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Load balancing for high performance computing using quantum annealing
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With the advent of exascale computing, effective load balancing in massively parallel software applications
is critically important for leveraging the full potential of high-performance computing systems. Load balancing
is the distribution of computational work between available processors. Here, we investigate the application
of quantum annealing to load balance two paradigmatic algorithms in high-performance computing. Namely,
adaptive mesh refinement and smoothed particle hydrodynamics are chosen as representative grid and off-grid
target applications. While the methodology for obtaining real simulation data to partition is application specific,
the proposed balancing protocol itself remains completely general. In a grid based context, quantum annealing is
found to outperform classical methods such as the round robin protocol but lacks a decisive advantage over more
advanced methods such as steepest descent or simulated annealing despite remaining competitive. The primary
obstacle to scalability is found to be limited coupling on current quantum annealing hardware. However, for the
more complex particle formulation, approached as a multiobjective optimization, quantum annealing solutions
are demonstrably Pareto dominant to state of the art classical methods across both objectives. This signals a
noteworthy advancement in solution quality which can have a large impact on effective CPU usage.
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I. INTRODUCTION

During the initial development of scientific computation,
simulations greatly benefited from improvements to clock
speeds of individual processors [1]. However, since the early
2000s [2] hardware limitations have resulted in dwindling
improvements to sequential programming applications. The
result has been a paradigm shift to concurrency in program-
ming software that aims to exploit the multicore architectures
which form the bedrock of modern day high-performance
computing (HPC). However, the effectiveness of these appli-
cations is heavily dependent on the equitable distribution of
computational workload across available resources, a concept
known as load balancing.

Load balancing encompasses not just fair distribution of
the computational tasks across processors, but also doing
so in such a way that minimizes the need to communicate
data between processors. Motivation for the former is evident
considering how all processors need to wait for the slowest
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one to finish before proceeding to the next step, thus po-
tentially resulting in idling and resource wastage at a much
larger scale if even a single processor lags behind. In addi-
tion to this, communication bandwidth between processors
is usually not as efficient as within the processor itself [3,4]
and so the volume of communication ideally should be min-
imized. The importance of load balancing clearly extends
beyond any singular discipline. However, for the purposes of
this paper emphasis is placed on applications in the realm
of computational fluid dynamics. In particular, this paper
explores the viability of quantum annealing as a solution strat-
egy, as demonstrated using representative grid and off-grid
applications.

In the context of grid based applications, it is usually
not the governing equations themselves that define the load
balancing problem but the chosen method of domain decom-
position (DD). DD is the art of splitting a computational
domain into smaller subdomains. This allows solving each
smaller problem individually before subsequently recombin-
ing into the global solution. Historically, since its original
proposal [5], DD in the realm of fluid simulations has been
used to accommodate the inherent challenges of complex
geometries [6,7] or higher dimensionality [8]. Extensive re-
search in the last 40 years has led to rapid development,
facilitating application to multiphysics problems [9], mov-
ing meshes [10], and a wider pool of applications [11].
More importantly in the context of modern HPC, DD is an
indispensable tool for transforming the global simulation do-
main into subcomponents that can be assigned to individual
processors.
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A popular choice of DD for large scale simulations in
the realms of fluids [12], stress analysis [13], and biological
flows [14] among others is adaptive mesh refinement (AMR).
AMR operates on the principle that different areas of the
computational domain are best solved with different levels of
spatial resolution. This can prevent wastage of computational
resources in regions with little activity while maintaining
precision in zones of interest. The method is particularly
useful for applications with large variation of spatial scales
or when high resolution data are required in specific regions.
This paper considers block structured implementations as a
representative class and does not make further distinctions
with alternative AMR varieties, although an interested reader
is referred to the relevant literature [15,16].

For off-grid applications, the representative method here
is smoothed particle hydrodynamics (SPH), a mesh free sim-
ulation method for continuum mechanics. Since its original
conception [17], its application has spread to encompass
a wide variety of fields including but not limited to solid
mechanics, engineering, astrophysics, and the food industry
[18,19]. Fundamentally, SPH is an interpolation technique
that utilizes a collection of unordered points, or particles,
to ascertain the value of a function at a specific point. This
process is facilitated through the use of a kernel function,
which effectively integrates the influence of adjacent particles
to compute the value of a function at the desired point.

When applied in the context of computational fluids this
forms a Lagrangian particle method for solving hydrodynamic
equations, thus forming an equivalent counterpart to the Eu-
lerian equations solved by grid based methods. Moreover,
when compared with the latter, SPH is inherently more adept
at handling free surface flows and complex boundaries and
can accommodate large deformations without being hindered
by grid distortion. However, these advantages are usually
accompanied with caveats when it comes to stability and
convergence, as well as limited accuracy [20].

This paper delves into the potential of quantum computing
(QC) to address the challenges of load balancing, with a
particular focus on the quantum annealing (QA) approach [21]
for each of the two cases described above. QA is particularly
suited for finding the ground state of an Ising problem, which
is essentially analogous to finding the optimal solution to
many binary combinatorial optimization problems of interest.
This includes the traveling salesman and knapsack problem,
as well as more niche applications in computational chemistry
or graph theory [22–24]. In light of its range of applicability,
the field has attracted considerable interest in recent years,
a trend that has only been further fueled by the increasing
accessibility of quantum annealers—programmable quantum
computers designed for quantum annealing. While the largest
gate based quantum computer (IBM) only has 433 quantum
bits (i.e., qubits) [25], the largest annealer (D-Wave) has over
12 000 qubits [26].

There is an expectation in the community that QA might
outperform classical algorithms for some applications. This
has led to many empirical studies into the efficacy of QA for
a wide range of problems [27–31], often with mixed results
that lack a decisive consensus. As of yet, there may be more
promise in using QA for approximate optimization based on
a recent demonstration of a scaling advantage over the best

classical algorithm, even though this was for a rather artificial
optimization problem [32].

As such it seems the actual choice of problem to solve
strongly influences any inferences made about the potential
(or lack thereof) of quantum annealing. While there are many
works in the existing literature that apply QA to a particular
problem, the body of literature tackling the more fundamental
question of whether QA even should be applied or not is very
sparse. A recent attempt [33] to create a rigorous methodology
for evaluating the viability of a potential use case for quantum
computing aims to shed some light on the latter. However, it
should be noted that the discussion remains very open ended,
despite being of paramount importance particularly in the
context of near term quantum hardware.

So why does this paper consider load balancing as the
target application for QA? First, it should be evident that
load balancing is a topic of relevance for almost all compu-
tational scientists regardless of discipline. This is particularly
true as the exascale era of classical computing approaches
and programmers strive towards utilizing more and more
compute power. It is also still very much an area of active
research [34–37], highlighting that the room for potential
improvements to be made persists. Furthermore, as will be
seen shortly, the problem lends itself to a very natural conver-
sion into an Ising formulation suitable for quantum annealers.
Although it is not always inherently apparent a priori how
complex the solution energy landscape will be, it is at the very
least very large and scales drastically with problem size.

Perhaps the most compelling rationale for selecting load
balancing as an application for QA emerges when considering
the broader HPC landscape. Classical computing, benefiting
from several decades of development, significantly outpaces
the emergent field of quantum computing in terms of maturity
and scale when it comes to hardware. Despite the immense
potential of quantum technology, it is unlikely to match the
sheer scope of classical systems in the near future. Addition-
ally, there is a growing consensus that classical computing will
always retain some relevance, never being completely sup-
planted by its quantum counterpart. In this context, envision-
ing quantum computers as complementary accelerators, rather
than standalone solutions, is a strategic and viable approach,
particularly in load balancing, where recalculations are not
constant but occur at regular or semiregular intervals, and
hence quantum annealers can effectively augment the process
by providing potentially better quality solutions. Moreover,
this process is inherently streamlined by virtue of the fact that
the classical resolution of the governing equations does not
require an input from the load balancing subroutine at every
time step and hence does not need to waste time waiting.

The proposal here is thus to integrate quantum annealers
with classical HPC systems while identifying applications
that are best placed to effectively leverage such combined
systems. The primary computational tasks, whether in fluid
dynamics, solid-state mechanics, biological flows, or some
other algorithm, continue to run on classical HPC infrastruc-
ture. Meanwhile, the load balancing component is offloaded
to an attached quantum processor operating in parallel. This
concept mirrors the synergy between GPUs and CPUs [38],
and aligns well with the growing narrative of heterogeneous
HPC architectures. Such an approach not only capitalizes on
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the strengths of quantum annealers but is also in tune with the
trend [39–41] towards diversifying and optimizing computa-
tional resources in HPC environments.

The structure of the remainder of this paper is outlined as
follows: first, an introductory review of quantum annealing
is presented, alongside pertinent details from the classical
methodologies under consideration. This encompasses an in-
depth discussion on the acquisition of real-world classical data
to be subsequently load balanced using QA. After which, the
outcomes derived from both grid-based (AMR) and off-grid
(SPH) simulations run on actual quantum annealing hardware
are explored.

II. METHODS

A. Quantum annealing

Of the myriad possibilities [42] when it comes to im-
plementing a quantum computer, currently the two leading
paradigms are gate based QC [43,44] and adiabatic quantum
computing (AQC) [45,46]. In principle the two approaches
have been shown [47] to be equivalent if allowing a poly-
nomial overhead. Gate based QC can be thought of as the
quantum analog to classical computing where instead of log-
ical gates acting on bits, the computation is performed by
applying unitary gates to qubits. Alternatively, AQC relies on
adiabatic time evolution of a quantum state from an initial,
easy to prepare state to a final observed value as modeled by
the Schrödinger equation.

Originally proposed as a way to tackle satisfiability prob-
lems [48], AQC has since received significant attention due
to the ease with which many combinatorial optimization
problems can be represented in Hamiltonian form [22]. The
protocol operates under the premise of the adiabatic theorem
[49], which states that a quantum system in its ground state
remains in its ground state when acted upon by a perturbation
if the changes to the Hamiltonian are slow enough and there is
an energy gap between the ground and excited states. There-
fore if an initial Hamiltonian is appropriately evolved into
the problem Hamiltonian the final ground state should encode
the solution to the desired problem. This is usually done by
interpolating between a Hamiltonian with an easy to directly
prepare ground state (HA) and the problem Hamiltonian (HB)
to give the instantaneous value as described in Eq. (1):

H (t ) = A(t )HA + B(t )HB. (1)

The temporal prefactors ensure a smooth transition be-
tween the two Hamiltonians. Initially HA dominates (A(0) =
1, B(0) = 0), prior to ceding to HB over time (A(T ) =
0, B(T ) = 1). The rate of this change is crucial in preventing
disruptive, diabatic changes to the system and the acceptable
limits are dependent on the minimum energy gap of the prob-
lem [50,51].

A common choice for the initial Hamiltonian is a trans-
verse field in the x direction:

HA =
∑
i∈V

σ x
i , (2)

with σ x
i being the x-Pauli matrix acting on qubit i. This

is eventually replaced by the problem/final Hamiltonian as

described by

HB =
∑
i∈V

hiσ
z
i +

∑
(i, j)∈E

Ji jσ
z
i σ z

j , (3)

where G(V, E ) is the graph consisting of qubit nodes V and
connective edges between neighboring qubits E . This Hamil-
tonian is characterized by the local field at the ith qubit,
represented by hi, as well as the interaction couplings be-
tween connected qubits denoted by Ji j . The instantaneous
Hamiltonian during a computation, H (t ), of Eq. (1) is thus
the well known transverse-field Ising Hamiltonian [52]. As
the contribution of HA fades over time, the quantum dynamics
fade out and eventually result in a purely classical system
where the qubits are measured in order to obtain the solution.
The classical Ising model can be readily obtained by replacing
the σ z Pauli operators with classical spin variables:

HIsing =
∑

i

hisi +
∑

i j

Ji jsis j . (4)

Moreover by operating under the umbrella of the adia-
batic theorem, the protocol is guaranteed to obtain the ground
state solution, at least in theory. However, in practice the re-
quirements of true adiabaticity and changing the Hamiltonian
slowly enough can be excessively stringent. This is clearly
evident in current architecture where thermal coupling with
the environment is strong enough such that the timescales are
of the order ≈10–100 ns [53]. Furthermore the requirements
on how quickly the Hamiltonian can be evolved (i.e., the
annealing schedule) are dependent on the gap between the
ground state and first excited solution, which is not usually
known a priori.

QA is thus a relaxation of these conditions that follows the
same principles as AQC, but forms a distinctly separate algo-
rithm, with the annealing schedule determined heuristically
and strictly adiabatic conditions not guaranteed. The same
time dependent Hamiltonian of Eq. (1) is used to evolve the
quantum state, however the system can no longer accurately
be modeled by the Schrödinger equation, but would require
master-equation based descriptions. As a result, QA forms
a heuristic quantum algorithm that should be viewed as a
statistical sampler rather than a deterministic solver, with the
intended goal of maintaining a relatively high probability of
remaining in the ground state or to at least be sufficiently
close. The theory of quantum annealing is much less devel-
oped than AQC, partially due to the more complex setting.
However, some progress has been made, for example in the
topic of diabatic computing which considers rapid quenches
far from the adiabatic limit [54]. In particular, in this regime a
mechanism related to energy conservation provides an impor-
tant guarantee on average optimality [55].

There are actually many similarities between QA and a
well known [56] classical counterpart known as simulated
annealing (SA). The latter aims to mimic the physical process
of a solid being slowly cooled so that the eventual “frozen”
state contains the lowest energy solution to a desired cost
function. In essence the approach relies on thermal fluctua-
tions for exploration of the solution landscape while avoiding
local minima. Meanwhile QA takes a very thematically sim-
ilar approach but replaces thermal fluctuations with quantum
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ones. HA introduces disorder into the system with respect to
the ground states of HB and in doing so provides qubits with
energetic variations during the anneal.

The expectation that QA might surpass classical algorithms
is tied to the potential impact of quantum mechanical phe-
nomena such as superposition, tunneling, and entanglement
[31,45,57–59]. Fundamentally, quantum superposition and
tunneling can enable transitions between states, even those
separated by high energy barriers [60]. This suggests that a
search algorithm utilizing QA could overcome local minima
more easily by tunneling through these energy barriers as
illustrated in Fig. 1.

QA is thus grounded in a model that more closely reflects
the behavior of real quantum systems when compared to
AQC. However, the potential for nonadiabatic effects com-
plicates the distinction between its computational complexity
and that of conventional computing. QA often involves the
nonadiabatic evolution of mixed quantum states within an
open system, and this approach is generally considered heuris-
tic. Thus, it lacks the provable computational advantages that
AQC provides [61].

The general approach to employing a quantum annealer
shares many similarities across different architectures. This
research, however, utilizes D-Wave systems, which consist of
superconducting qubits. Although there are several promis-
ing alternatives [62–64], these technologies are comparatively
nascent in their development. Meanwhile D-Wave is the
largest and most commonly used commercial QA platform
currently and has been used extensively for both industry
and research purposes. For a detailed, step-by-step guide on
using a quantum annealer, interested readers are encouraged
to consult the numerous introductory articles available on
this topic [31,61,65]. In summary, the primary steps involved
in utilizing an annealer include problem formulation, minor
embedding, and sampling (i.e., the anneal itself). Problem
formulation and how the classical simulations were run are
described next, with the influence of embedding and sampling
discussed as part of the results.

B. Adaptive mesh refinement

In order to formulate load balancing for AMR as an Ising
problem suitable for annealers, data were gathered using COM-
PREAL [66], a fully compressible, finite difference flow solver
for the Navier-Stokes equations. The flow solver interfaces
with a widely used general software framework for AMR
applications called BOXLIB [16,67]. BOXLIB was designed as a
platform upon which to build massively parallel software and
has demonstrated good scalability on up to 100 000 cores [68].
Research codes based on BOXLIB are numerous and varied,
but include the realms of astrophysics [69,70], computational
cosmology [69], subsurface flow [71], and combustion [72]
among others.

The particular test case simulated involves a developing
spherical blast wave as illustrated in Fig. 2. The sharpest
gradients are in a very thin zone encompassing the shock
edge which is moving outwards. As such the mesh is regularly
updated to track its position. Data are defined on a nested hier-
archy of a logically rectangular collection of cells called grids
(or patches). This is divided into levels where each level refers

FIG. 1. When in a local minimum, QA can use quantum tunnel-
ing to directly escape. SA instead relies on thermal fluctuations to
escape over the energy barrier.

to the union of all grids that share the same mesh spacing.
Aside from the coarsest level, finer levels are disjoint and do
not cover the entire simulation domain, thus facilitating allo-
cation of resources to desired regions. Each grid is made up of
a number of cells and this is not necessarily the same across
all grids. The cells have high intraconnectivity within the
same grid and lower interconnectivity to neighboring grids.
Therefore, from a work distribution perspective, it is desirable
to allocate whole grids to individual processors while trying
to maintain roughly the same total cell count when possible.

To quantify the computational burden associated with each
nested grid, the total number of cells within that patch is

FIG. 2. A shockwave expanding outwards from a region initially
at high pressure (red) to the surrounding lower pressure (blue) en-
vironment simulated using COMPREAL. The nested grid hierarchy is
illustrated using individual grids from the finest, intermediate, and
coarsest levels outlined in yellow, red, and white respectively.
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counted. There are also alternative measures of “burden,” for
example actually recording the time it takes each patch to
complete its allocated tasks might be more representative for
multiphysics simulations where different cells solve different
equations. This would affect the value of the weights but not
the Ising formulation itself so the method remains completely
general.

The classical simulation thus provides a series of numbers
representing the notional cost of each grid, which needs to
be equitably distributed across a given number of processors.
This process will need to be repeated throughout the classical
simulation at certain intervals. It is undesirable to split these
grids due to their high intraconnectivity and so the problem
essentially reduces to one of number partitioning. Given a
set of N numbers, where N is the number of patches, S =
{n1, . . . , nN }, the task is to divide this set into two disjoint
subsets such that the sum in both elements is the same, or at
least minimizes the mismatch. This is framed as the following
Ising model [22]:

H = A

(
N∑

i=1

nisi

)2

, (5)

where ni are the numbers in the set (determined by counting
the cells in each grid of Fig. 2), si is the Ising spin variable, and
A is a general scaling constant which is set to unity henceforth.
Despite the absence of linear biases in the model, the coupling
terms will lead to the formation of a fully connected graph
when mapped to the quantum processor. It is worthwhile
noting that number partitioning phrased as a decision problem
regarding if the two subsets are equal or not is classified as
NP-complete [73]. However, since this model is based on real
data from simulations, achieving a perfectly balanced split is
essentially almost impossible. Therefore, the objective shifts
to minimizing the discrepancy between subsets, a task that is
NP-hard. This process can be applied recursively to achieve
divisions for more than two processors. Currently BOXLIB

uses a simple round robin (RR) strategy for distributing grids
between subsets.

C. Smoothed particle hydrodynamics

This paper is not concerned with the technical details
behind discretizing a set of governing equations using the
SPH operator, as this is application specific and the interested
reader can refer to the relevant literature [18,20]. Instead, the
key takeaway here is the idea that this family of methods
requires storage of particle data. Moreover these particles are
irregularly positioned in space and move at each time step.
Although this is a key strength of SPH as it allows particle
aggregation in certain regions of interest and a sparse distri-
bution in other areas, leveraging this benefit in practice is only
viable with efficient memory and work allocation.

Compact support of the kernel ensures that particles are
only influenced by neighbors that fall within the smoothing
length. So it would be logical to split the domain into sec-
tions when assigning work to processors in order to limit
interprocessor communication. However, as the particles are
disordered it is important to remember some regions will be
more densely populated than others, thus there is also the

FIG. 3. A snapshot at time 13.7 Gyr of the projected mass for a
small cosmological volume with dark matter simulated using SWIFT.
Note that due to local gravity wells some regions will have a higher
density of particles than others.

second avenue of intraprocessor communication to consider
when creating a work distribution.

Classical data to be partitioned, by using QA in this paper,
were obtained via SWIFT [74], a popular astrophysics code that
has demonstrated good scalability on 100 000 cores. SWIFT

relies on task based parallelism [75] in order to optimize
shared-memory performance within each individual node as
its backbone. This can then be readily generalized to create
a work allocation across multiple, distributed memory nodes
using graph partitioning algorithms. In summary, the domain
is initially divided into a set of cells, with each cell containing
a collection of particles such that if two particles interact they
are either in the same cell or at most neighboring cells.

In terms of load balancing, this domain decomposition
approach can be efficiently modeled as a graph, where each
node symbolizes an individual cell containing some number
of particles. The edges of this graph represent shared tasks
reliant on particles located in separate cells that require com-
munication between these cells. Moreover, tasks involving
cells from different partitions must be processed by both re-
spective processors, whereas tasks within the same partition
are evaluated exclusively by the corresponding processor. An
optimal load balancing strategy aims to minimize both the
sum of node weights for each subset and the sum of edge
weights bridging these subsets. The former goal is to reduce
the waiting time caused by the slowest processor at each step,
while the latter focuses on decreasing the necessary band-
width for interprocessor communication. This dual objective
ensures both efficient processing and minimal communication
overhead.

Values for the weights were obtained by simulating a
small cosmological volume with dark matter as found in the
SWIFT example suite and illustrated in Fig. 3. The simula-
tion involves 643 particles and the weights were extracted by
timing the intracell/intercell tasks respectively for node/edge
weights. The domain decomposition parameters were
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modified by design to reduce the number of cells in order to
accommodate the problem onto current annealers. Since the
cells are cubes, in three dimensions this boils down to a mini-
mum node/cell count of 27 since each cell has 6 face adjacent,
12 edge adjacent, and 8 corner adjacent neighbors. With all 26
neighbors residing within the one cell range defined earlier for
shared tasks, this results in a fully connected graph.

The Ising model [22] for this load balancing problem
places a spin variable (−1/ + 1) on each node in order to
determine whether that node will eventually belong in the
“+” or “−” subset. The energy functional consists of two
components:

H = γ H1 + H2, (6)

where a Lagrange parameter (γ ) has been introduced to allow
changing γ in order to explore any conflicting effects. The
model includes a penalty term when the node weight in set +
is not equal to that in set −:

H1 =
( ∑

n=1N

wisi

)2

, (7)

where the sum is across all nodes, each with weight wi. Ad-
ditionally there is a penalty term for each time an edge that
connects nodes in different subsets is cut:

H2 =
∑

(uv)∈E

ei
1 − susv

2
, (8)

where the sum is across all edge connected nodes with ei

referring to the weight of the edge. This is a NP-hard prob-
lem [73] of significant value in ensuring many particle based
codes retain a meaningful advantage on future HPC systems.
Currently SWIFT relies on the graph partitioning software
METIS [76].

III. RESULTS

A. Grid based application

We first demonstrate the potential of quantum annealing to
recursively partition work from a grid based simulation across
a range of processors. This is accompanied by insight into
trends regarding solution quality and compared with classical
strategies such as RR, steepest descent (SD), and SA. The
interested reader is referred to Supplemental Material [77]
for the details. While the aforementioned results explore the
potential of quantum annealing under default D-Wave param-
eters and a single invocation of the D-Wave API, we focus
here instead on providing a statistical analysis of the effects
of varying these parameters. By systematically examining
choices such as the number of anneals and embedding con-
figurations, this analysis aims to quantify the robustness and
consistency of quantum annealing outcomes under different
parameter settings.

Although D-Wave functions in the minorminer library
[78,79] effectively optimize the embedding of the logical
problem onto the physical qubits, it is worthwhile noting
that this algorithm is heuristic. A single call to the D-Wave
API means that only one embedding configuration is utilized.
Under ideal conditions, this alone should not significantly im-
pact the results. However, for the ensuing statistical analysis,

five distinct embedding configurations were precomputed and
stored in order to map the problem to different physical qubits.
When studying the effect of a parameter, for example number
of anneals, each configuration underwent five separate runs
using the precomputed embeddings prior to averaging. This
aims to minimize potential biases in the hardware that might
undesirably affect the outcomes.

Often only the lowest energy solution is considered from
the range of possible configurations that arise from QA. How-
ever, this begs the important question of how likely this is to
actually be observed in practice. Due to the inherent nature
of load balancing requiring repeated redistribution after some
number of time steps, it is not necessarily a stringent require-
ment to have the best possible solution each time. In fact, it
may suffice to have something close enough.

Figure 4(a) attempts to illustrate this by plotting all the
samples from a single run with 100 anneals for a small prob-
lem size of 50 grids during a single partition. The energy
output from a QA is arbitrarily scalable, therefore the actual
numerical value is of little consequence other than the trend
of lower energies representing better solutions. This is in ac-
cordance with the corresponding solution disparity as defined
in Eq. (9):

Solution disparity = |w1 − w2|
0.5 × (w1 + w2)

. (9)

The solution disparity is thus the difference between assigned
work loads for a single partition normalized by the work
resulting from a perfect split. In other words, a lower solution
disparity corresponds with better solution quality.

Included in Fig. 4(a) for comparison are the solution
disparities obtained from the deterministic round robin and
steepest descent methods. Even with such a small number
of anneals, the best (i.e., lowest energy) quantum solution
has the same degree of imbalance as SD, with both meth-
ods arriving at the optimum solution for this configuration.
There is also a significant proportion of the annealing samples
that perform worse than SD but better than RR. These are
the blue markers in between the two dotted, horizontal lines
and suggest some degree of resilience in the method despite
being heuristic. The spread of points with a higher disparity
than the black dotted line is clearly inferior and holds little
value.

Figure 4(b) illustrates the variation in the percentage of
QA solutions that represent an improvement over RR across
different problem sizes, based on results from 100 anneals.
It is evident that the frequency of suboptimal solutions esca-
lates with the increase in problem size, indicating a relative
underperformance compared to simulated annealing, which
achieves a success rate of approximately 90% across this
range of problem sizes. Despite this, the quality of the most
optimal solution obtained from both QA and SA remains the
same.

This observation suggests that while QA has the potential
to match the performance of more sophisticated classical al-
gorithms, it does so for a limited fraction of the generated
solutions. Given that QA is inherently a probabilistic method,
it naturally involves generating a large number of samples to
increase the likelihood of obtaining a high-quality solution.
The advantage of QA lies in its ability to rapidly produce
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FIG. 4. (a) Energy and solution disparity for all samples from a single call to the D-Wave API with 100 anneals for a problem size of 40
(QA), as well as solution disparity output from steepest descent (SD) and round robin (RR). A smaller solution disparity equates to a better
solution quality. (b) Proportion of the 100 anneals that count as Success (i.e., better solution quality than RR) as a function of problem size.

samples, with each annealing process taking just microsec-
onds. As a result, even a relatively low success rate can, in
practice, almost guarantee the identification of at least one
successful outcome, which is often the primary goal. This effi-
ciency in sample generation underscores the practical viability
of QA. Furthermore, it should be noted that at this point no a
priori optimization for QA of user defined parameters such as
number of anneals and chain strength have been provided to
the annealer. Consequently, not only is the number of anneals
very small here, but there is also a considerable number of
chain breaks for problem sizes of 40 and more which can
significantly degrade performance.

In order to evaluate the impact of parameter choices, the
more challenging case with 100 grids is partitioned while

changing the number of anneals. Figure 5(a) illustrates how
the solution quality varies with anneals for a fixed problem
size. Each configuration was repeated five times with a pre-
computed embedding and the average lowest energy solution
is shown here with error bars reflecting its standard deviation.
As expected, increasing the number of anneals increases the
likelihood of finding a near optimum solution. Although the
mean quality seems to plateau relatively early in terms of
magnitude, increasing anneals has significant impact on re-
ducing error margins and thus the reliability of obtaining said
solution. Considering the relatively small number of anneals
needed to drastically improve solution quality as well as the
cheap computation cost of each anneal, it is evident that this
is likely not a limiting factor.

FIG. 5. (a) Impact of number of anneals on solution disparity for a fixed problem size of 100 grids. A lower solution disparity equates
to a better quality solution, while negative values are not allowed by definition as per Eq. (9). (b) Mean chain break fraction as a function of
increasing problem size (i.e., the number of grids being partitioned).
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FIG. 6. (a) Mean chain break fraction as a function of chain strength for a fixed problem size of 100 grids. (b) Mean solution disparity (i.e.,
lower disparity equates to a better solution) as a function of chain strength for the same 100 grid problem. Insets include a focus view on the
rightmost three points.

Thus, the main roadblock to achieving scalability is un-
likely to be the number of required anneals, but is perhaps the
susceptibility to chain breaks. The Ising model here forms a
fully connected graph while annealing hardware has limited
physical couplings. This results in minor embedding form-
ing chains of physical qubits to represent the same logical
qubit. However, it is evident in Fig. 5(b) that the default
chain strength, calculated using uniform torque compensation,
quickly becomes inadequate at larger problem sizes. The sig-
nificant increase in chain break fraction (CBF) as the number
of patches/grids requiring partitioning increases results in
a decision problem that is by default resolved via majority
voting. At values as high as those seen in Fig. 5(b) this has se-
vere implications for the utility and robustness of the method
for realistic applications where the number of patches/grids
needing to be partitioned will be well over 100 if not in the
thousands or more.

One solution to this is overriding the default chain strength
scheme and manually setting stronger chains. This approach
was explored in Fig. 6(a) for a fixed problem size involving
100 grids. The chain strength in the graph is defined by the
multiplier applied to the maximum value in the data set. In
other words, a chain strength of 1000 here means a value 1000
times larger than the maximum number in the set. It is evident
that the value required to maintain an acceptable fraction of
breaks is several orders of magnitude higher than one might
have anticipated from the size of numbers being partitioned.
It is unclear if it would have been possible to predict this
a priori and how this trend would scale at realistic problem
sizes.

It is also well known that blindly increasing the chain
strength is not the perfect solution. Having qubits in very rigid
chains can make them inflexible and less efficient at exploring
the solution space. It can also wash out the other energy
scales so that they are less than the device temperature and
therefore lead to effectively random solutions. Furthermore,
the energy penalty from the chain term can start rivaling the
energy contribution from the actual Ising model if it grows too

large and this can introduce a bias in the solution. Thus there
is a balancing act to be performed, where clearly the default
scheme is not adequate for the problem being considered here,
yet too strong a chain is also undesirable. This is demonstrated
in Fig. 6(b) where increasing the chain strength brings a large
improvement in solution quality. However, with very strong
chains the solution does begin to degrade again. The silver
lining is that there seems to be a very large region of the state
space that results in good solutions.

Taken together, the analysis here suggests that QA ex-
hibits notable improvements when compared to basic classical
algorithms like RR. Furthermore, QA demonstrates the ca-
pability to achieve solutions of comparable quality to those
generated by more sophisticated algorithms, such as SA and
SD. However, to attain such high-quality solutions consis-
tently, QA may necessitate preliminary adjustments or tuning,
highlighting the importance of optimizing the quantum an-
nealing process for specific problem sets. It is important to
acknowledge that the scope of problem sizes investigated in
this paper is constrained by the limitations of current quan-
tum computing hardware. As hardware capabilities improve,
it is anticipated that these limitations will decrease, thereby
expanding the range of problem sizes that can be efficiently
addressed. The complexity of the energy landscape in this
section is also limited, whereby advanced classical methods
are able to arrive at near optimum solutions without being
excessively hindered by local minima traps. We anticipate
QA will be more advantageous over classical approaches for
more complex energy landscapes with deep local minima
traps. This highlights a crucial aspect of quantum annealing:
identifying and formulating problem sets that truly leverage
the unique strengths of quantum algorithms to solve problems
that are intractable for classical methods.

B. Particle based application

The graph representing load balancing for SPH is incredi-
bly dense as illustrated in Fig. 7(a) due to its fully connected
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FIG. 7. (a) The 27 node, fully connected load balancing graph for SWIFT. Blue and red circles represent nodes in different subsets, and
red/black lines represent cut/uncut edges following a partition. (b) Change in chain break fraction as a function of Lagrange parameter. The
Lagrange parameter determines the relative importance between penalty terms in the Ising model. A larger value places more significance on
minimizing the difference in node weights, while a smaller value signifies greater value in minimizing cut edge weights.

nature. An optimized partition should aim to minimize the
mismatch between subsets of total node weight, while also
minimizing the sum of cut edge weights. It is not a clear a
priori which of the two objectives is more important as this is
likely to be somewhat dependant on the HPC architecture, in
particular whether intraprocessor or interprocessor bandwidth
is the more limiting factor for the CPU stack. For example,
in the case of the latter, it would be more strategic to further
minimize cut edge weight where possible even at the cost
of a slightly higher node imbalance and vice versa for the
former. Therefore in order to remain general, the task will be
considered a multiobjective optimization problem here.

The Lagrange parameter, γ , determines the relative impor-
tance between these two objectives as shown in Eq. (6). A
high value implies more significance attributed to minimizing
the difference of node weights between the two subsets. In
the limit of very large γ the problem essentially reduces back
to number partitioning since the edges will have negligible
relative influence. An interesting finding was that changing
this parameter had an unexpected impact on the chain break
fraction. This is shown in Fig. 7(b) where a small value
results in lower chain breaks than was observed in the grid
based, number partitioning example even for a graph of the
same size. Indeed, as the Lagrange parameter is increased,
the problem tends back towards number partitioning and chain
breaks become more frequent. This is despite no change to the
underlying graph structure, which remains a 27 node clique.
Moreover, numerical values are autoscaled in the process of
mapping onto a quantum processor and so differences in the
values of weights alone should not be significantly impacting
chain breaks. This implies that despite not changing the nature
of the underlying embedding, the load balancing problem here
is intrinsically more resilient to chain breaks than for its grid
based counterpart.

Consider for now a neutral value for the Lagrange pa-
rameter of unity. A single QA was conducted with 1000

anneals and the lowest energy solution compared to a partition
obtained using METIS, a state of the art classical graph parti-
tioning software. This is illustrated in Fig. 8, which displays
the cut edge matrices as heat maps. Each entry in the matrix
represents the edge connecting nodes with the corresponding
axis indices, while the color intensity is indicative of the
weight of said edge. A color value of null (i.e., dark purple) in-
dicates that the edge was not cut. Both QA and METIS make an
exact total of 182 cuts each and share the same magnitude in
terms of single largest cut. However, QA consistently makes
better choices in exploring the energy landscape and manages
to sever less expensive edges for a combined saving of close to
33%. The combined weight of cut edges from this QA run was
only 66% the size of its METIS counterpart, indicating a drastic
reduction in the amount of required communication between
processors. Furthermore, this came with a better node balance
as well where the degree of imbalance using QA was only
34% the size of imbalance allocated by METIS.

Repeating the QA runs five times and averaging, the same
trend still stands as indicated in Table I, suggesting a re-
silience of the method to probabilistic fluctuations. Note that
node and edge weights have been normalized by the same
factor for both methods as they operate on the same data
set. Furthermore the performance ratio entries in the table
are simply the fractional result of dividing the corresponding
METIS entry by the QA counterpart. As both objectives are

TABLE I. Average performance statistics for quantum annealing
compared with METIS. The ideal solution has as small a value as
possible for both solution imbalance and cut edge weights.

Solution disparity Cut edge weights

Quantum annealing 0.057 3.69
METIS 0.189 5.20
Performance ratio 3.32 1.41

013067-9



OMER RATHORE et al. PHYSICAL REVIEW RESEARCH 7, 013067 (2025)

FIG. 8. Heat maps for the partitions from QA and METIS respectively. Each entry in the matrix represents an edge between two nodes with
the corresponding indices along the outer edges. The color intensity indicates the normalized weight of a cut edge. A higher proportion of
low-weight entries (i.e., light purple) implies a better partition as opposed to more highly weighted cut edges (i.e., green/yellow).

tailored to be minimized, a larger than unity performance ratio
indicates some quantum advantage. Moreover QA performs
better across both objectives simultaneously.

In addition to this, the outcomes of quantum annealing can
be further fine tuned to meet the specific needs of the HPC
cluster by adjusting the Lagrange parameter. To maintain a
broad applicability, this paper extensively explored the param-
eter’s state space through 100 iterations with 1000 anneals
each and evenly spaced values for the Lagrange parameter
between 0 and 50. The Pareto dominant solutions in terms
of the two objective functions obtained from this process are
presented in Fig. 9. The Pareto front here represents a set of

FIG. 9. Approximate Pareto front as mapped out by QA for op-
timizing (i.e., minimizing) cut edge weight and solution disparity.
Included are all the other solutions obtained by QA as well as
the output from METIS. A significant proportion (close to 41%) of
QA samples that are suboptimal to the Pareto front are still Pareto
dominant when compared to METIS. These are the points to the left
and below the METIS solution as indicated by the area encapsulated
by red dashed lines and the Pareto front.

solutions for which one objective function cannot be improved
without bringing about a detriment to the second objective.
The right side of the Pareto front is fairly close to horizontal,
suggesting that if one approaches from the far right, vast
improvements can be made in terms of solution disparity at
the cost of a very minimal increase to cut edge weights. Con-
versely, initially starting at the left and proceeding towards
the right large improvements to the cut edges are attainable
at little cost to the node balance. The solution from METIS is
also included for comparison and evidently inferior in that it
is clearly possible to improve both objectives. Moreover the
latter is true not just for a handful of lucky anneals, but for a
large proportion as observed with the collection of QA points
that lie off of the Pareto front but still are Pareto dominant
in relation to the METIS output. This corresponds to close to
41 000 of the total 100 000 sample solutions and demonstrates
the resiliency of QA for complex problems. Even outside this
region, most candidate solutions are only inferior to METIS in
one objective, likely as a result of enforcing either very large
or very small Lagrange parameters. This will naturally priori-
tize one objective even at the potential detriment of the other.

IV. CONCLUSIONS AND OUTLOOK

This paper explored the utilization of quantum annealing as
a strategic approach for the critical task of workload allocation
to processors in parallel HPC applications using real data. Ini-
tially focusing on less complex, grid-based applications, QA
demonstrated improvements over simpler classical strategies,
yet it did not conclusively surpass more sophisticated classical
methods. A significant challenge for QA, unlike these clas-
sical methods, is the limited connectivity between physical
qubits. This limitation results in a critical barrier to scalability,
particularly given the fully connected nature of the problem at
hand.

However, this drawback is somewhat mitigated in the
context of the second application, which focused on load
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balancing in particle based codes. While the smallest prob-
lem configuration which was studied here is fully connected
due to each cell’s proximity within the system, this is not
expected to hold for larger problems. Recall that SPH ker-
nels are characterized by compact support; this implies that
larger problem graphs, while more extensive, are not likely
to be fully connected. Thus, it is likely to be more effi-
cient to embed larger problem sizes onto quantum annealing
hardware. This subtlety enhances the feasibility of apply-
ing QA, especially in the noisy intermediate scale quantum
era where interqubit connectivity can sometimes be a more
critical constraint than the total number of qubits. More-
over, for simpler two-dimensional/quasiplanar configurations
this might not be as severe a constraint even for larger
problem sizes. This is due to the compatibility between the
problem graph and alignment of qubits with their couplers,
which when implemented on a chip are inherently quasiplanar
as well.

In addition, QA demonstrated an improvement in perfor-
mance even against a state of the art classical method, despite
the problem’s evolution into a complex multiobjective op-
timization. The Lagrange parameter formulation allows the
user to explore the Pareto front and obtain highly optimized
solutions tailored towards individual hardware architectures.
Although this necessitated running a representative simulation
and partitioning it repeatedly to explore the state space here, in
general more cost effective methods such as machine learning
could be used to estimate a good value a priori. This approach
draws strong parallels with existing efforts that have endeav-
ored to do so for some of the other annealing parameters
[80,81]. The Ising formulation can also be readily extended
to allow concurrent partitioning into multiple subsets simul-
taneously rather than recursively [24] to better accommodate
larger problems.

Given the observed enhancements in solution quality and
the reduced connectivity demands in larger problem graphs,
it is conceivable that as annealers continue to evolve, they
may become viable for graph partitioning tasks such as this.
This is particularly relevant for hybrid applications such as
load balancing where the majority of the algorithm could
still be executed on CPUs, with only a select, complex seg-
ment offloaded to the quantum processor in tandem. As such,
perhaps a heterogeneous architecture integrating both quan-
tum and classical computing resources could be a strategic

path forward, particularly so in light of recent endeavors to
strive towards such integrated systems [82,83]. Moreover, one
of the most time consuming components of the QA algorithm
is currently the communication time between classical and
quantum hardware and associated latency costs. This would
be crucially reduced to almost negligible levels by colocating
the respective chips in the same data center. The time for each
anneal itself remains competitive at around 20 µs compared
to the roughly 15 µs needed by METIS and is likely to improve
with evolving hardware. However, this will be of compara-
tively little consequence as colocation will allow the system
to run in parallel, thus best leveraging the inherent strengths
of each respective system.
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