
𝐹

(𝑓 )
𝑖𝐼

= 𝜕𝜑
(𝑓 )
𝑖

∕𝜕𝑋(𝑓 )
𝐼

. However, since the mixture theory assumes that
the current position and mixed volume are shared by the two phase
particles, that is, 𝒙 = 𝜑(𝑠)(𝑿(𝑠), 𝑡) = 𝜑(𝑓 )(𝑿(𝑓 ), 𝑡) and 𝐽 = 𝐽 (𝑓 ), the fluid
deformation gradient becomes mostly redundant.

2 Equation (14) assumes the continuum mechanics sign convention (posi-
tive pressure indicates tensile behaviour) as opposed to the geotechnical
one (positive pressure designates compressive behaviour).

3 For the fluid mass conservation, it must be noted that, technically, the
correct integration domain is the fluid. However, this domain and that
of the mixture are related by the Eulerian porosity, that is, 𝑑𝜔(𝑓 ) = 𝑛 𝑑𝜔.
If this (i.e., the porosity) is simplified for all the terms in the fluid
mass conservation, the integration over the mixture volume is de facto
achieved.

4 Following the convention used so far, in which vectors are in bold
characters while scalars are in italics, the submatrix C appearing in
Equation (33) should be only in italics. However, since this manuscript
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makes no distinction in the notation between the continuum submatri-
ces and their discrete counterparts, a bold font for the submatrix C is
adopted in every context. Moreover, this makes the submatrix C comply
with the others appearing in the Jacobian.

5 This work often refers to the closure of a generic entity, which is a
shorthand for indicating the set of entities contained by the considered
generic one and the entity itself. If, for instance, a bi-dimensional mesh
element 𝑇 is considered, the closure of 𝑇 includes the faces and nodes
belonging to 𝑇 and 𝑇 itself.

6 While the face ghost penalty is the term usually adopted in the literature,
this work refers to facet to indicate, in the 𝑛dim-th dimensional space,
the face with dimension 𝑛dim − 1, that is, a point, an edge, and a face for
𝑛dim = 1, 2, 3, respectively.

7 From an implementation perspective, the current formulation can be
accomplished in different ways: on the one hand, two different sets of
overlapping meshes can be introduced, and the interpolant functions
use the finer (in the case of displacement) or coarser (in the case of
pressure) grid nodes; on the other, a unique finer mesh can be adopted,
provided that the pressure interpolant functions use one node every two
in each direction.

8 This assumption can be regarded as valid if the face ghost penalty is
regarded as a numerical artifice for numerical purposes (see, in this
regards, Coombs [30]).
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Appendix A

Linearisation of the Adopted Finite Strain Formulation

This section reports the Jacobian matrix resulting from the linearisation
of stable Equations (47) and (48). For brevity and clarity of notation, the
subscript indicating the current 𝑛 + 1 time-step is omitted. Equations (47)
and (48) are repeated below, with the assumption that the matrices rela-
tive to the ghost penalties are computed at the previously converged step
(𝑛-th time-step)8, that is,
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+ 𝛾𝐶ℎ ∫ℎ𝛾𝐹

[[(
grad𝑛

(
Nℎ

𝑎

)
⋅ n𝑛

)]][[(
grad𝑛

(
Nℎ

𝑏

)
⋅ n𝑛

)]]
𝑑𝑎𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=Qghst
𝑎𝑏

p𝑏

)
= 0,

∀δη𝑎 ∈ ℎ𝒲0 (A2)

The variation of the above equations (second variation of functionals)
gives the following matrices

A𝑎𝑏 = 𝛿
(

f′,int
𝑎

− K(𝑓 ) int
𝑎𝑐

p𝑐 − fext
𝑎

+ Kghst
𝑎𝑐

u𝑐 , 𝛿u𝑏

)
(A3)

B(1)
𝑎𝑏

= 𝛿
(
−K(𝑓 ) int

𝑎𝑐
p𝑐 , 𝛿p𝑏

)
(A4)

B(2)
𝑎𝑏

= 𝛿
(
vint
𝑎

+ Qpress
𝑎𝑐

p𝑐 − vext
𝑎

, 𝛿u𝑏

)
(A5)

C𝑎𝑏 = 𝛿
(
Qpress

𝑎𝑐
p𝑐 + vpen

𝑎
+ Qghst

𝑎𝑐
p𝑐 , 𝛿p𝑏

)
(A6)

Let us recall the Cartesian basis vectors introduced in Section 2.1 for the
current configuration 𝒆𝑖 and for the initial one 𝑬𝐼 , which are employed
to express the Cartesian components of the tensors and vectors appearing
above. In particular, it follows from Equation (A3) that

𝛿
(

f′,int
𝑎

, 𝛿u𝑏

)
= ∫𝑀𝑃 𝜔

gradℎ

(
Nℎ∕2

𝑎𝑖

)(
−𝜏′𝑖𝑘 𝛿ℎ𝑗 + 𝑎ihjk

)
grad𝑘

(
Nℎ∕2

𝑏𝑗

)
𝑑𝑉 (A7)

𝛿
(
K(𝑓 ) int

𝑎𝑐
p𝑐 , 𝛿u𝑏

)
= ∫𝑀𝑃 𝜔

gradℎ

(
Nℎ∕2

𝑎𝑖

)(
−𝛿𝑖𝑘 𝛿ℎ𝑗 + 𝛿𝑗𝑘 𝛿𝑖ℎ

)
grad𝑘

(
Nℎ∕2

𝑏𝑗

)
Nℎ

𝑐
𝑑𝑣 p𝑐

(A8)

𝛿
(
fext
𝑎

, 𝛿u𝑏

)
= ∫𝑀𝑃 𝜔

𝜌
(𝑓 )
0 Nℎ∕2

𝑎𝑖
𝑏𝑖 𝛿𝑗𝑘 grad𝑘

(
Nℎ∕2

𝑏𝑗

)
𝑑𝑣 (A9)

𝛿
(
Kghst

𝑎𝑐
u𝑐 , 𝛿u𝑏

)
= Kghst

𝑎𝑏
(A10)

where 𝑑𝑉 indicates the initial volume of integration, 𝛿𝑖𝑗 is the Kronecker
delta, and the fourth-order tensor 𝑎ihjk depends on the considered consti-
tutive relationship. In the case of a Hencky material, this is given by

𝑎ihjk = 1
2
𝐷

′ alg
ihpq 𝐿pqrs 𝐵rsjk (A11)

where

𝐷
′ alg
ihpq =

𝜕𝜏′𝑖ℎ
𝜕𝜖𝑒, 𝑡𝑟

𝑝𝑞

, 𝐿pqrs =
𝜕 ln 𝑏𝑒, 𝑡𝑟

𝑝𝑞

𝜕𝑏𝑒, 𝑡𝑟
𝑟𝑠

, 𝐵rsjk = 𝛿𝑟𝑗𝑏
𝑒, 𝑡𝑟

𝑘𝑠
+ 𝑏𝑒, 𝑡𝑟

𝑟𝑘
𝛿𝑠𝑗 . (A12)

The full expression of 𝐷
′ alg
ihpq can be found in Pretti et al. [42] for the

improved Hencky material under consideration (see Equation 15), while
a convenient expression for 𝐿pqrs is given in Miehe [76]. The component
of Equation (A4) is straightforwardly given by

𝛿
(
K(𝑓 ) int

𝑎𝑐
p𝑐 , 𝛿p𝑏

)
= K(𝑓 ) int

𝑎𝑏
(A13)

while those of Equation (A5) are as follows

𝛿
(
vint
𝑎

, 𝛿u𝑏

)
= ∫𝑀𝑃 𝜔

𝜌
(𝑓 )
0 Nℎ

𝑎

(
1 + ln 𝐽 − ln 𝐽𝑛

)
Δ𝑡

𝛿𝑘𝑗 grad𝑘

(
Nℎ∕2

𝑏𝑗

)
𝑑𝑣 (A14)
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𝛿
(
Qpress

𝑎𝑐
p𝑐 , 𝛿u𝑏

)
= ∫𝑀𝑃 𝜔

1
𝑔

((
𝑐1

𝑛2(3 − 𝑛)
(1 − 𝑛)2

+ κ
)

grad𝑖

(
Nℎ

𝑎

)
grad𝑖

(
Nℎ

𝑐

)
𝛿𝑗𝑘

− κ
(
grad𝑗

(
Nℎ

𝑎

)
grad𝑘

(
Nℎ

𝑐

)
+ grad𝑘

(
Nℎ

𝑎

)
grad𝑗

(
Nℎ

𝑐

)))
grad𝑘

(
Nℎ∕2

𝑏𝑗

)
𝑑𝑣 p𝑐 (A15)

𝛿
(
vext
𝑎

, 𝛿u𝑏

)
= ∫𝑀𝑃 𝜔

𝜌
(𝑓 )
0

𝑔

((
𝑐1

𝑛2(3 − 𝑛)
(1 − 𝑛)2 + κ

)
𝛿𝑗𝑘 grad𝑖

(
Nℎ

𝑎

)
− κ 𝛿𝑖𝑘 grad𝑗

(
Nℎ

𝑎

))
𝑏𝑖 grad𝑘

(
Nℎ∕2

𝑏𝑗

)
𝑑𝑣 (A16)

Components of Equation (A6) are finally given by

𝛿
(
Qpress

𝑎𝑐
p𝑐 , 𝛿p𝑏

)
= Qpress

𝑎𝑏
(A17)

𝛿
(
vpen
𝑎

, 𝛿p𝑏

)
= 𝛾pen ∫𝛾𝑝

Nℎ
𝑎

(
Nℎ

𝑏

)
𝑑𝑎 (A18)

𝛿
(
Qghst

𝑎𝑐
p𝑐 , 𝛿p𝑏

)
= Qghst

𝑎𝑏
(A19)

As it can be seen from the above equations, the ghost stabilisation adds
components to the submatrices A and C (see Equations A3 and A6)
to guarantee the required coercivity of these matrices, as detailed in
Section 3.2.
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