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SU(N) symmetry with ultracold alkali dimers: Weak dependence of scattering
properties on hyperfine state
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We investigate the prospect of using ultracold alkali diatomic molecules to implement many-body quantum
systems with SU(N) symmetry. Experimentally accessible molecules offer large N for both bosonic and
fermionic systems, with both attractive and repulsive interactions. We carry out coupled-channel scattering
calculations on pairs of NaK, NaRb, and NaCs molecules that are shielded from destructive collisions with
static electric fields. We develop new methods to handle the very large basis sets required to include nuclear
spins. We show that all the molecules studied have the properties required for SU(N) symmetry: the collisions
are principally elastic, and the scattering lengths depend only weakly on the spin states of the molecules. The
rates of spin-changing inelastic collisions are very low. We develop and test a semiclassical model of the spin

dependence and find that it performs well.
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I. INTRODUCTION

Ultracold polar molecules offer exciting possibilities for
exploring physical phenomena that range from quantum
simulation [1,2] and quantum computing [3,4] to quantum
magnetism [5,6]. To produce a stable ultracold gas in an
optical trap, it is necessary to shield pairs of molecules from
close collisions that otherwise cause trap loss [7-9]. There
have been various theoretical proposals to achieve shielding,
with static electric fields [10-15], near-resonant microwaves
[16—18] or optical fields [19]. Experiments have demonstrated
the efficiency of both static-field and microwave shielding for
various molecules [20-24]. Notably, microwave shielding has
led to the achievement of Fermi degeneracy for Na*'K [25]
and Bose-Einstein condensation for NaCs [26].

We recently showed [27] that shielded ultracold molecules
can exhibit many-body properties associated with SU(N)
symmetry, where N is the number of available spin states.
This will open up exciting possibilities for studying novel
aspects of quantum magnetism. To realize SU(N) symme-
try, the interactions must be dominated by elastic scattering
and independent of the states involved. In ultracold systems,
SU(N) symmetry has been predicted and realized with nuclear
spin states of alkaline-earth-like atoms (Sr and Yb), which
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allow N up to 10 [28,29]. However, the experimentally viable
alkaline-earth-like atoms with nuclear spin are all fermions
and have repulsive interactions, i.e., their scattering lengths
a are positive. Shielded molecules, on the other hand, can
be either bosonic or fermionic, with scattering lengths that
can be either positive or negative [15,17]. They also possess
substantial electric dipole moments. The experimentally ac-
cessible bialkali molecules (hereafter “alkali dimers”) might
exhibit SU(N) symmetry with N as large as 36. The high
symmetry would enhance quantum fluctuations and stabilize
exotic states of matter such as chiral spin liquids [30,31]. It
would also allow the study of dynamical phenonema such as
prethermalization [32] in nonequilibrium quantum systems.

Deviations from SU(N) symmetry can be characterized by
the range of scattering lengths for colliding pairs in different
states. In Ref. [27], we carried out coupled-channel scattering
calculations for CaF molecules in different combinations of
spin states, shielded with static electric fields. We showed that
the rates of spin-changing collisions are very low and that the
deviations S« in the real part of the scattering length from its
spin-free value « are only about 3%. To explain the values of
da, we developed a model based on the long-range adiabatic
potential corresponding to the shielded interaction of a pair of
molecules. The model gave good agreement with the coupled-
channel results including electron and nuclear spins. It also
predicted relative deviations o /g for most of the shielded
alkali dimers that are even smaller than for CaF.

In this paper, we study the dependence of the scatter-
ing properties on hyperfine state for pairs of alkali dimers
shielded with electric fields. We carry out coupled-channel
scattering calculations on shielded collisions, taking account
of hyperfine structure. We test the model of spin-dependence
developed in Ref. [27] and show that it gives reliable pre-
dictions. We also investigate collisions that can change the
hyperfine state of shielded molecules. These spin-changing
collisions are slow, but not negligible.

Published by the American Physical Society
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A major challenge in this work is the size of the basis sets
involved. The basis-set size scales approximately with N2.
The computer time scales as the cube of this, so as N°®. For
the alkali dimers, N = (2iy + 1)(2ig + 1), where is and ia
are the nuclear spins of the two atoms. This can be as large as
36, compared to 4 for CaF. Even for CaF, calculations with a
full spin basis take hours of computer time for a single value
of electric field. Without special techniques, calculations for
N = 36 would take decades or more. To circumvent this, we
develop techniques with restricted spin bases and demonstrate
their accuracy.

The structure of the paper is as follows. Section II describes
our coupled-channel approach, including the Hamiltonians
and basis sets. Section III presents our results on the spin de-
pendence of scattering lengths and the rates of spin-changing
collisions for alkali dimers of current interest. It describes the
mechanisms of the spin-changing processes and demonstrates
that a restricted spin basis set reproduces the scattering prop-
erties accurately. It demonstrates that the semiclassical model
of spin dependence performs well for these systems. Finally,
Sec. IV presents conclusions and perspectives.

II. METHODS

A. Coupled-channel approach

The theory has been described in detail in Ref. [14], and
only a brief summary will be given here to define notation.

In the presence of an external static electric field F, the
Hamiltonian for a spin-free diatomic molecule k in a 'S ™ state
in the rigid-rotor approximation is

he = by — py - F (1

where 71 is the operator for molecular rotation, b is the
rotational constant and p is the dipole moment along the
molecular axis. The values of the molecular constants are
tabulated in Ref. [15].

For a pair of colliding molecules the Hamiltonian is

A ﬁz . d2 i2 .
"= 2 fhred -k d?R + ﬁ + Hing + Vine, 2)

where R is the intermolecular distance, L is the angular mo-
mentum operator for relative rotation of the two molecules
and [4.eq 1S the reduced mass. The internal Hamiltonian Hj, is

Hipg = hy + Iy A3)

and Vi, is the interaction potential. Since the interactions
involved in shielding occur at long range, we approximate Vi
by the dipole-dipole operator,

Hag = —[3(ry - Ry - R) — 1y - o]/ (4meoR?),  (4)

where R is a unit vector along the intermolecular axis. This
is supplemented by an electronic dispersion term V& =

disp
—Cg* /RS, with values of CZ*° from Ref. [33].
The total wavefunction is expanded

W(R, R, #1,72) =R™' Y @R, #1, )Y (R),  (5)
J

where 7 is a unit vector along the axis of molecule k. We use
a basis set of functions {®},

®; = ¢l F)P, P)Yom, (R), ©6)

symmetrized for exchange of identical molecules. Here
m (F1) and @72 (F,) are field-dressed rotor functions that

My

diagonalize &, and h,, respectively, and Yim, (R) are spheri-

cal harmonics that are the eigenfunctions of I’ Hereiis a
hindered-rotor quantum number that correlates with the free-
rotor quantum number n at zero field and m, represents the
conserved projection of n onto the space-fixed z axis, chosen
to lie along the static electric field. The field-dressed functions
qﬁ,’f,” (7) are expanded in free-rotor functions Y, (7).
Substituting the expansion (5) into the total Schrodinger
equation produces a set of coupled equations in
the intermolecular distance R. The eigenvalues of

A + Vi + B /(2ueaR?) form a set of adiabats that
represent effective potentials for relative motion of the two
molecules. To a first approximation, collisions may be viewed
as taking place on these adiabats, although transitions between
them are fully included in coupled-channel calculations.

Colliding molecules may be lost from a trap in two ways.
First, a colliding pair may undergo a transition to a lower-lying
pair state. Such inelastic collisions release kinetic energy that
is usually sufficient to eject both molecules from the trap.
Secondly, a colliding pair that reaches small intermolecular
distance is likely to be lost through processes that may in-
clude short-range inelasticity, laser absorption, or a three-body
collision. To model these processes, we solve the coupled
equations subject to a fully absorbing boundary condition
at short range [34,35]. The numerical methods used are as
described in Ref. [14]. This is done separately for each electric
field F and collision energy E.q, producing a nonunitary S
matrix and cross sections for elastic scattering, state-to-state
inelasticity and total collisional loss. The corresponding rate
coefficients k are related to the cross sections ¢ through
k = vo, where v = (2E o1/ trea)'/?. We also extract the com-
plex energy-dependent scattering length [36], whose real part
characterizes the overall strength of the interaction.

Shielding is achieved by engineering a long-range repul-
sive interaction that prevents colliding pairs reaching the
short-range region where most loss occurs. This can happen
at electric fields where the incoming pair state lies just above
another pair state that is connected to it by Hyq. The repulsion
due to mixing of the two pair states creates the shielding
barrier. All calculations in the present paper are for molecules
in their ground vibronic state (X I3+, v = 0), with initial rotor
quantum numbers (7, m,) = (1, 0) 4 (1, 0), at electric fields
just above the crossing with (0, 0) 4+ (2, 0). We use a colli-
sion energy E.n = 10 nK x kg, which is a reasonable lower
limit for the temperatures that are likely to be experimentally
accessible and where quantum degeneracy may be attained.

B. Inclusion of hyperfine structure

Alkali-metal atoms possess nuclear spins ¢ which inter-
act with one another and with rotation to produce hyperfine
splittings. For i > 1/2 and n # 0, the largest interaction is
usually the nuclear quadrupole coupling, which arises due to
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the nuclear electric quadrupole moment eQ interacting with
the electric field gradient ¢ in the molecule. The hyperfine
Hamiltonian Ay for a molecule AB in 'S state is

ilhfz Z eQa'qa+ Z Can'ia

a=A,B a=A,B

—csNVO6THC) - T (in, ip) + cain - ip. (7

Here i, and ip are the spins of nuclei A and B. The first
term is the nuclear quadrupole interaction, characterized by
the coupling constants (eQg)a and (eQgq)s. The second is
the interaction between the nuclear spins and the rotation
of the molecule, characterized by the spin-rotation coupling
constants ca and cg. The third term represents the anisotropic
interaction between the two nuclear spins, characterized by
the coupling constant c3; T?(is, i) denotes a rank-2 spher-
ical tensor formed from i, and ig, and T2(C) is a spherical
tensor whose components are the Racah-normalized spherical
harmonics C;(G, ¢). The last term is the isotropic spin-spin
interaction, with coupling constant c4. We use hyperfine con-
stants from Refs. [37—40]. The spin-rotation and spin-spin
couplings are typically more than 100 times smaller than the
quadrupole coupling. We add the hyperfine Hamiltonian /g
to the single-molecule Hamiltonian of Eq. (1) to form the
internal Hamiltonian Hiyq in Eq. (3).

C. Basis sets

We construct basis sets from products of field-dressed ro-
tor functions |7, m,) and spin functions |(ia, ig) i, m;). Here
i is the resultant of the two nuclear spins iy and iz and
m; = m; o + m; g, where m; o and m; g are the projections of
i and ig along the z axis. The products are symmetrized for
exchange. We multiply these by functions for the partial-wave
quantum number L and its projection M.

We include field-dressed rotor functions up to 7imax = 5.
However, this gives a basis set too large to be used directly
in coupled-channel calculations, particularly when spins are
included. We therefore divide the basis functions into two
groups, namely “class 1” and “class 2”, according to the pairs
of rotor functions involved. The class 1 pair functions are used
explicitly in the coupled-channel calculations, while the class
2 functions are taken into account through Van Vleck transfor-
mations as described in Ref. [14]. For spin-free calculations,
we include all functions with 7 < 2 in class 1. To allow the
inclusion of spin functions, we restrict this further and include
only Ny, = 14 rotor pairs in class 1, chosen to be those that
are closest in energy to the incoming channel [27].

Except for molecules containing °Li, the alkali dimers with
the smallest N are those where both nuclei have i = 3/2,
such as ZNa*K and Na¥’Rb. We consider ?Na*’K as a
prototype system to illustrate the sizes of the basis sets for
coupled-channel calculations including spin, both to present
calculations including full hyperfine structure and to discuss
the approximations that can be made. For *Na*’K, inclusion
of all spin functions for every rotor pair up to fip,x = 5 gives
Npair = 10° pair functions for each L, M;. The Van Vleck
transformation with Ny, = 14 reduces this to Ny, = 3224 in
class 1.

100 ;
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FIG. 1. The adiabat that correlates asymptotically with the
s-wave channel of the incoming rotor pair (7, m,,) = (1,0) + (1, 0)
for Na¥K at F = 7.1 kV/cm. The repulsive wall is responsible for
shielding. The inset shows an expanded view of the long-range well,
with the position R, of the inner turning point indicated.

For spin-free calculations, we include all functions for
partial waves L up to Lp,x = 20. When spin is included, we
restrict Ly,x to 4 or 6. This gives good convergence for the
spin dependence, though not for spin-free properties [27].
As in Refs. [14,27], we name the resulting basis sets spin-
N(Npair)-L{Lnax). In the presence of an external field, the
projection of the total angular momentum for the colliding
pair, Mot = m, 1 + m;1 + my 2 + m; 2 + My is conserved. We
perform calculations only for the values of M, for which
the s-wave incoming channel is included in the basis set (or
p-wave for identical fermions). This is a reasonable approxi-
mation at the low collision energies considered here.

D. Semiclassical model

Reference [27] developed a semiclassical model of S (F),
based on the effective potential curves (adiabats) that govern
shielding. The model is expressed in terms of a phase integral
® over the lowest adiabat that correlates with the initial pair
state, together with the zero-energy inner turning point R; for
this adiabat. An example of such an adiabat is shown in Fig. 1,
for the case of Na¥K at F = 7.1 kV/cm. The matrix elements
of Hyq off-diagonal in L produce a long-range attraction that is
asymptotically proportional to 1/R* [41]. In a single-channel
model, the scattering length a for such a potential is

a =R —/8/15Dtan (cb — %) 8)

where D = ddphred/ (4n60h2) is the dipole length for inter-
action of two molecules with space-fixed dipoles d; and d,.
The first term was omitted in Ref. [42], but arises simply
because all semiclassical wave functions are expressed with
respect to an origin at the classical turning point. This term is
important for shielded molecules, where R; can be very large;
it accounts for the excluded volume due to the repulsive part
of the shielding potential. The term involving ® accounts for
the attractive potential well at long range.

Both R(F) and ®(F) are functions of field F. Their
spin-free values Ryp(F) and ®y(F), together with the
corresponding scattering length ay(F), may be obtained from
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spin-free calculations on a colliding pair of molecules, which
are computationally far cheaper than calculations including
spin structure. &, may be obtained either by integration over
the lowest adiabat or from the real part of the scattering length,
using Eq. (8). The two approaches give similar results when
shielding is effective; in the present work, we use the latter.

We showed in Ref. [27] that, for CaF at fixed field, R;
and @ for different spin combinations have simple depen-
dencies on the space-fixed dipoles of the colliding molecules.
Specifically,

R(F) < [D(F)]™' and ®(F) x [D(F)I*.  (9)

This allows differentiation of Eq. (8) to obtain

94 (@ —2R)/D — 20/87T5 sec? ((I) _ 5). (10)
dD 4

The scattering length for collision between a pair of molecules
in spin states j and j', with space-fixed dipoles d; and d;/, may
be expanded about the corresponding spin-free value at field
F. The deviations o of the real parts o of the scattering
lengths from the spin-free value « are

da N da
Sajj = (Djj —Do)d—D ~ Do(Ad; + Adj/)d_D’ (1D

where D = d;d; ptrea/ (4 €oh*) and Dy is the corresponding
spin-free value. Ad; = (d; — dy)/dy is the fractional change
in the space-fixed dipole moment for spin state j from the
spin-free value dp. All these quantities are readily evaluated
from calculations on individual molecules, without scattering
calculations that explicitly include spin.

In this paper, we test this model for the alkali dimers by
comparing its results with those of coupled-channel calcula-
tions including nuclear spin. The model may be viewed as
involving two approximations: first that the deviations dc;
are proportional to (Ad; + Adj), as in Eq. (11), and second
that the constant of proportionality is given by Eq. (10). We
find that the first approximation is very accurate, while the
second can lose accuracy when there is strong cancellation
between the terms arising from the excluded volume and the
potential well.

III. RESULTS
A. Hyperfine levels of shielded alkali dimers

For an isolated molecule, the projection my = m, + m; of
the total angular momentum is conserved. In the presence of
a strong electric field, m,, is approximately a good quantum
number and so is m;. However, i and the individual nuclear
spins m; o and m; g are not good quantum numbers due to the
spin-spin and nuclear quadrupole interactions.

Figure 2 shows the hyperfine level structure of 2Na*’K
(hereafter Na*’K) for (i, m,) = (1,0) in the presence of
an electric field F = 7.1 kV/cm, which gives very effective
shielding. The hyperfine splittings are caused mostly by the
quadrupole couplings of the two nuclei. The levels are ap-
proximately split into two groups, shown in red and blue,
containing eight states each. This separation arises because
(eQq)»x is a factor of 4.5 larger than (eQg)na. The splitting
between the two groups is caused by (eQgq)»k whereas the

(MiNa, Mysog) Myl = 3 2 1 0
(-1/2,1/2)* —_—
(+1/2,+1/2) — % (1’3
(—1/2,1/2)" N
(+3/2,+1/2) —_ I >4
(+3/2,F1/2) — ! 07
[ 23
+1/2,43/2) ey
(+1/2,F3/2) — [ o0s

(£3/2,%£3/2)
(—3/2,3/2)" I 1.6
(=3/2,3/2)"

FIG. 2. Hyperfine energy levels (in kHz) of Na*K for the rotor
level (71, m,) = (1,0) at F = 7.1 kV/cm. The states are labeled with
quantum numbers (m; \,, m; 39x) and arranged in columns according
to |m;|, where m; = m,.,Na + m; s0g. The spacings are not shown to
scale.

splittings within each group are caused by (eQq)na. This en-
ables us to assign the states with approximately good quantum
numbers for the nuclear spin projections (m; na, 1, %k ). The
group of states shown in red (blue) have |m; »x| = 3/2 (1/2).
All the states have my =m;, since m, =0. States with
m; = 0 are symmetric and antisymmetric linear combinations
of states (m, —m) and (—m, m); this symmetry is indicated by
a superscript + or —.

The alkali dimers have a large number of available hyper-
fine states, so it is impracticable to show results for all possible
combinations of them. From the point of view of SU(N) sym-
metry, the most important quantity is the variation of the real
part o of the scattering length between these combinations.
As in Ref. [27], we characterize this by do;; = o — ao,
where «;; is the (field-dependent) scattering length for a
collision between molecules in hyperfine states j and j and
oo is the corresponding value when hyperfine structure is
neglected. Our goal is to find the range of o between dif-
ferent combinations, since this characterizes deviations from
SU(N) symmetry. The model of Sec. IID predicts that the
largest (smallest) values of o will occur for collisions be-
tween identical pairs of molecules in hyperfine states with
the smallest (largest) space-fixed dipole moment d; at the
field concerned. This is because higher d; gives increased
attraction in the long-range potential well and hence produces
lower «; . For each molecule of interest, we diagonalize the
monomer Hamiltonian at an electric field where shielding
is effective, and calculate values of d;. Tabulations of the
resulting hyperfine levels and values of Ad; are given in
Supplemental Material [43]. For each molecule, we select the
states with the largest and smallest values of d; and focus on
collisions involving these two states in the results presented
below.

SU(N) symmetry also requires that collisions that convert
molecules between spin states are very slow. In alkali dimers,
such transitions are caused mostly by quadrupole couplings.
These are off-diagonal in (i, m,) and in m;, while conserving
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FIG. 3. Rate coefficients for elastic scattering (red) and total loss
(black) from spin-free coupled-channel calculations on Na*K at col-
lision energy E.on = 10 nK xkg. The blue and orange curves show
state-to-state inelastic rate coefficients for 1-molecule spin-changing
inelastic transitions from initial state (m; n,, m; ) = (—1/2,1/2)*
to (—1/2,3/2)and (—3/2, 3/2)", respectively, within the same rotor
level. For spin-changing collisions, the lines and circles are ob-
tained from calculations using basis sets spin-N3224-1.4 and MFR1,
respectively.

my. In strong electric fields, however, states with different
values of |m,| are far apart, even if they have the same 7. Be-
cause of this, inelastic transitions due to quadrupole couplings
are relatively weak. In the calculations of spin-changing rates
below, we focus on collisions of pairs of molecules initially in
the highest hyperfine state with m; = m; = 0. Such collisions
have a wide variety of energetically accessible inelastic chan-
nels, and we expect the rates of spin-changing collisions to be
representative of the fastest that can occur.

B. Na¥K

In this section, we discuss the collision properties for two
Na*’K molecules in the presence of static-field shielding.
We focus on the effects of hyperfine structure, but begin by
summarizing the results of spin-free calculations. The red and
black lines in Fig. 3 show the rate coefficients for elastic scat-
tering and total loss, calculated with the basis set of Ref. [15],
with Ly.x = 20. Shielding is effective at fields between 6.8
and 7.4 kV/cm.

To investigate the effects of hyperfine structure, we need
to use much smaller basis sets of rotor functions and much
smaller Ly.x. As described in Sec. II C, we include 14 rotor
pairs in class 1. When combined with all possible spin func-
tions of Na*?K, this gives 3224 pair functions. We use L,y =
4, so that the basis set is called spin-N3224-L4; it contains a
total of 4812 functions. We carry out coupled-channel calcu-
lations for different initial spin states as a function of static
electric field to study doj; and the rates of spin-changing
inelastic collisions.

For Na*K, the spin states with the largest and smallest
values of d; are those with (m; Na, m,»;gK)i = (=3/2,3/2)*"
and (—1/2,1/2)~. The spin-free scattering length oy(F') is
shown in Fig. 4(a) and the deviations éa;;(F') for colli-
sions involving these two states are shown by the solid lines
in Fig. 4(b). The deviations are approximately equal and

2 Nad3%K (a)]

g (102 bohr)

6.8 7.0 7.2 7.4 7.6 7.8
F (kV/cm)

FIG. 4. (a) Real part a(F) of the scattering length for Na*K
from spin-free calculations using the basis set with Ny = 14.
(b) Deviations da(F) in scattering lengths from the spin-free value
for the combinations of spin states j+ j (blue), j + j/ (red)
and j+ " (green), where j = (mjna, m; ) = (—3/2,3/2)* and
j = (—1/2,1/2)". The state j and j’ are those with the highest and
lowest space-fixed dipole moment, respectively. The solid lines and
circles are obtained from coupled-channel calculations using basis
sets spin-N3224-L4 and MFR1, respectively. The dashed lines are
calculated using the semiclassical model of Sec. I D.

opposite for these two spin states, and close to zero for their
combination. This is expected from Eq. (11), because the two
states have almost equal and opposite values of Ad;. We have
confirmed that §o;; (at fixed field) is accurately proportional
to Ad;j + Adj for any combination j 4 j’. All remaining spin
combinations produce do;; within the bounds set by the red
and blue curves. The results show that scattering lengths are
independent of spin state to within about 0.25% at F' = 7.1
kV/cm, where shielding is most effective.

The values of da;; predicted by the model are shown by
the dashed lines in Fig. 4(b). It may be seen that the model
overestimates the actual deviations in « by about a factor of 2.
The error is relatively large for NaK because, for this system,
the attractive and repulsive contributions to Eq. (11) almost
cancel, amplifying the error. As will be seen below, the model
is much more accurate for alkali dimers with larger values of
Dy.

We next study the rates of spin-changing collisions in
Na*K and their effects on the possible realization of SU(N)
symmetry. Among the various possible spin-changing inelas-
tic transitions, those with Am; = 0 and 1 dominate. The
orange and blue lines in Fig. 3 show the state-to-state rate co-
efficients for the fastest of each of these two types of transition
for Na**K molecules initially in their highest hyperfine level,
(=1/2,1/2)", for Am; = 0 and +1, respectively. These are
essentially 1-molecule transitions with outgoing spin states
(—=1/2,3/2) (blue) and (—=3/2,3/2)" (orange).
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The main mechanism that causes spin-changing transitions
involves second-order couplings via different rotor pair states,
involving both the dipole-dipole and nuclear quadrupole op-
erators. The quadrupole operators can change 7, m, and m;
but conserve my, while the dipole-dipole operator conserves
m; but has selection rule Am; = Am, =0, £1. The overall
second-order transition can thus have Amy = Am; =0, 1.
When my = m} = 0, only transitions + <> + or — < — are
allowed.

For Na*K, (e0q)s > (eQq)a, so that m; o and m; g are
nearly conserved. Under the influence of single-nucleus op-
erators such as the nuclear quadrupole coupling, only one
of them can change, so m; must change. The spin-changing
collisions are dominated by the incoming s wave, with L = 0.
Because of the presence of the dipole-dipole operator, the
outgoing channel must have L = 2. The transitions occur prin-
cipally at long-range avoided crossings between the incoming
and outgoing adiabats; for Na’’K, the dominant transitions
occur at distances greater than 3000 bohr. For a fixed coupling
proportional to R~3, the rate of such transitions is proportional
AE'2 where AE is the kinetic energy release [44]. This
explains why the fastest transition for each Am; is to the
lowest state allowed by the selection rules.

For Na*K, the total loss is dominated by inelastic transi-
tions that change rotor quantum numbers and by short-range
processes, rather than by spin-changing collisions. This is not
true for all alkali dimers, as discussed below. Nevertheless,
the rate of spin-changing collisions is always small enough to
meet the requirements for SU(N) symmetry.

C. Restricted basis set

Even with Van Vleck transformations, the number of basis
functions is extremely large when we include all hyperfine
levels, particularly for molecules with individual nuclear spins
ig > 3/2. As described in Sec. III B, we find that inelastic
transitions are dominated by Amy = 0 or 1. Based on this
fact, we remove all spin functions from our basis sets except
those with [my — my ;| < 1, where my iy is the value for
the initial state of the colliding molecule. This substantially
reduces the basis-set size: for my jnic = 0, Npair 18 reduced from
3224 to 1110 for Na**K and NaRb, and from 12848 to 1818
for NaCs.

The my-restricted basis set, hereafter referred as MFRI1,
accurately reproduces all scattering results obtained from full
spin basis sets. Figures 3 and 4 compare results using MFR1
(circles) with those of full spin basis sets (solid lines). In the
remainder of the paper, we use MFR1 with L,x = 6 to carry
out coupled-channel calculations including spins.

D. Na¥’Rb

NaRb is a particularly interesting case, because the long-
range attraction is strong enough to produce a two-molecule
bound state for fields in the center of the shielding region.
There are pole-like features in the real part of the scattering
length at fields where these bound states enter and leave the
well, as shown in Fig. 5(a). These poles allow tuning of the
scattering length from large negative to large positive values.
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FIG. 5. (a) Real part oo(F) of the scattering length for NaRb
from spin-free calculations. (b) Deviations da(F) from the spin-
free value for the combinations of spin states j+ j (blue)
and j' + ;' (red), where j = (m;na., miry) = (£3/2,£3/2) and
Jj = (—=1/2,1/2)". The states j and j' are those with the highest
and lowest space-fixed dipole moments, respectively. Solid lines are
obtained from coupled-channel calculations, whereas dashed lines
are calculated from the semiclassical model.

Figure 5(b) shows da;; for Na¥’Rb (hereafter NaRb) for
spin states j = (—1/2,1/2)* and (3/2, 3/2). As for Na*’K,
these states are chosen to give the largest deviations from
the spin-free values. For NaRb the fractional deviations in
scattering length are somewhat larger than for Na*’K; they
are typically 5% far from the poles, though necessarily larger
close to the poles because the positions of the poles are
slightly shifted for different j. The model of Ref. [27] is
more accurate for NaRb than for Na’K, because there is
less cancellation between the positive and negative terms in
Eq. (10).

Spin-changing collisions are somewhat faster in NaRb than
in Na*’K, and (for some hyperfine states) provide the domi-
nant source of loss. The resulting rate coefficients are shown
in Fig. 6 for NaRb in its highest hyperfine state. The inelastic
rate nevertheless remains six orders of magnitude slower than
the elastic rate, so is unlikely to be a problem in experiments
to implement SU(N) symmetry.

E. NaCs

NaCs is particularly promising for implementing SU(N)
symmetry. It offers very large N (up to 32), and its collisions
can be shielded very effectively with either static electric
fields [15] or microwave radiation [23]. Both Na and Cs have
particularly small nuclear quadrupoles [38], so that the values
of Saj; are expected to be very small [27]. In static-field
shielding, its scattering length can be tuned across a wide
range of positive and negative values while maintaining ef-
fective shielding [15].
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FIG. 6. Rate coefficients for elastic scattering (red), and total
loss (black) from spin-free coupled-channel calculations on NaRb
at collision energy E.,; = 10 nK xkg. The blue and orange curves
show state-to-state spin-changing inelastic rate coefficients for one-
molecule inelastic transitions from initial state (m;Na, Miry) =
(—=1/2,1/2)" to (—1/2,3/2) and (—3/2,3/2)", respectively.

NaCs has a qualitatively different pattern of hyperfine
states from NaK and NaRb, shown in Fig. 7. The levels are
best described in a coupled representation, with i the resultant
of ina and ics. There are additional splittings because levels
with different m; couple differently to the rotational motion.

Because of the large number of spin states, scattering cal-
culations on NaCs with a full spin basis are prohibitively
expensive. However, the spin-reduced basis set MFR1 makes
the calculations tractable. Figure 8 shows values of dc;j
for NaCs for collisions between pairs of molecules with the
largest and smallest values of d;. The results for other com-
binations of spin states are expected to lie between these two
curves. The range of da;; is only 12 bohr. For NaCs, d«;j
is dominated by the attractive contributions to Eq. (11), and
the semiclassical model is accurate to within about 10% in the
region of optimum shielding.

Figure 9 shows the rate coefficients for spin-free elastic
scattering and total loss for NaCs, together with the state-
to-state rate coefficients for spin-changing collisions from the

i lmj|l=25 4 3 2 1 0

5 —

FIG. 7. Hyperfine energy levels of NaCs for the rotor level
(1, m,) = (1,0) at F = 2.5 kV/cm. The states are labeled with quan-
tum numbers i, the resultant of iy, and ics, and arranged in columns
according to |m;|. Spacings (not to scale) are shown in kHz.

ot NaCs ]

ag (103 bohr)
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oa (bohr)

2.4 2.5 2.6 2.7 2.8
F (kV/cm)

FIG. 8. (a) Real part og(F) of the scattering length for NaCs
from spin-free calculations. (b) Deviations o/ (F') from the spin-free
value for the combinations of spin states j + j (blue) and j' + j
(red), where j = (i, m;) = (3,0) and j' = (3, £3). The states j and
j are those with the highest and lowest space-fixed dipole moments,
respectively. Solid lines are obtained from coupled-channel calcu-
lations, whereas dashed lines are calculated from the semiclassical
model.

state i = 5, m; = 0 to the most important final states. The spin-
changing inelastic rates are faster than the spin-free loss rate,
but are still low enough to meet the requirements for SU(N)
symmetry. The dominant loss channel involves one molecule
relaxing to the state i = 3, m; = 0. This is the lowest state
allowed by the selection rule Ai < 2 for nuclear quadrupole
coupling.
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FIG. 9. Rate coefficients for elastic scattering (red), and total loss
(black) from spin-free coupled-channel calculations on NaCs at col-
lision energy E.oy = 10 nK xkg. The blue and orange curves show
state-to-state spin-changing inelastic rate coefficients for 1-molecule
inelastic transitions from initial state (i, m;) = (5,0) to (3,1) and
(3,0), respectively. The spin-free loss rates at fields between 2.42 and
2.55 kV/cm are limited by numerical precision, and the dashed line
shows the upper bound.
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FIG. 10. Deviations 8o in scattering lengths for spin mix-
tures j + j of fermionic Na*'K. Here j + j' are (m;na, m;s0x) =
(—1/2,4) 4+ (1/2,4) for the blue curve and (3/2, 1) + (3/2, 0) for
the red curve; these are the pairs of states with the highest and lowest
space-fixed dipole moments, respectively.

F. Fermionic molecules

Fermionic molecules behave very similarly to bosonic
molecules. For fermions, s-wave collisions are forbidden for
pairs of molecules in the same spin state, but are allowed
for molecules in different spin states. The s-wave scattering
length can be defined only for the latter case, and here the
considerations that affect the scattering length are the same as
for bosons.

Molecules containing “°K have a very large number of spin
states, because of its large nuclear spin, ing = 4. Fermionic
Na*K and “°K®’Rb each have 36 hyperfine states, while
40KCs has 72. Because of this, calculations using a full spin
basis are prohibitively expensive. Even calculations with the
spin-reduced basis set MFR1 are challenging, but possible.
Figure 10 shows 8« for Na*'K for collisions between pair of
states with the largest values of d;, (m; na, m;«0g) = (3/2,1)
and (3/2, 0), and states with the smallest values of d;, namely,
(—1/2,4) and (1/2, 4). For the latter, even the spin-reduced
basis set used here includes 8382 functions. The resulting
curves are very similar to those for Na*’K in Fig. 4, except for
overall scaling due to the different strength of the quadrupole
coupling. The rates of spin-changing collisions are somewhat
smaller for Na*’K than for Na*K.

The properties of collisions of identical molecules are
of course quite different for fermions, because they are
dominated by p-wave collisions. Figure 11 shows the rate
coefficients for spin-free elastic scattering and total loss for
Na*'K, together with the state-to-state rate coefficients for
spin-changing collisions from the highest hyperfine spin state
(7, my, mj Na, m; w0x) = (1,0, —1/2, 4). All the inelastic rates
are very low. They are potentially important for the creation
and lifetime of a single-species Fermi gas, but will make little
contribution to losses in mixtures of spin states.

G. Other molecules

The coupled-channel results above validate the semiclassi-
cal model for the spin-dependence of scattering lengths, which
may thus be used to estimate their magnitude for other similar
molecules. The key quantities are the inner turning point of

1020 Na“0K 1
10-11 \
10—12 E 1
10—13 £ b
10-14
10-15
10—16
10—17
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10—19
10-20
10-21

10-22 1 L 1 L 1
68 7 72 74 76 78 8 82 84

F (kV/cm)

Rate coefficients (cm3/s)

FIG. 11. Rate coefficients for elastic scattering (red), and total
loss (black) from spin-free coupled-channel calculations on Na**K
at collision energy E.,y = 10 nK xkg. The blue and orange curves
show state-to-state spin-changing inelastic rate coefficients for
I-molecule inelastic transitions from initial state (m;na, m;40x) =
(=1/2,4)to (—1/2,3) and (1/2,3).

the shielding adiabat and the variation of space-fixed dipole
moment between hyperfine states, which were tabulated for
alkali dimers of current experimental interest in Ref. [27].
The deviations of scattering lengths from their spin-free val-
ues are below 1% for most of the alkali dimers with good
shielding, except when the scattering length is very large. Fig-
ure 12 shows results from the model for * RbCs and "Li®’Rb.
For RbCs, there is again significant cancellation between the
positive and negative terms in Eq. (10), and the estimated val-
ues of Aa/ag are about +2%. For "Li®’Rb, A« /g remains
less than 1%, even though o« is fairly small (~270 bohr at
11 kV/cm).

The spin-changing collisions take place primarily at long-
range avoided crossings between an incoming channel with
L = 0 and inelastic channels with L' = 2 and kinetic-energy
release AE. These crossings occur outside 1000 bohr for all
the systems considered here. They are dominated by couplings
due to the larger of the nuclear quadrupole couplings for the
two nuclei, (eQg)max. The rates of such collisions are propor-
tional to m>/> AE'/? [44], where m is the molecular mass and
AE scales with (eQq)max. They are also proportional to the
square of an effective matrix element H’, which itself scales
as > (eQq)max/b. The overall rates are thus expected to scale
between molecules approximately as

m*? it (e Qg
— (12)
where b is the molecular rotational constant. Equation (12)
predicts overall ratios of rate coefficients for spin-changing
collisions that are 1:1000:10 for NaK:NaRb:NaCs. This is in
fair agreement with the ratios from coupled-channel calcu-
lations, which are approximately 1:5000:20. Further factors
can arise from the scattering length, whose effect is neglected
in Ref. [44]. Nevertheless, Eq. (12) can be used to obtain
order-of-magnitude estimates of spin-changing rates for other
similar molecules.
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FIG. 12. Deviations of scattering lengths from their spin-free values for $’RbCs and "Li®’Rb from the semiclassical model of Sec. IID.
Panels (a) and (c) show the real part oo(F') of the scattering length obtained from spin-free calculations. Panels (b) and (d) show deviations
Sa(F) from oy(F) for the combinations of spin states j + j (blue) and j' + j’ (red), where j and j’ are the states with the highest and lowest
space-fixed dipole moments, respectively, at the center of the shielding region. For 8’RbCs, j = (i, m;) = (5, £5) and j' = (5, 0); for "Li®’Rb,

J = (m;;, msgy) = (F1/2,£3/2) and j' = (£3/2, £1/2).

H. Effects of magnetic fields

In the absence of magnetic field, spin states with nonzero
my exist as degenerate pairs with positive and negative my.
To implement SU(N) symmetry, it may be desirable to make
these states nondegenerate, which is most simply done with
a small magnetic field B parallel to the electric field F. Al-
ternatively, it may be convenient to maintain the (typically
large) magnetic field used for molecule formation. We have
investigated the effect of magnetic fields B = 10 and 500 G
for Na*K, Na®’Rb and NaCs at the center of the shielding
region, using basis set MFR1. We find that such magnetic
fields have little effect on the ranges of scattering lengths
for NaK and NaRb, but the larger field increases the range
by about a factor of 2 for NaCs. This arises because such a
field substantially changes the nature of the monomer states
for NaCs.

IV. CONCLUSIONS

We have shown that ultracold alkali dimers that are
shielded from destructive collisions with static electric fields
are very promising systems for implementing SU(N) symme-
try. The calculated scattering lengths are very similar for all
pairs of spin states. Spin-changing collisions are very slow,
as are total loss rates. The alkali dimers offer several ad-
vantages over existing implementations of SU(N) symmetry
using alkaline-earth-like atoms. In particular, alkali dimers
offer larger N, up to 36 for the ultracold molecules studied
in current experiments. There are both bosonic and fermionic
molecules available, and the interactions can be tuned to be
either attractive or repulsive.

We have carried out coupled-channel calculations on
shielded collisions, including the full hyperfine structure of

the colliding molecules. To achieve this, we have developed
special methods to accommodate the enormous basis sets
involved. In particular, we use Van Vleck transformations to
reduce the number of basis functions included explicitly in the
coupled-channel basis sets, while taking account of functions
outside this space perturbatively. We have also developed
spin-restricted basis sets and shown that they accurately re-
produce calculations with full spin basis sets.

We have carried out calculations on the representative
molecules Na**K, Na**K, Na®’Rb and NaCs. Na*’K and
NaCs are particularly challenging because of the large spins of
the “°K and Cs nuclei. For all systems, the scattering lengths
for different spin states are within 1% of the spin-free values,
except for NaRb, where the scattering length is very large.
We expect the same to be true for other alkali dimers with
effective shielding. We have developed and tested a semi-
classical model of the spin dependence, based on space-fixed
dipole moments of individual molecules and spin-free scatter-
ing calculations, and shown that it gives good estimates of the
variation in scattering lengths. We have used the model to give
estimates of the spin-dependence for 8’RbCs and "Li®’Rb.

The different molecules studied have significantly different
patterns of hyperfine states. This is manifested in different
selection rules for spin-changing collisions, and rates of such
collisions that differ by a factor of 5000 between Na*’K and
Na®’Rb. Nevertheless, the rates of spin-changing collisions
are at least six orders of magnitude lower than the rates of
elastic collisions for all the systems studied. We have pre-
sented a scaling law that qualitatively explains the variation
in spin-changing rates between systems.

We have investigated the effects of magnetic fields parallel
to the electric field, and found that the deviations in scattering
lengths depend only weakly on them.
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Current experiments on ultracold alkali dimers often use
shielding with microwave fields instead of static electric
fields. The physics of microwave shielding has strong simi-
larities to that of static-field shielding, so we anticipate that
SU(N) symmetry can be achieved in this case too. However,
further work is needed to quantify this.

Realization of SU(N) symmetry with alkali dimers will
open the door to study much new physics. Systems with
attractive interactions will allow experiments to explore the
formation and ordering of energetically favorable clusters
[45-49]. For fermionic systems, SU(N) symmetry will en-
hance quantum fluctuations and topological order [30,31]. It
may allow even lower temperatures than so far achieved with
alkaline-earth atoms [50]. For bosonic systems, SU(N) sym-
metry will provide opportunities to study the phases of exotic
ferromagnets [51]. There are ultracold molecules available in

current experiments with properties that offer access to all
these domains.
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