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Abstract 

Background

The Faroe margin in the northeastern Atlantic is segmented by 
margin-orthogonal, WNW–ESE-striking lineaments extending several 
hundred kilometers out to the continent–ocean transition. Despite 
several earlier studies speculating that these features are the product 
of reactivation of pre-Cenozoic basement-seated structures at depth, 
the thick Cenozoic volcano-sedimentary sequences deposited along 
the margin mask the underburden, thus rendering the identification 
and interpretation of such structures and resolving the pre-Cenozoic 
history of the area challenging. The present study documents for the 
first time the existence of margin-orthogonal basement-seated thrust 
systems and describes their detailed geometry, kinematics, and 
tectonic evolution.

Methods

We interpreted basement-seated tectonic structures on seismic 
reflection data from TGS on the Faroe Platform and the 
Wyville–Thomson and Munkagrunnur ridges using the newly 
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established seismic facies of major thrust systems.

Results

The data show that the Wyville–Thomson Ridge, Munkagrunnur Ridge, 
and Faroe Platform are cored by WNW–ESE-striking thrust systems 
hundreds of kilometers long and 30–50 km wide, showing dominantly 
top-SSW kinematics. The thrusts were reworked into NE–SW-striking 
folds during the Caledonian Orogeny and controlled the formation of 
Caledonian thrusts, which in turn controlled the formation of post-
Caledonian faults. The pre-Caledonian nature of the WNW–ESE-
striking thrusts and their geometry and kinematics suggest a 
relationship with late Paleoproterozoic Laxfordian shear zones 
onshore northern Scotland and the continuation of the coeval 
Nagssugtoqidian Orogen in southeastern Greenland, the Ammassalik 
Belt. The thrust systems also align with the Tornquist Zone in eastern 
Europe and the North Sea, thus suggesting either that they controlled 
the formation of the Tornquist Zone or a possibly much longer 
(Paleoproterozoic?) tectonic history for the Tornquist Zone.

Conclusions

The Faroe Island margin is crosscut by late Paleoproterozoic 
Laxfordian–Nagssugtoqidian thrust systems, which controlled further 
tectonic development of the margin.

Plain language summary  
The Faroe Islands and nearby areas were covered by thick lava flows 
in the Cenozoic (< 65 million years ago) during the opening of the 
North Atlantic Ocean. Thus far, the strong seismic signal of the lavas 
made the study of deeper and older rock units and tectonic structures 
(> 65 million years old) challenging. In the present work, we describe 
newly identified, hundred of km long and tens of km wide systems of 
old cracks in the Earth’s crust in the subsurface around the Faroe 
Islands. The cracks trend parallel to the Greenland–Iceland–Faroe 
Ridge and are probably part of an 1.8 billion year old system, which 
continues onshore northern Scotland and has counterparts in 
southeastern Greenland formed during the collision of two or more 
tectonic plates. The newly identified structures controlled the 
formation of contractional structures formed during the collision of 
Greenland with Europe ca. 425 million years ago and of subsequent 
extensional structures. In addition, the present work suggests that the 
Greenland–Iceland–Faroe Ridge partly consists of ≥ 1.8 million years 
old continental crust instead of < 65 million years old oceanic crust as 
previously suggested. This has implications for our understanding of 
plate tectonics and Earth’s internal dynamics.  
 
The present study shows a new method to investigate the old tectonic 
history of entire regions using seismic reflection data, in the hope that 
it will be used more widely by the scientific community in the future to 
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identify and study similar structures worldwide, for example when 
evaluating earthquake risk and exploring for natural resources such 
as white and orange hydrogen.
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Introduction
The Faroe Islands lie along the northwestern part of the  
European continental shelf (Figure 1a), which was rifted away 
from its conjugate counterpart in southeastern Greenland in the  
Cenozoic, after repeated extensional events had affected the  
margin. These include Devonian collapse, Permian–Triassic,  
Cretaceous, and early Cenozoic events (Bird et al., 2016;  
Coward et al., 1989; Jolley et al., 2021; Wilson et al., 2010). A 
major outstanding issue with the pre-Cenozoic geology of the 
area is the difficulty in imaging rock units below the thick lava  
flows (Ólavsdóttir et al., 2016) and the lack of studies show-
ing the seismic character of metamorphosed basement rocks. 
For this study, we benefitted from reprocessed 2D seismic 
reflection data from TGS (survey OF95RE11) and from several 
recent studies focusing on local- (a few hundreds of meters 
high and wide) to regional-scale structures (up to hundreds of  
kilometers long, tens of kilometers thick) within metamorphosed 
basement rocks (Koehl, 2020; Koehl, 2021; Koehl, 2024a;  
Koehl et al., 2022; Koehl et al., 2023a; Koehl & Stokmo, 2024).

Previously, late Paleocene–Miocene compression related to 
anomalous ridge-push along the extinct Ægir Ridge (Boldreel 
& Andersen, 1993; Boldreel & Andersen, 1998) and/or  
(Precambrian?) preexisting structures and transfer zones  
(Johnson et al., 2005; Kimbell et al., 2005), or early Paleocene 
rifting (Ziska & Varming, 2008) were proposed as causes for the 
formation of margin-oblique to margin-orthogonal structural  
elements such as the Wyville–Thomson, Ymir, and Munkagrunnur 
ridges and the Faroe Platform. However, the nature of 
the rocks (metamorphosed basement rocks or inverted  
sedimentary basin) at the core of these structural highs was 
thus far uncertain and the transition between these structures  
poorly understood (Ólavsdóttir et al., 2016). The present study 
reveals the nature of the rocks within these highs and pro-
poses a much older origin and tectonic history, explaining both  
previously inferred Cenozoic contractional reactivation and  
inherited basement-seated transfer zones at these margin- 
oblique/orthogonal structural elements. Our findings also 
invalidate an early Paleocene rift-related origin for these 
structures.

The present study extends the interpretation of old  
(Paleoproterozoic) orogenic belts and continental crust farther 
offshore. Hence, it has direct implications for the orogenic bridge 
theory proposed by Koehl and Foulger (2024) and for plate  
tectonics in general. For example, it suggests that tectonic 
plates are less mobile over time than previously suggested. 
It also has implications for regional correlations of old 
(Paleoproterozoic) orogens and fold-and-thrust belts. Major 
implications also include the use of seismic reflection imag-
ing to map contractional ductile shear zones and thrust 
systems, which is now proven at various margins and will, 
hopefully, be widely used in the coming years.

Geological setting
Wyville–Thomson and Ymir ridges
The Wyville–Thomson and Ymir ridges are elongate, respec-
tively 30–50 km and < 10 km wide, WNW–ESE-striking high  
southwest of the Faroe Islands (Figure 1b). The ridges are  
capped by Paleogene lava flows and Cenozoic sedimentary  
deposits, which thin over the ridges, and are onlapped by  
(Cretaceous?) sedimentary rocks underlying the Paleocene lavas 
(e.g., Johnson et al., 2005, their figure 6). Notably, previous  
studies showed that Eocene sedimentary units are folded, whereas 
Oligocene sedimentary successions onlap the ridges. These 
lines of evidence were used to suggest that both ridges were  
topographic highs during most of the Cenozoic. Previously 
proposed formation mechanisms include the reactivation of  
WNW–ESE-striking transfer faults and/or various episodes 
of post-breakup contraction, including in the late Eocene–mid  
Oligocene (Boldreel & Andersen, 1993; Boldreel & Andersen, 
1998; Johnson et al., 2005; Kimbell et al., 2005; Kimbell  
et al., 2016; Smallwood, 2008; Waddams & Cordingley, 
1999). Boldreel and Andersen (1993) proposed that the ridges  
initiated from the inversion of an extensional fault, whereas 
Kimbell et al. (2005) suggested that the ridges are part of a  
Cenozoic ramp-anticline complex.

Munkagrunnur Ridge
The Munkagrunnur Ridge is a N–S-trending topographic high 
south of the Faroe Islands, which bends into a NW–SE trend  
towards the Wyville–Thomson Ridge in the south and bounds 
the Faroe–Shetland Basin in the east (Figure 1c). Formation  
involving several stages of Cenozoic (e.g., late Eocene–mid  
Oligocene) post-breakup contraction was proposed previously, 
i.e., similar to the Wyville–Thomson and Ymir ridges (Johnson  
et al., 2005; Smallwood, 2008; Stoker et al., 2015). Detailed 
sequence stratigraphic investigations even suggested repeated 
(up to eight discrete, < 1 Myr) episodes of tectonic uplift of  
the ridge during the mid-Eocene (Ólavsdóttir et al., 2010).  
An origin of the ridge as a drape fold between two synclines 
has also been considered (Stoker et al., 2015).

Faroe platform
The Faroe Platform is a structural high located at the northwest-
ern edge of the European continental shelf encompassing the  
Faroe Islands. It consists of 20–46 km of continental crust  
(Funck et al., 2017; Richardson et al., 1998; Figure 1c). Despite 
its shallow character, the 3–9 km thick cover of Paleogene lava 
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flows and sedimentary rocks, which crop out on the seabed and  
on the Faroe Islands, have thus far made it difficult to resolve 
the pre-rift evolution of the platform (Ólavsdóttir et al., 2016;  
Ólavsdóttir et al., 2021; Richardson et al., 1998). Nevertheless,  
forward gravity modelling suggests that the lava flows are  
underlain by two sedimentary basins (Ólavsdóttir et al., 2021).

Methods
We used seismic reflection data from TGS to interpret  
basement-seated contractional ductile shear zones and thrust 
systems around the Faroe Islands (survey OF95RE11). Our  

interpretation is based on the previous detailed description of 
the internal geometry of thrust systems by Koehl et al. (2022;  
2023a), Koehl (2024a), and Koehl and Stokmo (2024). 
Mylonitic thrusts were interpreted using previous works by  
Christensen (1965), Fountain et al. (1984), and Hurich et al. 
(1985). In addition, we used modern examples of mylonitic 
thrusts in metamorphosed basement rocks on seismic data 
to refine our interpretation (e.g., Fazlikhani et al., 2017;  
Hedin et al., 2016; Koehl et al., 2018; Phillips et al., 2016).  
High-resolution versions of the data (Figure 2a–i) are available  
on DataverseNO (https://doi.org/10.18710/780M9P).

Figure 1. (a) Regional map of the Northeast Atlantic Ocean and main structural elements. Notice the alignment of the Tornquist Zone 
with the major (late Paleoproterozoic?) thrust systems discussed in the present study. Basemap is the International Bathymetric Chart of 
the Arctic Ocean ( Jakobsson et al., 2012). Abbreviations: AB: Ammassalik Belt; AR: Alpha–Mendeleev Ridge; ÆR: Ægir Ridge; CO: Caledonian 
Orogen; DSH: Davis Strait High; EGR: East Greenland Ridge; EJMFZ: East Jan Mayen Fault Zone; GIFR: Greenland–Iceland–Faroe Ridge; HR: 
Hovgård Ridge; JM: Jan Mayen Microcontinent Complex; KO: Ketilidian Orogen; KR: Knipovich Ridge; LO: Laxfordian Orogen; LR: Lomonosov 
Ridge; MFZ: Molloy Fault Zone; MJR: Morris Jesup Rise; MR: Mohns Ridge; NO: Nagssugtoqidian Orogen; SFZ: Spitsbergen Fault Zone; STZ: 
Sorgenfrei–Tornquist Zone; TFZ: Tjörnes Fault Zone; TiO: Timanian Orogen; TO: Torngat Orogen; TTZ: Teisseyre–Tornquist Zone; WJMFZ: 
West Jan Mayen Fault Zone; YP: Yermak Plateau. (b) Structural map of the continental shelf in Scandinavia, the North Sea, the UK, and the 
Faroe Islands showing the outline of major structures, basins, and highs in the region. Abbreviations: CDF: Caledonian Deformation Front; 
FB: Farsund Basin; FI: Faroe Islands; GGF: Great Glen Fault; HBF: Highland Boundary Fault; IS: Iapetus Suture; MFZ: Munkagrunnur fault 
zone; MoT: Moine Thrust; MyT: Mykines thrust; OI: Orkney Islands; SI: Shetland Islands; STZ: Sorgenfrei–Tornquist Zone; SUF: Southern 
Upland Fault; TTZ: Teisseyre–Tornquist Zone; UK: United Kingdom; WFFZ: West Faroe fault zone; WTFZ: Wyville–Thomson fault zone; WTR: 
Wyville–Thomson Ridge; YR: Ymir Ridge. (c) Zoom in the study area off the Faroe Islands. The location of (c) is shown as a black frame in (b). 
Major sutures, fault zones onshore the UK, and deformation fronts are from Pharaoh (1999). The geometry and location of the Sorgenfrei–
Tornquist Zone and Teisseyre–Tornquist Zone are from Mazur et al. (2015), Phillips et al. (2018), and Ponikowska et al. (2024). Basins and 
highs in the northern UK, Shetland Island, and Faroe Island regions are from Johnson et al. (2005), Wilson et al. (2010), Bird et al. (2016), and 
Jolley et al. (2021), from the Norwegian Offshore Directorate and De Luca et al. (2023) for the North Sea, and from Vejbæk and Andersen 
(2002) and Gregersen et al. (2022) for the southeastern North Sea and southern Baltic Sea. Paleoproterozoic shear zones onshore northern 
Scotland are from Coward and Park (1987) and Bergh et al. (2012). Abbreviations: CSZ: Canisp Shear Zone; DSZ: Diabaig Shear Zone; FI: 
Faroe Islands; FP: Faroe Platform; FSB: Faroe–Shetland Basin; GGF: Great Glen Fault; GSZ: Gairloch Shear Zone; JF: Judd Fault; LgSZ: Langavat 
Shear Zone; LxSZ: Laxford Shear Zone; MFZ: Munkagrunnur fault zone; MR: Munkagrunnur Ridge; NCTZ: North Coast Transfer Zone; NSZ: 
Ness Shear Zone; MoT: Moine Thrust; MyT: Mykines thrust; OI: Orkney Islands; RF: Rona Fault; SFZ: Suðurøy fault zone; ShSF: Sheltand–Spine 
Fault; SI: Shetland Islands; SuTZ: Sula Transfer Zone; SuSF: Sula–Sgier Fault; WFFZ: West Faroe fault zone; WFH: West Fladen High; WLR: West 
Lewis Ridge; WOB: West Orkney Basin; WTFZ: Wyville–Thomson fault zone; WTR: Wyville–Thomson Ridge; YR: Ymir Ridge.
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Figure 2. Seismic reflection data off the Faroe Island continental shelf. See Figure 1c for location. Data courtesy of TGS. (a) NNE–
SSW-trending seismic transect west of the Faroe Islands showing the occurrence of major NNE-dipping, top-SSW thrust systems below 
Cenozoic lavas off the Faroe Islands. The thrust systems consist of major mylonitic shear surfaces (red lines) and of tightly folded bedding 
or foliation surfaces (yellow lines). Relatively small (kilometer to hundreds of meters wide) features of interest include asymmetric (up 
to isoclinal recumbent) folds, duplexes, and antiformal thrust stacks. The vergence of asymmetric fold structures (and mylonitic shear 
surfaces) is opposite on either side of major ridges and highs, e.g., at Wyville–Thomson Ridge, suggesting limited amounts of movement. 
There are Z-shaped reflections in the lower part of the Suðurøy and West Faroe fault zones suggesting extensional reactivation of the 
fault zones. (b), (c) and (d) NE–SW-trending seismic transects showing the continuation of the top-SSW Wyville–Thomson fault zone at 
Wyville–Thomson Ridge. (e) WNW–ESE-trending seismic section along the Wyville–Thomson Ridge showing tens of kilometers wide, open, 
NNE–SSW-striking macrofolds deforming the top-SSW Wyville–Thomson fault zone. The opposite sense of shear is indicated by asymmetric 
folds and minor brittle thrusts on either limbs of the macrofolds, which suggests limited amount of tectonic displacement. In the northwest, 
the section displays gently northwest-dipping, moderate-amplitude reflections (blue lines), curving-downward reflections (black lines), and 
southeast-dipping disruption surfaces (black lines) interpreted respectively as SDRs, saucer-shaped sills, and dykes and sills. The later 
crosscut the folded Wyville–Thomson fault zone. The Wyville–Thomson fault zone and related asymmetric folds extend below and northwest 
of the SDRs suggesting that the Iceland–Faroe Ridge consists (at least partly) of continental crust. (f) ENE–WSW-trending seismic section 
at the Munkagrunnur Ridge showing asymmetric folds indicating top-east kinematics along the Munkagrunnur fault zone. The Z-shaped 
reflections suggest extensional reworking of the fault zone. (g) NE–SW-trending seismic transect at Munkagrunnur Ridge showing the 
dominance of top-NNE kinematic indicators (e.g., NNE-verging folds and top-NNE minor brittle thrusts) along the Munkagrunnur fault 
zone. (h) NW–SE-trending transect along the Munkagrunnur Ridge showing the reworking of the Munkagrunnur fault zone by a tens of 
kilometers wide, NNE–SSW-striking, SSW-plunging macrofold with opposite sense of shear on either flanks. (i) Folded portion of the West 
Faroe fault zone that was overprinted by a top-northwest Caledonian thrust. The listric, post-Caledonian, brittle, normal fault, which offsets 
the Top-basement reflection by ca. 1 second (TWT) merges with the top-northwest thrust at depth suggesting it formed along preexisting 
zones of weakness in the crust.
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The data frequency (c. 40 Hz; Nicholson, 2012 her figure 1) 
and seismic velocity within Paleoproterozoic metamorphosed  
basement rocks (overall 6200–6400 m.s-1, i.e., c. 6300 m.s-1;  
Bamford, 1979; Luckett & Baptie, 2015; Watson & Dunning,  
1979 their figures 4, 10, and 11) and in mylonites (up to  
6700 m.s-1; e.g., Kästner et al., 2020 their table 2) indicate  
that the vertical resolution of the seismic data (1/4 of the 
wavelength) is c. 39 m (6300/40/4). In places, the vertical  
resolution of seismic data may be as good as 1/32 of the  
wavelength (Kallweit & Wood, 1982; Li & Zhu, 2000), i.e., 
up to c. 5 m in the present case (6300/40/32). The horizontal  
resolution of the data at depth is a function of depth and the  
wavelength (Geldart & Sheriff, 2004) and is c. 627 m at a  
5000 m depth ((5000 × (6300/40/2))1/2). Since the studied  
asymmetric folds within major shear zones and thrust systems 
are generally > 500 meters wide and > 150 meters thick, they  
are well within the vertical and horizontal resolution of the  
seismic dataset even at high depth (> 5000 m). Noteworthy, the 
horizontal resolution of the data at a depth of 2900 m (termina-
tion of well 164/28-1A) is c. 478 m ((2900 × (6300/40/2))1/2).  
See Supplement 5 in Koehl (2024b) attached to the interpretation  
in Koehl and Stokmo (2024) for more information on the  
resolvability of the targeted intra-shear-zone structures such 
as hundreds-of-meter- to kilometer-scale asymmetric folds on  
seismic reflection data.

Structures in overlying post-Caledonian sedimentary and 
igneous rocks only mildly (if at all) rework the studied pre- 
Cretaceous structures and, thus, have little impact on the geom-
etry of the studied structures. Post-Caledonian structures 
were therefore not investigated, except where they showed a 
clear relationship with the studied basement-seated structures 
(e.g., merging, truncating, and/or reworking).

Our interpretation was tied to exploration wells 164/28-1A  
west of the West Lewis Ridge (Figure 1c), which terminated 
at a depth of c. 2900 m in Cretaceous sedimentary succes-
sions (see Jolley et al., 2021, their figure 19 for the tie). The 
well also penetrated a c. 400 meters thick volcanoclastic succes-
sion including hyaloclastite and lava flows (Jolley et al., 2021). 
The main Top-basement unconformity was interpreted as a 
major unconformity with onlap of Cretaceous sedimentary rocks  
onto the Wyville–Thomson Ridge throughout the study area.

We used Petrel 2021.3 to interpret seismic reflection data, and  
CorelDraw 2017 to design the figures. Alternative open-source  
software are OpendTect and GIMP respectively.

Results
Observations
Wyville–Thomson Ridge. Basement rocks at the WNW–ESE- 
striking Wyville–Thomson Ridge present several types of  
structures below the Top-basement unconformity, all of which 
are characteristic of major contractional shear zones and thrust  
systems. These include mylonitic shear surfaces (e.g., Fountain  
et al., 1984; Hurich et al., 1985; Phillips et al., 2016; Reeve  
et al., 2013), asymmetric folds (e.g., Koehl, 2024a; Koehl  
et al., 2022; Koehl et al., 2023a; Koehl et al., 2023b;  

Koehl & Stokmo, 2024), duplexes (e.g., Koehl, 2021; Koehl,  
2024a; Koehl et al., 2022; Koehl et al., 2023b; Koehl &  
Stokmo, 2024), and minor brittle thrusts (e.g., Brewer et al., 
1980; Brewer et al., 1981; Koehl, 2021; Koehl et al., 2022;  
Koehl et al., 2023b; Koehl & Stokmo, 2024; O’Connor, 1992;  
Shaw et al., 1999). These are further described below.

In NE–SW-trending cross section, basement rocks at the  
Wyville–Thomson Ridge consist of numerous undulating,  
upward-convex, low- to moderate-amplitude seismic reflections  
with an undulation wavelength of a few hundred meters 
to a few kilometers (Figure 2a–i). Most of the undulating  
reflections are asymmetric and typically show a long, gently- 
dipping edge and a short, steeply-dipping edge (Figure 2a–d  
and Figure 3a). In places, these asymmetric reflections  
display a tight hinge zone with parallel edges (Figure 3b).  
A few undulating upward-convex reflections are symmetric and  
are found at the center of the ridge (Figure 3c).

On the northeastern flank of the Wyville–Thomson Ridge,  
numerous asymmetric reflections lean towards the south- 
southwest, i.e., showing a long, gently-NNE-dipping edge 
and a short, steeply-SSW-dipping edge (Figure 2a–d and  
Figure 3a–b). Subsidiary undulating reflections on the south-
western flank of the ridge show opposite characteristics with 
a long, gently-SSW-dipping southwestern edge and a short,  
steeply-NNE-dipping northeastern edge (Figure 2a–c).

In places, some asymmetric undulating reflections are arranged 
in packages separated by planar, 2–8 seconds (TWT) deep,  
gently-NNE-dipping, moderate- (in places high-) amplitude  
disruption surfaces (Figure 2a–i). These disruption surfaces 
are traced for tens of kilometers in cross section and for at  
least 150 km along the strike of the Wyville–Thomson Ridge  
(Figure 1c and Figure 4a). In addition, minor, a few hundred  
meters to a few kilometers, high-angle disruption surfaces  
mildly offset asymmetric reflections in a reverse fashion  
(Figure 3a).

In NW–SE-trending along-strike section, the major,  
hundreds of kilometers long disruption surfaces are folded into 
up to 100 km wide, NE–SW-striking open folds (Figure 2e).  
These NE–SW-striking folds are confirmed by the depth map 
(i.e., map-view geometry) of the main disruption surface, 
which also shows that these major open folds plunge moder-
ately to the north-northeast, displaying dome- and trough-shaped  
geometries (Figure 4a).

In the northwest, NW–SE-trending sections show a series of  
thick, moderate-amplitude, gently-northwest-dipping reflections  
between 3 and 5 seconds (TWT; see blue lines in  
Figure 2e), which have been previously interpreted as  
Seaward-Dipping Reflectors (SDRs; Davison et al., 2010;  
Parson et al., 1988; Smythe, 1983; Spence et al., 1989). Farther  
northwest, these are truncated by numerous, moderately- to  
steeply-southeast-dipping disruption surfaces within low- to  
moderate-amplitude rock units (see planar black lines in  
Figure 2e). These disruption surfaces are observed up to  
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Figure 3. Zoom in specific structures on seismic reflection 
data. See Figure 2 for legend. All figure insets show interpreted 
data on the left-hand side and uninterpreted data on the right-
hand side, except for (d), which shows interpreted data up and 
uninterpreted data down. Data courtesy of TGS. (a) Forward-
dipping duplexes (see Koehl, 2021 for definition) consisting of 
SSW-verging asymmetric folds, minor top-SSW brittle thrusts, and 
antiformal stacks (yellow lines) bounded upwards and downwards 
by major mylonitic shear surfaces (red lines) along the Wyville–
Thomson fault zone. All the structures consistently indicate top-
SSW kinematics. See location in Figure 2a. (b) Isoclinal recumbent 
fold indicating top-SSW kinematics along the Wyville–Thomson 
fault zone. See location in Figure 2d. (c) Symmetric folds within the 
core of the Wyville–Thomson Ridge suggesting limited movement. 
See location in Figure 2c. (d) Southwest-verging asymmetric folds 
and down-northwest extensional duplexes suggesting extensional 
reactivation of folded WNW–ESE-striking (late Paleoproterozoic) 
thrust systems. The folded and reactivated/overprinted thrust 
systems are crosscut by southeast-dipping (Cenozoic) sills and 
dykes (black lines). See location in Figure 2d. (e) Symmetric folds 
within the core of NNE–SSW-striking (Caledonian) macrofolds along 
strike the Wyville–Thomson fault zone. See location in Figure 2e. 
(f) Z-shaped reflections within WNW–ESE-striking thrust systems. 
The SSW-verging asymmetric folds (up) are juxtaposed with  
Z-shaped extensional duplexes across (down) a major NNE-dipping 
mylonitic shear surface (red line) suggesting down-NNE extensional 
reactivation of top-SSW thrust systems. See location in Figure 2a.

a depth of 7.5 seconds (TWT) and terminate below a layer 
of high-amplitude, flat-lying sedimentary strata crosscut by 
multiple high-amplitude, U-shaped reflections at a depth of 
2.5–3 seconds (TWT) interpreted as saucer-shaped sills (see  
U-shaped black lines in Figure 2e).

At a depth ≥ 6 seconds (TWT) below the moderately- to  
steeply-southeast-dipping disruption surfaces and gently- 
northwest-dipping SDRs, upward-convex reflections similar 
to those within the Wyville–Thomson Ridge are arranged  
in packages of dominantly southeast-leaning and locally  
Z-shaped reflections separated by gently-northwest-dipping  
disruption surfaces (Figure 3d). Locally, the upward-convex 
reflections display intermediate geometries between Z-shaped  
and southeast-leaning (Figure 3d).

Munkagrunnur Ridge. South of the Faroe Islands along the  
western flank of the Munkagrunnur Ridge (Figure 1c), the data 
shows that basement rocks are dominated by a few hundred 
meters to a few kilometers wide, asymmetric reflections leaning  
to the east (Figure 2f). Farther south, the reflections lean to the 
north-northeast (Figure 2g). Similarly, a major, 4–8 seconds  
(TWT) deep disruption surface is observed in the area and  
displays a comparable, c. 70° map-view change in orientation,  
i.e., bending from a west-dipping geometry in the north, just 
south of the Faroe Islands, to a SSW-dipping geometry at the  
southern tip of the Munkagrunnur Ridge (Figure 1c).

In NW–SE-striking sections, the major disruption surface  
appears folded into a major, ≥ 70 km wide, southwest-plunging 
antiform, and undulating reflections are dominantly symmetrical  
within the Munkagrunnur Ridge (Figure 2h), i.e., similar to 
the disruption surfaces and undulating reflection within the  
Wyville–Thomson Ridge (Figure 2e and Figure 3e).

Faroe Platform. West and southwest of the Faroe Islands,  
basement rocks show asymmetric reflections in NE–SW-trending  
cross sections comparable to those at Wyville–Thomson 
Ridge (Figure 2a). Additional features of interest are packages  
of Z-shaped reflections separated by planar, NNE-dipping  
disruption surfaces (Figure 3d and f) and 30–40 km wide mac-
rofolds of the Top-basement reflection similar to that observed  
at the Wyville–Thomson Ridge (Figure 2a). In map view, the 
main disruption surfaces appears mildly folded into a ≥ 50 km  
wide, NNE-plunging antiform similar to that observed at the 
Wyville–Thomson Ridge (Figure 4a).

On the southeastern limb of this major NNE-plunging fold,  
asymmetric, undulating, low- to moderate-amplitude reflections  
lean to the northwest and disruption surfaces dip gently to 
moderately to the southeast (Figure 2i), i.e., similarly to  
asymmetric undulating reflections and disruption surfaces in 
the southeastern limb of the major NNE-plunging antiform  
at Wyville–Thomson Ridge (Figure 2e). In addition, the  
southeast-dipping disruption surfaces on the Faroe Platform 
deepen from a c. 2.0–4.0 seconds (TWT) depth in the southwest 
to a c. 4.25–7.25 seconds (TWT) depth in the northeast, 
i.e., following the attitude of the NNE-plunging antiform  
on the Faroe Platform (Figure 4a–b).
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Figure 4. Time (TWT) maps of the WNW–ESE-striking thrust systems off the Faroe Islands without (a) and with (b) Caledonian thrusts 
(West Faroe thrust). There is apparent folding of the thrust systems into tens of kilometers wide, NNE–SSW-striking, dominantly NNE- and 
subsidiarily SSW-plunging macrofolds and the formation of Caledonian thrusts along the limbs of the Caledonian macrofolds. Abbreviations: 
FI: Faroe Islands; MFZ: Munkagrunnur fault zone; SFZ: Suðurøy fault zone; WFFZ: West Faroe fault zone; WFT: West Faroe thrust; WTFZ: 
Wyville–Thomson fault zone.

North of the Faroe Islands, a major, high-angle, southeast- 
dipping, listric disruption surface bounds thickened wedges of  
post-Caledonian sedimentary rocks against metamorphosed base-
ment rocks consisting of northwest-leaning asymmetric reflec-
tions and crosscut by moderately- to gently-southeast-dipping  
disruption surfaces (Figure 2i). In the upper part, the high-angle 
disruption surface offsets discrete reflections by c. 0.1 second  
(TWT) in a normal fashion (Figure 2i). At depth, the high-
angle disruption surface dips moderately to gently and parallels  
major southeast-dipping disruption surfaces within basement  
rocks (Figure 2i).

Interpretation
Magmatic features. In the northwest, the moderately southeast- 
dipping disruption surfaces crosscutting the SDRs and ter-
minating below the saucer-shaped sills do not show any  
offset of the truncated features (Figure 2e). A tectonic origin is 
therefore unlikely. Given their occurrence below a system of  
saucer-shaped sills and absence farther southeast and their  
planar and gently- to moderately-dipping geometry (Figure 2e), 
they are interpreted as a magmatic feeder system of sills and  
dykes related to the rifting of the northeastern Atlantic.

WNW–ESE-striking thrust systems. Asymmetric undulating  
reflections occur as packages consistently displaying a long  
and a short limb (e.g., long northeastern and short south-
western limb on the northeastern flank of Wyville–Thomson 
Ridge; Figure 2a) and are in places crosscut and offset  
by minor, reverse, high-angle disruption surfaces (Figure 2a  
and Figure 3a) and by major, moderately dipping disruption  
surfaces (Figure 2a–d). These features are typical of major 

thrust systems, both in the field (Bell & Hammond, 1984;  
Fossen & Holst, 1995; Nabavi and Fossen, 2021 their  
figure 2f; Platt, 1983) and on seismic data (e.g., Koehl 
et al., 2022; Koehl et al., 2023a; Koehl et al., 2023b; 
Koehl, 2024a; Koehl & Stokmo, 2024; Figure 2a–i and  
Figure 3a–f). Thus, the asymmetric reflections are interpreted  
as folded (bedding? foliation?) surfaces indicating the sense 
of shear and direction of tectonic transport within metamor-
phosed basement rocks, and minor, high-angle and major  
moderately-dipping disruption surfaces as brittle thrusts and 
contractional mylonitic shear zones within major thrust sys-
tems respectively (Fountain et al., 1984; Hurich et al., 1985;  
Koehl et al., 2022; Phillips et al., 2016). Major thrust systems 
in the study area include the NNE-dipping Wyville–Thomson,  
Suðurøy, and West Faroe fault zones, and the SSW-dipping  
Munkagrunnur fault zone (Figure 1b–c and Figure 2a and g).

In places, asymmetric reflections show limbs with the same 
dip direction and/or parallel to one another, thus suggesting  
recumbent to isoclinal geometries (Figure 3b). In addition, in 
places, asymmetric folds are arranged in packages (Figure 3a)  
separated by major WNW–ESE-striking mylonitic shear zones 
(Figure 2a–i and Figure 4a). These packages of asymmetric  
folds are interpreted as contractional, forward-dipping duplexes 
(see Koehl, 2021 for definition), some of which possibly  
evolved into antiformal thrust stacks (Figure 3a; Boyer &  
Elliott, 1982).

Overall in the study area, asymmetric folds indicate a domi-
nant top-SSW (Figure 5a) and subsidiary top-NNE transport  
directions in NE–SW-striking cross section (Figure 2a–i and  
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Figure 5. (a) Formation of mylonitic, WNW–ESE-striking (dominantly 
top-SSW) thrust systems during the late Paleoproterozoic 
Laxfordian (–Nagssugtoqidian) Orogen. (b) Reworking of the 
thrust systems into tens to hundreds of kilometers wide, NNE–
SSW-striking macrofolds during the Caledonian Orogeny and 
formation of NNE–SSW-striking mylonitic Caledonian thrusts 
and shear zones (e.g., West Faroe thrust – WFT) on the limbs of 
folded Paleoproterozoic thrust systems. (c) Post-Caledonian (i.e., 
Devonian–Permian and possibly Mesozoic–Cenozoic) reactivation 
and overprinting of Laxfordian thrust systems, including formation 
of listric brittle normal faults merging with Caledonian and folded 
Paleoproterozoic thrust systems at depth. Note that the mapped 
thrust systems were probably reactivated/overprinted during late 
Neoproterozoic and potentially Cenozoic contractional events.

Figure 3a–f). More specifically, at Wyville–Thomson Ridge 
and on the Faroe Platform (Figure 1c), asymmetric folds are  
SSW-verging in the northeastern and NNE-verging in the  
southwestern flanks of major, open, 30–40 km wide, WNW–ESE-
striking macrofolds, which affect the Top-basement reflection  
and overlying Mesozoic–early Cenozoic volcanosedimentary  
successions (Figure 2a–c). The opposite kinematics of the  
asymmetric folds suggest that they may have formed as parasitic 
folds. Together with the occurrence of symmetric folds within 
the hinge of the WNW–ESE-striking macrofolds (Figure 2a–c  

and Figure 3c), this suggests an overall limited amount of  
tectonic movement (probably up to a few tens of km).

NE–SW-striking Caledonian folds and thrusts. In NW–SE- 
trending along-strike section, the WNW–ESE-striking thrust 
systems and mylonitic shear zones are folded into open, up  
to 100 km wide, NE–SW-striking macrofolds that also involve  
both basement and Mesozoic–early Cenozoic volcanosedimentary 
successions (Figure 2e and Figure 5b). This is illustrated for 
example by the switch in dominant structural strike at the  
Munkagrunnur Ridge, i.e., top-east folds and shear zones 
in the west and top-NNE in the south (Figure 2f–g). These  
macrofolds include possible southeast- and northwest- 
verging asymmetric (parasitic?) folds and associated duplexes 
and minor brittle thrusts (Figure 2e) and their initiation must  
postdate the formation of WNW–ESE-striking thrust systems. 
Similarly to WNW–ESE-oriented structures, asymmetric folds  
on the limbs of, NE–SW-striking macrofolds also show  
opposite vergence (top-southeast and top-northwest; Figure 2e),  
thus also limiting tectonic movements to possibly a few tens  
of km.

North of the Faroe Islands, the northwest-leaning asymmetric  
folds and related gently- to moderately-southeast-dipping  
disruption surfaces suggest the occurrence of a shallow (up to 
2.0 seconds TWT) top-northwest shear zone in basement rocks  
(Figure 2i and Figure 5b). The shallow character and  
northeastward deepening geometry of the shear zone, i.e., mim-
icking the attitude of the underlying, WNW–ESE-striking West  
Faroe fault zone at depth (i.e., southeast-dipping because  
folded into a NNE-plunging macrofold) suggests that the West 
Faroe fault zone controlled the formation of the top-northwest  
shear zone (Figure 2i, Figure 4a–b, and Figure 5b).

The top-northwest sense of shear indicated by the northwest- 
verging folds is comparable to that of the Moine Thrust in  
northern Scotland (Coward, 1980; Coward, 1990; Coward  
et al., 1980; McClay & Coward, 1980; Ramsay, 1969; Soper &  
Wilkinson, 1975) and in adjacent offshore areas (e.g., Bird et al., 
2016). In addition, the seismic geometry of the top-northwest  
shear zones are similar to that of the Moine Thrust (Bird et al., 
2016). This suggests that the top-northwest shear zone and  
related asymmetric folds and macrofolds (Figure 2e and  
Figure 3e) initiated during the Caledonian Orogeny (Figure 5b).  
We name this fault the West Faroe Thrust.

Post-Caledonian normal faults and reactivation. The high-angle 
disruption north of the Faroe Islands offsets post-Caledonian  
sedimentary successions in a normal fashion and is therefore  
interpreted as a normal fault. The fault merges with the  
top-northwest West Faroe Thrust at depth (Figure 2i and  
Figure 5c). A similar relationship was documented along the 
offshore continuation of the Moine Thrust in the West Orkney  
Basin, where post-Caledonian (Devonian–Permian) brittle 
normal faults merge at depth with the Moine Thrust (Bird  
et al., 2016). In addition, folded portions of the WNW–
ESE-striking thrust systems west of the Faroe Islands (e.g., 
Wyville–Thomson fault zone below the SDRs) show Z-shaped 
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reflections within duplex structures (Figure 2e). These indi-
cate that folded portions of WNW–ESE-striking thrust systems 
were inverted during post-Caledonian extension (Figure 3d 
and f), and that Caledonian and pre-Caledonian structures con-
trolled the formation of subsequent post-Caledonian normal 
faults in the study area (Figure 5c).

Discussion
Timing of formation of WNW–ESE-striking thrust 
systems
The inversion of WNW–ESE-striking thrust systems and related 
structures (Figure 2a and e and Figure 3d and f) and their  
controlling relationship over Caledonian folds and thrusts  
and post-Caledonian normal faults (Figure 2i and Figure 4a–b)  
imply a pre-Caledonian origin for WNW–ESE-structures.  
Their strike possibly indicates that they formed during  
an episode of NE–SW-oriented contraction. Here, we review  
possible origins for the WNW–ESE-striking thrust systems  
off the Faroe Islands.

Late Paleoproterozoic origin. The 240 km wide, WNW–ESE- 
striking Ammassalik Belt in southeastern Greenland is 
the southeastern continuation of the late Paleoproterozoic  
Nagssugtoqidian Orogen in western Greenland (Bridgewater 
& Myers, 1979; Chadwick & Vasudev, 1989; Chadwick et al.,  
1989; van Gool et al., 2002; van Gool et al., 2005). The belt 
consists dominantly of steeply-dipping, strike-slip (dominantly 
sinistral), E–W-striking shear zones, which are crosscut by  
gently dipping, top-SSW shear zones and nappe stacks, which 
formed in the Paleoproterozoic under greenschist facies  
conditions (Bridgewater & Myers, 1979; Chadwick & Vasudev, 
1989; Chadwick et al., 1989; Kalsbeek et al., 1993). The regional 
strike and kinematics of structures in the Ammassalik Belt  
are comparable to those of the WNW–ESE-striking thrust  
systems off the Faroe Islands (Figure 2a–i, Figure 4a, and  
Figure 5a).

Smaller scale similarities include mylonitic fabrics (with sharp 
boundaries between intensely deformed and little deformed  
material) and imbricate structures, which are common both  
within the gently NNE-dipping shear zones of the Ammassalik  
Belt (Bridgewater & Myers, 1979) and within the major 
thrust systems west and southwest of the Faroe Islands (e.g.,  
asymmetric folds and duplexes separated by mylonitic thrust 
surfaces; Figure 2a–i). In addition, fold structures within shear  
zones in southeastern Greenland are of comparable size (hundred  
to a few hundreds of meters width and height) and geometry  
(south- to SSW-verging asymmetric, up to isoclinal; Chadwick 
& Vasudev, 1989, e.g., their figures 9 and 13) to those observed  
within the thrust systems in the study area (Figure 2a–i).  
Moreover, the broad occurrences of sheared basic dykes within 
the shear zones at the Ammassalik Belt (Bridgewater & Myers,  
1979) may very well be present in the study area too and 
help enhance the acoustic impedance contrast allowing the  
imaging of the intra-thrust shear fabrics on the interpreted  
seismic reflection data (e.g., amplitude contrast between the  
mylonitic shear zones and asymmetric folds).

In northern Scotland, Paleoproterozoic structures in the  
Lewisian Complex include WNW–ESE-striking, amphibolite- 
facies, mylonitic shear zones formed during the Laxfordian  
Orogeny, such as the several kilometer-wide, > tens of  
kilometers long Laxford (or Tarbet), Canisp (or Stoer),  
Gairloch, Diabaig, Ness, and Langavat shear zones (Attfield, 
1987; Beach, 1974; Coward et al., 1980; Coward & Park,  
1987; Evans, 1965). These are also tightly folded into WNW–
ESE-elongated, dome-shaped anticlines in the same way as the  
WNW–ESE-striking thrust systems on the Faroe Island  
continental shelf, which were reworked by NE–SW-striking  
Caledonian folds (Figure 2a–i and Figure 4a). In addition,  
the double vergence of contractional structures off the Faroe 
Islands, i.e., (dominantly) top-SSW and (subsidiarily) top-NNE  
transport direction (Figure 1b–c and Figure 2a–i), is consistent  
with the alternating top-SSW and top-NNE vergence of folds  
and shear zones onshore northern Scotland (e.g., top-NNE  
Laxford Shear Zone and top-SSW Diabaig Shear Zone;  
Figure 1c; Beach, 1974; Coward et al., 1980; Coward & Park, 
1987). Furthermore, some Laxfordian shear zones in northern  
Scotland also show top-SSW tectonic transport, e.g., Diabaig 
Shear Zone (Beach, 1974; Coward et al., 1980). Although most  
Laxfordian shear zones in northern Scotland display steep,  
subvertical geometries and evidence of (dominantly dextral) 
strike-slip movements (Coward & Park, 1987), these may reflect  
Caledonian reactivation/overprinting due to NW-SE-oriented  
Caledonian contraction and/or portions of Paleoproterozoic shear 
zones that were folded during the Caledonian Orogeny simi-
larly to the thrust systems off the Faroe Islands rather than exotic  
terranes or inliers (e.g., Friend et al., 2008; Storey et al., 2010;  
Figure 5b).

The strong similarities (e.g., strike, transport direction, fold and 
shear zone geometries, mylonitic fabrics) of structures in the  
Paleoproterozoic Ammassalik Belt in southeastern Greenland 
and coeval Laxfordian shear zones in northern Scotland  
with the mapped thrust systems off the Faroe Islands suggest 
that they are all part of the same (Laxfordian–Nagssugtoqidian)  
orogen. We therefore propose that the WNW–ESE-striking  
thrust systems west and southwest of the Faroe Islands formed  
during the late Paleoproterozoic (Figure 5a).

Considering the occurrence of WNW–ESE-striking Inverian 
(ca. 2.49–2.48 Ga) shear zones in northern Scotland, which  
are crosscut by parallel Laxfordian shear zones (e.g., Attfield, 
1987; Coward & Park, 1987), it is possible that the observed  
offshore thrust systems initiated during the Inverian Orogeny. 
However, more data and further work are needed to test this  
hypothesis. A late Paleoproterozoic age (ca. 1.8 Ga) for the pre-
sented thrust systems is therefore considered as a minimum age.

We note that the proposed relationship with late Paleoproterozoic 
Laxfordian–Nagssugtoqidian (and/or Inverian?) belts do not 
preclude a link of the mapped thrust systems with the Tornquist 
Zone and related fault segment, the Teisseyre–Tornquist Zone 
(Krzywiec et al. 2022; Mazur et al., 2015) and Sorgenfrei– 
Teisseyre Zone (Phillips et al., 2018; Ponikowska et al., 2024). 
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This would either mean that the Tornquist Zone formed along 
inherited late Paleoproterozoic thrusts, or that it had already 
been formed in the late Paleoproterozoic. The latter is possi-
ble considering the WNW–ESE strike of major late Paleopro-
terozoic Svecokarelian–Svecofennian structures in southern 
Baltica (Bergh et al., 2012; Nordgulen & Saintot, 2008;  
Saintot et al., 2011), i.e., parallel to the Tornquist Zone  
(Abramovitz et al., 1999; Cotte et al., 2002; Coward, 1990;  
Graversen, 2009; Hossein Shomali et al., 2006; Narkiewicz 
et al., 2015; Pegrum, 1984; Phillips et al., 2018), and the  
proximity (< 100 km) of the southernmost Svecokarelian– 
Svecofennian structures in surface outcrops to the Sorgenfrei– 
Tornquist Zone in southeastern Sweden (Saintot et al., 2011). 
In addition, southern Baltica was also the locus of the late 
Paleoproterozoic Transscandinavian Igneous Belt, which also 
consists of WNW–ESE-striking structures in southernmost 
Sweden and Denmark, e.g., possibly late Paleoprotero-
zoic WNW–ESE-striking gneissic fabrics on the island of  
Bornholm (Johansson et al., 2015), i.e., in the vicinity of the 
Sorgenfrei–Tornquist Zone.

Late Neoproterozoic origin. A possible event is the late  
Neoproterozoic episode of deformation recorded by  
amphibolite-facies, top-west movements along the east-dipping 
Barnhill Shear Zone in northwestern Scotland (Storey et al.,  
2004) and in the Walls Metamorphic Series in the Shetland 
Islands (Walker et al., 2020). Although the N–S strike and  
top-west kinematics of the Barnhill Shear Zone differs from 
that of the major WNW–ESE-striking thrust systems west and  
southwest of the Faroe Islands, they may reflect folding of the 
shear zone during the Caledonian Orogeny as observed for the  
thrust systems in the study area (Figure 2e, Figure 4a, and  
Figure 5b).

In eastern Europe, late Neoproterozoic deformation was recorded 
southwest of the WNW–ESE-striking Teisseyre–Tornquist Zone  
(Belka et al., 2003; Narkiewicz & Petecki, 2017; Zelazniewicz 
et al., 2009). In addition, the imaginary prolongation of the  
Sorgenfrei–Tornquist Zone to the west-northwest lines up with the  
Wyville–Thomson fault zone (Figure 1a–b). However, late Neopro-
terozoic deformation along the Teisseyre–Tornquist Zone is only  
preserved in exotic Gondwanan terranes in the southwest,  
and, thus far, the Tornquist Zone was only traced as far as the 
southern North Sea, where it controlled the formation and 
geometry of a series of WNW–ESE-striking, post-Caledonian 
rift basins (e.g., E–W-striking Farsund Basin; Figure 1b) and 
associated normal faults when it was reactivated as a major 
strike-slip fault (Pegrum, 1984; Phillips et al., 2018). More  
work is therefore needed to further examine this potential  
relationship.

Another fold-and-thrust belt that displays similar characteristics  
as those in the study area is the Timanian Orogen in northern  
Baltica. The Timanides are characterized by tens of km wide, 
tens of km thick, thousands of km long, dominantly top-SSW  
thrust systems, which extend from northwestern Russia to  
northern Norway, Svalbard and the western Barents Sea (Koehl 
et al., 2022; Koehl et al., 2023a; Koehl et al., 2023b; Koehl,  
2024a; Koehl & Stokmo, 2024; Olovyanishnikov et al., 
2000; Siedlecka & Siedlecki, 1967). However, the Timanian  

Orogen is located some distance (c. one thousand km) from the 
study area.

Thus, although a late Neoproterozoic origin is possible for  
the interpreted thrust systems, a formation during the late Pale-
oproterozoic is more probable. It is therefore probable that  
the Barnhill Shear Zone in northern Scotland represents 
(or formed along) a folded portion of an inherited late  
Paleoproterozoic thrust system. This suggests that late Neopro-
terozoic deformation reactivated and/or overprinted preexisting  
late Paleoproterozoic orogens and related structures.

Mid-Cenozoic origin. The positive relief at the location of  
major WNW–ESE- and NE–SW-striking macrofolds and thrust 
systems suggests recent activity along both structural trends. 
This is also suggested by the occurrence of multiple, high-
angle, shallow (1.5–4.0 seconds TWT) reverse faults at the 
Wyville–Thomson and Ymir ridges (Boldreel & Andersen, 
1993 their figures 4 and 5, Boldreel & Andersen, 1998 their  
figures 4 and 5; Johnson et al., 2005 their figure 6; Kimbell 
et al., 2016 their figure 2c; Stoker et al., 2015; Jolley et al.,  
2021; see Figure 1b–c for location). However, we did not find  
any convincing evidence of Cenozoic brittle reverse faulting  
within the Wyville–Thomson Ridge as suggested in Boldreel 
and Andersen (1993; 1998) and Kimbell et al. (2005; ramp- 
anticline complex).

The onlap of Cenozoic (Paleogene) volcanic lava flows and sedi-
mentary rocks (e.g., Boldreel & Andersen, 1993 their figures 4 
and 5, Boldreel & Andersen, 1998 their figures 4 and 5; 
Johnson et al., 2005 their figure 6; Kimbell et al., 2016 their  
figure 2c; Jolley et al., 2021) onto metamorphosed and intensely 
folded basement rocks at depth (present study; Figure 3a–f) may 
suggest some contraction-related uplift during Cenozoic times. 
However, it must be noted that this may simply suggest the exist-
ence of paleotopography rather than contraction and uplift, 
and that lava flows do not behave like sediments and thickness 
variations and onlap features of lava flow successions there-
fore do not necessarily have the same geological implications 
as for sedimentary successions. Notably, the impact of existing  
topography on the thickness of lava flows significantly differs 
from that on sediments (e.g., Ganci et al., 2018; Rizo, 2018;  
Richardson & Karlstrom, 2019). It is therefore possible that  
Paleogene lava flows in the study area mimic existing  
paleotopography onto which they were emplaced (e.g., lava  
flow sequence thickness variations in Jolley et al., 2021).

In addition, the existence of topographic relief at present  
seafloor along both WNW–ESE- and NE–SW-striking mac-
rofolds and thrust systems and the lack of ongoing tectonic 
contraction suggests that most (if not all) of present-day  
topography was partly inherited, possibly from the mid-
Paleozoic Caledonian Orogeny (present study) and/or 
partly related to isostatic adjustments (Smallwood, 2008).  
Magmatic-underplating-related uplift in the Faroe–UK region 
during the Cenozoic was ruled out (Smallwood, 2008). Together 
with the absence of pervasive contractional deformation  
structures within Cenozoic volcanosedimentary successions 
(i.e., not as pervasive as suggested by Boldreel & Andersen, 
1993; Boldreel & Andersen, 1998; Johnson et al., 2005;  
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Kimbell et al., 2016; and Stoker et al., 2015; Figure 2a–i), this 
indicates that Cenozoic contraction/transpression was, at most, 
mild if any. Thus, a Cenozoic origin for the observed WNW–ESE-
striking thrust systems and related structures in metamorphosed  
basement rocks at depth (e.g., asymmetric folds, duplexes,  
mylonitic shear zones) can be ruled out (Figure 2a–i and  
Figure 3a–f).

Nevertheless, it is possible that some Cenozoic contractional 
structures are present in the study area (e.g., Ymir Ridge;  
Boldreel & Andersen, 1993; Boldreel & Andersen, 1998;  
Johnson et al., 2005; Kimbell et al., 2016), the strike of which 
matches that of the interpreted WNW–ESE-striking thrust 
systems (Figure 1b–c, Figure 2a–i, and Figure 4a), and that  
some of the topography at the structural highs in the study 
area is Cenozoic (e.g., Stoker et al., 2005; Stoker et al., 
2013). Thus, the proposed late Paleoproterozoic thrust 
systems and their Caledonian overprints (Figure 5a–b)  
may have been mildly reactivated/overprinted during Cenozoic 
contraction/transpression.

By contrast, there is no evidence for extensional reactiva-
tion at Wyville–Thomson Ridge (Figure 2a–i). Hence, we may  
safely dismiss the presumed influence of an early Paleocene  
rifting event (Ziska & Varming, 2008) in shaping the ridge and  
related structures, and an origin of the ridge along an inverted  
normal fault (Boldreel & Andersen, 1993).

Influence on NW–SE-striking post-Caledonian transfer 
zones and tectonosedimentary evolution
The interpreted WNW–ESE-striking thrust systems align 
with post-Caledonian transfer zones on the continental shelf,  
e.g., the Wyville–Thomson fault zone aligns with the Sula  
Transfer Zone in the southeast (Bird et al., 2016) and the south-
eastward prolongation of the Munkagrunnur fault zone coin-
cides with the Judd Fault (also Judd Transfer Zone; Lamers & 
Carmichael, 1999; Stoker et al., 2018; Sørensen, 2003; 
Figure 1c). The NW–SE-striking Sula transfer zone supposedly 
accommodates a switch of polarity of the main post-Caledonian, 
Devonian–Triassic normal faults, e.g., between the southeast- 
dipping Sula–Sgier Fault in the southwest and the northwest-
dipping Shetland Spine Fault in the northeast (Bird et al., 
2016; Figure 1c). Basement-seated thrust systems represent  
outstanding, (at least) hundreds of kilometers long, tens of 
kilometers wide, possibly tens of kilometers thick zones of  
weakness in the crust (Figure 1a–c, Figure 2a–i, and Figure 4a) 
and it is therefore probable that they have had a considerable  
impact on the formation and evolution of subsequent struc-
tures. In the present case that is on accommodating switches of  
polarity of post-Caledonian faults as transfer zones (Figure 5c).  
It is therefore proposed that the interpreted, WNW–ESE- 
striking, late Paleoproterozoic thrust systems continue southeast  
of the Faroe Islands, where they may be located at shallower 
crustal level and directly controlled the formation and evolution  
of the post-Caledonian transfer zones, as previously specu-
lated by Kimbell et al. (2005). This is further supported by the  
occurrence of multiple NW–SE-striking transfer zones in north-
ern Scotland (e.g., North Coast Transfer Zone), the Faroe 

Islands, and between the Faroe Islands and the Shetland Islands 
(Bird et al., 2016; Kimbell et al., 2005; Lamers & Carmichael, 
1999; Moy & Imber, 2009; Rumph et al., 1993; Stoker et al., 
2018; Sørensen, 2003; Wilson et al., 2010; Figure 1c), thus 
suggesting the existence of widespread WNW–ESE-striking 
fabrics in basement rocks in the region (Figure 5c).

An interesting feature is the rectangular basin shape created 
by the NNE-dipping Judd Fault and Rona Fault at the south-
ern edge of the Faroe–Shetland Basin. The former paral-
lels the studied potential late Paleoproterozoic thrust systems, 
whereas the latter parallels Caledonian structures such as the 
Moine Thrust (Figure 1b–c). It is therefore possible that the  
rectangular basin geometry is controlled by the two preexisting 
structural trends at depth.

Previous works have suggested various episodes of post- 
Caledonian uplift and erosion and rifting in the northeastern 
Atlantic region, including coeval contraction and extension at 
times (e.g., Dean et al., 1999; Lamers & Carmichael, 1999; 
Stoker, 2016; Stoker et al., 2017; Stoker et al., 2018). It is of 
course possible that the late Paleoproterozoic thrust systems 
described herein were mildly reactivated and/or overprinted 
during these events. However, this is not clear from the data 
analyzed. As suggested by Dean et al. (1999) and Stoker 
(2016), a possible explanation is that the studied WNW–
ESE-striking thrust systems were reactivated as strike-slip 
faults, which may explain the possibly occasionally coeval  
timing of contraction and extension along the margin. This 
would however be challenging to identify if the structures 
were only mildly reactivated/overprinted. Nevertheless, there 
should probably be clues such as high-angle to sub-vertical 
disruption surfaces reflecting truncation of the structures by 
recent strike-slip faults. This is not obvious from the data 
analyzed. More detailed work should therefore be performed 
in the Faroe–Shetland Basin area, where the relative abun-
dance of exploration wells and seismic reflection data (includ-
ing 3D data) would provide a more reliable tie between 
tectonic movements and sedimentary deposition along spe-
cific structures. A serious limitation might be the lack of deep 
seismic reflection data and poor seismic imaging below the 
Cenozoic volcanic successions in this area, thus impeding 
the correlation of shallow post-Caledonian brittle faults and 
sedimentary strata with deep, basement-seated structures.

The lack or mild character of post-Caledonian reactivation/
overprinting of the studied WNW–ESE-striking late Paleo-
proterozoic thrust systems is in line with observations along 
the potentially related Tornquist Zone. For example, Phanero-
zoic sedimentary strata above the Teisseyre–Tornquist Zone are 
generally not disturbed by post-Caledonian tectonic events, 
dipping gently to the southwest (Mazur et al., 2015). None-
theless, the Tornquist Zone and shows evidence of mild Late 
Cretaceous–early Cenozoic contraction (e.g., Ponikowska 
et al., 2024), i.e., possibly similar to the study structures. 
Other potential episodes of mild reactivation along the 
Teisseyre–Tornquist Zone include Devonian–Mississippian 
extension, Variscan contraction in the Pennsylvanian, and 
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Permian–Triassic extension (Krzywiec et al., 2022), the former 
and latter of which coincide with well-established extensional 
events in the study area off the Faroe Islands and northern 
Scotland.

Implications for the Orogenic Bridge Theory and 
breakup in the northeastern Atlantic
The data suggest that late Paleoproterozoic thrust systems 
west of the Faroe Islands continue below the SDRs at the  
Iceland–Faroe Ridge, i.e., past the presumed continent–ocean 
transition (Figure 2e). This suggests that the Iceland–Faroe Ridge 
consists (at least partly) of thinned, orogenic, continental crust  
(Figure 2e and Figure 3d), thus supporting recent works  
(e.g., Foulger et al., 2020; Foulger et al., 2021).

The present results also support the Orogenic Bridge  
Theory, a recent concept which states that rifting style is  
controlled by preexisting orogens (Koehl & Foulger, 2024).  
Rift-parallel orogens facilitate breakup, whereas rift-orthogonal  
orogens delay or impede breakup and localize the formation of 
major transform faults (Koehl & Foulger, 2024). This concept 
and inconsistencies around the nature of the crust offshore  
(Darbyshire et al., 1998; Foulger, 2006; Foulger et al., 2003; 
Foulger et al., 2020; Foulger et al., 2021; Menke et al., 1995)  
were used to suggested the existence of elongate ribbons of  
(hyper-) extended orogenic crust between continents at the  
location of preexisting, rift-orthogonal orogens, e.g., at the 
late Paleoproterozoic Laxfordian–Nagssugtoqidian Orogen at 
the Greenland–Iceland–Faroe Ridge (Koehl & Foulger, 2024).  
The formation of major transform faults along preexisting, 
rift-orthogonal, orogenic structures would explain the rework-
ing of late Paleoproterozoic Laxfordian shear zones in 
northern Scotland into subvertical strike-slip structures 
(Figure 5c).

The WNW–ESE-striking Laxfordian orogen (thickened conti-
nental crust) and related structures at the Faroe margin and their 
counterparts in southeastern Greenland were unsuitably oriented 
to accommodate thinning of the crust during rifting of 
the northeastern Atlantic because the main structures strike  
parallel to the extension direction. In addition, their low-angle 
geometry was unsuitable to accommodate transform fault-
ing. Thus, a significant delay should be expected for continen-
tal breakup at the Greenland–Iceland–Faroe Ridge compared 
with adjacent areas along the rift axis.

Plume activity may very well be responsible for the intense 
magmatism recorded at the conjugate margin pair (southeast-
ern Greenland and Faroe Islands) and in Iceland (Dahl-Jensen 
et al., 1997; Geoffroy et al., 2022; Jolley et al., 2021; 
Layfield et al., 2023; Millett et al., 2016; Walker et al., 2022). 
However, should the studied late Paleoproterozoic structures 
extend farther offshore than what is presented in Figure 2e, 
the anomalously thick character of the crust under the  
Greenland–Iceland–Faroe Ridge may then be explained by the 
existence of a (continuous?) rift-orthogonal ribbon (i.e., continu-
ous orogenic bridge; Koehl & Foulger, 2024; Figure 6a–d) or by  
several isolated blocks of continental crust entrapped by extensive 

magmatism (e.g., rifted oceanic magmatic plateau; Coffin & 
Eldholm, 1992; Rime et al., 2024) or by several microconti-
nents similar to the Jan Mayen Microcontinent Complex and all 
rifted from one another and separated by regular, Penrose-like 
oceanic crust (e.g., Blischke et al., 2016; Bott, 1985; Johnson 
& Heezen, 1967). Since the thickness of the Greenland– 
Iceland–Faroe Ridge is consistently higher than 20 km from 
southeastern Greenland to the Faroe shelf, a scenario with  
several microcontinents separated by Penrose-like oceanic 
crust is unlikely. Ongoing work using seismic reflection data 
within the Greenland–Iceland–Faroe Ridge suggests that the late  
Paleoproterozoic structures described in the present study 
extend at least to eastern Iceland (Koehl et al., 2025) and, thus, 
that the Greenland–Iceland–Faroe Ridge may be a continuous 
orogenic bridge (Figure 6a–d; Koehl & Foulger, 2024), poten-
tially developing into a rifted oceanic magmatic plateau (e.g., 
Rime et al., 2024), i.e., the early phase towards its evolution to 
a ruptured orogenic bridge.

A continuous ribbon of continental crust between southeast-
ern Greenland, Iceland, and the Faroe Islands is compatible 
with seafloor spreading at the Reykjanes Ridge and Kolbeinsey 
Ridge and with plume magmatism. The orogenic bridge may 
have formed during the late Paleoproterozoic Laxfordian– 
Nagssugtoqidian Orogeny (Figure 6a) and was then 
reworked and tightened during NW–SE-oriented Caledonian 
contraction (Figure 6b). The crust was then thinned during sev-
eral ensuing episodes of extension, e.g., late–post-orogenic 
collapse in the Devonian and Permian–Triassic and Jurassic– 
Cretaceous rifting (Figure 6c). While relatively thinner crust 
northeast and southwest of Iceland was broken up, highly 
thickened orogenic crust at the Greenland–Iceland–Faroe 
Ridge is still being thinned and stretching together with sea-
floor spreading at the adjacent Reykjanes and Kolbeinsey ridges 
(Figure 6d; Koehl & Foulger, 2024).

This potentially has major implications for offshore areas  
where the nature of the crust is disputed, e.g., Mozambique 
Ridge (König & Jokat, 2010; Ryzhova et al., 2022), Madagascar  
Ridge (Jacques et al., 2019; O’Connor et al., 2019; Sato et al., 
2022), Rio Grande Ridge (Hoyer et al., 2022; Ventura Santos et al., 
2019), Walvis Ridge (Fromm et al., 2017a; Fromm et al., 2017b;  
Hoyer et al., 2022), Mauritius Islands (Torsvik et al., 2013), 
and the Chagos–Laccadive Ridge (Ajay et al., 2010; Nair et al.,  
2013). Notably, the present study shows a new way to map  
very old and deep orogenic systems using high-resolution  
seismic reflection data. The technique presented here may be 
used to track the offshore continuation of major preexisting  
orogenic structures into contested continental blocks, e.g., of 
the East African–Antarctica Orogen (Abdelsalam et al., 1998; 
Armistead, 2019; Bauer & Siemes, 2004; Boger et al., 2015;  
Collins et al., 2000; Collins et al., 2012; De Waele et al.,  
2011; Fritz et al., 2013; Golynski & Jacobs, 2001; Hamimi  
et al., 2022; Jacobs, 1999; Johnson, 2014; Key et al., 1989; 
Mosley, 1993; Quick & Bosch, 1990; Ruppel et al., 2015;  
Shackleton, 1996; Stern & Kröner, 1993) in the Madagascar and 
Mozambique ridges and Kuunga Orogen (Axelsson et al., 2020; 
Bingen et al., 2009; Brandt et al., 2014; Collins et al., 2003; 

Page 23 of 45

Open Research Europe 2024, 4:181 Last updated: 13 DEC 2024



Figure 6. Model showing the development of an orogenic bridge at the Greenland–Iceland–Faroe Ridge through (a–b) two orogeneses 
perpendicular to one another ((a) WNW–ESE-striking Laxofordian–Nagssugtoqidian Orogen and (b) NE–SW-striking Caledonian Orogen), 
(c) repeated extension along extensional faults and detachments and inherited orogenic structures, e.g., in the Devonian, Permian–Triassic, 
and Jurassic–Cretaceous, and (d) breakup along inherited, reactivated and/or overprinted orogenic structures in the Cenozoic. Note that 
any number of additional orogeneses and/or extensional collapse/rifting may be added in between these events. Abbreviations: GIFR: 
Greenland–Iceland–Faroe Ridge; TFZ: Tjörnes fault zone.
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Dharmapriya et al., 2015; Ghosh et al., 2004; He et al., 2018; 
Hirayama et al., 2020; Sacchi et al., 2000; Srinivasan &  
Rajeshdurai, 2010; Tucker et al., 2007; Viola et al., 2008) in the  
Rio Grande, Walvis, and Laccadive–Chagos ridges.

It has also potential applications for the definition of the term  
“terrane” and for the tectonics of presumed terranes in 
onshore areas, e.g., in the northern UK, which were thus far  
thought to have been separated by oceanic domains prior to 
being accreted during major orogenic events. For example, the  
Hebridean Craton in northern Scotland is believed to have  
been accreted to Avalonia during the Grampian and Caledo-
nian orogenies (Holdsworth et al., 2012; Watson & Dunning, 
1979). The possible relationship of the studied late Paleoprot-
erozoic thrust systems with the Tornquist Zone challenges this 
paradigm by suggesting that the two cratons as well as Baltica 
may have been one and the same at least since the late 
Paleoproterozoic. The various terranes would thus reflect the 
strong heterogeneities in rock types and deformation intensity 
(including metamorphic grade and structure types) at various 
crustal levels within a single craton.

Conclusions
1)    The continental shelf off the Faroe Islands is cross-

cut by pre-Caledonian, tens of km wide, (at least)  
hundreds of km long, WNW–ESE-striking, dominantly  
top-SSW, pre-Caledonian thrust systems.

2)    The dominant top-SSW kinematics of the WNW–
ESE-striking thrust systems off the Faroe Islands  
suggest affinities with Paleoproterozoic orogens, e.g., 
the Ammassalik Belt in southeastern Greenland and the 
contemporaneous Svecokarelian–Svecofennian Orogen 
in Scandinavia, and with the Tornquist Zone in  
eastern Europe and the southern North Sea.

3)    During the Caledonian Orogeny, the thrust systems 
were reworked into open, NE–SW-striking folds and  
controlled the formation of Caledonian thrusts and  
shear zones analogous to the Moine Thrust.

4)    The late Paleoproterozoic thrust systems were possi-
bly reactivated and/or overprinted during late Neopro-
terozoic and/or various episodes of post-Caledonian 
extension and contraction (transpression?). However, 
post-Caledonian reactivation/overprinting (if any) was 
of limited intensity.

5)    The present work supports the Orogenic Bridge Theory 
by supporting the theory that the Greenland–Iceland–Faroe 

Ridge consists, at least partly, of thinned orogenic  
continental crust.
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Tectonics, refer 2, for current views on TTZ and STZ). 
 
These zones have different crustal characteristics and different geological histories. Also, their 
location is different than what is shown on Fig. 1. 
 
Taking this into account, text on comparison of structures mapped in broad  Faroe–Shetland 
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region and the “Tornquist Zone” needs to be modified, quite substantially in my opinion. 
 
(2) page 2: Authors claim that they used “newly established methodology” while in “Methods” 
chapter fairly standard workflow of  seismic reflection data interpretation is described, it would be 
good to explicitly describe new / novel aspect of seismic interpretation applied in this study 
 
(3) page 2: instead “strong seismic signal of the lavas” use “ strong attenuation of seismic energy 
by lavas” or something along those lines 
 
(3) link from age 6 https://doi.org/10.18710/780M9P does not work 
 
(4) page 16: Authors claim that  “ Structures in overlying post-Caledonian sedimentary and igneous 
rocks are irrelevant to the present study” - this is a bit puzzling as  in this paper there are 
numerous references to the post-Caledonian events, this should be rephrased and better clarified 
 
(5) page 16: it would be good to add figure with well tie instead of reference to other papers; also, 
location of wells used in this study should be shown on the map 
 
(6) page 22:  fairly well seismically documented example of post-Caledonian multiple reactivation 
along the TTZ could be found in Krzywiec et al. 2022, Together but separate: decoupled Variscan 
(late Carboniferous) and Alpine (Late Cretaceous–Paleogene) inversion tectonics in NW Poland, 
Solid Earth, refer 3 
 
References 
1. Mazur S, Mikolajczak M, Krzywiec P, Malinowski M, et al.: Is the Teisseyre‐Tornquist Zone an 
ancient plate boundary of Baltica?. Tectonics. 2015; 34 (12): 2465-2477 Publisher Full Text  
2. Ponikowska M, Stovba S, Mazur S, Malinowski M, et al.: Crustal‐Scale Pop‐Up Structure at the 
Junction of Two Continental‐Scale Deformation Zones in the Southern Baltic Sea. Tectonics. 2024; 
43 (4). Publisher Full Text  
3. Krzywiec P, Kufrasa M, Poprawa P, Mazur S, et al.: Together but separate: decoupled Variscan 
(late Carboniferous) and Alpine (Late Cretaceous–Paleogene) inversion tectonics in NW Poland. 
Solid Earth. 2022; 13 (3): 639-658 Publisher Full Text  
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Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 26 Nov 2024
Jean-Baptiste Koehl 

Dear Prof. Krzywiec, thank you very much for your input on the manuscript, it is highly 
appreciated. Here is our reply to your comments. We hope the changes we implemented 
improve the shortcomings of the manuscript highlighted by your comments and 
suggestions. Please do not hesitate to contact us shall this not be the case for some 
comments.   Comments by the reviewer 
Comment 1: (1). Authors use term “Tornquist Zone” to describe zone of deformation known 
from S Scandinavia, Poland, and W Ukraine – however,  there is no single Tornquist Zone, 
instead two regional tectonic zones are distinguished: Teisseyre-Tornquist Zone in Poland 
and W Ukraine, and SorgenfreiTornquist Zone in S Scandinavia (cf. Mazur et al., 2015, Is the 
Teisseyre-Tornquist Zone an ancient plate boundary of Baltica? Tectonics,  refer 1, and 
Ponikowska et al., 2024, Crustal‐Scale Pop‐Up Structure at the Junction of Two Continental‐
Scale Deformation Zones in the Southern Baltic Sea, Tectonics, refer 2, for current views on 
TTZ and STZ). These zones have different crustal characteristics and different geological 
histories. Also, their location is different than what is shown on Fig. 1. Taking this into 
account, text on comparison of structures mapped in broad  Faroe–Shetland region and the 
“Tornquist Zone” needs to be modified, quite substantially in my opinion. 
Response: Agreed. The authors of the present manuscript concede that the location, 
geometry, and name of the various segments of the Tornquist Zone are not are accurate as 
they should be. Some specific details on the tectonic evolution of the Tornquist Zone and its 
various segments are indeed relevant to include to the present manuscript and the authors 
of the present manuscript thank the reviewer for calling the attention to the work by Mazur 
et al. (2015), Krzywiec et al. (2022), and Ponikowska et al. (2024). The authors of the present 
manuscript also concede that a scenario in which a post-Paleoproterozoic Tornquist Zone is 
controlled by late Paleoproterozoic fabrics and structures should be discussed in the 
present manuscript. Changes: Redesigned Figure 1a–b with the correct location and 
geometry of the various segments of the Tornquist Zone, the Sorgenfrei–Tornquist and 
Teisseyre–Tornquist zones. In addition, added “The geometry and location of the 
Sorgenfrei–Tornquist Zone and Teisseyre–Tornquist Zone are from Phillips et al. (2018), 
Krzywiec et al. (2022), and Ponikowska et al. (2024).” and related abbreviations to the caption 
of Figure 1b. Also separated the abbreviations for Figure 1b and Figure 1c in the figure 
caption. Rewrote the last two sentences of the Abstract into “The thrust systems also align 
with the Tornquist Zone in eastern Europe and the North Sea, thus suggesting either that 
they controlled the formation of the Tornquist Zone or a possibly much longer 
(Paleoproterozoic?) tectonic history for the Tornquist Zone. Conclusions The Faroe Island 
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margin is crosscut by late Paleoproterozoic Laxfordian–Nagssugtoqidian thrust systems, 
which controlled further tectonic development of the margin” to account for the case 
scenario in which the Tornquist Zone formed along preexisting Paleoproterozoic thrust 
systems. Rewrote the sixth paragraph in the “Late Paleoproterozoic origin” sub-section into 
“We note that the proposed relationship with late Paleoproterozoic 
Laxfordian–Nagssugtoqidian (and/or Inverian?) belts do not preclude a link of the mapped 
thrust systems with the Tornquist Zone and related fault segment, the Teisseyre–Tornquist 
Zone ( Mazur et al., 2015; Krzywiec et al. 2022) and Sorgenfrei–Teisseyre Zone ( Phillips et al., 
2018; Ponikowska et al., 2024). This would either mean that the Tornquist Zone formed 
along inherited late Paleoproterozoic thrusts, or that it had already been formed in the late 
Paleoproterozoic. The latter is possible considering the WNW–ESE strike of major late 
Paleoproterozoic Svecokarelian–Svecofennian structures in southern Baltica ( Bergh et al., 
2012; Nordgulen & Saintot, 2008; Saintot et al., 2011), i.e., parallel to the Tornquist Zone ( 
Abramovitz et al., 1999; Cotte et al., 2002; Coward, 1990; Graversen, 2009; Hossein Shomali 
et al., 2006; Narkiewicz et al., 2015; Pegrum, 1984; Phillips et al., 2018), and the proximity (< 
100 km) of the southernmost Svecokarelian–Svecofennian structures in surface outcrops to 
the Sorgenfrei–Tornquist Zone in southeastern Sweden ( Saintot et al., 2011). In addition, 
southern Baltica was also the locus of the late Paleoproterozoic Transscandinavian Igneous 
Belt, which also consists of WNW–ESE-striking structures in southernmost Sweden and 
Denmark, e.g., possibly late Paleoproterozoic WNW–ESE-striking gneissic fabrics on the 
island of Bornholm ( Johansson et al., 2015), i.e., in the vicinity of the Sorgenfrei–Tornquist 
Zone.” and the second paragraph in the “Late Neoproterozoic origin” sub-section into “In 
eastern Europe, late Neoproterozoic deformation was recorded southwest of the WNW–ESE-
striking Teisseyre–Tornquist Zone ( Belka et al., 2003; Narkiewicz & Petecki, 2017; 
Zelazniewicz et al. 2009). In addition, the imaginary prolongation of the 
Sorgenfrei–Tornquist Zone to the west-northwest lines up with the Wyville–Thomson fault 
zone ( Figure 1a–b). However, late Neoproterozoic deformation along the 
Teisseyre–Tornquist Zone is only preserved in exotic Gondwanan terranes in the southwest, 
and, thus far, the Tornquist Zone was only traced as far as the southern North Sea, where it 
controlled the formation and geometry of a series of WNW–ESE-striking, post-Caledonian 
rift basins (e.g., E–W-striking Farsund Basin; Figure 1b) and associated normal faults when it 
was reactivated as a major strike-slip fault ( Pegrum, 1984; Phillips et al., 2018). More work is 
therefore needed to further examine this potential relationship.”. Also added reference to 
Mazur et al. (2015), Krzywiec et al. (2022), and Ponikowska et al. (2024) to the reference list. 
Finally, added another paragraph at the end of the “Influence on NW–SE-striking post-
Caledonian transfer zones and tectonosedimentary evolution” section: “The lack or mild 
character of post-Caledonian reactivation/overprinting of the studied WNW–ESE-striking late 
Paleoproterozoic thrust systems is in line with observations along the potentially related 
Tornquist Zone. For example, Phanerozoic sedimentary strata above the 
Teisseyre–Tornquist Zone are generally not disturbed by post-Caledonian tectonic events, 
dipping gently to the southwest ( Mazur et al., 2015). Nonetheless, the Tornquist Zone and 
shows evidence of mild Late Cretaceous–early Cenozoic contraction (e.g., Ponikowska etal., 
2024), i.e., possibly similar to the study structures.” to further illustrate the resemblance of 
the tectonic evolution of the Tornquist Zone and the studied structures off the Faroe 
Islands.   
 
Comment 2: (2) page 2: Authors claim that they used “newly established methodology” while 
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in “Methods” chapter fairly standard workflow of  seismic reflection data interpretation is 
described, it would be good to explicitly describe new / novel aspect of seismic 
interpretation applied in this study. 
Response: Agreed. The sentence is poorly phrased and this is not a new methodology and 
the newly established facies/character of major, mylonitic thrust systems on seismic 
reflection data. Changes: Rewrote the end of the sentence into “using the newly established 
seismic facies of major thrust systems”. Also shortened the abstract to 300 words.   
 
Comment 3: (3) page 2: instead “strong seismic signal of the lavas” use “ strong attenuation 
of seismic energy by lavas” or something along those lines. 
Response: Agreed. Changes: Rewrote the targeted phrase in the plain language summary 
into “strong attenuation of seismic energy by lavas”.   
 
Comment 4: (3) link from age 6 https://doi.org/10.18710/780M9P does not work. 
Response: Agreed. The main author of the present manuscript presents his apologies to the 
reviewer. The dataset, though ready to be published, was never submitted. Changes: 
Submitted the dataset to the repository. It should now be accessible.   
 
Comment 5: (4) page 16: Authors claim that  “ Structures in overlying post-Caledonian 
sedimentary and igneous rocks are irrelevant to the present study” - this is a bit puzzling as  
in this paper there are numerous references to the post-Caledonian events, this should be 
rephrased and better clarified. 
Response: Agreed. The sentence is poorly phrased. The authors of the present manuscript 
simply wanted to emphasize that the main structures investigated in the present study are 
pre-Caledonian (possibly late Paleoproterozoic) and Caledonian structures and were only 
mildly (if at all) reworked during post-Caledonian events. Post-Caledonian structures and 
tectonism therefore have little implications for the geometry of the studied structures. The 
authors of the present manuscript concede that this should be better specified. Changes: 
The paragraph was rewritten into “Structures in overlying post-Caledonian sedimentary and 
igneous rocks only mildly (if at all) rework the studied pre-Cretaceous structures and, thus, 
have little impact on the geometry of the studied structures. Post-Caledonian structures 
were therefore not investigated, except where they showed a clear relationship with the 
studied basement-seated structures (e.g., merging, truncating, and/or reworking).”.   
 
Comment 6: (5) page 16: it would be good to add figure with well tie instead of reference to 
other papers; also, location of wells used in this study should be shown on the map 
Response: Partly agreed. The well to which the interpretation was tied is displayed in Figure 
1c. This was not specified in the text. However, the well tie was performed and published in 
a previous study (Jolley et al., 2021). The seismic reflection data used to tie to data are not 
part of the present study and require other permission/license, which are not covered by 
the present manuscript. Thus, the well tie and related seismic reflection data cannot be 
added to the present study. They are nevertheless available in figure 19 in Jolley et al. 
(2021). Changes: Added “( Figure 1c) in the fourth paragraph in the Method chapter.   
 
Comment 7: (6) page 22:  fairly well seismically documented example of post-Caledonian 
multiple reactivation along the TTZ could be found in Krzywiec et al. 2022, Together but 
separate: decoupled Variscan (late Carboniferous) and Alpine (Late Cretaceous–Paleogene) 
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inversion tectonics in NW Poland, Solid Earth, refer 3. 
Response: Agreed. 
 
See response to comment 1. Changes: See response to comment 1. Also added the 
following sentence at the end of the newly added paragraph in the “Influence on NW–SE-
striking post-Caledonian transfer zones and tectonosedimentary evolution” section: “Other 
potential episodes of mild reactivation along the Teisseyre–Tornquist Zone include 
Devonian–Mississippian extension, Variscan contraction in the Pennsylvanian, and 
Permian–Triassic extension (Krzywiec et al., 2022), the former and latter of which coincide 
with well-established extensional events in the study area off the Faroe Islands and 
northern Scotland.” to further specify potential resemblance in the tectonic evolution of the 
Faroe Islands and northern Scotland region with the Tornquist Zone in eastern Europe.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 04 September 2024
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© 2024 Stoker M. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Martyn Stoker   
The University of Adelaide, Adelaide, South Australia, Australia 

Review of Koehl et al. – Impact of sub-basalt thrust systems on the Faroe continental shelf 
for the late Paleoproterozoic–Cenozoic tectonic evolution of the margin 
 
It has long been considered that the cross-cutting structural grain of the pre-Cenozoic basement 
of the Faroe–Shetland region reflects the interaction of long-lived NE- (Caledonian)and NW-
trending (Precambrian) lineaments, which were periodically and variably reactivated throughout 
the breakup of Pangaea (cf. Ritchie et al. 2011 and references therein). However, this new article 
by Koehl et al. identifies and describes the character of these features – interpreted as late 
Paleoproterozoic margin-orthogonal thrust systems – as observed on seismic reflection data, 
arguably for the first time in this region, enabling a potential insight into the evolution of this 
structural framework.  
 
The paper is very well written and presented, with the structural analysis greatly benefitting from 
the availability of reprocessed seismic reflection data. This allowed for the interpretation of the 
seismic character of the deep basement of the Faroe–Shetland region, including beneath the thick 
Cenozoic lava flows that characterise the Faroe Islands continental margin. Although seismic 
interpretation always carries a degree of ambiguity, the structural interpretation in this paper is 
backed up by a significant knowledge of the internal geometry of thrust systems thereby enabling 
the potential seismic recognition of key criteria, such as mylonitic shear surfaces, asymmetric folds 
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and their vergence direction, duplexes, and minor brittle thrusts. Thus, at the very least, the paper 
provides an important model that should be considered and tested in any future studies in this 
region.  
 
Comments 
 
My main experience in the Faroe–Shetland region concerns its late Palaeozoic–Cenozoic 
tectonostratigraphic development (Stoker et al. 2017). Based on this, I have a couple of general 
comments for the authors to think about:  
 
1.    Whereas the authors’ state (page 16, para 2) that ‘Structures in the … post-Caledonian 
sedimentary and igneous rocks are irrelevant to the present study…’, I would argue that the post-
Caledonian rock record in the Faroe–Shetland region is  entirely relevant when considering the 
formation/longevity of the basement structural system. Key observations from my studies include:

It is well established that the eastern and southern margin of the Faroe-Shetland Basin and 
its component sub-basins have been controlled by the NE-trending Rona Fault and the 
WNW-trending Judd Fault throughout its development (Lamers & Carmichael 1999; Stoker et 
al. 2018). 

○

This basin configuration and its infill has been developing since at least the Jurassic (and 
possibly the Permo-Triassic) (Ritchie et al. 2011; Stoker et al. 2017). 

○

The Cretaceous stratigraphic record of the Faroe-Shetland Basin reveals a sedimentary 
succession that is punctuated by episodes of uplift, erosion and contractional deformation 
that can be linked to a pattern of coeval extension and compression consistent with intra-
plate strike-slip tectonism (Dean et al. 1999; Stoker 2016). 

○

This tectonic instability continued throughout the Paleocene and Eocene development of 
the basin, spanning the breakup of the SE Greenland and Faroe–Shetland conjugate 
margins (Stoker et al. 2018). 

○

The structural disposition of the Eocene sediments and the onlap pattern of the overlying 
Oligocene–Neogene succession indicates that the present-day deep-water bathymetry of 
the Faroe–Shetland region most probably developed in the late Palaeogene–Early Neogene 
interval (Stoker et al. 2005, 2013). Whether this is a result of contraction or loss of dynamic 
support following plate breakup remains unclear. 

○

This history of basin development and sedimentation preserved in the Faroe-Shetland Basin is a 
clear record of episodic reactivation throughout the Mesozoic and Cenozoic of an existing 
underlying structural framework. Whereas I have offered explanations for the above observations 
in my own publications, I am intrigued to wonder how they might relate to this new model. Thus, I 
would ask the authors to consider the post-Caledonian stratigraphic record as one way of testing 
their model. Based on this tectonostratigraphic framework, it is obvious that any Mid-Cenozoic 
contraction that might be linked to their WNW–ESE-striking thrust system is just a response to 
episodic reactivation (as concluded in the paper). Perhaps the Discussion could be modified so 
that a subsection on 'post-Caledonian reactivation' highlights the significance of the NE- and NW-
trending lineaments to tectonostratigraphic development. The current 'Mid-Cenozoic origin' text 
(page 21) might also form part of this subsection. Having said that, the abundance of inversion 
domes generated and episodically growing throughout the Cenozoic (Johnson et al. 2005; Ritchie 
et al. 2008) is noteworthy and clearly reflects a protracted phase of contraction/transpression 
either side of plate breakup. Perhaps this suggests that Cenozoic compression in the 
Faroe–Shetland region is more related to oceanic spreading. Any thoughts? 
 

Open Research Europe

 
Page 38 of 45

Open Research Europe 2024, 4:181 Last updated: 13 DEC 2024



2.    It would be useful to have a paragraph that considers the general implications of this model 
for the evolution of the NE Atlantic region in general, especially regarding plate breakup. 
Significantly, the authors mention that the Greenland-Iceland-Faroe Ridge partly consists of 
continental crust, which supports the Orogenic Bridge Theory.  Thus, what impact does this model 
have on plate breakup in the NE Atlantic? What bearing (if any) does it have on the ‘plates vs. 
plumes’ controversy, which has been going on for several decades. 
 
One minor detail: in the plain language summary, on the fourth line from the bottom, ‘1.8 million 
years’ should read ‘1.8 billion years’. 
 
Actions 
 
I leave it up to the authors to consider whether or not to act on my suggestions. However, I do feel 
that their assessment that the post-Caledonian tectonostratigraphic framework is 'irrelevant' to 
this study leaves the Discussion unbalanced and lacking crucial information that has an important 
bearing on the 'Timing of Formation...' and the ensuing history of reactivation. 
 
Nevertheless, I think that this is a very good paper with exciting consequences for better 
understanding the structural framework of the Faroe-Shetland continental margin. 
 
Martyn Stoker 
03-September-2024 
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Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and does the work have academic merit?
Yes
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Yes
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Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Tectonostratigraphy of passive continental margins

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 26 Nov 2024
Jean-Baptiste Koehl 

Dear Prof. Stoker, thank you very much for your input on the manuscript, it is highly 
appreciated. Here is our reply to your comments. We hope the changes we implemented 
improve the shortcomings of the manuscript highlighted by your comments and 
suggestions. Please do not hesitate to contact us shall this not be the case for some 
comments. 
 
Comments by the reviewer 
Comment 1: 1. Whereas the authors’ state (page 16, para 2) that ‘Structures in the … post-
Caledonian sedimentary and igneous rocks are irrelevant to the present study…’, I would 
argue that the post Caledonian rock record in the Faroe–Shetland region is  entirely relevant 
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when considering the formation/longevity of the basement structural system. 
Response: Agreed. The sentence is poorly phrased. The authors of the present manuscript 
simply wanted to emphasize that the main structures investigated in the present study are 
pre-Caledonian (possibly late Paleoproterozoic) and Caledonian structures and were only 
mildly (if at all) reworked during post-Caledonian events. Post-Caledonian structures and 
tectonism therefore have little implications for the geometry of the studied structures. The 
authors of the present manuscript concede that this should be better specified. 
Changes: The paragraph was rewritten into “Structures in overlying post-Caledonian 
sedimentary and igneous rocks only mildly (if at all) rework the studied pre-Cretaceous 
structures and, thus, have little impact on the geometry of the studied structures. Post-
Caledonian structures were therefore not investigated, except where they showed a clear 
relationship with the studied basement-seated structures (e.g., merging, truncating, and/or 
reworking).”.   
 
Comment 2: Key observations from my studies include: It is well established that the 
eastern and southern margin of the Faroe-Shetland Basin and its component sub-basins 
have been controlled by the NE-trending Rona Fault and the WNW-trending Judd Fault 
throughout its development (Lamers & Carmichael 1999; Stoker et al. 2018). 
Response: Agreed. The reviewer makes a compelling point about the WNW–ESE-striking 
Judd Fault, which coincides with the southeastward continuation of the Munkargrunnur 
fault zone. 
Changes: Modified the title of the “Influence on NW–SE-striking post-Caledonian transfer 
zones” into “Influence on NW–SE-striking post-Caledonian transfer zones and 
tectonosedimentary evolution”. Added the location of the Judd Transfer Zone in Figure 1b–c 
and related abbreviation to the figure caption. Added “) and the southeastward 
prolongation of the Munkagrunnur fault zone coincides with the Judd Fault (also Judd 
Transfer Zone; Lamers & Carmichael, 1999; Stoker et al., 2018; Sørensen, 2003;” section and 
reference to Lamers and Carmichael (1999), Stoker et al. (2018), Sørensen (2003) later in the 
same paragraph. Also added one paragraph after the first paragraph “An interesting 
feature is the rectangular basin shape created by the NNE-dipping Judd Fault and Rona 
Fault at the southern edge of the Faroe–Shetland Basin. The former parallels the studied 
potential late Paleoproterozoic thrust systems, whereas the latter parallels Caledonian 
structures such as the Moine Thrust ( Figure 1b–c). It is therefore possible that the 
rectangular basin geometry is controlled by the two preexisting structural trends at depth.”. 
  
 
Comment 3: This basin configuration and its infill has been developing since at least the 
Jurassic (and possibly the Permo-Triassic) (Ritchie et al. 2011; Stoker et al. 2017). 
Response: The various episodes of post-Caledonian uplift and erosion and rifting suggested 
in Stoker et al. (2017) may of course have mildly reactivated the studied structures. The 
authors of the present manuscript concede that this should be better reflected in the 
present manuscript. 
Changes: Added mention of Permian–Triassic and Jurassic–Cretaceous rifting in the 
“Implications for the Orogenic Bridge Theory and breakup of the northeastern Atlantic” 
section and the new Figure 6c and a third paragraph to the “Influence on NW–SE-striking 
post-Caledonian transfer zones and tectonosedimentary evolution” section: “Previous works 
have suggested various episodes of post-Caledonian uplift and erosion and rifting in the 
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northeastern Atlantic region, including coeval contraction and extension at times (e.g., Dean 
et al., 1999; Lamers & Carmichael, 1999; Stoker, 2016; Stoker et al., 2017, 2018). It is of 
course possible that the late Paleoproterozoic thrust systems described herein were mildly 
reactivated and/or overprinted during these events. However, this is not clear from the data 
analyzed. As suggested by Dean et al. (1999) and Stoker (2016), a possible explanation is 
that the studied WNW–ESE-striking thrust systems were reactivated as strike-slip faults, 
which may explain the possibly occasionally coeval timing of contraction and extension 
along the margin. This would however be challenging to identify if the structures were only 
mildly reactivated/overprinted. Nevertheless, there should probably be clues such as high-
angle to sub-vertical disruption surfaces reflecting truncation of the structures by recent 
strike-slip faults. This is locally the case in shallow sedimentary strata, e.g., at the Ymir Ridge 
(Boldreel and Andersen, 1993 their figures 4 and 5, Boldreel and Andersen, 1998 their 
figures 4 and 5; Johnson et al., 2005 their figure 6; Kimbell et al., 2016 their figure 2c; Stoker 
et al., 2015; Jolley et al., 2021). However, it is not obvious within pre-Cretaceous basement 
rocks from the data analyzed. More detailed work should therefore be performed in the 
Faroe–Shetland Basin area, where the relative abundance of exploration wells and seismic 
reflection data (including 3D data) would provide a more reliable tie between tectonic 
movements and sedimentary deposition along specific structures. A serious limitation 
might be the lack of deep seismic reflection data and poor seismic imaging below the 
Cenozoic volcanic successions in this area, thus impeding the correlation of shallow post-
Caledonian brittle faults and sedimentary strata with deep, basement-seated structures.”   
 
Comment 4: The Cretaceous stratigraphic record of the Faroe-Shetland Basin reveals a 
sedimentary succession that is punctuated by episodes of uplift, erosion and contractional 
deformation that can be linked to a pattern of coeval extension and compression consistent 
with intraplate strike-slip tectonism (Dean et al. 1999; Stoker 2016). 
Response: Agreed. See response to comment 3. 
Changes: See response to comment 3.   
 
Comment 5: This tectonic instability continued throughout the Paleocene and Eocene 
development of the basin, spanning the breakup of the SE Greenland and Faroe–Shetland 
conjugate margins (Stoker et al. 2018). 
Response: See response to comment 3. 
Changes: See response to comment 3.   
 
Comment 6: The structural disposition of the Eocene sediments and the onlap pattern of 
the overlying Oligocene–Neogene succession indicates that the present-day deep-water 
bathymetry of the Faroe–Shetland region most probably developed in the late 
Palaeogene–Early Neogene interval (Stoker et al. 2005, 2013). Whether this is a result of 
contraction or loss of dynamic support following plate breakup remains unclear. 
Response: Agreed. The authors of the present manuscript thank the reviewer for 
recommending valuable previous works on the tectonic evolution of the margin to include 
to the present study. 
Changes: Added reference to Stoker et al. (2005, 2013) in the fourth paragraph of the “Mid-
Cenozoic origin” sub-section and to the reference list.   
 
Comment 7: This history of basin development and sedimentation preserved in the Faroe-
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Shetland Basin is a clear record of episodic reactivation throughout the Mesozoic and 
Cenozoic of an existing underlying structural framework. Whereas I have offered 
explanations for the above observations in my own publications, I am intrigued to wonder 
how they might relate to this new model. Thus, I would ask the authors to consider the 
post-Caledonian stratigraphic record as one way of testing their model. Based on this 
tectonostratigraphic framework, it is obvious that any Mid-Cenozoic contraction that might 
be linked to their WNW–ESE-striking thrust system is just a response to episodic reactivation 
(as concluded in the paper). Perhaps the Discussion could be modified so that a subsection 
on 'post-Caledonian reactivation' highlights the significance of the NE- and NW-trending 
lineaments to tectonostratigraphic development. The current 'Mid-Cenozoic origin' text 
(page 21) might also form part of this subsection. Having said that, the abundance of 
inversion domes generated and episodically growing throughout the Cenozoic (Johnson et 
al. 2005; Ritchie et al. 2008) is noteworthy and clearly reflects a protracted phase of 
contraction/transpression either side of plate breakup. Perhaps this suggests that Cenozoic 
compression in the Faroe–Shetland region is more related to oceanic spreading. Any 
thoughts? 
Response: Agreed. The manuscript does need to further expand on the potential impact of 
the studied late Paleoproterozoic structures on the post-Caledonian evolution of the 
margin. See responses to comments 1 to 6. The reviewer also raises a highly relevant 
question regarding the cause of Cenozoic contraction around the Faroe Islands. 
Considering the potential continental nature of the crust at the Greenland–Iceland–Faroe 
Ridge, then Cenozoic contraction may be related to extension of the orogenic crust there 
and to seafloor spreading at the Reykjanes and Kolbeinsey ridges. However, as mentioned 
in the present study, the phases of tectonism that contributed the most to shape the 
studied structures are the late Paleoproterozoic Laxfordian–Nagssugtoqidian Orogeny and 
mid-Paleozoic Caledonian Orogeny. Subsequent tectonic events had only a limited impact 
on these structures, if any at all. Thus, it is probable that most of the relief created by the 
studied structures was already established in the mid-Paleozoic. 
Changes: See also responses to comments 1 to 6. Also added “possibly from the mid-
Paleozoic Caledonian Orogeny” in the third paragraph in the “Mid-Cenozoic origin” sub-
section, and rewrote the fourth point of the conclusion into “The late Paleoproterozoic 
thrust systems were possibly reactivated and/or overprinted during late Neoproterozoic 
and/or various episodes of post-Caledonian extension and contraction (transpression?). 
However, post-Caledonian reactivation/overprinting (if any) was of limited intensity.”.   
 
Comment 8: 2.    It would be useful to have a paragraph that considers the general 
implications of this model for the evolution of the NE Atlantic region in general, especially 
regarding plate breakup. Significantly, the authors mention that the Greenland-Iceland-
Faroe Ridge partly consists of continental crust, which supports the Orogenic Bridge Theory. 
 Thus, what impact does this model have on plate breakup in the NE Atlantic? What bearing 
(if any) does it have on the ‘plates vs. plumes’ controversy, which has been going on for 
several decades. 
Response: Agreed. This is an excellent suggestion by the reviewer. 
Changes: Added “The WNW–ESE-striking Laxfordian orogen (thickened continental crust) 
and related structures at the Faroe margin and their counterparts in southeastern 
Greenland were unsuitably oriented to accommodate thinning of the crust during rifting of 
the northeastern Atlantic because the main structures strike parallel to the extension 
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direction. In addition, their low-angle geometry was unsuitable to accommodate transform 
faulting. Thus, a significant delay should be expected for continental breakup at the 
Greenland–Iceland–Faroe Ridge compared with adjacent areas along the rift axis. Plume 
activity may very well be responsible for the intense magmatism recorded at the conjugate 
margin pair (southeastern Greenland and Faroe Islands) and in Iceland (Dahl-Jensen et al., 
1997; Millett et al., 2015; Geoffroy et al., 2021; Jolley et al., 2021; Walker et al., 2022; Layfield 
et al., 2023). However, should the studied late Paleoproterozoic structures extend farther 
offshore than what is presented in Figure 2e, the anomalously thick character of the crust 
under the Greenland–Iceland–Faroe Ridge may then be explained by the existence of a 
(continuous?) rift-orthogonal ribbon (i.e., continuous orogenic bridge; Koehl and Foulger, 
2024; Figure 6a–d) or by several isolated blocks of continental crust entrapped by extensive 
magmatism (e.g., rifted oceanic magmatic plateau; Coffin and Eldholm, 1992; Rime et al., 
2024) or by several microcontinents similar to the Jan Mayen Microcontinent Complex and 
all rifted from one another and separated by regular, Penrose-like oceanic crust (e.g., 
Johnson and Heezen, 1967; Bott, 1985; Blischke et al., 2016). Since the thickness of the 
Greenland–Iceland–Faroe Ridge is consistently higher than 20 km from southeastern 
Greenland to the Faroe shelf, a scenario with several microcontinents separated by 
Penrose-like oceanic crust is unlikely. Ongoing work using seismic reflection data within the 
Greenland–Iceland–Faroe Ridge suggests that the late Paleoproterozoic structures 
described in the present study extend at least to eastern Iceland (Koehl et al., 2025) and, 
thus, that the Greenland–Iceland–Faroe Ridge may be a continuous orogenic bridge (Figure 
6a–d; Koehl and Foulger, 2024), potentially developing into a rifted oceanic magmatic 
plateau (e.g., Rime et al., 2024), i.e., the early phase towards its evolution to a ruptured 
orogenic bridge. A continuous ribbon of continental crust between southeastern Greenland, 
Iceland, and the Faroe Islands is compatible with seafloor spreading at the Reykjanes Ridge 
and Kolbeinsey Ridge and with plume magmatism. The orogenic bridge may have formed 
during the late Paleoproterozoic Laxfordian–Nagssugtoqidian Orogeny (Figure 6a) and was 
then reworked and tightened during NW–SE-oriented Caledonian contraction (Figure 6b). 
The crust was then thinned during several ensuing episodes of extension, e.g., late–post-
orogenic collapse in the Devonian and Permian–Triassic and Jurassic–Cretaceous rifting 
(Figure 6c). While relatively thinner crust northeast and southwest of Iceland was broken up, 
highly thickened orogenic crust at the Greenland–Iceland–Faroe Ridge is still being thinned 
and stretching together with seafloor spreading at the adjacent Reykjanes and Kolbeinsey 
ridges (Figure 6d; Koehl and Foulger, 2024). 
 
For Figure 6 please refer (https://s3-eu-west-
1.amazonaws.com/openreseurope/linked/242354.18284_-_Figure_6_%28Comment_-
_OREU%29.docx) 
 
 
Figure 6 Model showing the development of an orogenic bridge at the 
Greenland–Iceland–Faroe Ridge through (a–b) two orogeneses perpendicular to one 
another ((a) WNW–ESE-striking Laxofordian–Nagssugtoqidian Orogen and (b) NE–SW-
striking Caledonian Orogen), (c) repeated extension along extensional faults and 
detachments and inherited orogenic structures, e.g., in the Devonian, Permian–Triassic, and 
Jurassic–Cretaceous, and (d) breakup along inherited, reactivated and/or overprinted 
orogenic structures in the Cenozoic. Note that any number of additional orogeneses and/or 
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extensional collapse/rifting may be added in between these events. Abbreviations: GIFR: 
Greenland–Iceland–Faroe Ridge; TFZ: Tjörnes fault zone.”. Also updated the title of the 
“Implications for the Orogenic Bridge Theory” section into “Implications for the Orogenic 
Bridge Theory and breakup in the northeastern Atlantic”. Furthermore, added a new Figure 
6 detailing the development of an orogenic bridge at the Greenland–Iceland–Faroe Ridge.   
 
Comment 9: One minor detail: in the plain language summary, on the fourth line from the 
bottom, ‘1.8 million years’ should read ‘1.8 billion years’. 
Response: Agreed. 
Changes: Replaced “million” by “billion” in the plain language summary.   
 
Comment 10: Actions: I leave it up to the authors to consider whether or not to act on my 
suggestions. However, I do feel that their assessment that the post-Caledonian 
tectonostratigraphic framework is 'irrelevant' to this study leaves the Discussion unbalanced 
and lacking crucial information that has an important bearing on the 'Timing of 
Formation...' and the ensuing history of reactivation. Nevertheless, I think that this is a very 
good paper with exciting consequences for better understanding the structural framework 
of the Faroe-Shetland continental margin. 
Response: The authors of the present manuscript present their apologies for the 
misunderstanding created by their phrasing of the methods chapter. The authors of the 
present manuscript did not imply that post-Caledonian tectonostratigraphic framework is 
irrelevant to the study of the margin. This was also righteously pointed out by Prof. Krzywiec 
(reviewer 2) and was corrected accordingly. See also response to comments 1 to 7 and to 
Prof. Krzywiec’s comment 5. 
Changes: See response to comments 1 to 7 and to Prof. Krzywiec’s comment 5 (reviewer 2).  
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