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In simply connected Euclidean domains, it is well

known that the topological complexity of a given

magnetic field can be quantified by its magnetic

helicity, which is equivalent to the total, flux-weighted

winding number of magnetic field lines. Often

considered in analytical and numerical studies

are domains periodic in two lateral dimensions

(periodic domains) that are multiply connected

and homoeomorphic to a 2-torus. Whether this

equivalence can be generalized to periodic domains

remains an open question, first posed by Berger

(Berger 1996 J. Geophys. Res. 102, 2637–2644

(doi:10.1029/96JA01896)). In this article, we answer in

the affirmative by defining the novel periodic winding

of curves and identifying a vector potential that

recovers the topological interpretation of magnetic

helicity aswinding. Key properties of the topologically

defined magnetic helicity in periodic domains are

also proved, including its time-conservation in ideal

magnetohydrodynamical flows, its connection to

Fourier approaches and its relationship to gauge

transformations.

1. Introduction
Let V ⊂ℝ3 be a simply connected domain with smooth

(possibly empty) boundary )V and outward unit normal

n̂. Poincaré Lemma implies that any smooth (assumed

hereafter for all functions) divergence-free vector field B,

which shall be called a magnetic field, can be written as

B=∇ × A for some vector potential A. In the case when V

is magnetically closed, i.e. B ⋅ n̂|||)V = 0, it was first proved

by Woltjer [1] that the integral

© 2025 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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H(B) ≡ ∫
V

A ⋅ BdV , (1.1)

called (magnetic) helicity, is invariant under ideal magnetohydrodynamical evolution. Moreau

[2] established an analogous conservation law in ideal hydrodynamics by replacing A by flow

velocity u and B by vorticity ∇ × u. Geometrically, the magnetic closedness of V implies that the

integral curves of B (or magnetic field lines; hereafter ‘B-lines’) never intersect )V transversally.

With this assumption, Moffatt [3] and Arnold [4] showed that H(B) is equivalent to the total,

flux-weighted (Gauss) linking number of B-lines (see also Moffatt & Ricca [5]),

H(B) =
1

4�
∫
V

∫
V

B(x) ⋅ B(x′) ×
x − x′

|x − x′|3
d3x′d3x, (1.2)

a double integral over all pairs of distinct points x, x′ ∈V . This result bridges helicity to the

entanglement of B-lines, which quantifies the topological complexity of the magnetic field.

By contrast, when V is magnetically open, meaning that B ⋅ n̂|||)V ≠ 0 or B-lines transversally

intersect )V , the above relation (1.2) becomes invalid as the Biot–Savart law used to derive it fails

to produce a vector potential [6]. Another, perhaps better known, issue associated with helicity

in magnetically open domains is the non-uniqueness of vector potentials. Given any scalar field

�, the gauge transformation A↦A′ ≡A + ∇� yields another permissible vector potential A′ for B

while changing H(B), as defined in (1.1), by a boundary integral

H(B)↦H(B) + ∫
)V

�B ⋅ n̂dA. (1.3)

One common alternative to (1.1) is the relative helicity, H(B;Bref), introduced in Berger & Field

[7], which can be defined by the Finn–Antonsen formula [8]:

H(B;Bref) ≡ ∫
V

(A + Aref) ⋅ (B − Bref)dV . (1.4)

Here, Bref is a reference magnetic field that satisfies (B − Bref) ⋅ n̂
|||)V = 0, andA,Aref are the respective

vector potentials for B, Bref. While (1.4) is invariant under gauge transformations of A and Aref,

the value of H(B;Bref) can still be arbitrary due to the freedom in choosing Bref as shown in [9].

Usually, Bref is taken to be the unique potential field Bp with ∇ × Bp = 0 and matching boundary

conditions (e.g. [10] for a review). Moreover, there is a lack of explicit topological interpretation

for (1.4) in terms of B-lines that is analogous to (1.2).

Inmagnetically open Euclidean domains of the formVE ≡ℝ
2 × [0, 1], Berger [12] first proposed

a topological interpretation of relative helicity by making a special choice of Bref. This is

reproduced in Prior & Yeates [9] by identifying a special vector potential AW and substituting

into the original definition (1.1), yielding (Euclidean) winding helicity

HW(B) ≡ ∫
VE

AW ⋅ BdV . (1.5)

Here, the winding gauge AW is defined to satisfy

∇S ⋅ A
W = 0, where ∇S ≡ ()x, )y, 0), (1.6)

on each horizontal plane Sw ≡ℝ
2 × {w}with coordinates (x, y) and labelled by vertical coordinate

w∈ [0, 1]. In both accounts, HW(B) can be written as the total, flux-weighted winding number of

B-lines, i.e.

HW(B) =
1

2�
∫

1

0

∫
Sw

∫
Sw

B(x) ⋅ B(x′) ×
x − x′

|x − x′|2
d2x′d2xdw, (1.7)

analogous to (1.2); see also Prior & MacTaggart [13]. For magnetically closed domains, it is clear

that (1.7) must reduce to the flux-weighted Gauss linking integral (1.2) by gauge invariance.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 M

ar
ch

 2
02

5 



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

481:20240152
...........................................................................................................

Figure 1. Illustrations of Euclidean winding quantities. (a)Winding of x ′ (blue) continuously measured by x (red) at each Sw
(green) with respect to a fixed direction (black), resulting in the accumulated angular change (yellow) �= ∫ !E dw. (b)
Example of curves that are not globally w-monotonic but whose winding can be unambiguously measured according to [11];
see also appendix A. Here, curves x (blue) and x ′ (red) are respectively split into w-monotonic subcurves x1, x2, x ′1 , x

′
2 , and

[wmin
11 , w

max
11 ] is a mutuallyw-monotonic subinterval.

The Euclidean winding rate !E can be used to elucidate the topological significance of (1.7);

e.g. [9,12,13]. In VE, for a pair of w-parameterized, non-intersecting curves x(w) = (x, y,w) and

x′(w) = (x′, y′,w), one can define !E by

!E(w; x, x
′) ≡

d

dw
arctan (

y − y′

x − x′
) =

(x − x′)(ẏ − ẏ′) − (ẋ − ẋ′)(y − y′)

(x − x′)2 + (y − y′)2
, (1.8)

where ̇( ) ≡ d∕dw . As shown in figure 1a, !E can be understood as the angular velocity of

x′ measured on Sw by an observer co-moving with x (§2a for details). Writing Bw ≡ êw ⋅ B,

equation (1.7) can be written in terms of the Euclidean winding rate !E of B-lines as

HW(B) =
1

2�
∫

1

0

∫
Sw

∫
Sw

!E(w; x, x
′)Bw(x)Bw(x

′)d2x′d2xdw . (1.9)

Note that all B-lines, whether globally w-monotonic or not, contribute to (1.9), since the signs

of the normal magnetic field Bw consistently modify the Euclidean winding rate !E to retain

the topological significance [9,11]. Figure 1b illustrates a toy example and interested readers

are referred to appendix A for a review. Hence, it suffices for our present purpose to assume

henceforth that all curves are w-monotonic.

Recently, the topological definition of helicity in terms of winding has been generalized to

magnetically open Euclidean tubular domains (homoeomorphic to VE) by Prior & Yeates [14],

and to magnetically open spherical domains (foliated by concentric spheres) by Xiao et al. [15].

A crucial step in the latter case is to construct the intrinsic winding of spherical curves that

accounts for both the domain topology (compactness) as well as the domain geometry (non-

vanishing curvature). In particular, the Dirac belt-trick specific to spherical domains allows

curves to be continuously disentangled with endpoints fixed and without crossing each other.

Nevertheless, when integrated over the entire field, winding helicity remains invariant under

ideal magnetohydrodynamic (MHD) deformation (continuous non-intersecting deformation, or

isotopy, all B-lines).
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It is natural to investigate if such awinding-based definition of helicity can be further extended

to magnetically open periodic domains of the form Vp ≡T
2 × [0, 1]where

T2 ≡ℝ2∕ℤ2 = {(x, y) ∶ x∼ x + 1, y∼ y + 1}, (1.10)

is a doubly periodic square homoeomorphic to a 2-torus, and Vp is homoeomorphic to a foliation

of concentric two-tori (with finite non-vanishing areas). To avoid unnecessary complications due

to curvature, the choice Vp is intrinsically flat. Periodic domains correspond to the commonly

used three-dimensional ‘Cartesian boxes’ with periodic boundary conditions in two lateral

dimensions in analytical and numerical studies of (magneto)hydrodynamics (e.g. [16,17]).

Also, such geometry is closely related to domains consisting of infinitely repeating units,

applicable to biological sciences, polymer physics and crystallography (e.g. the introduction

in [18]).

However, this has remained an open problem since Berger’s attempt [19] in 1996

although progress has been reported in multiple directions. Panagiotou [18] studied the

winding of curves in periodic domains using infinite sums of Euclidean winding, while not

providing ab initio justification for the summation order, nor accounting for the compact

nature of the domain. Pfefferlé et al. [20] and MacTaggart & Valli [21] independently

proposed a generalization of relative helicity to multiply connected domains using de Rham

cohomology, which includes periodic domains as a special case but yields no topological

interpretation.

In this work, we present a solution to this open problem, i.e. a topological definition of helicity

in open periodic domains Vp in terms of winding of B-lines. First, in §2, we propose a definition

of periodic winding of planar curves, which, in complex notation, reads as

!p(t; 
, 

′) = Im [

(
�(z) − �z̄

)dz

dt
], (1.11)

where 
, 
′ ∶ [0, 1] →T2 are curves such that 
(t) ≠ 
′(t) for all t∈ [0, 1] and z≡ 
 − 
′. Also,

�(z) is the Weierstrass zeta function on T2 and the term −�z̄ guarantees the double-

periodicity of !p. Two examples are given in §3 to demonstrate properties of the periodic

winding quantities.

Then, in §4, we analyse the topological implications of the periodic domains Vp by identifying,

in proposition 1, the periodic winding gauge AW that satisfies not only (1.6) but also

∫
Vp

AW
0
⋅ ∇ × AW

0
dV = 0, where AW

0
(w) ≡ ∫

Sw

AW dA (1.12)

is the harmonic fluxes of AW on each Sw ≡T
2 × {w}. The extra condition (1.12) effectively removes

helicity generated by AW
0
and B0, which are present due to the domain topology.

In §5, one obtains the periodic winding helicity HW(B) by using AW in (1.5) and replacing

VE with Vp. The main result, theorem 1, will then be proved to express HW(B) as the total,

flux-weighted, periodic winding of B-lines, analogous to the Euclidean results:

HW(B) =
1

2�
∫

1

0

∫
Sw

∫
S′w

!p(w; 
, 

′)Bw(z)Bw(z

′) dAz′ dAz dw, (1.13)

where dAz is the complex equivalent of dA= d2x and similarly for dAz′ . The extension to

non-monotonic curves proceeds as described in appendix A.

In §6, key properties of periodic winding helicity (1.13) are proved, including its time-

invariance under ideal MHD evolution, its relationship to existing Fourier approaches

and the geometrical significance of gauge transformations. We end in §7 by discussing

possible topological definitions of helicity in other domains that are beyond the scope of

this article.
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2. Winding in planar periodic domains

(a) Non-periodic winding
We first review the concept of the winding of curves in planar Euclidean, i.e. non-periodic,

domains using a complex formulation by identifying ℝ2 as ℂ. This is inspired by [22], which will

benefit our subsequent periodic extension. Let 
 ∶ [0, 1] →ℂ ⧵ {0} be a smooth curve, and, unless

otherwise stated, we assume it is either open or closed. Then, the non-periodic winding angle�E(t; 
)

of z= 
(t) about z= 0 can be defined as

�E(t; 
) ≡ ∫

t

0

!E(t̃; 
) dt̃ , where t∈ [0, 1], (2.1)

and the non-periodic winding rate !E(t; 
) in (1.8) may be written as

!E(t; 
) ≡
d

dt
Im

[
log z(t)

]
= Im (

1

z

dz

dt
). (2.2)

Here, log is assumed to be defined continuously on the associated Riemann surface. Equivalently,

using the principal argument Arg, we can write (2.1) as:

�E(t; 
) =Arg[z(t)] −Arg[z(0)] +N(t), (2.3)

where N is the signed number of full winding of 
 about z= 0.

For a pair of curves 
, 
′ ∶ [0, 1] →ℂ such that 
(t) ≠ 
′(t) for all t∈ [0, 1], we then define the

non-periodic pairwise winding rate !E(t; 
, 

′) between 
 and 
′ as

!E(t; 
, 

′) ≡

1

2

[
!E(t; 
 − 
′) + !E(t; 


′ − 
)
]
, (2.4)

which is by definition symmetric in 
 and 
′. Note that, from (2.2), it is clear that

!E(t; 
 − 
′) = !E(t; 

′ − 
), (2.5)

so that

!E(t; 
, 

′) = !E(t; 
 − 
′) = !E(t; 


′ − 
). (2.6)

Whenwritten in Cartesian coordinates, (2.4) is identical to (1.8), albeit notationally more compact.

Interested readers are referred to appendix A for a review of non-periodic winding for general

spatial curves from [11] with relationship to the Gauss linking integral.

(b) Periodic winding
We identify the planar doubly periodic domain T2 as S ≡ℂ∕ℤ[i] in complex coordinates, where

ℤ[i] ≡ {n= nx + iny ∶ nx,ny ∈ℤ} are the Gaussian integers. Translation invariance allows us to

assume without loss of generality that S is centred at z= 0. Let 
 ∶ [0, 1] → S ⧵ {0} be a smooth

curve, then for any n∈ℤ[i], a periodic image 
n of 
 is defined as


n ≡ 
 + n ∶ [0, 1] →ℂ ⧵ {0} . (2.7)

Examples of periodic images are shown in figure 2, which will be discussed further in §3.

It is intuitive to postulate that the periodic winding rate, denoted !p(t; 
), of 
 about z= 0, could

be defined as the sum of non-periodic winding !E(t; 
n) over all periodic images 
n of 
, i.e.

∑

n∈ℤ[i]

Im [
1

z + n

d

dt
(z + n)] = Im

⎡
⎢

⎣

⎛

⎜

⎝

∑

n∈ℤ[i]

1

z + n

⎞

⎟

⎠

dz

dt

⎤
⎥

⎦

. (2.8)

However, it is well known that the infinite sum on the right side of (2.8) is ill-defined and can

yield arbitrary values by changing the summation order, since it converges only conditionally
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Figure 2. Periodic images 
n of the curve 
 for examples of (a) line-point and (b) circle-point winding in the planar periodic
domainS (marked by the bold outline).

[23]. To retain the singular behaviour of (2.8) that generates winding while ensuring finiteness

and single-valuedness, we apply the Mittag–Leffler theorem [23] so that

∑

n∈ℤ[i]

1

z + n

M.-L.
,,,→ �(z) ≡

1

z
+

∑

n∈ℤ[i]
n≠0

(
1

z − n
+

1

n
+

z

n2
) , (2.9)

where �(z) is the Weierstrass zeta function [24] defined on S. The additional terms now guarantee

absolute and uniform convergence. Geometrically, O’Neil [25] showed that �(z) is equivalent to

the limit of a finite sum over CR ≡ {|z| ≤R}with R→∞:

�(z) = lim
R→∞

∑

n∈ℤ[i]
|n|<R

1

z + n
. (2.10)

Here, the radially symmetric order of summation is necessary for the above equality to hold,

as assumed in, e.g. Panagiotou [18], to demonstrate convergence explicitly. Our use of the

Mittag–Leffler theorem provides a closed-form expression that is automatically convergent.

A further modification, however, is needed due to the compactness of S, since (2.9) still fails to

be doubly periodic due to Legendre’s relations [24] on S:

�(z + 1) = �(z) + �, �(z + ) = �(z) − �. (2.11)

To restore periodicity, we need to remove a linear gradient �z̄ from �(z) so that,

�(z)⟶�(z) − �z̄, (2.12)

which is also the unique, non-trivial term that can be added to achieve this due to Liouville’s

theorem. In crystallography literature, e.g. [26], the extra term −�z̄ is referred to as the existence

of a uniform background of counter source, or ‘jellium’, to neutralize that of z= 0. Alternatively,

it is interpreted as the compensation for the far-field contribution of the finite sum (2.10) in [27].

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 M

ar
ch

 2
02

5 



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

481:20240152
...........................................................................................................

Thus, the definition of periodic winding rate !p(t; 
) is modified from the intuitive sum (2.8) to

!p(t; 
) ≡ Im [
(
�(z) − �z̄

)dz

dt
]. (2.13)

Using (2.10), it can be written in terms of the non-periodic winding rates !E, (2.2), as follows:

!p(t; 
) = lim
R→∞

∑

n∈ℤ[i]
|n|<R

[(1 −
�|z + n|2

NR
)!E(t; 
n)], (2.14)

where NR =�R2 +O(R14∕22) is the number of lattice points within CR; see [28] for details.

For curves 
, 
′ ∶ [0, 1] → S such that 
(t) ≠ 
′(t) for all t∈ [0, 1], the pairwise periodic winding rate

!p(t; 
, 

′) can be similarly defined as

!p(t; 
, 

′) ≡

1

2

[
!p(t; 
 − 
′) + !p(t; 


′ − 
)
]
, (2.15)

which is manifestly symmetric in 
 and 
′. Also, translation invariance ensures that (2.15) is

well-defined. From (2.2), we have

!p(t; 
 − 
′) = !p(t; 

′ − 
), (2.16)

so that

!p(t; 
, 

′) = !p(t; 
 − 
′) = !p(t; 


′ − 
). (2.17)

We thus propose that the periodic winding rates, (2.13) and (2.15), provide natural

generalizations to the non-periodic quantities (2.2) and (2.4).

(c) Winding and Green’s functions for Laplacians
Here, we demonstrate how the non-periodic winding rate !E and its periodic generalization !p

can be unified into a single expression using Green’s functions for Laplacian of the respective

domain. This observation will be crucial in relating winding to helicity in §4.

Recall that the EuclideanGreen’s functionGE(z, z
′) for Laplacian is defined as the solution to the

following Poisson’s equation on S=ℂ:

�zGE(z, z
′) = �(z − z′), (2.18)

or the periodic Green’s function Gp(z, z
′) if it is defined on S =ℂ∕ℤ[i]:

�zGp(z, z
′) = �(z − z′) − 1∕Area(S). (2.19)

Here, �(z − z′) is the Dirac function with the singularity located at z= z′, and �z = 4)z)z̄ = 4)z̄)z is

the Laplacian with respect to z using Wirtinger complex derivatives

)z ≡ ()x − )y)∕2, )z̄ ≡ ()x + )y)∕2. (2.20)

Since S is compact and boundaryless, it is more precise to refer toGp(z, z
′) as the generalized [29], or

source-neutral [26], Green’s function. Also, the inclusion of the term 1∕Area(S) = 1 guarantees that

compatibility due to Stokes’ theorem is satisfied by Gp, i.e.

∫
S

Gp(z, z
′) dAz = 0, (2.21)

where dAz = dz̄ ∧ dz ∕(2) is the area form on ℂ as the complex equivalent of dA= dx ∧ dy.
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Explicit expressions of GE(z, z
′) and Gp(z, z

′) are given by, e.g. Lin & Wang [30]:

GE(z, z
′) =

1

2�
log |z − z′|, (2.22)

Gp(z, z
′) =

1

2�
log |#1(z − z′)| −

1

2

[
Im(z − z′)

]2
, (2.23)

where #1(z) is the first Jacobi theta function on S defined by, e.g. according to Whittaker & Watson

[24],

#1(z) = 2
∞∑

n=0

(−1)ne
−�(n+

1

2
)2

sin
[
(2n + 1)�z

]
. (2.24)

Both (2.22) and (2.23) are translation invariant and symmetric in z and z′, allowing one to set

(z − z′)→ z, so Green’s functions can be regarded as univariate without ambiguity. Also, the

derivatives of the Green’s functions are given by [24]

4�)zGE(z) = 1∕z, (2.25)

4�)zGp(z) = �(z) − �z̄. (2.26)

For reference, both derivatives are visualized in figure 3.

Comparing (2.25) with (2.2) and (2.26) with (2.13), the periodic (with subscript k= p) and

non-periodic (with subscript k= E) winding rates can be unified into a single expression

!k(t; 
) = 4� Im [)zGk(z)
dz

dt
]. (2.27)

We can also define its integral as the winding number, denoted Lk(t; 
), as

Lk(
) ≡
1

2�
∫

1

0

!k(t; 
)dt, (2.28)

where the factor of 1∕(2�) is customary. It follows from (2.27) that

Lk(
) = 2 Im ∫



)zGk(z)dz. (2.29)

3. Examples of periodic winding of planar curves
In this section, we compute periodic (with subscript p) and non-periodic (with subscript

E) winding quantities for the examples shown in figure 2, i.e. winding of either a line in

§3a or a circle in §3b about z= 0 (formally a degenerate line as {z= 0} × [0, 1]). Numerical

and analytical computations are confirmed to coincide for winding numbers using (2.28) and

(2.29), respectively.

(a) Line-point winding
Certain lines cannot be continuously contracted to a point in periodic domains, which manifests

the non-trivial domain topology and will later be associated with the non-vanishing harmonic

fluxes in §4. For simplicity, we consider horizontal lines 
 of the form


 ∶ z=−t + 0.5 + ia, where t∈ [0, 1], a∈ [−0.5, 0.5] ⧵ {0}, (3.1)

and compute their periodic and non-periodic winding about z= 0. The case a= 0.25 is shown in

figure 2a, and relevant winding quantities are plotted in figure 4.

In this example, since dz∕dt =−1, winding rates !p and !E are, up to a sign, the respective

imaginary parts of (2.25) and (2.26). As shown in figure 4a, we observe that |!p| < |!E|.
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Figure 3. (a, b) Three-dimensional (top row) and two-dimensional/streamline (bottom row) plots of derivatives of Green’s
functions (2.25) and (2.26) that are used in defining winding rates (2.27). Colours and grey shades, respectively, indicate the
complex phase and modulus.

Figure 4. (a) Winding rates !p, !E against curve parameter t, and (b) winding numbers Lp, LE of lines (3.1) about z = 0
against vertical positions a. Periodic (or non-periodic) quantities are plotted in solid (or dashed), same for figure 6.The quantity
L̃p, (3.4), is also shown in comparison.

In particular, at a=±0.5, we have !p = 0 and no overall periodic winding is measured,

when the line simultaneously traverses the lower and upper domain boundaries with the

same rate but in opposite directions. This could be interpreted as some ‘localizing’ effect

from periodicity.
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Figure 5. Contours used to evaluate ∫


�(z) dz in (3.3). Note that Resz=0�(z) = 1, ∫


1
�(z) dz =−∫


2
�(z) dz from

parity and ∫

+
�(z) dz + ∫


−
�(z) dz =−ia� from quasi-periodicity (2.11).

Figure 4b plots numerically computed winding numbers, Lp and LE, using (2.28) for possible

values of a, which is verified analytically as follows. For LE, it is easy to show from (2.29) that

LE(a) =
1

2�
Arg(

2ia − 1

2ia + 1
). (3.2)

For Lp, the contour integral in figure 5 gives ∫


�(z)dz=−ia� + � and direct integration yields

∫


z̄dz=−ia. It then follows from (2.29) that

Lp(a) =
1

2
sgn(a) − a. (3.3)

In addition, to demonstrate the necessity of including the compactness correction term (2.29), we

considered the quantity L̃p defined by

L̃p(a) ≡ Lp(a) −
1

2�
∫



−�z̄ dz=
1

2
sgn(a) −

a

2
. (3.4)

Note that, across the identified boundaries a=±0.5, only the periodic winding number Lp has

the desired continuity. Also, as the line passes through the origin, a jump in the winding number

at a= 0 and the generation of ‘net winding’ is observed in all cases, albeit also achievable via an

isotopy bymoving the line across a=±0.5. This suggests the inherent impossibility of defining an

isotopy-invariant measure of winding in periodic domains, which was also reported for the Dirac

belt-trick deformation in [15] when defining similar winding measures in spherical domains.

(b) Circle-point winding
Next, we consider circles—the simplest closed planar curves—of the form,


 ∶ z= re2�it, where t∈ [0, 1], r∈ (0, 0.5] ∪ {1∕
√
2}, (3.5)

and compute their periodic and non-periodic winding about z= 0. The case r= 0.25 is shown in

figure 2b, and relevant winding quantities are plotted in figure 6. For the non-periodic case, it is

clear that, regardless of the value of r, we have

!E = 2�, LE = 1, (3.6)

since 
 encircles z= 0 exactly once at this constant rate.
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Figure 6. (a) Winding rates !p, !E against curve parameter t, and (b) winding numbers Lp, LE of circles (3.5) about z = 0

against radius r. Note that, r ∈ (1∕2, 1∕
√
2) is ill-defined and ignored.

By contrast, as shown in figure 6a, the periodic winding rate experiences a similar ‘localizing’

effect, or !p <!E. When r= 0.5, 
 passes through with the zeros of )zGp (cf. figure 3b) and !p = 0.

This corresponds to the cancellation of equal and opposite winding simultaneously generated by

the periodic images of 
. The analytical expression of the periodic winding number Lp can be

obtained by, noting that ∫


z̄dz= 2�r2,

Lp(r) =
1

2�
Im ∮




(�(z) − �z̄) dz= 1 − �r2. (3.7)

While Lp is undefined for r∈ (1∕2,
√
2∕2) due to the ill-defined transversal direction, it can

still be computed at the isolated point r=
√
2∕2. As illustrated in figure 7, this case realizes the

‘inside-out’ transition, or a reversal of the winding direction [19], and hence also violates the

usual isotopy-invariance satisfied by non-periodic winding. Also, the use of contour integration

in both examples suggests that the winding numbers of any slightly distorted circle or line (with

endpoints unchanged)will remain identical, although the relevantwinding rateswill be different.

Despite the aforementioned peculiarities for individual pairs of curves, we will show next that

the flux-weighted periodic winding over all such pairs, i.e. winding helicity, is in fact invariant

under ideal MHD deformations.

4. Magnetic fields in periodic domains
In this section, we review the non-trivial topology of periodic domains and study its implications

on vector fields defined therein. Specifically, we identify a vector potential, the winding gauge

and derive a generalized version of the poloidal–toroidal decomposition of magnetic fields, in

preparation for proving the main theorem in §5 that relates helicity to winding.
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Figure 7. A reversal of the direction of winding: (a) counterclockwise when r < 1∕2 and (b) clockwise when r = 1∕
√
2.

(a) Topology of periodic domains
Recall that the three-dimensional (doubly) periodic domain is defined as Vp = S × [0, 1] with

S =T2 and its non-periodic counterpart as VE = S × [0, 1] with S =ℝ2, the additional dimension

referred to as the vertical direction. Via homotopy, Vp is topologically equivalent to S.

Let 
(Vp) be the space of smooth, square-integrable vector fields defined on Vp, then, using

the usual differential operators div,grad, curl, the following subspaces of 
(Vp)

H1(Vp) ≡ ker
[
curl(Vp)

]
∕ im

[
grad(Vp)

]
, (4.1)

H2(Vp) ≡ ker
[
div(Vp)

]
∕ im

[
curl(Vp)

]
, (4.2)

are defined, respectively, as the first and second de Rham cohomology groups, e.g. [31,32]. The

topology of Vp is precisely characterized by (4.1) and (4.2) and it is well known that

H1(Vp) = span{êx, êy}, H2(Vp) = span{êw}, (4.3)

where {êx, êy, êw} are the usual Cartesian basis vectors in ℝ3. By comparison, the non-periodic

domain VE has trivial topology (equivalent to ℝ
2), namely,

H1(VE) =H2(VE) = {0}. (4.4)

For any v∈
(Vp), its harmonic flux, or zero-mode, v0 ∈H1(Vp), is defined by

v0(w) ≡ ⟨êx,v⟩ êx +
⟨
êy,v

⟩
êy, (4.5)

where ⟨⋅, ⋅⟩ is the surface average on S, i.e. for any a, b∈
(Vp), we define

⟨a, b⟩ ≡ ∫
S

a ⋅ bdA. (4.6)
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(b) Winding gauge for magnetic fields in periodic domains
In the periodic domain, Vp, let B∈ ker[div(Vp)] be a magnetic field. Then, the non-trivial second

cohomology group H2(Vp) implies that there exists some vector potential A∈
(Vp) such that

B=∇ × A + � êw, (4.7)

where � is the surface-averaged normal magnetic flux

� ≡ ⟨êw,B⟩ . (4.8)

Note that, a magnetic field B∈ ker[div(VE)] in the non-periodic domain VE can always be written

B=∇ × A, (4.9)

for some A∈
(VE) due to the triviality of H
2(VE), even if it has � ≠ 0.

Since S is closed, to avoid violating Gauss’s law for magnetism [20], we impose

� = 0, (4.10)

for magnetic fields in periodic domains, so that (4.9) also holds true. This allows us to identify a

special choice, the winding gauge AW, among all permissible vector potentials:

Proposition 1. In the periodic domain Vp = S × [0, 1], for any given magnetic field B∈ ker[div(Vp)]

with � = 0, there exists a vector potential AW of the form

AW = Têw + ∇ × (Pêw) + AW
0
, (4.11)

such that, on each horizontal surface Sw ≡ S × {w}, the poloidal and toroidal flux functions P and T,

satisfy

�SP=−êw ⋅ B, (4.12)

�ST =−êw ⋅ ∇ × B; (4.13)

and the harmonic flux AW
0
(w) ≡ ∫

Sw
AW dA, defined in (4.5), satisfies

∫
Vp

AW
0
⋅ ∇ × AW

0
dV = 0. (4.14)

Proof . Applying the Hodge Decomposition Theorem for surfaces [33] to any admissible vector

potential A∈
(Vp) for B gives, on each Sw, that

A=Awêw − êw × ∇SP + ∇Sg + A∗. (4.15)

The summands are mutually orthogonal with respect to ⟨⋅, ⋅⟩ and are uniquely defined by:

Aw = êw ⋅ A, (4.16)

�SP=−êw ⋅ ∇ × A, (4.17)

�Sg=∇S ⋅ (A − Awêw), (4.18)

A∗ =A − Awêw + êw × ∇SP − ∇Sg. (4.19)

Here, ∇S = ()x, )y, 0) is the surface gradient and �S =∇S ⋅ ∇S = )2x + )2y is the surface Laplacian. By

definition, we have êw ⋅ A
∗ =∇S ⋅ A

∗ = êw ⋅ ∇ × A∗ = 0, which implies that

A∗ =A∗
x(w) êx + A∗

y(w) êy. (4.20)

Consider a gauge transformation to A such that A′ =A +G for some G∈ ker[curl(Vp)]. From

(4.3), we know that Gmust take the form

G=∇� +G0, (4.21)
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for some scalar function � and constant vector G0 such that êw ⋅G= 0. Choosing � =−g + f with

an arbitrary function f = f (w) gives

A′ = (Aw + )�∕)w)êw + ∇ × (Pêw) + A∗ +G0, (4.22)

where we used −êw × ∇SP=∇ × (Pêw) since Sw has vanishing curvature.

Note that, P is manifestly invariant under gauge transformations and explicit computation

verifies (4.12). Also, Stokes’ theorem implies that ∫
Sw
∇ × (Pêw) dA= 0 on each Sw. The condition

(4.13) satisfied by T follows if we define

T ≡Aw + )�∕)w, (4.23)

and use remaining degree of freedom in f (w) to enforce, if necessary, ∫
Sw
êw ⋅ A

′ dA= 0 on each

Sw. For (4.14), we can choose G0 according to

AW
0
≡A∗ +G0, (4.24)

so that AW
0
(w) = ∫

Sw
AW dA is indeed the harmonic flux by identifying AW ≡A′. ■

An immediate consequence of proposition 1 is a generalized version of poloidal–toroidal

decomposition for magnetic fields in periodic domains:

Corollary 1. In the winding gauge AW, every magnetic field B in Vp can be written as

B=∇ × (Têw) + ∇ × ∇ × (Pêw) + B0, (4.25)

where the harmonic flux, B0 ≡ ∫Sw
Bd2x, satisfies

B0 =∇ × AW
0
. (4.26)

In our earlier work [15], see also Berger & Hornig [34], a similar derivation was presented in

Cartesian and spherical domains that are both simply connected (with trivial H1). Proposition 1

and corollary 1 hold in both cases but with

AW
0
=B0 = 0. (4.27)

From (4.11), the winding gauge AW has vanishing surface divergence on each Sw, namely,

∇S ⋅ A
W = 0. (4.28)

Meanwhile, the global condition (4.14) ensures that

∫
Vp

AW
0
⋅ B dV = ∫

Vp

AW
0
⋅ B0 dV +∫

1

0

AW
0
⋅ [∫

Sw

(B − B0)d
2x]dw= 0, (4.29)

where the second term vanishes by definition of B0. This implies that, according to the original

definition of helicity, (1.1), the harmonic flux AW
0

has no helicity contribution in Vp. Further

discussions on these properties can be found in §6b,c.

5. Winding helicity in periodic domains

(a) Statement and proof
Given a magnetic field B in the periodic domain Vp = S × [0, 1], we define the periodic winding

helicity HW(B) by substituting AW from proposition 1 in (1.1), i.e.

HW(B) ≡ ∫
Vp

AW ⋅ BdV . (5.1)

We will, in theorem 1, establish a direct link between periodic winding helicity HW(B) and the

periodic winding of B-lines (parameterized by w∈ [0, 1]). Recall that the latter are defined by

dx

dw
=

B[x(w)]

Bw[x(w)]
. (5.2)
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Theorem 1. Periodic winding helicity HW(B) in Vp=T2 × [0, 1] is equivalent to the total, flux-

weighted pairwise periodic winding of B-lines, i.e.

HW(B) =
1

2�
∫

1

0

∫
Sw

∫
S′w

!p(
, 

′)Bw(z)Bw(z

′) dAz′ dAz dw, (5.3)

where w∈ [0, 1] labels each horizontal slice Sw≡T
2 × {w} with coordinates z(w) = x(w) + iy(w), and 
, 
′

are the respective B-lines through z, z′. The periodic winding rate !p is given in (2.13).

Proof . It follows from (4.29) that it suffices to compute

HW(B) = ∫
Vp

ÃW ⋅ BdV , where ÃW ≡AW − AW
0
. (5.4)

Using the expression (4.11) for AW in proposition 1, we have

ÃW ⋅ B= Bx)yP − By)xP + BwT =−2 Im(ℬ)zP) + BwT, (5.5)

where ℬ≡ Bx + iBy and P and T are real-valued flux functions.

On each Sw, explicit expressions for P and T can be obtained by inverting the Poisson’s

equations (4.12) and (4.13) in terms of the (generalized) Green’s function Gp, (2.23), i.e.

P(z,w) = −∫
Sw

Bw(z
′)Gp(z, z

′)dAz′ , (5.6)

T(z,w) = −∫
Sw

Jw(z
′)Gp(z, z

′)dAz′ , (5.7)

where Jw = 2 Im()zℬ) and the w-dependence of z is suppressed. Substituting (5.6) and (5.7) into

(5.5) gives, noting that each Sw-integral is performed with respect to z′,

ÃW ⋅ B

= 2 Im ∫
Sw

ℬ(z)Bw(z
′))z

[
Gp(z, z

′)
]
dAz′ − 2 ∫

Sw

Bw(z) Im
[
)z′ℬ(z

′)
]
Gp(z, z

′) dAz′ (5.8)

= 2 Im ∫
Sw

(
Bw(z

′)ℬ(z))z
[
Gp(z, z

′)
]
+ Bw(z)ℬ(z

′))z′
[
Gp(z, z

′)
])

dAz′ , (5.9)

where we used integration by parts and that the boundary integral vanishes due to periodicity.

To proceed, we first assume Bw ≠ 0. A complexified version of (5.2) is given by

dz

dw
=

ℬ[z(w)]

Bw[z(w)]
, (5.10)

and substituting it into (5.9) gives

ÃW ⋅ B= 2 ∫
Sw

Bw(z
′)Bw(z) Im (

dz

dw
)z
[
Gp(z, z

′)
]
+
dz′

dw
)z′
[
Gp(z, z

′)
]
) dAz′ (5.11)

= 2 ∫
Sw

Bw(z)Bw(z
′) Im [

d(z − z′)

dw
)zGp(z, z

′)]dAz′ . (5.12)

In the last equality, we used the fact that )z′Gp(z, z
′) = −)zGp(z, z

′).
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Figure 8. B-lines of BABC with A= B= C = 1, coloured by the magnitude of field strength.

Recall that the pairwise periodic winding rate !p for two w-parameterized curves 
, 
′,

respectively, through z, z′ (seen as projection on S) is given by (2.27) as

!p(
, 

′) = 4� Im [

d(z − z′)

dw
)zGp(z, z

′)]. (5.13)

Comparing with (5.12) we have

ÃW ⋅ B=
1

2�
∫
Sw

!p(
, 

′)Bw(z)Bw(z

′) dAz′ . (5.14)

In the case when Bw = 0, the integrand of (5.14) vanishes identically, which can be used to define

the excluded points. We now obtain (5.3) by integrating (5.12) over Vp = S × [0, 1]. ■

The complex formulation allows the periodic winding helicity to be more easily computed.

Note that (5.3) would reduce to the Cartesian results (1.8) if !p was replaced with !E, noting that

dAz is the complex equivalent of dA. We remark that results analogous to theorem 1 have been

proved in non-periodic (or Euclidean) domains [9] and spherical domains [15].

(b) Example: winding helicity density of the ABC magnetic field
The Arnold–Beltrami–Childress (ABC) magnetic field [35] BABC(x) is defined in Vp as

BABC(x) =
(
A sin w̃ + C cos ỹ

)
êx +

(
B sin x̃ + A cos w̃

)
êy +

(
C sin ỹ + B cos x̃

)
êw, (5.15)

where x̃= 2�x andA,B,C are fixed constants. Note thatBABC is periodic in all x, y andw directions

with vanishing harmonic fluxes, (BABC)0 = 0. For reference, figure 8 shows a three-dimensional

streamline plot of BABC with A= B=C= 1, which will be used later. To illustrate the effects of

harmonic fluxes, we add a constant harmonic field BH to BABC, i.e. we instead consider

B=BABC + BH. (5.16)

Since the winding helicity HW(B) is a single number for the entire field, we instead consider

the spatial distribution of the integrand of (5.3) at some height w (up to a factor), i.e. the winding
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Figure 9. Spatial distributions of periodic winding helicity densityℋp, (5.17) and its Euclidean versionℋE, of B= BABC +
BH, as well as their differences, for four choices of BH. The same colour scales are used in the first two panels in each row (with
the same BH).

helicity densityℋp(z,w;B), defined by

ℋp(z,w;B) = ∫
Sw

!p(
, 

′)Bw(z)Bw(z

′)dAz′ . (5.17)

Results ofℋp at w= 0.5 are plotted in figure 9, as well as its Cartesian analogueℋE (replacing !p

with !E and Vp with VE in (5.17)) and their differences. Note that the computation ofℋE assumes

that the |B| → 0 outside S, also known as ‘zero padding’.

For the same choice of BH (in each row), we typically have |ℋp| < |ℋE| whereas the spatial

distributions ofℋp display more periodicity (likely inherited from the domain). It is necessary to

employ the correct expression as it would be difficult to quantify the differences that would arise.

6. Properties of winding helicity in periodic domains
As outlined in Berger [19], any meaningful definition of helicity H(B) in the periodic domain

Vp =T2 × [0, 1] should satisfy the following properties:

(P1) H(B)must reduce to its non-periodic counterpart in the suitable limits;
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(P2) H(B) is independent of translations and rotations of the representative of T2;

(P3) H(B) is computable directly and unambiguously from B;

(P4) H(B) is conserved in ideal MHD flows;

(P5) H(B) can be topologically interpreted as winding of B-lines.

As discussed in §5, periodic winding helicity HW(B) satisfies (P1)–(P3) and (P5), and (P4) will

shortly be proved in §6a. We proceed in §6b to study how HW(B) relates to helicity obtained

in periodic domains from Fourier series [19,36,37]. Finally, in §6c, we discuss the geometrical

implications of gauge transformations with respect to the winding gauge AW.

(a) Time conservation in ideal MHD flows
To show (P4), we need to include time evolution and introduce a flowvelocity u (with the required

periodicity; same below for other variables). In ideal MHD flows, B and u are related via the

induction equation [38] as

)B

)t
=∇ × (u × B). (6.1)

Assuming � = 0, there exists some vector potential A such that B=∇ × A and

)A

)t
= u × B + ∇� + (

)A

)t
)
0

, (6.2)

accounting for possible gauge transformations (4.21) with � any scalar field. Hence, we have:

Proposition 2 (P4). Periodic winding helicity HW(B) in Vp is conserved under ideal MHD evolution,

given that on )Vp either (i) B ⋅ êw = u ⋅ êw = 0 or (ii) B ⋅ êw ≠ 0, u= 0.

Proof . Recall from (5.4) that for ÃW ≡AW − AW
0

we have HW(B) = ∫Vp
ÃW ⋅ BdV . Since Vp is

fixed, it follows that

dHW

dt
= ∫

Vp

)

)t

(
ÃW ⋅ B

)
dV (6.3)

= ∫
Vp

[
ÃW ⋅ ∇ × (u × B) + ∇� ⋅ B

]
dV (6.4)

= ∫
)Vp

[
�(B ⋅ êw) + (ÃW ⋅ B)(u ⋅ êw) − (ÃW ⋅ u)(B ⋅ êw)

]
dA . (6.5)

Note that, we substituted (6.1) and (6.2) in (6.4) and used ∇⋅B= 0 and Stokes’ theorem in the last

equality. It is immediate that (i) implies that dH
W
/dt= 0. For (ii), applying∇S⋅ to (6.2) while using

∇S ⋅ A
W = 0 gives

�S� = 0 ⟹ �=�(w). (6.6)

Assuming that � ≡ ⟨êw,B⟩ = 0 for each Sw ≡T
2 × {w}, we have, on )V = S0 ∪ S1,

dHW

dt
=�(1) ⟨êw,B⟩S1 − �(0) ⟨êw,B⟩S0 = 0. (6.7)

■

We remark that the above proof can be seen as a simplified version of the general definition

of relative helicity in multiply connected domains given by MacTaggart & Valli [21] that satisfies

(P1)–(P4). However, relative helicity is too general to have a topological interpretation. Interested

readers are referred to Prior & Yeates [9] for similar discussions on the non-periodic case.
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(b) Fourier approach
We proceed to show that helicity defined via Fourier series can be made equivalent to winding

helicityHW(B) under suitable conditions. Let xS ≡ (x, y) and k≡ (kx, ky) = 2�(nx,ny) ∈ 2�ℤ2. Then,

any periodic vector potential A can be Fourier expanded as

A(xS,w) = Â0(w) +
∑

k≠0

Âk(w)e
k⋅xS , (6.8)

where the Fourier coefficients Âk (including k= 0) are given by

Âk(w) = ∫
Sw

A(xS,w)e
−k⋅xS d2x. (6.9)

Note that the zero-mode Â0 is precisely the harmonic flux A0 defined in (4.5), same for B0.

The smoothness of B allows term-by-term differentiation of (6.8), i.e. B=∇ × A and

B(xS,w) = ∇ × Â0(w)
⏟⎴⎴⏟⎴⎴⏟

≡B̂0(w)

+
∑

k≠0

(k × Âk + êw ×
)Âk

)w
)

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
≡B̂k(w)

ek⋅xS . (6.10)

For each k≠ 0, define a right-handed orthonormal wave-vector basis {êw, êk∥, êk⟂}where

êk∥ ≡ k∕k= k̂, êk⟂ ≡ êw × êk∥, (6.11)

and k= |k|, so that in this basis the Fourier coefficients of A and B are related via

B̂k,w = ikÂk⟂, B̂k⟂ =−ikÂk,w +
)Âk∥

)w
. (6.12)

Note that

êw ⋅ ∇ × B=
∑

k≠0

ikB̂k⟂e
k⋅xS =

∑

k≠0

(k2Âk,w + ik
)Âk∥

)w
)ek⋅xS , (6.13)

and

êw ⋅ B=
∑

k≠0

B̂k,we
k⋅xS =

∑

k≠0

(ikÂk⟂)e
k⋅xS . (6.14)

Thus, if we define

P=
∑

k≠0

P̂ke
k⋅xS ≡

∑

k≠0

(Âk⟂∕k) e
k⋅xS , (6.15)

T =
∑

k≠0

T̂ke
k⋅xS ≡

∑

k≠0

Âk,we
k⋅xS , (6.16)

and impose additionally that for each k≠ 0 that

Âk∥ = 0 ⟺ ∇S ⋅ A= 0, (6.17)

and the global condition (4.14) for the zero-mode Â0, namely

∫
Vp

Â0 ⋅ ∇ × Â0 dV = ∫
Vp

Â0 ⋅ B̂0 dV = 0, (6.18)

we obtain precisely the winding gauge AW in proposition 1. This shows the necessity of the two

extra constraints (6.17) and (6.18) for helicity to have a topological, winding-based interpretation,

in addition to the usual Hodge decomposition1.

1Note that Glasser [39] proved that the periodic Green’s functions (2.23) can be derived from Fourier series.
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(c) Gauge transformations
To further argue for the canonical status of the winding gauge AW, we exhibit the geometrical

significance of gauge transformations to the winding helicity HW(B). In periodic domains Vp, we

established in §4 that any admissible vector potential A is necessarily of the following form,

A=AW + ∇� +G0, (6.19)

for some function � and (horizontal) vector G0, from which helicity H(B) can be written as

H(B) =HW(B) + �H(B), (6.20)

where

�H(B) ≡ ∫
Vp

(∇� +G0) ⋅ B dV (6.21)

= ∫
Vp

∇⋅(�B) dV +G0 ⋅ ∫

1

0

(∫
Sw

Bd2x) dw (6.22)

= (∫
S1

−∫
S0

)�Bw d
2x

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
≡�HL(B)

+G0 ⋅ ∫

1

0

B0 dw

⏟⎴⎴⎴⏟⎴⎴⎴⏟
≡�HG(B)

. (6.23)

In (6.22), we used ∇⋅B= 0 and in (6.23), the divergence theorem was applied for )Vp = S0 ∪ S1.

Note that �H(B) originates from the differences between A and the winding gauge AW.

The change �HG(B) arises from the non-balanced harmonic flux G0 and is global in nature. It

can be interpreted as the ‘self-helicity’ ofG0 with the field B [34], which cannot be associated with

the winding of B-lines but nonetheless changes H(B).

By comparison, the change �HL(B) is generated locally by the action of the scalar field �. From

earlier works [9,15], it corresponds to changes in the winding-measuring directions. To see this,

consider assigning a fictitious winding rate !f(z,w) to every point in Vp, so that the modified

pairwise winding rate !̃p(w; 
, 

′) through curves z= 
(w), z′ = 
′(w) at height w is given by:

!̃p(w; 
, 

′) ≡ !p(w; 
, 


′) + !f(w; 
) + !f(w; 

′). (6.24)

Following theorem 1, the extra contribution to winding can be associated with �HL(B), i.e.

�HL(B) =
1

2�
∫

1

0

∫
Sw

∫
Sw

[
!f(w; 
) + !f(w; 


′)
]
Bw(z)Bw(z

′) dAz dAz′ dw , (6.25)

and the corresponding scalar field � is given by, for example,

�(z,w) =
w

2�
∫

1

0

∫
Sw′

[
!f(w

′; 
) + !f(w
′; 
′)

]
Bw′ (z′) dAz′ dw

′ . (6.26)

Conversely, (6.25) can be used to determine (though non-uniquely) the fictitious winding rate

!f. In both cases, the winding gauge AW corresponds to the case with no (net) global and local

fictitious rotation, although AW is not uniquely fixed (as long as it satisfies proposition 1).

7. Discussion
In this work, we proposed a winding measure for planar curves in periodic domains S =T2 =

ℝ2∕ℤ2, i.e. the periodic winding rate !p, (2.13). Such a geometrical quantity provides helicity with

an intrinsic interpretation andhas generalized the existing formalismofwinding-based open-field

helicity, as the third piece in our trilogy following Prior & Yeates [9] and Xiao et al. [15]. Helicity,

as shown in Prior andMacTaggart [13], can be interpreted as the combination of the ‘geometrical’
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winding and the ‘physical’ magnetic field strength, both of which have independent temporal

evolutions and different effects on the system’s energetics. This work has significantly expanded

on the applicability of existing studies.

A topologically different case concerns the singly periodic domain C=ℝ2∕ℤ which is

homoeomorphic to a two-cylinder, non-compact and multiply connected. Analogous to §2, the

correspondingwinding rate!s of a curve 
 ∶ [0, 1] → C ⧵ {0} about z= 0 should read as, in complex

notations,

!s(t; 
) ≡ Im [� cot(�z)
dz

dt
], (7.1)

where cot(�z) has the pole expansion by Mittag–Leffler theorem [23] that is similar to (2.9):

� cot(�z) =
1

z
+

∑

n∈ℕ∗

(
1

z − n
+

1

z + n
). (7.2)

Note also that � cot(�z) is the derivative of the Green’s function for Laplacian (up to a factor), i.e.

Gs(z) =
1

2�
log | sin�z|, where 4�)zGs(z) = � cot(�z), (7.3)

so that this case can also be included in the general expression (2.27) in §2c.

Note that, assumption � ≡ ⟨êw ⋅ B⟩ = 0 is necessary for compatibility with Stokes’ theorem,

since S is compact, boundaryless and multiply connected. Attention should be drawn to another

case where functions are defined on ℝ2 and are doubly periodic, but the underlying domain is

simply connected and non-compact, as considered by, e.g. Panagiotou [18] in the simulation of

filamentary networks to minimize the effect of boundary conditions. While such a distinction

is well known in Fourier analysis [40], it is less emphasized in physics, so a detailed revisit

is necessary. In particular, the fact that � ≠ 0 in general would invalidate all proofs in this

work, especially violating the required periodicity of !p. We conjecture that the appropriate

winding rate of planar curves would be (2.13) but without the −�z̄ term that arises from the

compactness-enforcing term in (2.19), which would be interesting to explore in future works.
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Appendix A.Winding for general curves
As mentioned in §1, Berger & Prior [11] proved that the Euclidean winding rate !E (2.2) can be

used to define the winding number of curves that are not necessarily w-monotonic.

Let 
, 
′ ∶ [0, 1] →ℂ × [w1,w2] be smooth, non-intersecting space curves between horizontal

planes w=w1 and w=w2 such that 
(t) ≠ 
′(t) for all t∈ [0, 1]. If 
, 
′ are globally w-monotonic,

then the Euclidean winding number is given in §2c as

LE(
, 

′) =

1

2�
∫

w2

w1

!E

[
w; 
(w), 
(w)′

]
dw. (A 1)

In general, as shown in the example given in figure 1b, one can decompose 
, 
′ into subcurves

that are locally w-monotonic, say 
 = ∪n
i=1

i and 


′ =∪m
j=1

′
j
. Then, for each (i, j), there exists some
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(possibly empty) w-subinterval [wmin
ij

,wmax
ij

] for which both 
i and 

′

j
are w-monotonic, so that the

Euclidean winding number can be modified to

LE(
, 

′) =

n∑

i=1

m∑

j=1

�(
i)�(

′

j
)

2�
∫

wmax
ij

wmin
ij

!E

[
w; 
i(w), 


′

j
(w)

]
dw. (A 2)

Here, to ensure the correct sign of crossings, we have defined an indicator function � for the

w-transversal direction as, e.g.

�(
i) = sgn(
d
i
dt

|||||||[w1 ,w2]

). (A 3)

In the earlier derivation of winding helicity, e.g. (5.3) of theorem 1, the role of � is automatically

fulfilled by the sign of the normal magnetic field Bw = êw ⋅ B.

If both 
 and 
′ are closed, then winding number (A 1) or (A 2) reduces to the usual Gauss

linking integral and it is invariant under isotopy. If not, then it is also a topological invariant but

now under end-vanishing isotopy, i.e. isotopy with endpoints of both curves fixed, although this

does not hold in general for the Gauss linking integral.

In the periodic case, the same construction yields an analogous extension based on the periodic

winding rate !p:

Lp(
, 

′) =

n∑

i=1

m∑

j=1

�(
i)�(

′

j
)

2�
∫

wmax
ij

wmin
ij

!p

[
w; 
i(w), 


′

j
(w)

]
dw. (A 4)
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