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1 Introduction

Correlation functions of quantum fields at the end of inflation are important in cosmology
as they provide the seeds for the formation of structure in the Universe [1] as sketched in
figure 1(a), where correlation functions are to be evaluated on the dashed line. This is
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J +

η 0end of inflation

(a) Conformal diagram of an asymp-
totically decelerating universe that has
inflated during finite time.

J −

J +

η = 0

η 0
=
−∞η = const

(b) de Sitter (infinite inflation) with a
space-like future infinity.

Figure 1. Conformal diagram where η is the conformal time.

demonstrated by the imprint they leave on the comic microwave background [2]. In this
paper we consider an idealization of a cosmological space-time that consists of an eternally
inflating Universe as in figure 1(b). In such a space-time there is no structure formation, but
the calculation of correlation function is still of theoretical interest, since the early universe
was approximately described by a de Sitter geometry during inflation, and it is possible to
derive inflationary correlators from de Sitter correlators by giving a small mass to one of
the legs of a four-point function in de Sitter space (proportional to the slow-roll parameter)
and then taking a soft limit [3–6]. We consider equal-time correlators but, since there is
no “end of inflation,” the natural location to evaluate them is at future infinity (η = 0
in figure 1(b)). As a consequence of the SO(4, 1)-isometry of de Sitter, these correlation
functions will transform in a representation of the 3-dimensional conformal group acting on
J +. This is an instance of the dS/CFT duality [7–9].

When computing correlation functions in de Sitter, being a non-static space-time, one
furthermore has to specify the initial and final state of the system. There are two natural
choices. One is the ⟨out| · · · |in⟩ expectation value, where |in⟩ is the de Sitter-invariant Bunch-
Davies initial state at η0 (the beginning of inflation), and ⟨out| is given by the boundary
condition at future infinity. With this choice the (integrated) correlators at J + compute
the expansion coefficients of the wave function Ψ[ϕ] of the quantum field ϕ [8, 10]. In
recent years, many tools have been developed to compute the wavefunction perturbatively,
inspired by the study of scattering amplitudes and AdS/CFT. These tools include geometric
approaches [11, 12], methods based on locality and unitarity [13–18], the double copy [19–26],
scattering equations [27], Mellin-Barnes representations [28], and holographic methods [29–34].

From the point of view of cosmology the natural quantity is the ⟨in| · · · |in⟩ correlator,
as it only depends on the initial condition before inflation. It can be computed by squaring
the wavefunction and computing an expectation value or using the Schwinger-Keldysh
formalism [8, 35]. The calculation of in-in correlators can also be mapped to Euclidean
anti-de Sitter [36–38] using an effective action involving shadow fields [39]. The shadow fields
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have ghost-like kinetic terms, although this not an issue in Euclidean anti-de Sitter and
the action is ultimately designed to compute unitary observables in de Sitter. While in-in
correlators [35] relate more directly to experimentally measurable observables, they naively
appear to be more complicated objects than wavefunction coefficients.

One of the main messages of this paper will be that the loop corrections to the in-in
correlators are actually much simpler than wavefunction coefficients. The simplicity arises
from nontrivial cancellations in the loop integrands due to shadow ghost-like contributions
which renders in-in correlators closer in structure to flat space scattering amplitudes than the
wavefunction coefficients. The resulting loop integrands can be written in terms of standard
four-dimensional Feynman integrals in flat space although the presence of a boundary in the
radial direction means that integrals over the radial loop momentum (which is not conserved)
must be performed separately from the boundary loop momentum. We then obtain integrals
over three-dimensional boundary loop momentum whose integrands can also be derived from
a recursion relation analogous to the one developed for wavefunction coefficients in [11].
After performing the loop integration, the resulting analytic structure of in-in correlators
is remarkably similar to that of flat space scattering amplitudes. In particular, they have
the same transcendentality and are significantly simpler than wavefunction coefficients. We
demonstrate this up to two loops for the conformally coupled ϕ4 theory, but we expect this
simplicity to extend to more general theories, as we discuss in the conclusion. In the process
we establish renormalisability of the effective action of [39] up to two loops.

Since the de Sitter metric is locally conformally flat, one might naively expect that
correlators of conformally coupled ϕ4 theory can be mapped into flat space scattering
amplitudes after a conformal transformation. The story is not so simple, however. For one
thing, energy conservation is absent. Also, because the asymptotic structure of de Sitter and
Minkowski space are different. The conformal boundary of the latter is a null-infinity instead
of the space-like infinity of de Sitter.1 Consequently, the bulk to boundary propagators
in the two space-times are different. More precisely, the mode functions in de Sitter for
the given initial condition admit two fall-off behaviours at future infinity, corresponding to
Neumann- and Dirichlet boundary conditions respectively. Only one linear combination of
the two modes gives rise to a flat space “external leg” with tree-level integrands that are
conformally related to the flat space result [40]. Another crucial difference between working
in de Sitter and flat space concerns regularization and renormalisation of divergent loop
integrals. Standard flat space regulators such as a cut-off, or dimensional regularization
break the de Sitter-invariance [41]. At 1-loop, conformal symmetry can then be restored by
choosing non-minimal and non-invariant counterterms, although we do not have a systematic
way to derive them using these regulators. This makes the flat space limit subtle to take,
because in the flat space limit the isometry group of de Sitter space (which is the conformal
group of the three-dimensional Euclidean boundary) gets broken to that of Minkowski space
(which is the four dimensional Poincaré group), so we must break the conformal symmetry by
introducing a dimensionful renormalisation scale. We will give examples of this in section 4.

A manifestly de Sitter-invariant regularization was found in postion space [42–44], but
in this paper we are interested in the momentum space since this is the standard choice in

1There is no globally defined transformation that maps the two into each other.
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cosmology and makes the relation to scattering amplitudes more manifest [45–47]. Momentum
space is also very convenient for the study of soft limits [4, 8, 48, 49] and higher-loop
correlators [50, 51] since their functional form in momentum space is much simpler than
in position space (as we will see later). As we will explain, there is a generalization of
analytic regularization in momentum space which keeps de Sitter-invariance manifest. This
will automatically produce correlators which obey the three-dimensional conformal Ward
identities and will preserve much of the flat space structure of the loop integrands described
above, although it does not seem to be compatible with the recursion for loop integrands. We
will also briefly describe an alternative de Sitter-invariant regularization scheme in section 5
for which the recursion rules do not hold. This is based on the dimensional regularisation
scheme introduced in [30], where one shifts both the boundary dimension d and the scaling
dimensions of the dual operators ∆ in order to preserve the spectral parameter iν = ∆− d/2,
although the resulting loop integrals are very challenging to evaluate.

The structure of this paper is as follows. In section 2, we review the definition of
wavefunction and in-in correlators, as well the effective action for computing in-in correlators
via Witten diagrams in Euclidean anti-de Sitter and derive its Feynman rules in momentum
space. In section 3, we derive a recursion relation for the three-dimensional loop integrands
of in-in correlators. In section 4, we then compute various in-in correlators up to two loops
using a cut-off in the boundary loop momentum and describe how to renormalise them. We
also compute an infinite class one-loop polygon diagrams which do not require regularisation
because they are finite. Along the way, we will show that the loop integrands can be recast
in terms of standard four dimensional flat space Feynman integrals and renormalised by
introducing a dimensionful renormalisation scale. The resulting correlators have the correct
flat space limit but break the three-dimensional conformal symmetry. Remarkably, conformal
symmetry can then be restored by setting the renormalisation scale equal to the energy times
a dimensionless renormalisation scale, although this makes the flat space limit more subtle
to define. In section 5, we derive a de Sitter-invariant regulator and show that it preserves
much of the flat space structure found when using a cut-off while giving correlators which
automatically obey the conformal Ward identities. We carry out calculations up to two
loops in this regularisation scheme and show that the correlators can be renormalised in
a consistent way. We also briefly describe an alternative de-Sitter invariant regularisation
scheme based on dimensional regularisation. Finally, we present our conclusions in section 6.
We also include a number of appendices containing further results and technical details.

2 Effective action and Feynman rules

We will work in the Poincaré patch of dS4 equipped with the metric

ds2 = ℓ2dS

−dη2 + dx⃗2

η2 , (2.1)

where ℓdS denotes the curvature radius, −∞ < η < 0 is the conformal time and x⃗ denotes
the Euclidean boundary directions, with individual components xi, i = 1, 2, 3. Cosmological
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correlators (or in-in correlators) can be computed as follows:

〈
ϕ(k⃗1) · · ·ϕ(k⃗n)

〉
=
∫
Dϕϕ(k⃗1) · · ·ϕ(k⃗n)

∣∣Ψ [ϕ]
∣∣2∫

Dϕ
∣∣Ψ [ϕ]

∣∣2 , (2.2)

where ϕ represents the value of a generic bulk field in the future boundary Fourier transformed
to momentum space, k⃗a are boundary momenta, and Ψ [ϕ] is the cosmological wavefunc-
tion [10], which is a functional of ϕ. For simplicity, we are considering a scalar field but in
general, we should integrate over the boundary values of all the bulk fields, including the
metric. We describe this approach in more detail in appendix A.

The wavefunction Ψ [ϕ] for a scalar field with action S[ϕ] can be perturbatively expanded
as follows: (where d denotes the number of spatial dimensions, which for us is d = 3)

lnΨ [ϕ] = −
∞∑

n=2

1
n!

∫ n∏
i=1

ddki

(2π)d
ψn

(
k⃗1, . . . , k⃗n

)
ϕ(k⃗1) · · ·ϕ(k⃗n), (2.3)

where the wavefunction coefficients ψn can be expressed as

ψn(k⃗1, · · · , k⃗n) = δd(k⃗1 + · · ·+ k⃗n)
〈〈

O
(
k⃗1
)
· · · O

(
k⃗n

)〉〉
, (2.4)

where the object in double brackets can be treated as a CFT correlator2 in the future
boundary [13, 14, 29–32, 45, 52]. A novel feature in de Sitter space is that while momentum
is conserved along the boundary, the total energy defined as

E =
n∑

a=1
ka , ka = |⃗ka| (2.5)

is not conserved in the “scattering”. We also define the shorthand kij = ki + kj and
kijl = ki + kj + kl.

Alternatively, the in-in correlators can be computed using the Schwinger-Keldysh
formalism [53] or, equivalently, via analytic continuation to Witten diagrams in Euclidean
anti-de Sitter [36–38]. For scalar theories with polynomial interactions the resulting Feynman
rules are conveniently encoded in the effective Lagrangian given below [39]:

iSc =
∞∫

0

dzddx

zd+1

 sin(π(∆+− d

2)
)(

(∂ϕ+)2−m2ϕ+
2
)
+ sin

(
π(∆−−

d

2)
)(

(∂ϕ−)2−m2ϕ−
2
)

+ eiπ d−1
2 V

(
e−i π

2 ∆+ϕ+ + e−i π
2 ∆−ϕ−

)
+ e−iπ d−1

2 V
(
ei π

2 ∆+ϕ+ + ei π
2 ∆−ϕ−

), (2.6)

where ∆± are the scaling dimensions of the dual CFT operators which are related to the mass

of the scalar fields ϕ± via ∆± = d
2 ±

√(
d
2

)2
− (ℓdSm)2. To keep the discussion self-contained,

we briefly review the analytical continuation of the fields and refer the reader to [34, 54] for
more details. Using the standard representation of the Schwinger-Keldysh or in-in formalism,

2In the sense that the correlators solve the conformal bootstrap equations. They do not arise from a local

conformal field theory, however.
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the field in de Sitter is first split into two fields ϕL and ϕR. These are then analytically
continued to anti-de Sitter via ϕL(η = ze−i π

2 ) = ϕT , ϕR(η = zei π
2 ) = ϕA. The fields ϕ±

appearing in the action above (2.6) are expressed as a linear combination in terms of these via

ϕA = e−i π
2 ∆+ϕ+ + e−i π

2 ∆−ϕ−, ϕT = ei π
2 ∆+ϕ+ + ei π

2 ∆−ϕ−. (2.7)

Note that ϕ± have kinetic terms with the opposite sign for all values of ∆, so ϕ+ can be
thought of as a ghost field. However this is not a concern for unitarity as the fields are
not viewed as an analytical continuation of the fields in Lorentzian anti-de Sitter. In this
work we consider the case of the conformally coupled scalar with ∆+ = d+1

2 and ∆− = d−1
2

with d = 3. The action (2.6) then becomes3

iSc =
∞∫

0

dzd3x

z4

1
2
(
(∂ϕ+)2 −m2ϕ+2)− 1

2
(
(∂ϕ−)2 −m2ϕ−

2)

− 1
2
λ

4!
(
ϕ+4 − 6ϕ+2

ϕ−
2 + ϕ−

4). (2.8)

Note that ϕ+ and ϕ− satisfy Dirichlet and Neumann boundary conditions, respectively.4

The equations above describe how the fields in dS are expressed in terms of the fields
in EAdS. This can be then used to study cosmological correlation functions. At four-points
we have the following contributions at the leading and subleading orders as η → 0 (see [40]
for further details):

〈
ϕ(k⃗1)ϕ(k⃗2)ϕ(k⃗3)ϕ(k⃗4)

〉
dS

= η4∆−
〈
ϕ−(k⃗1)ϕ−(k⃗2)ϕ−(k⃗3)ϕ−(k⃗4)

〉
AdS

+ η4∆+
〈
ϕ+(k⃗1)ϕ+(k⃗2)ϕ+(k⃗3)ϕ+(k⃗4)

〉
AdS

+ η2(∆−+∆+)
(〈

ϕ+(k⃗1)ϕ+(k⃗2)ϕ−(k⃗3)ϕ−(k⃗4)
〉

AdS
+
〈
ϕ+(k⃗1)ϕ−(k⃗2)ϕ−(k⃗3)ϕ−(k⃗4)

〉
AdS

+
〈
ϕ+(k⃗1)ϕ−(k⃗2)ϕ−(k⃗3)ϕ+(k⃗4)

〉
AdS

)
,

(2.9)

where the left-hand-side corresponds to the in-in correlator in de Sitter while the right hand-
side is expressed in terms of EAdS correlators. Note that the all-ϕ− correlator dominates
at late time (η → 0), so this will be our primary focus, but the other correlators are also
of interest for studying the dS/CFT correspondence [40].

3This shows the simplicity in the number of vertices as compared to the Schwinger-Keldysh action, where
we have 5 vertices for ϕ4 theory with no apriori simplification for any particular mass.

4The mass of the field falls within the unitarity bound and quantization with both Dirichlet and Newmann
boundary conditions are possible [55].

– 6 –



J
H
E
P
0
3
(
2
0
2
5
)
0
0
7

2.1 Propagators in dS momentum space

The momentum space decomposition of the bulk-to-bulk Feynman propagator in de Sitter with
Dirichlet boundary conditions at future infinity, corresponding to ∆ = 2, is (here η, η′ < 0)

GD(x⃗, η, x⃗′, η′) = ηη′

π

∫
d3k

∞∫
0

dω
sin(ωη) sin(ωη′)
−ω2 + k⃗2 − iε

eik⃗·(x⃗−x⃗′),

= ηη′

2πi

∫
d3k

1
k
eik⃗·(x⃗−x⃗′)

(
ei(k−iε)(η−η′) − ei(k−iε)(η+η′)

)
. (2.10)

Then, performing the remaining integral over d3k gives

GD(x⃗, η, x⃗′, η′) = i

π

(
2ηη′eε(η−η′)

|x⃗− x⃗′|2 − (η − η′)2 − 2ηη′eε(η+η′)

|x⃗− x⃗′|2 − (η + η′)2

)
(2.11)

= i

π

(
Keε(η−η′)

1 +K
− Keε(η+η′)

1−K

)
,

where

K = 2ηη′
|x⃗− x⃗′|2 − η2 − η′2

(2.12)

is a function of the anti-de Sitter-invariant distance, with K → −1 at coincident points. Note
that the Feynman iε does not deal with this light cone singularity.

The bulk-to-bulk propagator with Neumann boundary conditions at future infinity,
corresponding to ∆ = 1, is given by a similar expression with the replacement of sin functions
by cos functions

GN (x⃗, η, x⃗′, η′) = −ηη
′

π

∫
d3k

∞∫
0

dω
cos(ωη) cos(ωη′)
−ω2 + k2 − iε

eik⃗·(x⃗−x⃗′), (2.13)

which evaluates to

GN (x⃗, η, x⃗′, η′) = − i

π

(
2ηη′eε(η−η′)

|x⃗− x⃗′|2 − (η − η′)2 + 2ηη′eε(η+η′)

|x⃗+ x⃗′|2 − (η + η′)2

)
(2.14)

= − i

π

(
Keε(η−η′)

1 +K
+ Keε(η+η′)

1−K

)
.

The minus sign in (2.13) reflects the fact that ϕ− is ghost-like.
Finally, for the bulk-boundary boundary propagator in de Sitter space we obtain a

momentum space representation by letting η′ → 0 and divide (2.10) by η′ giving

G(x⃗, η; x⃗′) = η

π

∫
d3k

∞∫
0

dω
ω sin(ωη′)

−ω2 + k⃗2 − iϵ
eik⃗·(x⃗−x⃗′), (2.15)

= η

π

∫
d3k eik⃗·(x⃗−x⃗′)ei(|⃗k|−iϵ)η .

– 7 –
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Note that the effective action (2.8) is defined in Euclidean anti-de Sitter which is obtained
from de Sitter by a double Wick rotation

η → −iz, ℓdS → iℓAdS, ω → ip, (2.16)

see section 2.1 of [34] for some details. Hence, We may apply these Wick rotations to the
propagators computed above to obtain propagators in EAdS.

2.2 Feynman rules in EAdS

For a conformally coupled scalar in EAdS, it is convenient to make the conformal mapping
to half of R4 with a boundary at z = 0 through

gµν → 1
z2 gµν , ϕ± → z

d−1
2 ϕ± , (2.17)

giving the action

S[ϕ+, ϕ−] =
∫
dzddx

(
−1
2(∂ϕ+)2 + 1

2(∂ϕ−)
2 − V (ϕ+, ϕ−)

)
, (2.18)

where V (ϕ+, ϕ−) = 1
2

λ
4!

(
ϕ4

+ − 6ϕ2
+ϕ

2
− + ϕ4

−

)
. The bulk-to-boundary propagators by the

Lagrangian (2.18) are then as follows:5

k⃗
= e−kz,

k⃗
= −e−kz , (2.19)

where k ≡ |⃗k|, solid lines describe ϕ+, and dotted lines describe ϕ−. In practice we will
only consider diagrams with ϕ− on external lines.

The bulk-to-bulk propagator for ϕ+ is given as,

z1 z2
k⃗ = GD(z1, z2, k) :=

1
π

∫ ∞

−∞

dp

p2 + k⃗2
sin(pz1) sin(pz2)

= 1
2k

[
Θ(z1 − z2)e−k(z1−z2) +Θ(z2 − z1)e−k(z2−z1) − e−k(z1+z2)

]
,

(2.20)

and the bulk-to-bulk propagator for ϕ− is given as,

z1 z2
k⃗ = GN (z1, z2, k) := − 1

π

∫ ∞

−∞

dp

p2 + k2 cos(pz1) cos(pz2)

= − 1
2k

[
e−k(z1+z2) +Θ(z1 − z2)e−k(z1−z2) +Θ(z2 − z1)e−k(z2−z1)

]
.

(2.21)

The appearance of the sin’s and cos’s in the above formulas encode the boundary conditions
at z = 0. One can also perform the integral over ω via as we did in eq. (2.10), and we
will derive a recursion relation for the integrated form in the next section. However, in
order to construct a de Sitter-invariant regularization of loops the unintegrated form is more

5We suppress the boundary of AdS from all Witten diagrams.
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convenient as shown in section 5. For the ϕ4 contact interaction in (2.18) we have (where
an integration

∫ dz
z4 is understood)

= λ

2 , = −3λ, = λ

2 . (2.22)

3 Recursion relation for integrands

In this section we derive a set of recursion relations that are useful for simplifying the
integrand for cosmological correlation functions.6 A precursor of these recursion relations was
introduced in [11] where the authors gave a recursive formula for obtaining the wavefunction
of the universe for fields satisfying Dirichlet boundary conditions. This was based on using
integration by parts and made use of the vanishing of the integrand at the boundary and
does not rely on a specific interaction vertex. We shall first review their construction and
then explain how that can be generalized to cosmological correlation functions.

3.1 Exchange of ϕ+

Let us now illustrate the idea of the recursion relations using the simplest tree level example.
Consider the expression for the diagram shown below

x1 x2k
=
∫ ∞

0
dz1dz2e

−x1z1e−x2z2GD(z1, z2, k), (3.1)

where x1 = k123, x2 = k456. From the expression for GD(z1, z2, k) given in (2.20) it is clear
that GD(0, z2, k) = GD(z1, 0, k) = 0 , i.e, it satisfies Dirichlet boundary conditions. We now
insert the z-translation operator

∆̂2 := ∂

∂z1
+ ∂

∂z2
, (3.2)

in the integrand and consider the following integral∫ ∞

0
dz1dz2∆̂2

[
e−x1z1e−x2z2GD(z1, z2, k)

]
= 0, (3.3)

where the vanishing of integral follows from the boundary condition satisfied by GD(z1, z2, k).
The action of the differential operator on e−x1z1e−x2z2 is trivial

∆̂2
(
e−x1z1e−x2z2

)
= −(x1 + x2)e−x1z1e−x2z2 , (3.4)

and leaves us with the total energy factor E = x1 + x2 = k1 + · · · + k6.
By acting with the differential operator on GD(z1, z2, y), that the terms containing the

Θ-functions in (2.20) are annihilated because they are functions of z1 − z2 and hence we
are left with the following:

∆̂2GD(z1, z2, k) = −e−kz1e−kz2 . (3.5)
6We provide a Mathematica notebook with the submission that implements the recursion relations of this

section for all the diagrams discussed in this paper.
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This is a crucial step in the computation as it converts the problem of integrating functions
to a set of diagrammatic rules that can be interpreted as clipping rules. We shall give a
detailed prescription to express these below.

Expanding the total derivative (3.3), using the results of (3.4) and (3.5), we can express
the six-point correlator (3.1) as

(x1 + x2)
∫ ∞

0
dz1dz2e

−x1z1e−x2z2GD(z1, z2, k) = −
∫ ∞

0
dz1dz2e

−(k+x1)z1e−(k+x2)z2 , (3.6)

which can be diagrammatically expressed as

(x1 + x2)
x1 x2k

=
x1 + k x2 + k

. (3.7)

Performing the integration over z1 and z2 on the right-hand-side then gives an expression for
the six-point correlator in terms of a product of three-point correlators:

x1 x2k
= 1

(x1 + x2)(x1 + k)(x2 + k) . (3.8)

Proceeding in a similar manner, one can derive a set of recursion relations for higher-point
graphs that can be summarized diagrammatically as,

E •
x1 x2

k = •x1 + k

x2 + k
(3.9)

where E denotes the total energy of the external legs. These recursion relations can be used
to derive the wave function in de Sitter [11] or transition amplitudes in anti-de Sitter.7

3.2 Exchange of the shadow ϕ−

To compute in-in correlators in de Sitter, we need to use the effective Lagrangian (2.8)
and therefore will have also diagrams with ϕ− exchange. For the purpose of deriving the
recursion relations for these, it suffices to consider the following ϕ− exchange diagram using
the bulk-bulk Green function given in (2.21):

x1 x2k
=
∫ ∞

0
dz1dz2e

−x1z1e−x2z2GN (z1, z2, k). (3.10)

The Green function (2.21) satisfies the Neumann boundary conditions and

GN (0, z, k) = GN (z, 0, k) = −1
k
e−kz. (3.11)

This implies that the integrand in (3.10) does not go to zero as zi → 0. By inserting the
z-translation operator of eq. (3.2) inside the integrand we now also need to keep track of
contributions arising from zi → 0:∫ ∞

0
dz1dz2∆̂2

[
e−x1z1e−x2z2GN (z1, z2, k)

]
=
∫ ∞

0
dz2e

−x2z2GN (0, z2, y) +
∫ ∞

0
dz1e

−x1z1GN (z1, 0, k)

= 1
k

[ 1
x2 + k

+ 1
x1 + k

]
,

(3.12)

7For an extension of these recursion relations to spinning correlators, see [56].
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which gets contributions from the two boundaries, z1 = 0 and z2 = 0. Thus the boundary
term splits into a product of terms that can be generated recursively. Using that

∆̂2GN (z1, z2, k) = −e−k(z1+z2), (3.13)

and following similar steps as before we get∫ ∞

0
dz1dz2∆̂2

[
e−x1z1e−x2z2GN (z1, z2, k)

]
= −(x1 + x2)

x1 x2k
+

x1 + k x2 + k

(3.14)

Equating the contribution of the bulk term (3.14) with the boundary term (3.12) we obtain

x1 x2k
= − 1

x1 + x2

 1
k x2 + k

+ 1
k x1 + k︸ ︷︷ ︸

boundary ∂z

−
x1 + k x2 + k︸ ︷︷ ︸

bulk z



(3.15)

We therefore have a recursion relation obtained by snipping dashed lines,8

E •
x1 x2

k = − •x1 + k

x2 + k
− •

x1 + k
1
k

− •0
x2 + k

1
k (3.16)

3.3 Cosmological correlators

In the evaluation of cosmological correlators we have to sum the exchange of the ϕ+ field using
the recursion (3.9) and the exchange of the ϕ− field using the recursion (3.16). When adding
these contributions, there is a cancellation between two terms and the poles that remain in
the final answer are simpler than the ones that were originally present for the wavefunction.
This shows that the in-in correlator has simpler pole structure than the corresponding wave
function coefficient.9 We explicitly demonstrate the evaluation of the loop integrand for the
triangle diagram using these recursion relations in appendix B.

The recursion relations allow one to express the correlation functions in terms of partial
fractions and make the physical singularities manifest. To summarize, the order of performing
the integrals is as follows. One first performs the auxiliary frequency integrals (the variable
ω in (2.20) and (2.21)) to express the Green functions as a function of (zi, k⃗). The integrals
over zi are then performed recursively as explained in this section.

Having derived the recursion relations it is now possible to avoid any reference to the
bulk and use these as a tool to express the in-in correlators in terms of functions depending

8Since these recursion relations only rely on snipping the propagators they can also be used for other
interaction vertices such as ϕ3

+ϕ−, etc.
9We find that the loop integrals that appear for the wavefunction compared to the correlator compared to

the flat space amplitude are of the following schematic form
∫

d3l
|l+k|vs

∫
d3l
|l| vs

∫
d4l
l2 . This expression shows the

simplicity of the singularities for the cosmological correlator as compared to the corresponding wavefunction
and their resemblance with the scattering amplitude in flat space (a similar simplification was also noticed
in [57] for the one-loop tadpole).
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on the boundary momenta. For diagrams that are finite so that the loop integration does
not need to be regulated, the recursion relations (3.9) and (3.16) result in an important
simplification of higher-order diagrams. This will be applied in the next section. If the loop
integrals are infinite, the recursion relations can still be used to derive the integrand provided
one uses a simple regulator like the cut-off while integrating. However, the recursions cannot
be used in this form for the de Sitter-invariant regularization described in section 5.

4 Momentum cut-off regularisation

In this section, we compute cosmological correlators using a cut-off in the boundary loop
momentum. In particular, we compute two and four-point correlators up to two loops and an
infinite class of 1-loop correlators arising from polygon diagrams. These can be computed
using the Feynman rules in section 2 and we show that due to non-trivial contributions from
the ghosts they can be expressed in terms of flat space integrands. These integrands will
have four-dimensional Lorentz invariance, but the four-dimensional covariance is actually
broken by the boundary at z = 0 so the integrals over the loop momentum in this direction
are computed by taking residues in the upper half plane. The integrands of the resulting
3d loop integrals can be derived more directly using the recursion relations described in
section 3 and are regulated using a hard momentum cut-off. Likewise, when performing
dimensional regularisation only the three-dimensional loop momentum integration is regulated.
A covariant four-dimensional analytic regularisation is described in section 5.

We also perform renormalisation of two-point correlators up to two loops and four-point
correlators at one-loop and show that the boundary conformal symmetry is generically broken
by the cut-off, but can be restored by setting the renormalisation scale proportional to the
energy. This result will be reproduced more systematically and generalised using analytic
regularisation in the next section. An alternative cut-off prescription was considered for
2-point cosmological correlators in [41], where it was pointed out that logarithms of the
energy should not appear. We find a similar result after restoring conformal symmetry in
the manner described above. See section 4.4 for more details.

4.1 Two-point correlators

In this section we evaluate the two-point correlation functions of ⟨ϕ−ϕ−⟩ up to two-loop order.

One-loop tadpole. The one-loop tadpole is given by the sum of ϕ+ and ϕ− fields running
in the loop:

I
(2)
◦ (k) :=

2k

l

+

2k

l

= λ

∫
d3ldp

(2π)4
1

p2 + l2

∫ ∞

0
dze−2kz

(
sin2(pz) + cos2 (pz)

)
= λ

k

∫
d4L

(2π)4
1
L2 , (4.1)
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where the subscript denotes the topology of the diagram and the superscript indicates
the number of external legs. The tadpole integral is expressed using the Euclidean four-
dimensional loop momentum L :=

(
ω, l⃗
)

where l⃗ is integrated over R3 and ω over the real axis.
Here (and everywhere in this section) the cut-off is understood to act only on the boundary
components l⃗ of the loop integral. Hence, from (4.1), we see that the Dirichlet and Neumann
boundary conditions of the two internal propagators combine to give an integrand which has
4d Lorentz invariance and we end up with the same one-loop integrand we would get in flat
space (without a boundary) times an overall energy pole 1/k. This simple example illustrates
a general phenomenon for in-in correlators that we will see in more complicated examples.

To evaluate the integral, we first compute residue at ω = i|l| giving an integral over the
boundary loop momentum (where the integrand could have been derived using the recursion
relations given in the previous section):10

I
(2)
◦ (k) = λ

k

∫
|l|≤Λ

d3l

(2π)3
1
2|l| =

λ

k

Λ2

8π2 . (4.2)

To evaluate the integral over the loop momentum, we went to polar coordinates and introduced
the cutoff Λ on the magnitude of the loop momentum. Again, this simple example illustrates
the general method we will use for performing integration using a cut-off in more complicated
examples: first we compute the residues of the radial momenta in the upper half-plane
to yield an integral over boundary loop momentum, and then we evaluate the remaining
integrals by going to polar coordinates and imposing a cutoff on the magnitude of the loop
momentum. The quadratic divergence needs the introduction of a counterterm. We will
discuss the renormalisation in section 4.4.

Two-loop tadpole. Next we turn to the two-loop tadpole, which is given by the sum of
four contributions (we label the radial coordinates of the vertex factors by x and z)

I
(2)
◦◦ (k) :=

2k

l1

l2

x

z

+

2k

l1

l2

x

z

+

2k

l1

l2

x

z

+

2k

l1

l2

x

z ,

(4.3)

which reads

I
(2)
◦◦ (k) = 1

2
λ2

(2π)9

∫
d3l1d

3l2dp1dp2dp3(
p2

1 + l21

) (
p2

2 + l22

) (
p2

3 + l21

)
×
∫ ∞

0
dzdxe−2kz (cos p1x cos p3x cos p1z cos p3z + cos ↔ sin) .

(4.4)

The boundary loop momenta li are integrated over the three-dimensional space R3 and the
radial momenta pi over the real axis. The integral over x is oscillatory so it needs to be

10We implement the hard-cutoff procedure as usually done in flat space. For alternative prescriptions where
the cutoff changes with the radial coordinate, we refer the reader to [41].
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regulated at x→ ∞ (this regularization was discussed in detail in appendix A of [51]). For
this we introduce a damping factor∫ ∞

0
dx cos p1x cos p3x = lim

ϵ→0

∫ ∞

0
dxe−ϵx cos p1x cos p3x, (4.5)

where ϵ > 0. It is now straightforward to evaluate the integral over x, with the help of
the identity

lim
ϵ→0

ϵ

ϵ2 + y2 = πδ(y) (4.6)

to obtain

lim
ϵ→0

∫ ∞

0
dxe−ϵx cos p1x cos p3x = lim

ϵ→0

(
ϵ/2

ϵ2 + (p1 − p3)2 + ϵ/2
ϵ2 + (p1 + p3)2

)
= π

2
(
δ(p1 − p3) + δ(p1 + p3)

)
. (4.7)

Similarly, we regulate the integral

lim
ϵ→0

∫ ∞

0
dxe−ϵx sin p1x sin p3x = lim

ϵ→0

∫ ∞

0
dxe−ϵx sin p1x sin p3x

= π

2
(
δ(p1 − p3)− δ(p1 + p3)

)
. (4.8)

Performing the integration over x and p3 then gives

I
(2)
◦◦ (k) = π2

2
λ2

(2π)9

∫
d3l1dp1d

3l2dp2(
p2

1 + l21

)2 (
p2

2 + l22

) ∫ ∞

0
dze−2kz

(
cos2 p1z + sin2 p1z

)

= π2

4k
λ2

(2π)9

∫
d4L1d

4L2(
L2

1

)2
L2

2

, (4.9)

where L1 :=
(
p1, l⃗1

)
, L2 :=

(
p2, l⃗2

)
. Hence, we are once again left with a flat space

four-dimensional Feynman integral multiplied by an energy pole. Integrating out p1 and
p2 via residues then produces the same integrand as the one obtained from the recursion
presented in section 3:

I
(2)
◦◦ (k) ∝ λ2

k

∫
d3l1d

3l2
l31l2

∝ Λ2

2k log Λ
ΛIR

, (4.10)

where ΛIR denotes the lower limit of the l1 integral. This is similar to the behavior in flat
space and is zero in a scale invariant regularization.

Similarly the one-particle reducible diagram with two one-loop tadpoles connected by a
propagator vanishes as it is proportional to the square of the single tadpole:

+ + +

∝ [Single Tadpole]2
∫ ∞

0
dz1dz2GN (z1, z2, k) = 0.

(4.11)
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Two-loop sunset. We turn the two-loop sunset diagram contributions with the loop
momentum y ≡ |⃗l1 + k⃗ − l⃗2| in the diagrams below. There are two types of diagrams,
one where all the propagators are the same and one where two of the propagators are shadow
fields. The first comes with a symmetry factor of 1

6 while the second type comes with a
symmetry factor of 1

2 , so it is convenient to split this diagram into three contributions as
illustrated in the figure below:

I
(2)
⊖ (k) := k

l1

y

l2

+ k

l1

y

l2

+ k

y

l1

l2

+ k

l1

l2

y

.

(4.12)

For example, the first diagram where all the propagators are the same is given by

k

l1

y

l2

= λ2

(2π)9

∫
d3l1d

3l2dp1dp2dp3(
p2

1 + l21

) (
p2

2 + l22

)(
p2

3 +
(⃗
l1 + l⃗2 + k⃗

)2
) (4.13)

×
∫ ∞

0
dxdze−k(x+z) cos p1x cos p1z cos p2x cos p2z cos p3x cos p3z

Performing integrals over x and z gives

(4.13) = π2λ2

(2π)9

∫
d3l1d

3l2dp1dp2dp3(
p2

1 + l21

) (
p2

2 + l22

)(
p2

3 +
(⃗
l1 + l⃗2 + k⃗

)2
)

×

 p1 + p2 − p3

k2 + (p1 + p2 − p3)2 + p1 − p2 + p3

k2 + (p1 − p2 + p3)2 + −p1 + p2 + p3

k2 + (−p1 + p2 + p3)2

− p1 + p2 + p3

k2 + (p1 + p2 + p3)2

2

. (4.14)

We can similarly evaluate the other three diagrams. After performing a change of variables,
we obtain a very compact result for the sum over all the sunset diagrams:

I
(2)
⊖ (k) ∝ λ2

∫
dpk2

(p2 + k2)2

∫
d3l1d

3l2dp1dp2(
p2

1 + l21

) (
p2

2 + l22

)(
(p+ p1 + p2)2 +

(⃗
l1 + l⃗2 + k⃗

)2
) . (4.15)
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As before this expression can be expressed in terms of a four-dimensional flat space integrand
by introducing the four-vectors Li :=

(
pi, l⃗i

)
, P := (p, k)

I
(2)
⊖ (k) ∝ λ2

∫
dpk2

(p2 + k2)2

∫
d4L1d

4L2

L2
1L

2
2 (L1 + L2 + P )2 . (4.16)

By taking the residues of p1,2,3 in upper half-plane, we once again obtain an integrand which
matches with the result from recursion:

I
(2)
⊖ (k) ∝ λ2 i

16

Λ∫
d3l1d

3l2
2k + l1 + l2 +

∣∣∣⃗l1 + l⃗2 + k⃗
∣∣∣

l1l2
∣∣∣⃗l1 + l⃗2 + k⃗

∣∣∣ (l1 + l2 + 2k +
∣∣∣⃗l1 + l⃗2 + k⃗

∣∣∣)2

= λ2 i

16
kπ2

12

−30 log
(
2Λ
3k

)
+ 12

(
Λ
k

)2

− 5

 (4.17)

The renormalization of this diagram is discussed in section 5.

4.2 Four-point correlators

In this section we evaluate the four-point correlation functions ϕ+ fields up to two-loop order.

One-loop bubble. At 1-loop, we need to consider bubble diagrams. The s-channel bubble
diagrams are

I
(4)
◦ = λ2

8

 +

 (4.18)

Adding the two contributions gives

I
(4)
◦ = λ2

2

∫
d3ldp1dp2

(2π)5
(
p2

1 + l2
)(

p2
2 +

(⃗
l − k⃗12

)2
) (4.19)

×
∫ ∞

0
dz1dz2 (sin p1z1 sin p1z2 sin p2z1 sin p2z2 + sin ↔ cos) e−k12z1e−k34z2

=
(
λ

2

)2

k12k34

∫
dp+
(2π)5

1(
p2

+ + k2
12

) (
p2

+ + k2
34

) ∫ d4L

L2(L− P )2 , (4.20)

where p+ = p1 + p2, L =
(
p1, l⃗

)
, and P =

(
p+, k⃗12

)
and k⃗12 = k⃗1 + k⃗2. After integrating

p1 and p2 via residues in the upper half plane we obtain

I
(4)
◦ = λ2

16(k12 + k34)

∫
d3l

(2π)3

l +
∣∣∣⃗l − k⃗12

∣∣∣+ k12 + k34

l
∣∣∣⃗l − k⃗12

∣∣∣ (l + ∣∣∣⃗l − k⃗12
∣∣∣+ k12

)(
l +

∣∣∣l − k⃗12
∣∣∣+ k34

) , (4.21)
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z1

z3

z2

z1

z3

z2

z1

z3

z2

z1

z3

z2

Figure 2. Two-loop necklace. The vertices are labelled as z1, z2, z3.

in agreement with the result of recursion. Going to polar coordinates and integrating over
the magnitude of the loop momentum with cut-off Λ gives

I
(4)
◦ = 1

(2π)2
λ2

32(k12 + k34)

ln
(k12 + |⃗k12|)(k34 + |⃗k12|)

4Λ2

+ k12 + k34
k12 − k34

ln

k34 + |⃗k12|
k12 + |⃗k12|


 .

(4.22)
By comparing with the computation for the wave function coefficient for the bubble diagram
at one-loop [50], we see that the cosmological correlator does indeed take a simpler form.
In particular, it has lower transcendentality.

Two-loop necklace. Next we will look at the necklace topology. Four diagrams contribute
to the s-channel:

Adding up the s-channel diagrams we obtain

I
(4)
◦◦ ∝λ3

∫ ∞

0
dz1dz2dz3

∫
d3l1d

3l2dp1dp2dp3dp4 e−k12z1−k34z2

(p2
1 + l21)(p2

2 + (l1 + k⃗12)2)(p2
3 + l22)(p2

4 + (l2 + k⃗34)2)
× (cos p1z1 cos p1z3 cos p2z1 cos p2z3 + cos ↔ sin)
× (cos p3z2 cos p3z3 cos p4z2 cos p4z3 + cos ↔ sin) .

(4.23)

Note that all four diagrams have the same symmetry factor, which includes the factor of
6 of the mixed four-point vertex. The integral over the middle vertex z3 is oscillatory and
therefore needs to be regulated, just like case of two-loop tadpole. This can be accomplished
by inserting e−ϵz3 , where ϵ > 0. The integral over z3 is then straightforward to evaluate.
For example, one of the four integrals is given by

lim
ϵ→0

∫ ∞

0
dz3 cos p1z3 cos p2z3 cos p3z3 cos p4z3e

−ϵz3 = − π

16
∑

σi=±1
δ

 4∑
i=1

(−1)σi pi

 , (4.24)

where we used the identity in (4.6). The other three integrals over z3 can be evaluated in a
similar way. After changing integration variables, all the delta functions can be mapped to
the energy conserving delta function δ (p1 + p2 + p3 + p4) up to an overall sign.

If we then integrate p4 against the delta function we end up with

I
(4)
◦◦ ∝ λ3k12k34

∫
dp+(

p2
+ + k2

12

) (
p2

+ + k2
12

) ∫ d4L1d
4L2

L2
1L

2
2 (L1 − P )2 (L2 + P )2 , (4.25)
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p4

ℓ⃗4, p2k⃗3 k⃗4

z1

z2 z3

ℓ⃗1, p1p3

k1 k2

k⃗3 k⃗4

k⃗2 k⃗1

+
k⃗3 k⃗4

k⃗2 k⃗1

+ 2

Figure 3. The ice-cream cone graph: the direction of the momenta are labelled for convenience in
order to keep track of the signs in the loop integrals. The second and third diagrams follow the same
labels as the first one.

where L1 =
(
p1, l⃗1

)
, L2 =

(
p2, l⃗2

)
, P =

(
p+, k⃗12

)
, p+ = −p3 − p2. Hence, we once again get

a four dimensional flat space integrand with an auxiliary integral over p+. Note that the
auxiliary is exactly the same as the one that appeared in the one-loop bubble in (4.20), while
the four-dimensional integral is simply the square of the one-loop one, as familiar from flat
space calculations. This suggests that the necklace diagrams can be obtained to any order at
the integrand level via exponentiation as in flat space. See [58] for a position space discussion.

Finally, let us note after integrating out p1, p2, and p+ using residues in the upper
half-plane we obtain the same loop integrand derived using recursion relations:11

I
(4)
◦◦ ∝ λ3

∫ (
(σ1 + σ2)(E + σ1)(E + σ2) + Ex1x2

)
d3l1d

3l2
Ey1y2y3y4(x1 + σ1)(x1 + σ2)(x2 + σ1)(x2 + σ2)σ1 + σ2

(4.26)

where E = x1 + x3, y1 = |⃗l1|, y2 = |⃗l1 + k⃗1 + k⃗2|, y3 = |⃗l2|, y4 = |⃗l2 + k⃗1 + k⃗2|, x1 = |⃗k1|+
|⃗k2|, x2 = |⃗k3|+ |⃗k4|, σ1 = y1 + y2, σ2 = y3 + y4. The first term inside the parenthesis in the
numerator encodes the square of the 1-loop bubble and the second term vanishes in the flat
space limit, thus recovering the expected integrand in the flat space limit. In appendix E
we evaluate the loop integrals using a hard cutoff.

Two-loop Ice-cream. The final topology of diagram to consider is the ice-cream cone
diagram. There are three diagrams that contribute to the s-channel, two of which have
symmetry factor 1/2 and one of which has symmetry factor 1 (including the factor of 6 in
the mixed interaction vertex): Since the rightmost diagram has a relative factor of 2 with
respect to the other diagrams, it is convenient to write it as a sum of two diagrams where the
solid internal line appears at the top or in the middle. Adding the four diagrams, we find

I
(4)
∨̂ ∝λ3

∫
d3l1d

3l2dp1dp2dp3dp4
(p2

1 + l21)(p2
2 + l22)(p2

3 + l23)(p2
4 + l24)

∫ ∞

0
dz1dz2dz3e

−k12z1−k3z2−k4z3

×
(
sin p1z1 sin p3z1 sin p3z3 sin p1z2 (cos p4z3 cos p4z2 sin p2z3 sin p2z2 + cos ↔ sin)

+ cos p1z1 cos p3z1 cos p3z3 cos p1z2 (cos p2z3 cos p4z3 cos p2z2 cos p4z2 + cos ↔ sin)
)
,

(4.27)
11The companion Mathematica notebook contains this derivation.
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where l⃗3 = l⃗2 − k⃗12 and l⃗3 = l⃗12 + k⃗4. Integrating out z and performing several simplifications
using the pi → −pi symmetry, we can once again write the loop integral in terms of a
four-dimension flat space integral:

I
(4)
∨̂ ∝

∫∫ ∞

−∞
dp3dp4

4k12k3k4
(k2

3 + p2
3)(k2

4 + p2
4)(k2

12 + (p3 + p4)2)

×
∫
d4L1d

4L2
(2π)8

1
L2

1L
2
2(L1 + P3 + P4)2(L1 + L2 + P4)2 ,

(4.28)

where Li = (⃗li, pi) Pi = (k⃗i, pi). In appendix F we evaluate the leading order singularity
of these integrals using a cutoff. The leading and subleading singularties of (4.28) will be
evaluated using a different regularization scheme in section 5.

4.3 One-loop polygons

The structure described above can be extended to any general polygon at one loop. Similar to
the scenario with Feynman diagrams in flat space, it can be demonstrated that polygons with
three or more vertices do not exhibit ultraviolet divergences and do not need be regularized.
For the interactions we consider in equation (2.8), the n-gon diagram corresponds to a
(2n)-point function. In the appendix B we derive the integrand for the triangle diagram using
the recursion relations in section 3 and show that it can be expressed as follows:

x3x2

x1
y12 y31

y23
+

x3x2

x1
y12 y31

y23

∝
∫ ∞

−∞

x1x2x3dpdp
′

(p2 + x2
1)(p′2 + x2

2)
(
(p+ p′)2 + x2

3

) ∫ d4L

L2(L+ P1)2(L+ P2)2 ,

(4.29)

(where we have suppressed the overall factors of 2π and λ) with p = p1 − p3, p′ = p2 − p1 and

L = (p3, l⃗), P1 = (p1 − p3, y⃗1), P2 = (p2 − p3, y⃗2) (4.30)

with y⃗1 = k⃗1 + k⃗2 and y⃗2 = k⃗1 + k⃗2 + k⃗3 + k⃗4. The L integral is now equivalent to a
four-dimensional Feynman integral of the triangle diagram. Since this integral is ultraviolet
finite (as evident from power counting) and does not have infrared divergence (as P 2

i ̸= 0), we
can integrate this without the need for any regulator. For a discussion on the wavefunction
coefficient see section 3.2.2 of [51]. This exemplifies the simplicity of the cosmological
correlator compared to the corresponding wave function coefficient.

The value of the four-dimensional Feynman loop integral is given in terms of the Bloch-
Wigner dilogarithm P2(z) := Im

(
Li2(z)

)
+ arg(1− z) log |z| (see equation 4.13 of [59]):∫

d4L

L2(L+ P1)2(L+ P2)2 = 1
(P1 + P2)2

2P2(z)
z − z̄

, (4.31)

with z, z̄ satisfying the following equations,

zz̄ = P 2
1

(P1 + P2)2 , (1− z)(1− z̄) = P 2
2

(P1 + P2)2 . (4.32)
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Therefore the triangle diagram in equation (4.29) is given as

(4.29) ∝
∫ ∞

−∞

x1x2x3dpdp
′

(p2 + x2
1)(p′2 + x2

2)
(
(p+ p′)2 + x2

3

) 2
(P1 + P2)2

P2(z)
z − z̄

. (4.33)

It is interesting to note that the structure of the integrand in (4.29) generalizes to an
n-gon (corresponding to a 2n-point correlator),

...

x1

x2

x3
x4 x5

xn
xn−1

+ ...

x1

x2

x3
x4 x5

xn
xn−1

∝
∫

x1x2 · · ·xndp1dp2 · · · dpn−1

(p2
1 + x2

1) · · ·
(
p2

n−1 + x2
n−1

)(
(p1 + p2 + · · · pn−1)2 + x2

n

)∫ d4L

L2(L+ P1)2 · · · (L+ Pn−1)2 ,

(4.34)

where L = (pn, l⃗) and

P1 = (p1, y⃗1), P2 = (p1+p2, y⃗1+ y⃗2), . . . , Pn−1 = (p1+ · · ·+pn−1, y⃗1+ · · ·+ y⃗n−1) (4.35)

and

y⃗1 = k⃗1 + k⃗2, y⃗2 = k⃗1 + k⃗2 + k⃗3 + k⃗4, . . . , y⃗n−1 = k⃗1 + k⃗2 + · · ·+ k⃗2n−2 ,

x1 = k1 + k2, x2 = k3 + k4, . . . , xn = k2n−1 + k2n.

Since the integrals for the in-in correlators are now expressed in terms of standard
Feynman integrals in flat space, it is also possible to use the cutting rules in flat space to
study the higher point functions. Moreover, we can apply Passarino-Veltman reduction [60]
to the flat space part of the integrand to express it as a sum of bubble, triangle, and box
integrands. We leave a systematic exploration of these questions for future work. It would
also be an interesting mathematical problem to find if the integrand above can be obtained
from a combinatorial geometry [11] along the lines of the cosmological polytope (see [61]).

4.4 Renormalisation

In this subsection, we will renormalise the four-point correlator up to one-loop and the
two-point correlator up to two loops. We will follow the standard approach used in flat
space, by introducing a dimensionful renormalisation scale µ. The resulting correlators
will manifestly have the correct flat space limit but will not satisfy the conformal Ward
identities. On the other hand we find that conformal symmetry can be restored by setting µ
proportional to the energy, although this obscures the flat space limit. For the loop corrected
2-point function setting µ proportional to the energy removes branch cuts in the energy in
agreement with the conclusion reached in [41]. For the four point function on the other hand,
doing so introduces a branch cut in the energy and the resulting cosmological correlator
contradicts the tree theorem in [62].
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In order to renormalise the correlators, we must include counterterms to cancel divergences.
At two-points, this can be accomplished by adding the following counterterm Lagrangian
to (2.18):

Lct =
1
2
(
− (Z− − 1) (∂ϕ−)2 + δm2ϕ2

−

)
. (4.36)

Note that these terms correspond to mass and wavefunction renormalisations. We find that
these counterterms are sufficient to cancel all the divergences that at arise up 2-loops using a
cut-off so it appears that the action in (2.6) is renormalisable using this scheme. In section 5
we will show that it is also renormalisable using an alternative regularisation. On the other
hand, [63] recently pointed out that the action in (2.6) is not renormalisable for generic
masses and polynomial interactions so it would be interesting to investigate this further.

Using (4.36), the two-point counterterm depicted below

⊕ (4.37)

is given by

δI(2) =
(
−2 (Z− − 1) k2 + δm2

) ∫ ∞

0
dze−2kz = − (Z− − 1) k + δm2

2k . (4.38)

We may then set the one-loop correction to two-point correlator computed in (4.2) to zero
by choosing

δm2 = −
λ
2Λ2

8π2 . (4.39)

At two loops, we can also choose the coefficients Z− and δm2 to cancel all the divergent
terms in (4.10) and (4.17) yielding the 2-point correlator

I(2) = −λ2 i

16
kπ2

12

[
30 log

(2µ
3k

)
+ 5

]
, (4.40)

where µ is a dimensionful renormalisation scale. Note that (4.40) features a growing logarithm
in the sense of [41]. On the other hand, the conformal Ward identities imply that a two-
point function of operators with scaling dimension ∆ should scale like k2∆−d, where d is
the dimension of the conformal field theory [30, 64]. In the present case, the logarithm
spoils conformal invariance but this can be remedied by setting µ = δk, where δ is a
dimensionless renormalisation scale. After doing so, we find that the two-point function is
indeed proportional to k, as expected for d = 3 and ∆ = 2. In particular, the growing log is
absent. We will reach the same conclusion using an alternative regulator in section 5. Also,
we will see a similar mechanism for restoring conformal symmetry at four points shortly.

Let us now renormalise the four-point correlator at one loop. For this purpose, we need
to add the following counterterm Lagrangian:

Lct = −1
2(ZλR

− 1)λR

4! (ϕ−)
4. (4.41)
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Now we compute four-point counterterm:

δI(4) = ⊗ = −λR

2
(
ZλR

− 1
) ∫ ∞

0
dze−Ez = λR

2E
(
ZλR

− 1
)
, (4.42)

where E = k12 + k34. The renormalised one-loop four-point correlator is then obtained by
combining the bubble diagrams in (4.22) with the counterterm in (4.42) and is given by

I
(4)
◦ = λR

2E + λ2
R

32E(2π)2

 ln
(k12 + |⃗k12|)(k34 + |⃗k12|)

µ2

+ E

k12 − k34
ln

k34 + |⃗k12|
k12 + |⃗k12|


+ t− channel + u− channel

, (4.43)

where µ is the renormalisation scale, and we have indicated that one needs to add the t
and u channel contributions obtained by exchanging 2 ↔ 4 and 2 ↔ 3 respectively. We
have made the choice

ZλR
= 1 +

3λR
2

4(2π)2 ln
(
Λ
µ

)
(4.44)

to absorb the divergences. It is straightforward to see that (4.43) has the correct flat
space limit:

lim
E→0

EI
(4)
◦ = λR

2 + λ2
R

32(2π)2 ln
(
stu

µ6

)
. (4.45)

Note that (4.43) breaks three-dimensional conformal symmetry since µ is a dimensionful
scale. On the other hand, this symmetry must be preserved since it corresponds to the
isometry of the fixed background spacetime, much like Poincaré invariance should be preserved
when regulating Feynman diagrams in flat background. This can be remedied ad-hoc by
introducing a dimensionless renormalisation scale δ = µ/E. After doing so, the renormalised
correlator becomes

I
(4)
◦ = λR

2E +
(λR

2 )2

8(k12 + k34)(2π)2

 ln
(k12 + |⃗k12|)(k34 + |⃗k12|)

δ2(k12 + k34)2

+ k12 + k34
k12 − k34

ln

k34 + |⃗k12|
k12 + |⃗k12|


+ t− channel + u− channel

. (4.46)

While this expression is now manifestly scale invariant, this does imply conformal (i.e. de
Sitter-) invariance. Remarkably, it is indeed a solution to the four-point conformal Ward
identities, which can be seen by recasting it in terms of the conformal cross ratios

u = |⃗k12|
k12

, v = |⃗k12|
k34

. (4.47)
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In particular the s-channel contribution to the renormalised correlator at O(λ2) is given by

I
(4)
λ2 ∝ F̂ (u, v)

|⃗k12|
(4.48)

with

F̂ (û, v̂) = uv

u+ v
ln
(
uv(1 + u)(1 + v)

δ2(u+ v)2

)
+ uv

u− v
ln
(
u(1 + v)
v(1 + u)

)
. (4.49)

Conformal symmetry is then implied by the Ward identity [14]

(∆u −∆v) F̂ = 0, where: ∆u = u2(1− u2)∂2
u − 2u3∂u, (4.50)

which is indeed satisfied. We should note that this in itself does not imply that (4.46) is the
correct result because individual contributions are annihilated by (4.50):

(∆u −∆v)
uv

u+ v
= 0,

(∆u −∆v)
uv

u+ v
log

(
uv(1 + u)(1 + v)

(u+ v)2

)
= 0, (4.51)

(∆u −∆v)
uv

u− v
log

(
u(1 + v)
v(1 + u)

)
= 0.

In other words conformal invariance by itself does not imply a unique result, in particular it
allows for the free parameter δ. In the next section we will confirm the correctness of (4.46)
using a de Sitter-invariant regularization.

When taking the flat space limit of (4.46), we must take δ → ∞ while taking E → 0
holding µ = δE fixed in order to avoid singular terms of the form lnE, which would spoil the
flat space limit. Hence, the flat space limit is most easily seen by restoring the dimensionful
renormalisation scale µ = δE which is held fixed. Moreover, we can compute the β-function
by demanding that the renormalised correlator is either independent of the dimensionful
renormalisation scale µ or the dimensionless scale δ. Indeed, the calculation is almost
identical to that of flat space:

0 = E
dI(4)

d log δ
= dλR

d ln δ
− 3λ2

R

64π2 +O
(
λ3

R

)
. (4.52)

5 Analytic regularisation

Regularization in de Sitter space-time requires some consideration in order to take care of
de Sitter-invariance of correlation functions. The cut-off regularization described in the last
section does not preserve de Sitter-invariance, although, as we showed there, at one-loop it
can be restored by making a non-minimal and non-local subtraction. Since this prescription
is not unique, and it is not clear how generalize it to higher order we will describe in this
section a manifestly dS-invariant regularization scheme leading to unambiguous results for
all loop-corrected correlation functions.
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In position space the latter is guaranteed by expressing the regulated amplitudes in terms
of regularized Green functions as a function of the geodesic distance only. Concretely, in [43]
the regularized Green function in AdS for a conformally coupled scalar is chosen as

G(X,Y; ∆, δ) =
( 1
ℓAdS2π

)2 1
2

 K(X,Y)
1 + δ −K(X,Y) + (−1)∆ K(X,Y)

1 + δ +K(X,Y)

 . (5.1)

Here δ > 0 regulates the short-distance singularity at K = 1, where K, expressed in terms
of embedding space coordinates X and Y as

K(X,Y) := − ℓ2AdS
X · Y = 2zw

(x⃗− y⃗)2 + z2 + w2 , (5.2)

and is related to the geodesic distance as

d(X,Y) = ℓAdSarccosh
(
−X · Y
ℓ2AdS

)
. (5.3)

Since we focus on the momentum space representation at present we need to transform
them accordingly. While this can be done (see appendix C) the resulting expressions lead
to complicated loop integrals in momentum space.

An alternative regularization consists of replacing (5.1) by

G(X,Y; ∆;κ) = ℓ2κ−2
AdS
(2π)2

1
2

 K(X,Y)1−κ

(1−K(X,Y))1−κ
+ (−1)∆ K(X,Y)1−κ

(1 +K(X,Y))1−κ

 , (5.4)

which unlike (5.1) is still singular for X → Y, but this singularity is integrable for κ > 0, so
that the loop integrals are well-defined.12 For ∆ = 2 (5.4) has the momentum representation

GD(x⃗, z, x⃗′, z′;κ) = (zz′/ℓ2AdS)1−κ

π

∫
d3ℓ⃗

(2π)3

∞∫
−∞

dp
sin(pz) sin(pz′)
(p2 + ℓ⃗2)1+κ

eiℓ⃗·(x⃗−x⃗′) , (5.5)

while for ∆ = 1 the sine function is replaced by a cosine:

GN (x⃗, z, x⃗′, z′;κ) = −(zz′/ℓ2AdS)1−κ

π

∫
d3ℓ⃗

(2π)3

∞∫
−∞

dp
cos(pz) cos(pz′)
(p2 + ℓ⃗2)1+κ

eiℓ⃗·(x⃗−x⃗′) , (5.6)

where we changed the overall normalization with respect to (5.4). Note that (5.5) has a
natural interpretation as the analogue of the analytic regularization in flat space with the
extra feature of an κ-deformation of the zz′ prefactor of the momentum integral. In fact
this is just the necessary modification to ensure de Sitter-invariance. For instance, the
invariance under rescaling x⃗→ λx⃗ is manifest when complementing it with ℓ⃗→ 1

λ ℓ⃗, p→
1
λp,

z → λz thanks to the z−κ-factor. On the other hand, this regularization is different from
dimensional regularization of a canonical kinetic term in position space. This regularization

12The power of ℓAdS is fixed by the flat space limit using K ∼ 1 − 1
2 (r/ℓAdS)2 + O(ℓ−4

AdS) (eq. (2.8) in [42])
where a = ℓ−1

AdS.
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rather corresponds to a non-canonical kinetic term13 in four dimensions corresponding to
a quadratic action

1
2

∫
dzd3x

(z/ℓAdS)−2κ
ϕ

(
ℓAdS
z

□1+κ ℓAdS
z

)
ϕ ≡ 1

2

∫
dzd3x

(z/ℓAdS)4ϕ D2
κ ϕ , (5.7)

where □ is the d’Alembertian in flat space and □1+κ is defined in momentum space. For
κ = 0 this reduces to the conformally coupled free scalar in de Sitter. For z < z′ and z → 0,
the bulk-to-bulk propagator asymptotes to

(zz′)∆−κ

((x⃗− y⃗)2 + z′2)∆−κ
, (5.8)

from which we read off the boundary conformal dimensions ∆ − κ with ∆ = 1, 2. As a
consequence, the effective action (2.6) receives a κ-dependent modification. More precisely,
from (2.6) we get for d = 3, after substitution, to first non-trivial order in κ,

iSc = −1
2

∞∫
0

dzd3x

z4

Cκ ϕ
+ D2

κ ϕ
+ − Cκ ϕ

− D2
κ ϕ

−

+ λ

4!
(
C2κ ϕ

+4 − 6 C2κϕ
+2
ϕ−

2 + C2κ ϕ
−4 − 4(2πκ)ϕ+3

ϕ− + 4(2πκ)ϕ−3
ϕ+
) , (5.9)

where

Cκ = 1− (πκ)2

2 . (5.10)

Note that λ is now dimensionful since, with the κ-modified kinetic term, the fields ϕ± have
mass dimension 1 − κ.

It is also possible to see the correspondence between the bulk and the boundary fields by
directly comparing the two-point functions in momentum space. From the bulk side, we take
the simultaneous zi → 0 limit of the bulk-bulk propagator in (5.4) and obtain,

(z1z2)1−κ

π

∫ ∞

−∞

dp

(p2 + ℓ⃗2)1+κ
cos(pz1) cos(pz2) ∼

(z1z2)1−κ

π
ℓ−1−2κ

∫ ∞

−∞

dy

(y2 + 1)1+κ
(5.11)

This can be compared with the form of the two-point function in the boundary [30] ,

⟨⟨O(ℓ⃗)O(−ℓ⃗)⟩⟩ =
πd/223−2∆Γ

(
1
2(d− 2∆)

)
Γ(∆) ℓ2∆−3 (5.12)

and allows us to identify ∆ = 1 − κ. This relation also fixes the normalization between
the boundary and the bulk operators.

13This is a characteristic of analytic regularization rather than working in de Sitter space-time.
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5.1 Feynman rules in analytic regularization

We summarize the Feynman rules in analytic regularization.14 Vertices are represented by

= λ

2 , = −3λ, = λ

2 ,

= 4πκλ, = −4πκλ .
(5.13)

The bulk-to-bulk propagator for ϕ+ gives

z1 z2
k⃗ ≡ GD(k⃗, z1, z2;κ) =

(z1z2/ℓ
2
AdS)1−κ

π

∞∫
−∞

dp
sin(pz1) sin(pz2)
(p2 + k2)1+κ

, (5.14)

while the bulk-to-bulk propagator for ϕ− is given as,

z1 z2
k⃗ ≡ GN (k⃗, z1, z2;κ) = −(z1z2/ℓ

2
AdS)1−κ

π

∞∫
−∞

dp
cos(pz1) cos(pz2)
(p2 + k2)1+κ

, (5.15)

and the bulk-to-boundary propagator for ϕ+ and ϕ− are,

k⃗
= (z/ℓAdS)1−κ

π

∞∫
−∞

dp
p sin(pz)

(p2 + k2)1+κ
. (5.16)

Similarly, the bulk-boundary propagator for ϕ− is,

k⃗
≡ Ḡ(k, z;κ) = −(z/ℓAdS)1−κ

π

∞∫
−∞

dp
cos(pz)

(p2 + k2)1+κ
. (5.17)

After integrating over p the modified propagator takes the form

Ḡ(k, z;κ) = −(z/ℓAdS)1−κ
z

1
2 +κK− 1

2−κ(kz)
√
π(2k)κ+ 1

2Γ(κ+ 1)
, (5.18)

with the small κ expansion

Ḡ(k, z;κ) = − z

2kℓAdS
e−kz +O(κ) . (5.19)

In the following we will sometimes work in units where a = 1 to simplify the notation.15

5.2 Mass renormalisation

In this section we consider the graphs that contribute to the mass renormalisation up to
two loops.

14For notational symplicity we will suppress factors of Cκ and C2κ. They will then be restored in the
calculations where necessary.

15The 1
k

factor in equation (5.19) shall appear in every diagram and it did not arise in the previous sections
as mapping to the conformally flat metric had taken this into account.
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5.2.1 One-loop tadpole

At one-loop order we have the combination of the tadpole with the ∆ = 2 and the ∆ = 1
field running in the loop, in the κ-regularisation (with a = 1) is given by

I
(2)
◦ (k) := + = λ

2

∫ ∞

0

dz

z4 Ḡ(k, z;κ)
2
(
GD(k⃗, z, z;κ)−GN (k⃗, z, z;κ)

)
. (5.20)

It is easy to see how the expression (5.20) reduces to (4.1) for κ→ 0, where it then diverges.
So this is the de Sitter-invariant modification of the latter. Furthermore, this sum of two
diagrams can be expressed in terms of the flat space tadpole in four dimensions by combining
the integration over the 3d loop momentum ℓ⃗ and the energy ω into L := (ω, ℓ⃗) to give

I
(2)
◦ (k) = λ

(2π)4

∞∫
0

dz
Ḡ(k, z;κ)2

z2+2κ

∫ d4L

(L2)1+κ
. (5.21)

The L-integral vanishes in analytic regularization. In particular, there is no pole at κ = 0
and by consequence no logarithmic correction to the spectral function (∝ k) of the two-point
function.

5.2.2 Two-loop tadpole

The two-loop tadpole in the κ-regularisation is the first diagram that is sensitive to the
κ-deformation of the action. The modified interaction term results in

I
(2)
◦◦ (k) = 1

4

(
λ

2

)2 (
I

(2)+
◦◦ + I

(2)−
◦◦

)
(5.22)

where

I
(2)+
◦◦ (k) = C2

2κ

C3
κ


+ + +


(5.23)

and

I
(2)−
◦◦ = −(2πκ)2


+


. (5.24)
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The first graph has the integral representation

I
(2)+
◦◦ ∝

∞∫
−∞

dp1

∞∫
−∞

dp2

∞∫
−∞

dp3

∫
d3ℓ⃗1

∫
d3ℓ⃗2

∞∫
−∞

dz1

z2+2κ
1

dz2
z4κ

2
Ḡ(k, z1;κ)2· (5.25)

(
cos(p+z1) cos(p+z2) + cos(p−z1) cos(p−z2)

)
(p2

1 + ℓ⃗21)1+κ(p2
3 + ℓ⃗22)1+κ(p2

2 + ℓ⃗21)1+κ

= 2
∞∫

−∞

dp1

∞∫
−∞

dp2

∞∫
−∞

dp3

∫
d3ℓ⃗1

∫
d3ℓ⃗2

∞∫
0

dz1

z2+2κ
1

dz2
z4κ

2
Ḡ(k, z1;κ)2·

cos(p−z1) cos(p−z2)
(p2

1 + ℓ⃗21)1+κ(p2
3 + ℓ⃗22)1+κ(p2

2 + ℓ⃗21)1+κ

= 2
∞∫

−∞

dp−

∫
d4L1

∫
d4L2

∞∫
0

dz1

z2+2κ
1

dz2
z4κ

2

Ḡ(k, z1;κ)2 cos(p−z1) cos(p−z2)
(L2

1)1+κ(L2
2)1+κ((Q+ L1)2)1+κ

= 0 .

Here we suppressed an overall constant since the final result vanishes. Indeed, all integrals,
including the z2 integral, are well-defined for 1

4 > κ > 0. However, we won’t need to compute
the latter since the L2 integral already gives a zero answer in analytic regularization. The
contribution of the second set of graphs vanishes for κ→ 0 since, due to the relative minus
sign, the leading 1/κ2 pole is cancelled. Again, there is no logarithmic correction to the
spectral function.

5.2.3 Sunset

At two loops we have the sum of the two sunset diagrams:

I
(2)
⊖ (k) = C2

2κ

C3
κ

(
λ

2

)2
 + 3

+O(κ2) . (5.26)

The diagram with three dashed lines and one solid line comes with a prefactor proportional
to κ2. This does not contribute to the leading 1/κ divergence.

Using the symmetry between the vertices z1, and z2 this becomes

I
(2)
⊖ (k) = λ2

4
C2

2κ

C3
κ

1
(2π)9

∫∫ ∞

0

dz1dz2

z1+3κ
1 z1+3κ

2
Ḡ(k, z1;κ)Ḡ(k, z2;κ)

×
∫∫∫ ∞

−∞
dp1dp2dp3 cos((p1 + p2 + p3)z1) cos((p1 + p2 + p3)z2)

×
∫∫

d3ℓ1d
3ℓ2d

3ℓ3δ
3(ℓ⃗1 + ℓ⃗2 + ℓ⃗3 − k⃗)

(ℓ21 + p2
1)1+κ(ℓ2 + p2

2)1+κ(ℓ23 + p2
3)1+κ

.

(5.27)

Shifting p3 we can rewrite this contribution as an integral of a four-dimensional flat space
massless sunset

I
(2)+
⊖ (k) = λ2

4
C2

2κ

C3
κ

1
(2π)9

∫∫ ∞

0

dz1dz2

z1+3κ
1 z1+3κ

2
Ḡ(k, z1;κ)Ḡ(k, z2;κ)

∫ ∞

−∞
dp3 cos(p3z1) sin(p3z2)

×
∫∫

d4L1d
4L2

(L2
1)1+κ(L2

2)1+κ((L1 + L2 +Q)2)1+κ
, (5.28)
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where Q = (p3, k⃗) and

∫∫
d4L1d

4L2
(L2

1)1+κ(L2
2)1+κ((L1 + L2 +Q)2)1+κ

=
π4Γ(1− κ)3Γ(3κ− 1)

(
k2 + p2

3

)1−3κ

Γ(3− 3κ)Γ(κ+ 1)3 . (5.29)

Performing the p3 integral for large enough κ gives
∞∫

−∞

dp3
cos(p3z1) cos(p3z2)
(k⃗2 + p2

3)−1+3κ
=

√
π2 3

2−3κ |⃗k|
3
2−3κ

Γ(3κ− 1)

K 3
2−3κ

(
k |z1 − z2|

)
|z1 − z2|

3
2−3κ

+
K 3

2−3κ

(
k (z1 + z2)

)
(z1 + z2)

3
2−3κ

.
(5.30)

Upon absorbing the energy k in z, the sunset integral then becomes

I
(2)+
⊖ (k) = λ2 k1−2κ

4(2π)9
C2

2κ

C3
κ

π9/22 3
2−3κΓ(1− κ)3

Γ(3− 3κ)Γ(κ+ 1)3

×
∫∫ ∞

0

dz1dz2

z1+3κ
1 z1+3κ

2
Ḡ(1, z1;κ)Ḡ(1, z2;κ)

K 3
2−3κ

(
|z1 − z2|

)
|z1 − z2|

3
2−3κ

+
K 3

2−3κ (z1 + z2)

(z1 + z2)
3
2−3κ

 . (5.31)

The integration over z1 and z2 has a simple pole when κ → 0,

I
(2)+
⊖ (k) ∝ λ2 1

κ
, (5.32)

plus finite terms arising from the κ expansion of the measure. The simple pole in κ is
cancelled by a regularization of the mass shift diagram

δI(2) = δm

∫
dz

z4 Ḡ(k, z;κ)
2 . (5.33)

In addition there may be finite contributions involving log(kℓdS) whose coefficient depends
on the choice of subtraction scheme. Note that since δm receives a contribution from the
leading divergence, it is fixed by the result from the hard-cut off as discussed in section 4.4.

5.3 Four-point function

While our two-point functions do not contain any non-trivial dependence on the kinematic
variables this is not so for the four-point functions. This is why the regularization enters
crucially here.16

5.3.1 Cross diagram

In analytic regularization the cross diagram is also κ-dependent (since the boundary conformal
dimensions are κ-dependent). Of course, since it is finite we may set κ = 0 for its evaluation.
However, this κ-dependence will play a role for renormalisation, when combined with poles
in the bare coupling. We have

I
(4)
× = = λ

2

∫ ∞

0

dz

z4

4∏
i=1

Ḡ(ki, z;κ) , (5.34)

16In more general situations, two-point functions may contain important dynamical information as well. See
eg. [41, 65].
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which, for κ → 0, reduces to

I
(4)
× = − λ

2E × 1
k1k2k3k4

(5.35)

5.3.2 One-Loop

Collecting all diagrams originating from the effective action (5.9) we have

I
(4)
◦ = λ2

8
C2

2κ

C2
κ


+


+O(κ2) (5.36)

To continue we keep only the terms to zeroth order in κ since the diagrams have at most
simple poles in κ:

I
(4)
◦ = λ2

8


+


+O(κ) , (5.37)

which evaluates to17

I
(4)
◦ = λ2

4(2π)5

∞∫
−∞

dp

∞∫
−∞

dp′
∫
d3ℓ⃗

∞∫
0

dz1

(z1ℓ
−1
AdS)2+2κ

dz2

(z2ℓ
−1
AdS)2+2κ

2∏
i=1

Ḡ(ki, z1;κ)
4∏

i=3
Ḡ(ki, z2;κ)

cos(p+z1) cos(p+z2) + cos(p−z1) cos(p−z2)
(p2 + ℓ⃗2)1+κ(p′2 + (ℓ⃗+ k⃗12)2)1+κ

. (5.38)

Combining the three-dimensional loop momentum ℓ⃗ with the energy p into L = (p, ℓ⃗), we
have an expression in terms of the four-dimensional massless bubble evaluated in analytic
regularization:

I
(4)
◦ = λ2

2(2π)5

∞∫
−∞

dp−

∫
d4L

∞∫
0

dz1

(z1ℓ
−1
AdS)2+2κ

dz2

(z2ℓ
−1
AdS)2+2κ

2∏
i=1

Ḡ(ki, z1;κ)
4∏

i=3
Ḡ(ki, z2;κ)

× cos(p−z1) cos(p−z2)
(L2)1+κ((L+Q)2)1+κ

. (5.39)

Here p− = p′ − p, L = (p, ℓ⃗), Q = (p−, k⃗12). The L-integral is identical to the one-loop
massless bubble in flat space in analytic regularization giving

I
(4)
◦ = λ2

2(2π)5

∞∫
−∞

dp−

∞∫
0

dz1
(az1)2+2κ

dz2
(az2)2+2κ

2∏
i=1

Ḡ(ki, z1;κ)
4∏

i=3
Ḡ(ki, z2;κ)

× cos(p−z1) cos(p−z2)
π2Γ(1− κ)2Γ(2κ)

Γ(2− 2κ)Γ(1 + κ)2(k⃗2
12 + p2

−)2κ
, (5.40)

17In this section we keep the dependence on the de Sitter-radius, ℓdS → iℓAdS after Wick rotation, manifest
to clarify the renormalization procedure.
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which has the κ-expansion

I
(4)
◦ = (λ/2)2

2(2π)3

∞∫
−∞

dp−

∞∫
0

dz1

(z1ℓ
−1
AdS)2

dz2

(z2ℓ
−1
AdS)2

2∏
i=1

Ḡ(ki, z1;κ)
4∏

i=3
Ḡ(ki, z2;κ)

× cos(p−z1) cos(p−z2)
( 1
2κ + 1− log(az1az2(k⃗2

12 + p2
−)) +O(κ2)

)
, (5.41)

reproducing the expected pole in κ. The p−-integral then evaluates to

I
(4)
◦ |κ−1 = λ2

32(2π)2κ

∞∫
0

dz1

(z1ℓ
−1
AdS)2

dz2

(z2ℓ
−1
AdS)2

2∏
i=1

Ḡ(ki, z1;κ)
4∏

i=3
Ḡ(ki, z2;κ)

×
(
δ(z1 + z2) + δ(z1 − z2)

)
, (5.42)

where we used that
∞∫

−∞

dp− cos(p−z1) cos(p−z2) = π
(
δ(z1 + z2) + δ(z1 − z2)

)
. (5.43)

Since the integration over z1 and z2 is only on the positive real line, the singular part is
given by the cross diagram

I
(4)
◦ |κ−1 = λ2

32(2π)2κ

∞∫
0

dz

(zℓ−1
AdS)4

4∏
i=1

Ḡ(ki, z;κ) =
(λ/2)
32π2κ

I×. (5.44)

To determine the one-loop β-function we then write λ = λR
µ4κ

ℓAdSµ + δλ where µ has the
dimension of mass. Adding the t and u-channel to (5.44) we have

δλ = −3λ2
Rµ

4κ

64π2κ
, (5.45)

and thus the Callan-Symanzik equation,

0 = µ∂µλR − 3λ2
R

16π2 . (5.46)

This reproduces the flat space β-function (see also [34, 43]) which was also obtained using
the hard cutoff in section 4.4.

In order to determine the finite contribution in the s-channel we first need to specify the
subtraction scheme. We use the scale-invariant scheme in which we subtract all terms which do
not come from the κ-expansion of 1/(z2+2κ

1 z2+2κ
2 (k⃗2

12+p2
−)2κ). The finite part is then given by

I
(4)
◦ |κ0 = (λR/2)2

2(2π)3

∞∫
−∞

dp−

∞∫
0

dz1

(z1ℓ
−1
AdS)2

dz2

(z2ℓ
−1
AdS)2

2∏
i=1

Ḡ(ki, z1, 0)
4∏

i=3
Ḡ(ki, z2, 0)

× cos(p−z1) cos(p−z2)

1− log
(

z1z2
µ2ℓ2AdS

(k⃗2
12 + p2

−)
) . (5.47)
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Using the expression for the leading contribution of the bulk-to-boundary propagator in (5.19),
we can first integrate over z1 and z2 as described in appendix D and then over p− to find
(with µ = a)

I
(4)
◦ |κ0 = (λR/2)2

2(4π)2k1k2k3k4

1+2γE

k12+k34
(5.48)

+ (λR/2)2

4(2π)2k1k2k3k4

 1
k12−k34

log

k12+ |⃗k12|
k34+ |⃗k12|

− 1
k12+k34

log

(k12+ |⃗k12|)(k34+ |⃗k12|)
(k12+k34)2


 .

The structure of this equation is very similar to the answer obtained via the hard-cutoff (4.22)
when Λ is replaced by k12 + k34. This was also noted in section 4.4 by demanding that the
renormalised correlator satisfies the conformal ward identity. Apart from the log’s appearing
in the second line above, we also see the appearance of the cross term in the first line,
that contributes to the residue at the total energy pole and hence contributes to the flat
space limit.18 We also note that de Sitter-invariant regularization scheme gives the expected
divergent piece (5.44), which is conformally invariant and was absent for the answer obtained
in (4.46). Hence this example for the bubble diagram shows how this regularization scheme
ensures that the correlators automatically satisfy the conformal Ward identity at one-loop.
This is different from previous computations of the bubble diagram [66] for the cosmological
correlator where the final answers do not satisfy the conformal ward identity. Substituting
their cutoff Λ → k12 + k34 leads to an answer that satisfies the conformal Ward identity at
one-loop but misses various divergent factors and total energy poles.

5.3.3 Two-loop necklace

Keeping all terms that contribute when κ → 0, we find

I
(4)
◦◦ =

(
λ

2

)3 1
4
C3

2κ

C4
κ


+ + +


(5.49)

Applying the Feynman rules this set of graphs gives the integral representation

4
(2π)10

∫
d3ℓ⃗1d

3ℓ⃗2

∞∫
−∞

dp1dp2dp3dp4

∞∫
−∞

dz1

z2+2κ
1

dz2
z4κ

2

dz3

z2+2κ
3

2∏
i=1

Ḡ(ki, z1;κ)
4∏

i=3
Ḡ(ki, z3;κ)×

(
cos(p+

12z1) cos(p+
12z2)+cos(p−12z1) cos(p−12z2)

)(
cos(p+

34z2) cos(p+
34z3)+cos(p−34z2) cos(p−34z3)

)
(p2

1+ ℓ⃗1
2)1+κ((ℓ⃗1+ k⃗12)2+p2

2)1+κ(p2
3+ ℓ⃗2

2)1+κ((ℓ⃗2+ k⃗34)2+p2
4)1+κ

,

(5.50)
18These terms are often absent in the renormalised correlator by choosing the MS-scheme.
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where p±12 = p1 ± p2 and p±34 = p3 ± p4. After collecting identical integrals this simplifies to

16
(2π)10

∫
d3ℓ⃗1d

3ℓ⃗2

∞∫
−∞

dp1dp2dp3dp4

∞∫
0

dz1

z2+2κ
1

dz2
z4κ

2

dz3

z2+2κ
3

2∏
i=1

Ḡ(ki, z1;κ)
4∏

i=3
Ḡ(ki, z3;κ)

× cos(p+
12z1) cos(p+

12z2) cos(p+
34z2) cos(p+

34z3)
(p2

1 + ℓ⃗1
2)1+κ((ℓ⃗1 + k⃗12)2 + p2

2)1+κ(p2
3 + ℓ⃗2

2)1+κ((ℓ⃗2 + k⃗34)2 + p2
4)1+κ

. (5.51)

Shifting p2 → p2 + p1 and p4 → p4 + p3, one can again combine the integration over the
three-dimensional momenta ℓ⃗1 and ℓ⃗2 with the integration over p1 and p2 respectively into
a four dimensional integral over L1 = (p1, ℓ⃗1) and L2 = (p2, ℓ⃗2):

I
(4)
◦◦ =

(
λ

2

)3 16
(2π)10

C3
2κ

C4
κ

∞∫
−∞

dp2dp4

∞∫
0

dz1

z2+2κ
1

dz2
z4κ

2

dz3

z2+2κ
3

2∏
i=1

Ḡ(ki, z1;κ)
4∏

i=3
Ḡ(ki, z3;κ)

× cos(p2z1) cos(p2z2) cos(p4z2) cos(p4z3)∫
R8

d4L1d
4L2

(L2
1)1+κ((L1 +Q1)2)1+κ(L2

2)1+κ((L2 +Q2)2)1+κ
. (5.52)

The integrals over L1 and L2 are massless four dimensional bubble integrals with Q1 = (p2, k⃗12)
and Q2 = (p4, k⃗34). Then performing the (flat-space) L-integrals and using that k⃗12 + k⃗34 = 0,
we get19

I
(4)
◦◦ =

(
λ

2

)3 1
(2π)6

∞∫
−∞

dp2dp4

∞∫
0

dz1

z2+2κ
1

dz2
z4κ

2

dz3

z2+2κ
3

2∏
i=1

Ḡ(ki, z1;κ)
4∏

i=3
Ḡ(ki, z3;κ)

× cos(p2z1) cos(p2z2) cos(p4z2) cos(p4z3)(Γ(1− κ)2Γ(2κ))2

Γ(2− 2κ)2Γ(1 + κ)4(k⃗2
12 + p2

2)2κ(k⃗2
12 + p2

4)2κ
.

(5.53)

The double pole contribution is then

I
(4)
◦◦ |κ−2 =

(
λ

2

)3 1
(2π)6

1
2κ2

∞∫
−∞

dp2

∞∫
−∞

dp4

∞∫
0

dz1
z2

1
dz2

dz3
z2

3

2∏
i=1

Ḡ(ki, z1;κ)
4∏

i=3
Ḡ(ki, z3;κ)

× cos(p2z1) cos(p2z2) cos(p4z2) cos(p4z3).

(5.54)

The final integral over p12
− and p34

− is done using (5.43) so that pole of order κ−2 is proportional
to the cross diagram

I
(4)
◦◦ |κ−2 =

(
λ

2

)3 2
(4π)4

1
κ2

∞∫
0

dz

z4

4∏
i=1

Ḡ(k⃗i, z;κ) =
(
λ

2

)2 2
(4π)4

1
κ2 I×. (5.55)

As mentioned above, the correction resulting form the prefactor C3
2κ
C4

κ
being proportional to

κ2 merely results in a non-minimal subtraction of this cross term.
For the sub-leading first-order pole of order κ−1 we find

19In what follows we will ignore the factor C3
2κ

C4
κ

since it can be absorbed in a non-minimal subtraction of the
cross counter term at two-loops.
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I
(4)
◦◦ |κ−1 = −

(
λ

2

)3 8
(2π)6

1
κ

∞∫
−∞

dp2

∞∫
−∞

dp4

∞∫
0

dz1
z2

1
dz2

dz3
z2

3

2∏
i=1

Ḡ(ki, z1, 0)
4∏

i=3
Ḡ(ki, z3, 0)

cos(p2z1) cos(p2z2) cos(p4z2) cos(p4z3)
(
2− log(z1z2(k⃗2

12 + p2
2)− log(z2z3(k⃗2

12 + p2
4)
)
. (5.56)

There is one sub-one-loop divergence after performing the integration over p4 using (5.43)

(
λ

2

)3 4
(2π)5

1
κ

∞∫
−∞

dp2

∞∫
0

dz1
z2

1

dz2
z2

2

2∏
i=1

Ḡ(ki, z1, 0)
4∏

i=3
Ḡ(ki, z2, 0)

× cos(p2z1) cos(p2z2)(1− log(z1z2(k⃗2
12 + p2

2)) (5.57)

and similarly a second sub-one-loop divergence after performing the integration over p12
−

(
λ

2

)3 4
(2π)5

1
κ

∞∫
−∞

dp4

∞∫
0

dz2
z2

2

dz3
z2

3

2∏
i=1

Ḡ(ki, z2, 0)
4∏

i=3
Ḡ(ki, z3, 0)

× cos(p4z2) cos(p4z3)(1− log(z2z3(k⃗2
12 + p2

4)). (5.58)

In our subtraction scheme, defined in the last subsection, the residues of the simple poles
are then equal to the finite part of the one-loop bubble in (5.47). Therefore the simple
pole contribution reads

I
(4)
◦◦ |κ−1 =

(
λR

2

)
8

(2π)2
1
κ
I◦|κ0 . (5.59)

Finally, we turn to the fine part which, in our scheme, is then given by

I
(4)
◦◦ |κ0 =

(
λ

2

)3 1/2
(2π)6

∞∫
−∞

dp2

∞∫
−∞

dp4

∞∫
0

dz1
z2

1
dz2

dz3
z2

3

2∏
i=1

Ḡ(ki, z1, 0)
4∏

i=3
Ḡ(ki, z3, 0)

cos(p2z1) cos(p2z2) cos(p4z2) cos(p4z3)
(
6 +

(
log(z1z2(k⃗2

12 + p2
2)) + log(z2z3(k⃗2

12 + p2
4))
)2

− 4
(
log(z1z2(k⃗2

12 + p2
2)) + log(z2z3(k⃗2

12 + p2
4))
))

. (5.60)

Using the same techniques as before we write the finite piece as I◦◦|κ0 = I
(4)
◦◦ |(a)

κ0 + I
(4)
◦◦ |(b)

κ0 .
With a first piece given by

I
(4)
◦◦ |(a)

κ0 = 1
2k1k2k3k4

(
λ

4π

)3 3+8γE

4(k12+k34)

+ 1
2k1k2k3k4

(
λ

4π

)3
 1
k12−k34

log

k12+ |⃗k12|
k34+ |⃗k12|

− 1
k12+k34

log

(k12+ |⃗k12|)(k34+ |⃗k12|)
(k12+k34)2


 .

(5.61)
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This expression the sum of finite piece of the cross and one-loop contribution. This piece
satisfies the conformal ward identity. The new contribution arising at two-loop

I◦◦|(b)
κ0 =(
λ

4π

)3 ∞∫
−∞

dp−
2π

−

 log(k⃗2
12 + p2

−)
k12 − ip−

+ log(k⃗2
12 + p2

−)
k12 + ip−

 log(k⃗2
12 + p2

−)
k34 − ip−

+ log(k⃗2
12 + p2

−)
k34 + ip−


+2

 log(k⃗2
12 + p2

−)
k12 − ip−

+ log(k⃗2
12 + p2

−)
k12 + ip−

( log(k34 − ip−)
k34 − ip−

+ log(k34 + ip−)
k34 + ip−

)

+2
(
log(k12 − ip−)
k12 − ip−

+ log(k12 + ip−)
k12 + ip−

) log(k⃗2
12 + p2

−)
k34 − ip−

+ log(k⃗2
12 + p2

−)
k34 + ip−


−3
(
log(k12 − ip−)
k12 − ip−

+ log(k12 + ip−)
k12 + ip−

)(
log(k34 − ip−)
k34 − ip−

+ log(k34 + ip−)
k34 + ip−

)

−1
2

(
log2(ik12 + p−) + log2(−ik12 − p−)

k12 − ip−
+ log2(ik12 − p−) + log2(−ik12 + p−)

k12 + ip−

)

×
(

1
k34 − ip−

+ 1
k34 + ip−

) 1
k1k2k3k4

. (5.62)

This expression is easily integrated using Panzer’s HyperInt [67] and is given by a combination
of weight 2 polylogarithms (see (D.5) and (D.6) for a definition of the weight 2 polylogarithms
entering this expression)

I
(4)
◦◦ |(b)

κ0 =(
λ

4π

)3 1
4|⃗k12|

uv

u2 − v2

− (u− v)
(
Li1,1

(
−u/v, v

)
+ Li1,1

(
−v/u, u

)
+ 4Li1,1

(
1,−v/u

))
− (u+ v)

(
Li1,1

(
u/v,−v

)
− Li1,1

(
v/u,−u

)
− 2Li2

(
v/u

))
+ 2v

(
Li2 (−v) + Li1,1 (−1, v)− Li2 (v)

)
− 2u

(
Li2 (−u) + Li1,1 (−1, u)− Li2 (u)

)
+ 3u ln(u)2 − u ln(v)2 +

(
− 2u ln(v) + (u+ v) ln(1− u)− 2 (u+ v) ln(u− v)

+ (−u+ v) ln(1 + u)− 2 (u− v) ln(u+ v) + 2 ln(1 + v) v
)
ln(u)

+
(
2 (u− v) ln(u+ v)− (u+ v) ln(1− v) + 2 (u+ v) ln(u− v) + (−u+ v) ln(1 + v)

− 2 ln(1 + u)u
)
ln(v) +

(
(u− v) ln(1− u) + (u− v) ln(1− v)

+
(
ln(1 + v) + ln(1 + u)

)
(u− v)

)
ln(u+ v) + 2 ln(1− u)u ln(2)− 2 ln(2) ln(1− v) v

− 2 ln(1 + u)u ln(2) + 2 ln(1 + v) ln(2) v −
11π2

(
5v
11 + u

)
24

 1
k1k2k3k4

(5.63)

where we have made use of the conformal cross ratios u = |⃗k12|/k12 and v = |⃗k12|/k34. One
can check that (5.63) satisfies the conformal ward identities.
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ℓ⃗2

ℓ⃗4k⃗3 k⃗4

k⃗1 k⃗2

k⃗3 k⃗4

k⃗1 k⃗2

+
k⃗3 k⃗4

k⃗1 k⃗2

+ 2

Figure 4. Ice-cream diagrams: the configuration of the loop momenta for the second and third
diagram are similar to the first.

Note that at two-loops it is not enough to replace the renormalization scale in the hard
cut-off result E by δ(k12 + k34) to recover the de Sitter-invariant result (5.63).

5.3.4 Ice-cream

We start from figure 4 which translates into (4.27) with the κ regulator added. After some
trigonometric manipulations this becomes

Iin−in
∨̂ =

16(λ
2 )3

(2π)10

∫
dz1

z2+2κ
1

dz2

z1+3κ
2

dz3

z1+3κ
3

d3ℓ⃗1d
3ℓ⃗2dp1dp2dp3dp4 (5.64)

Ḡ(k1, z1;κ)Ḡ(k2, z1;κ)Ḡ(k3, z2;κ)Ḡ(k4, z3;κ) cos(p+
234z2) cos(p+

124z3) cos(p−13z1)
(p2

2 + l⃗22)1+κ(p2
4 + l⃗24)1+κ(p2

3 + (k⃗3 + ℓ⃗2 + ℓ⃗4)2)1+κ(p2
1 + (−k⃗4 + ℓ⃗2 + ℓ⃗4)2)1+κ

=
16(λ

2 )3

(2π)10

∫
dz1

z2+2κ
1

dz2

z1+3κ
2

dz3

z1+3κ
3

d4L4d
4L2dp

+
234dp

+
124

Ḡ(k1, z1;κ)Ḡ(k2, z1;κ)Ḡ(k3, z2;κ)Ḡ(k4, z3;κ) cos(p+
234z2) cos(p+

124z3) cos(p−13z1)
(L2

2)1+κ(L2
4)1+κ((L4 + L2 +Q)2)1+κ((L4 + L2 + Q̃)2))1+κ

where Li = (ℓ⃗i, pi), i = 2, 4, p+
ijk = pi + pj + pk, Q = (k⃗3,−p+

243), Q̃ = (−k⃗4,−p+
124) and

p−13 = p1 − p3 = p+
124 − p+

234. We also suppressed a prefactor as in footnote 19. Performing
a loop-by-loop integration we find∫

d4L4d
4L2

(L2
2)1+κ(L2

4)1+κ((L4 + L2 +Q)2)1+κ((L4 + L2 + Q̃)2))1+κ
(5.65)

= iπ2Γ(1− κ)2Γ(2κ)
Γ(1 + κ)2Γ(2− 2κ)

∫
d4L2

(L2
2)2κ((L2 +Q)2)1+κ((L2 + Q̃)2))1+κ

= iπ4Γ(1− κ)2Γ(2κ)
2Γ(1 + κ)2Γ(2− 2κ)

( 1
2κ + 2− log((Q− Q̃)2(Q+ Q̃)2) +O(κ)

)
= iπ4Γ(1− κ)2Γ(2κ)

2Γ(1 + κ)2Γ(2− 2κ)

( 1
2κ + 2− log(k⃗2

34 + p−2
13 )− log

(
(k⃗3 − k⃗4)2 + (p+

234 + p+
124)2

))
up to O(κ0) terms. The first two terms, multiplying a double pole and a simple pole
respectively, reduce to the cross diagram after integration over p234 and p124. This term is
then cancelled in the usual way by the cross counter-term. Concerning the next term we
change then integration variables to p−13 and p+

124 + p+
234 and then integrate over p+

124 + p+
234
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using (5.43) which results in πδ(z2 − z3), representing the collapsed loop. Together with
the κ-expansion of the measure (with 4κ in the exponential absorbed in the collapsing
loop), this combines to give the same logarithmic dependence as in (5.41), as required by
renormalisability at two-loops. This leaves us with the last term which looks problematic
at first sight since it differs from the one-loop bubble sub-diagram. To see that this term
does not contribute we proceed as follows. Since we are focusing on the simple pole of (5.65)
we may set κ = 0 everywhere else. Then the integral over zi implement a conservation of
energy at each vertex. We can then process as in flat space (see e.g. section 8.5 of [68]) to
show that the singular part of (5.65) depends only on k⃗34. Thus the simple pole of (5.64)
(together with the diagram with k⃗3, k⃗4 ↔ k⃗12) combined with the divergent sub-diagram
in the necklace (5.56) is cancelled by the one-loop bubble combined with the cross counter
term. This then proves renormalisability of the effective action (5.9) up to two-loops. The
finite contribution can be computed as well. However, we will not display the lengthy result
since we have no use for it here.

5.4 Dimensional regularization

To summarize, in this section we have so far proposed a variant of analytic regularization that
preserves (A)dS-invariance and demonstrated consistency and calculability of this scheme
by computing various correlators up to two-loops. In doing so we also established the
renormalisability of the effective action [39] given in eq. (5.9) up to this order. A natural
extension for a higher number of loops and legs is to resort to the recursion relations formulated
in section 3. However, it turns out that the derivation of these recursions no longer applies
with analytic regularizations. The reason for this is that the Cauchy residue-formula is
no-longer applicable for the energy integrals for a non-integer power of the propagators which
is a defining feature of analytic regularization. In this subsection we will the briefly describe
another dS-invariant regulator that preserves the nature of the propagator. However, we will
see that explicit calculations in this scheme quickly become very complicated.

We start with the following action (which is obtained from eq. (2.6) for a general
dimension):

SD[ϕ+, ϕ−] = −1
2

∫
dzdDx

zD+1

(
(∂ϕ+)2

z2 −m2ϕ2
+ − (∂ϕ−)2

z2 +m2ϕ2
+ + λ

4!V (ϕ+, ϕ−, D)
)
(5.66)

where D = 3 − ϵ, m is the conformally coupled mass corresponding to ∆+ = 2 − ϵ/2 and
∆− = 1 − ϵ/2, and

V (ϕ+, ϕ−, D) = cos
(
πϵ

2

)(
ϕ4

+ + ϕ4
− − 6ϕ2

+ϕ
2
−

)
+ sin

(
πϵ

2

)(
ϕ+ϕ

3
− − ϕ−ϕ

3
+

)
(5.67)

We then make the conformal mapping to half of R4 with a boundary at z = 0 through

gµν → 1
z2 gµν , ϕ± → zD−1ϕ± , λ→ z−ϵλ, (5.68)

and get

SD=3−ϵ[ϕ+, ϕ−] = −1
2

∫
dzdDx

(
(∂ϕ+)2 − (∂ϕ−)2 + z−ϵλ

4! V (ϕ+, ϕ−, D)
)
. (5.69)
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When computing scattering amplitudes using dimensional regularisation, we would normally
include a renormalisation scale by inserting µϵ in front of the interaction terms, which is
required by dimensional analysis. Comparing to (5.69), we identify µ = z−1.

The in-in correlator corresponding to the bubble diagram in this scheme is then given by

λ2

(4π)5−ϵ

∞∫
0

dpdp′
∫
dDℓ

∞∫
0

dz1
zϵ

1

dz2
zϵ

2
e−k12z1−k34z2

(
cos(p+z1) cos(p+z2) + cos(p−z1) cos(p−z2)

)
(p2 + ℓ⃗2)(p′2 + (ℓ⃗+ k⃗)2)

(5.70)

By evaluating the p, p′ integrals we get

∫
dD ℓ⃗

(p2 + ℓ⃗2)(p′2 + (ℓ⃗+ k⃗)2)
= π

3
2−

ϵ
2Γ
(
ϵ

2 + 1
2

)− k⃗2

(z − 1)(z̄ − 1)

− ϵ
2−

1
2

×

 2F1
(
1, ϵ

2 + 1
2 ; ϵ+ 1; z−z̄

z−1

)
(z − 1)ϵ −

z(zz̄)− ϵ
2−

1
2 2F1

(
1, ϵ

2 + 1
2 ; ϵ+ 1; z−z̄

(z−1)z̄

)
(z − 1)ϵ

 ,
(5.71)

with
(1− z)(1− z̄) = − k⃗

2
12
p2 ; zz̄ = p′2

p2 . (5.72)

The integral above is highly non-trivial to manipulate analytically. This illustrates the
difficulty in working with this regularization scheme even at 1-loop.

6 Conclusion

In this paper we have found evidence that in-in correlators appear to be much simpler than
wavefunction coefficients. In particular their loop integrands can be recast in terms of four-
dimensional flat space Feynman integrals and after loop integration their analytic structure
appears to be very closely related to that of scattering amplitudes. This fact is obscured
by the standard definition of in-in correlators in terms of the square the wavefunction, but
becomes more manifest after mapping the calculation to Witten diagrams derived from an
effective action in EAdS. From that point of view, the simplicity arises from a subtle interplay
of boundary conditions, notably the Neumann boundary conditions of the shadow fields and
the Dirichlet boundary conditions of the original fields in de Sitter space.

We have demonstrated this explicitly in a number of examples up to two loops for the
conformally coupled ϕ4 theory, but we believe that similar simplicity of in-in correlators
will exist in more general theories. As a simple example, let us consider the 1-loop tadpole
contribution to the in-in correlator in the case of a massless scalar. The effective potential
in EAdS is the same as the conformally coupled case20 so we find that two diagrams will
contribute analogous to the ones in (4.1), and their sum is given by M(1)

2 = A3/2+A−3/2 where

Aν =
∫
d3ldpp

p2 + l2

∫ ∞

0

dz

z4

(
z3/2Jν(pz)

)2 (
(kz)3/2Kν(kz)

)2
. (6.1)

20This is more generally true for all integer ∆.
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While the integrand for each diagram is a rather complicated object consisting of trigonometric
functions, the integrand of the sum is remarkably simple:

M(1)
2 =

∫
d3ldp

p2 (p2 + l2
) ∫ ∞

0

dz

z4 e
−2kz (1 + kz)2

(
1 + p2z2

)
, (6.2)

so once again we find a dramatic simplification of the in-in correlator compared to the
wavefunction already at the integrand level. One important difference compared to the
conformally coupled case is that now there are infrared divergences when z = 0, but this
can be easily regulated by taking lower limit of the z integral to be ϵ≪ 1. After performing
the z integral, we are left with

M(1)
2 = C1

∫
d3ldp(
p2 + l2

) + C2

∫
d3ldp

p2 (p2 + l2
) , (6.3)

where Ci are prefactors that diverge as ϵ→ 0. Hence, we are left with a linear combination of
two simple loop integrals. Recall that the integral over ω can be carried out by summing over
residues in the upper half-plane. After doing so the second term in (6.3) vanishes, and we are
just left with the first term, whose integrand has four-dimensional Lorentz invariance. Hence,
we are once again left with a four-dimensional flat space integral. This integral is identical to
the conformally coupled case and can be set to zero after renormalisation, as expected from the
flat space limit. More generally, if we use a cutoff to regulate IR divergences, this will break
the conformal symmetry. In [63], it was shown that such divergences can be renormalised
by introducing local counterterms to cancel them out of the wavefunction, from which the
in-in correlator can then be computed. It would be interesting to compare this to the results
obtained in this paper using analytic regularisation, which preserves conformal symmetry.21

For other recent work on infrared divergences of cosmological correlators, see [54, 69, 70].
Another key result of this paper is the construction of a manifestly de Sitter-invariant

regularization scheme that preserves much of the flat-space structure of standard Feynman
integrals. In this way the regulated loop integrals become almost as simple as those of
scattering amplitudes, allowing us in particular to identify the recursive renomalizeability of
the Euclidean effective action and to systematically derive de Sitter-invariant expressions
for the finite parts of loop-level correlators. On the other hand the loop integrands in
this regularisation scheme are not amenable to the recursion relations derived in section 3.
Alternative de Sitter-invariant regulators which are compatible with recursion exists but do
not lead to calculable integrals even at one-loop. This leads to the question of whether a
calculable, de Sitter-preserving regularization scheme exists that is compatible with recursion.

Another subtlety of demanding conformal invariance at loop-level is the flat space limit.
In particular, when taking the flat space limit we must break conformal symmetry to Poincaré
symmetry since the isometry group of the background gets broken. In order to do so, we
must introduce a dimensionful renormalisation scale. In the simple 1-loop examples that we
considered in the body of the paper, this can be accomplished by setting δ = µ/E (where δ

is the dimensionless renormalisation scale in the de Sitter-invariant renormalisation scheme,
21Note that in position space, conformal anomalies can arise when some points of the correlator come

together giving rise to delta functions [71]. We do not encounter such terms in this paper since we compute
bulk Witten diagrams whose external legs end at generic positions in the boundary.
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µ is a dimensionful renormalisation scale that arises in the flat space limit, and E is the
energy), and taking E → 0 holding µ = δE fixed. This subtlety when taking the flat space
limit does not occur at tree-level and to our knowledge has not been previously pointed out
at loop-level. It would be interesting to see if this simple prescription for breaking conformal
symmetry in order to recover the flat space limit is valid more generally. In appendix E,
we find that this prescription gives a different result for the 2-loop necklace than analytic
regularization so it is unclear if it restores conformal symmetry in general.

There are a number of future directions to consider. As mentioned above, it would be
important to understand how the simplicity of in-in correlators extends to more general
masses and interactions, in particular the case of massless scalar fields and ϕ3 interactions. It
would also be of interest to generalise the Euclidean effective action to other conformally flat
FLRW backgrounds. For conformally coupled ϕ4 theory, the generalisation is trivial since
it can always be mapped to a massless scalar theory in half of flat space via a conformal
transformation. More generally, mapping a scalar theory with a general mass and polynomial
interactions in a general FLRW background to half of flat space will introduce time dependence
in the masses and interactions [72]. Nevertheless, we may still perform a Wick rotation to
half of Euclidean space and introduce ghost fields to obtain a Euclidean effective action
analogous to the one in (2.18) whose Feynman rules can then be used to compute in-in
correlators in the original FLRW background.

It would also be of interest to have a more systematic understanding of the singularity
structure of in-in correlators analogous to that of wavefunction coefficients. For wavefunction
coefficients, this is partially encoded by the cosmological optical theorem (COT) [16], which
relates unitarity cuts of individual Feynman diagrams in de Sitter background to products
of shifted lower-point Feynman diagrams. While it is unclear how to extend this to in-in
correlators starting from their standard definition in terms the square of the wavefunction, our
results suggest that the COT can be straightforwardly extended to in-in correlators by taking
into account the contributions from the ghost fields appearing in the Euclidean effective
action. We leave a detailed investigation of these important questions for future work.
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A in-in correlators from wavefunctions

We start with the definition of cosmological correlator in terms of wavefunction

⟨σ1σ2 . . . σn⟩ =
∫
Dσ

∣∣ψ(σ)∣∣2∏i σi∫
Dσ

∣∣ψ(σ)∣∣2 , (A.1)

where the wavefunction takes the form

ψ(σ) ∝ exp
[
−1
2

∫
σ1σ2ψ2 −

1
4!

∫
σ1 · · ·σ4ψ4 −

1
6!

∫
σ1 · · ·σ6ψ6 + · · ·

]
, (A.2)

and we use the shorthand notation
∫
σ1 · · ·σn =

∫ n∏
i=1

d3pi

(2π)3σ (p⃗i) δ3

 n∑
i=1

p⃗i

 , (A.3)

and
ψn = ψn (p⃗1, . . . , p⃗n) . (A.4)

The wavefunction coefficients ψn are computed from Witten diagrams and have a perturbative
expansion in the coupling of the bulk λϕ4 theory. At lowest order, ψ4 comes from a tree-level
contact diagram and is O (λ), while ψ6 comes from exchange diagrams and is O

(
λ2
)
.

We can rephrase the path integral in (A.1) in terms of an effective action:

⟨σ1σ2 · · ·σn⟩ =
∫
Dσe−S(σ)∏

i σi∫
Dσe−S(σ) , (A.5)

where
S(σ) = 1

2

∫
σ1σ2Reψ2 +

1
4!

∫
σ1 · · ·σ4Reψ4 +

1
6!

∫
σ1 · · ·σ6Reψ6 + · · · (A.6)

The Feynman rules of this action are easy to read off:

k⃗
= 1

Reψ2(k⃗)
, = Reψ4, = Reψ6, . . . (A.7)

While the underlying theory only has a ϕ4 interaction vertex, the effective action used
to compute the in-in correlators has an infinite number of vertices, each of which has a
pertrubative expansion in the bulk coupling. We can then compute loop diagrams using the
effective action, whose vertices will contain different powers of the coupling and then keep all
contributions that contain a given order in the coupling. For example, at leading order in the
coupling, the four-point in-in correlator comes from a four-point contact diagram where we
only keep the tree-level contribution to the coefficient Reψ(0)

4 . We also dress the vertex with
external propagators, keeping only the tree-level contributions Reψ(0)

2

⟨ϕ(k⃗1)ϕ(k⃗2)ϕ(k⃗3)ϕ(k⃗4)⟩ = = Reψ4
4∏

i=1
Reψ2(k⃗i)

(A.8)
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At one-loop, the in-in correlator receives contributions from three types of diagrams: a
tree-level diagram whose vertex is 1-loop coefficient Reψ(1)

4 , a 1-loop bubble diagram whose
vertices are the tree-level coefficients Reψ(0)

4 and a 1-loop diagram whose 6-point vertex is
the tree-level coefficient Reψ(0)

6 :

⟨ϕ(k⃗1)ϕ(k⃗2)ϕ(k⃗3)ϕ(k⃗4)⟩(2) = + + +perms (A.9)

Note that all of these contributions are O
(
λ2
)
. This gives

⟨ϕ(k⃗1)ϕ(k⃗2)ϕ(k⃗3)ϕ(k⃗4)⟩(2) =

1
4∏

i=1
Reψ2(k⃗i)

Reψ(2)
4 +

∑
perms

Reψ4(k⃗1, k⃗2, ℓ⃗, ℓ⃗2)Reψ4(k⃗3, k⃗4, ℓ⃗, ℓ⃗2)
2Reψ2(ℓ⃗)Reψ2(ℓ⃗2)

+Reψ6(k⃗1, k⃗2, ℓ⃗, k⃗3, k⃗4, ℓ⃗)
2Reψ2(ℓ⃗)

+ Reψ6(k⃗1, k⃗2, ℓ⃗2, k⃗3, k⃗4, ℓ⃗2)
2Reψ2(ℓ⃗2)


where ψ(2)

4 is the one-loop wavefunction coefficient

ψ
(2)
4 = λ2

∫
dη1dη2ϕ(η1, k1)ϕ(η1, k2)G(η1, η2, ℓ)G(η1, η2, ℓ2)ϕ(η2, k3)ϕ(η2, k4)

= 2 E + ℓ+ ℓ2
E(E + ℓ)(E + ℓ2)(k1 + k2 + ℓ+ ℓ2)(k3 + k4 + ℓ+ ℓ2)

(A.10)

then the tree level wavefunction coefficients are

ψ2(k⃗) = k

ψ4(k⃗1, k⃗2, k⃗3, k⃗4) =
λ

k1+k2+k3+k4

ψ6(k⃗1, k⃗2, ℓ⃗, k⃗3, k⃗4, ℓ⃗) = λ2
∫
dη1dη2ϕ(η1, k1)ϕ(η1, k2)ϕ(η1, ℓ)G(η1, η2, ℓ)ϕ(η2, k3)ϕ(η2, k4)ϕ(η2, ℓ)

= λ2

(k1+k2+k3+k4+2ℓ)(k1+k2+ℓ+ℓ2)(k3+k4+ℓ+ℓ2)
(A.11)

After adding up all the diagrams and integrating out the energies we land on,

⟨ϕ(k⃗1)ϕ(k⃗2)ϕ(k⃗3)ϕ(k⃗4)⟩(2) = λ2(E + ℓ+ ℓ2)
Eℓℓ2(k1 + k2 + ℓ+ ℓ2)(k3 + k4 + ℓ+ ℓ2)

(A.12)

which reproduces the result we obtained using shadow fields in (4.21) after integrating out ω.

B Integrand of triangle diagram using recursion

We demonstrate the usage of the recursion relation developed in section 3 for the triangle
diagram. This is a six-point function in the ϕ4 theory.
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For the six-point function with external legs composed of ϕ+ we have the following two
diagrams (for this appendix we suppress the external legs and represent them with • in
order to avoid a clutter of notations22)

x3x2

x1
y12 y13

y23
••

•

+
x3x2

x1
y12 y31

y23
••

•
(B.1)

Here x1 = k1 + k2, x2 = k3 + k4, x3 = k5 + k6 and y12 = |⃗l + k⃗1 + k⃗2|, y23 = |⃗l + k⃗1 + k⃗2 +
k⃗3 + k⃗4| = |⃗l − k⃗5 − k⃗6| and y31 = |⃗l|.

Consider the first diagram,

x3x2

x1
y12 y31

y23
••

•

.
(B.2)

By expanding this in terms of the propagators we get

x3x2

x1
y12 y31

y23
••

•

=
∫ ∞

0
dz1dz2dz3e

−x1z1e−x2z2e−x3z3GD(z1, z2, y12)GD(z2, z3, y23)GD(z3, z1, y13).

(B.3)

Following the procedure described above we can insert the z−translation operator inside
the integral and obtain the following

x3x2

x1
y12 y31

y23
••

•

= 1
x1 + x2 + x3

 • • •
x1 + y12 x3 x2 + y12

y31 y23 + • • •
x1 + y13 x2 x3 + y13

y12 y23

+ • • •
x2 + y23 x1 x3 + y23

y12 y13

.
(B.4)

Now consider the second diagram

x3x2

x1
y12 y31

y23
••

•

=
∫ ∞

0
dz1dz2dz3e

−x1z1e−x2z2e−x3z3GN (z1, z2, y12)GN (z2, z3, y23)GN (z3, z1, y13).

(B.5)

22This is similar to the notation introduced in [11].
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By inserting the z−translation operator we get the following∫ ∞

0
dz1dz2dz3

(
∂

∂z1
+ ∂

∂z2
+ ∂

∂z3

)
e−x1z1e−x2z2e−x3z3GN (z1,z2,y12)GN (z2,z3,y23)GN (z3,z1,y13)

(B.6)
The terms that come from the derivative operators hitting the integrand are exactly the
same as in equation (B.4) with GD replaced by GN . However, in addition to them we
also have terms that appear from the boundary zi → 0 , for i = 1, 2, 3. This gives the
following set of boundary terms,∫ ∞

0
dz1dz2e

−x1z1e−x2z2GN (z1, z2, y12)GN (z2, 0, y23)GN (0, z1, y13) + permutations(1, 2, 3)

=
∫ ∞

0
dz1dz2e

−x1z1e−x2z2GN (z1, z2, y12)
e−y23z2

y23

e−y13z1

y13
+ permutations(1, 2, 3)

= •
y31

•
y23

• •
x1 + y31 x2 + y23

y12 + permutations(1, 2, 3).

(B.7)
Therefore the integrand in diagram (B.5) becomes

x3x2

x1
y12 y31

y23
••

•

= 1
x1 + x2 + x3

− • • •
x1 + y12 x3 x2 + y12

y31 y23 − • • •
x1 + y13 x2 x3 + y13

y12 y23

− • • •
x2 + y23 x1 x3 + y23

y12 y13 + •
y31

•
y23

• •
x1 + y31 x2 + y23

y12

+ •
y12

•
y23

• •
x1 + y12 x3 + y23

y13 + •
y12

•
y13

• •
x2 + y12 x3 + y13

y23


(B.8)

By adding the two we obtain
1

(x1+x2+x3)y12y23y31

1
(x2+y12+y23)(x1+x3+y12+y23)(x1+y12+y31)

× 1
(x2+x3+y12+y31)(x1+x2+y23+y31)(x3+y23+y31)

×

x3
1(x2+x3+y12+y23+y31)+2x2

1(x2+x3+y12+y23+y31)2+x1

(
4x2

2(x3+y12+y23+y31)

+x2
(
9x3(y12+y23+y31)+4x2

3+4y2
12+4(y23+y31)2+9y12(y23+y31)

)
+4x2

3(y12+y23+y31)+x3
(
4(y12+y23)2+9y31(y12+y23)+4y2

31

)
+x3

2+x3
3

+(y12+y23+y31)
(
y2

12+3(y23+y31)y12+y2
23+y2

31+3y23y31
))

+(x2+x3+y12+y31)
(
x2

2(x3+y12+y23+y31)+x2(x3+y12+y23+y31)(x3+y12+2y23+y31)

+(y12+y23+y31)(x3+y12+y23)(x3+y23+y31)
).

(B.9)
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Integrals in terms of four-dimensional flat space Feynman integrals. Although
the expression above is quite messy, it is interesting to note that this can also be written
as a four-dimensional Feynman integral. To see this, we note that the triangle with all
solid legs is given as

x3x2

x1
y12 y31

y23
••

•

=
∫ ∞

0
dz1dz2dz3

∫ ∞

−∞
dp1dp2dp3

∫
d3l e−x1z1e−x2z2e−x3z3

× sin(p1z1) sin(p1z2) sin(p2z2) sin(p2z3) sin(p3z3) sin(p3z1)
(p2

1 + y2
12)(p2

2 + y2
23)(p2

3 + y2
31)

.

(B.10)

Similarly the diagram with the dashed lines becomes

x3x2

x1
y12 y31

y23
••

•

=
∫ ∞

0
dz1dz2dz3

∫ ∞

−∞
dp1dp2dp3

∫
d3l e−x1z1e−x2z2e−x3z3

× cos(p1z1) cos(p1z2) cos(p2z2) cos(p2z3) cos(p3z3) cos(p3z1)
(p2

1 + y2
12)(p2

2 + y2
23)(p2

3 + y2
31)

.

(B.11)

By first performing the z integrals and adding the two diagrams we obtain23

x3x2

x1
y12 y31

y23
••

•

+
x3x2

x1
y12 y31

y23
••

•

=
∫ ∞

−∞
dp1dp2dp3d

3l

× x1x2x3(
(p1 − p3) 2 + x2

1

) (
(p1 − p2) 2 + x2

2

) (
(p2 − p3) 2 + x2

3

) (
p2

1 + y2
12

) (
p2

2 + y2
23

) (
p2

3 + y2
31

) .
(B.12)

These three-vectors can be embedded in a four-vector in the Euclidean signature,

L = (p3, l⃗), P1 = (p1 − p3, x⃗1), P2 = (p2 − p3, x⃗2) (B.13)

with x⃗1 = k⃗1 + k⃗2 and x⃗2 = k⃗1 + k⃗2 + k⃗3 + k⃗4, the integral above can be expressed as

x3x2

x1
y12 y31

y23
••

•

+
x3x2

x1
y12 y31

y23
••

•

=
∫ ∞

−∞

x1x2x3dpdp
′

(p2 + x2
1)(p′2 + x2

2)
(
(p+ p′)2 + x2

3

) ∫ d4L

L2(L+ P1)2(L+ P2)2 .

(B.14)

where p = p1 − p3, p′ = p2 − p1 =⇒ p+ p′ = p2 − p3. As noted in section 4.3 this structure
can be generalized to any n-gon diagram at one-loop.

23Since the pi integrals range from (−∞,∞), any p-integral with an odd power does not contribute. This is
similar to the other integrals we encountered before.
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C δ-regularization

The δ-regulated Green function (5.1) has the momentum representation (here z, z′ > 0
and a = 1)

GD(k⃗, ω, z, z′) = zz′

π

∫
dω

sin(ω
2 (Σz −∆δ)) sin(ω

2 (Σz +∆δ))
ω2 + k2 , (C.1)

and
GN (k⃗, ω, z, z′) = −zz

′

π

∫
dω

cos(ω
2 (Σz −∆δ)) cos(ω

2 (Σz +∆δ))
ω2 + k2 , (C.2)

where ∆δ =
√
∆2

z + 2δzz′, ∆z = z − z′ and Σz = z + z′. Adding the two contribution as
before, we get for the one-loop, four-point function

I
(4)
◦ = (λ/2)2

(2π)5

∞∫
−∞

dp

∞∫
−∞

dp′
∫
d3ℓ

∞∫
0

dzdz′e−k12z−k34z′ (C.3)

×
(
cos(pΣz) cos(p′Σz) + cos(p∆δ) cos(p′∆δ)

)
(p2 + ℓ⃗2)(p′2 + (ℓ⃗− k⃗12)2)

Integration over p and p′ gives

I
(4)
◦ = (λ/2)2

4(2π)3

∫
d3ℓ

∞∫
0

dzdz′e−k12z−k34z′

(
e−(|ℓ⃗|+|ℓ⃗−k⃗12|)Σz + e−(|ℓ⃗|+|ℓ⃗−k⃗12|)∆δ

)
|ℓ⃗||ℓ⃗− k⃗12|

. (C.4)

Integration over ℓ then gives

I
(4)
◦ = (λ/2)2

4(2π)2

∞∫
0

dzdz′e−k12z−k34z′

e−|⃗k12|Σz

Σz
+ e−(|⃗k12|)∆δ

∆δ

 . (C.5)

The first term is easily integrated over z and z′ to give

(λ/2)2

4(2π)2
1

(k34 − k12)
log

k34 + |k⃗12|
k12 + |k⃗12|

 (C.6)

For the second term we write
∞∫

0

dzdz′e−k12z−k34z′ e
−|⃗k12|∆δ

∆δ
=

∞∫
0

dz+

z+∫
−z+

dz−e
−k+z+−k−z− e

−|⃗k12|∆δ

∆δ

=
|k⃗12|∫
0

d

dx

∞∫
0

dz+

z+∫
−z+

dz−e
−k+z+−k−z− e

−|⃗k12|∆δ

∆δ
+

∞∫
0

dz+

z+∫
−z+

dz−
e−k+z+−k−z−

∆δ
, (C.7)

where z± = 1√
2(z ± z′) and k± = 1√

2(k12 ± k34). For the first term we can set δ = 0, since
it is finite, resulting in

|k⃗12|∫
0

dx

∞∫
0

dz+

z+∫
−z+

dz−e
−k+z+−k−z−e−x|∆z | = 1

(k12 + k34)
log

(k34 + |k⃗12|)(k12 + |k⃗12|)
k12k34

 .
(C.8)
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The second is not a standard integral but, after some effort can be evaluated to

− 1
(k12 + k34)

log
(

−δ k12k34
8(k12 + k34)2

)
. (C.9)

Putting all terms together we end up with

I
(4)
◦ = (λ/2)2

4(2π)2

 1
(k34−k12)

log

k34+|k⃗12|
k12+|k⃗12|

− 1
(k34+k12)

log

−δ
8

(k34+|k⃗12|)(k12+|k⃗12|)
(k34+k12)2




(C.10)
We see that (up to an overall normalization) the finite part agrees with (5.48) from analytic
regularization and also with (4.22) of the cut-off regularization if the cut-off is replaced
by the total energy.

D Some integrals

In this appendix we list some useful integrals required for the computation of the bubble,
necklace and ice-cream diagrams,

1. ∫ ∞

−∞

dp

(a2 + p2)(b2 + p2) = π

ab(a+ b) (D.1)

2. ∫ ∞

0

log(a2 + x2)
b2 + x2 dx = π

b
log(a+ b) (D.2)

3. Using Panzer’s HyperInt program [67] we get

∫ ∞

0

log(a2 + x2)2

b2 + x2 dx = 2π
b
(Li1,1

(
1,−a/b

)
+ ln

(
2ab)

)
log

(
a+ b

b

)

+ Li2
(
−a/b

)
+ Li1,1

(
−1, a/b

)
− ln

(2a
b

)
log

(
b− a

b

)
+ π2

4 + ln(b)2 − Li2
(
a/b

)
)

(D.3)

4. ∫ ∞

0

log(a2 + x2) log(b2 + x2)
c2 + x2 dx

= (Li1,1
(
c/b,−a/c

)
− Li1,1

(
−c/b, a/c

)
+ (Li1

(
−a/c

)
− ln(b)− ln(c) + Li1

(
a/c

)
)Li1

(
−b/c

)
+ (− ln(b)− ln(c))Li1

(
−a/c

)
+ Li2

(
−b/c

)
+ (ln(b)− ln(c))Li1

(
a/c

)
+ (ln(b)− ln(c))Li1

(
b/c
)

+ 1/2π2 + 2 ln(c)2 − Li2
(
b/c
)
)π/c.

(D.4)
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One can express these integrals in terms of the standard dilogarithms using the identity

Li1,1 (x, y) = Li2
(
y(x− 1)
(1− y)

)
− Li2

(
y

(y − 1)

)
− Li2 (xy) (D.5)

with
Li2 (x) =

∑
n≥1

xn

n2 for |x| < 1 (D.6)

or
Li2 (z) := −

∫ z

0
log(1− u)du

u
for z ∈ C\[1,∞[. (D.7)

E Necklace integral using hard cutoff

We evaluate the value of the integral (4.26) in this appendix using the hard-cutoff approach.
We find that the transcedentality of the integral evaluated using the hard cutoff is the same
as the answer obtained using the ads-invariant regulator.

IΛ
Necklace =

∫
d3l1d

3l2
1

ET y1y2y3y4(x1 + σ1)(x1 + σ2)(x2 + σ1)(x2 + σ2)

×
[
(ET + σ1)(ET + σ2) +

ETx1x2
σ1 + σ2

]
≡ IBubble2 + Inon−fact,

(E.1)

where

IBubble2 =
∫
d3l1d

3l2
1

ET y1y2y3y4(x1 + σ1)(x1 + σ2)(x2 + σ1)(x2 + σ2)
(ET + σ1)(ET + σ2)

= 1
ET

 ∫ d3l1
ET + σ1

y1y2(x1 + σ1)(x2 + σ2)

2

.

(E.2)

The integral above is the square of the one-loop bubble integral given in (4.22). The ultraviolet
divergent piece of the necklace is captured by this term. The other term in IΛ

Necklace contributes
to the finite part and is evaluated below. To simplify things we shall express the factor 1

σ1+σ2
of the integrand by an auxiliary integral with over a variable α as shown below,

Inon−fact =
∫
d3l1d

3l2
1

y1y2y3y4(x1 + σ1)(x1 + σ2)(x2 + σ1)(x2 + σ2)
x1x2
σ1 + σ2

= x1x3
π

∫ ∞

−∞
dα

 d3l1
(x1 + σ1)(x3 + σ1)(α2 + σ2

1)
σ1
y1y2

2 (E.3)

Where we have used the identity

1
σ1 + σ2

= σ1σ2
π

∫ ∞

−∞

dα

(α2 + σ2
1)(α2 + σ2

2)
. (E.4)
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Using this representation we can compute the integral (E.3).

Inon−fact

= π4

x1 + x2
+

8π2x2x1 log
(

x1
k + 1

)
log

(
x2
k + 1

)
(x1 − x2) 2 (x1 + x2)

+
4π2 log(2)

(
x2 log

(
1− x1

k

)
− x1 log

(
1− x2

k

))
x2

1 − x2
2

+
4π2x1

[
− (x1 + x2) + (x1 − x2) log 2

]
log

(
x2
k + 1

)
(x1 − x2) 2 (x1 + x2)

+ (x1 ↔ x2)

+
4π2x1x2

(
log(x1

k )
k+x1

+ log(x2
k )

k+x2

)
(x1 − x2)2

+
π2 log

(
x2
k

)
(x1 − x2)

− 8x2x
2
1 log

(
x1
k + 1

)
(x1 − x2)2 (x1 + x2)

+
2 (x1 + x2)x1 log

(
x2
k + 1

)
(x1 − x2)2 −

2x1 log
(
1− x2

k

)
(x1 + x2)


+ (x1 ↔ x2)

+ 2π2

(x1 − x2)3 (x1 + x2)

x1

(x2
1 + 6x2x1 + x2

2

)
Li2

(
−x2
k

)
+ 2

(
x2

1 − x2
2

)
Li2

(
x2

k + x2

)

−
(
x2

1 − x2
2

)(
− Li2

(
x2
k

)
− 2Li2

(
− 2x2
k − x2

)
− log2

(
1− x2

k

))
+ (x1 ↔ x2)

(E.5)

where k = |⃗k1 + k⃗2|. Therefore we have the full expression for the necklace graph using hard
cut-off. Note that a simple replacement of Λ → k12 + k34 does not match the expression
obtained using analytic regularization (5.63), so it is unclear if this prescription restores
conformal symmetry in general.

F Leading singularity of the ice-cream using hard-cutoff

By using the recusion relations we can evaluate the integrand for the ice-cream diagram.
The full expresion is submitted with the arxiv submission in a mathematica notebook
titled recursions.nb. For our purpose we only need to extract the leading singularity from
the loop integral and that is given as

1
k1 + k2 + k3 + k4

∫
d3l1d

3l2
y2

1y2y2
3y4

= (4π)2

k1 + k2 + k3 + k4
log kΛ log |⃗k + k⃗3|

Λ , (F.1)

with y1 = |⃗l1|, y2 = |⃗l1 + k⃗|, y3 = |⃗l2|, y4 = |⃗k3 + l⃗1 + l⃗2| and the integral is regularized in
hard-cutoff Λ and we omit the terms that go as a power law in Λ as they are absent in any
other scale-invariant regularization. By comparing with the leading singularities from section 5
we see that it is not easy to convert between the two regularization schemes at 2-loops.
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