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Abstract—This paper proposes a real-time multi-robot nav-
igation method that integrates the Rapidly-exploring Random
Tree (RRT) algorithm with the improved Artificial Potential
Field (APF) approach. Since traditional path planning methods
often face problems such as generating non-smooth paths and
inefficient obstacle avoidance in changing environments, the RRT
algorithm is used for initial path planning to pass through
obstacles. Aiming to obtain a smooth collision-free path, Catmull-
Rom spline smoothing is then introduced, which smooths the
initially obtained trajectory and ensures that the curvature of
the trajectory remains continuous. By combining the improved
APF method, networked robots can then achieve safe navigation
and effective obstacle avoidance in dynamic environments. The
effectiveness of the proposed RRT-APF method is verified by
both simulations and hardware experiments using real micro
unmanned aerial vehicles.

I. INTRODUCTION

Autonomous robots offer significant advantages across
many areas, but their use in dynamic and unstructured en-
vironments remains a major challenge [1]. Developing robust
coordination approaches for mobile robots could provide a
solution to this problem. To address such natural and complex
conditions, the integration of path planning and collision
avoidance is essential to increase the efficiency and safety
of route planning and decision-making. Such methods can be
applied to many real-world applications, such as observations
of bee hives [2], [3] and formation of multiple unmanned
aerial vehicles (UAVs) [4], [5], which motivates researchers
to develop more advanced algorithms for better practical
performance.

The Rapidly-exploring Random Tree (RRT) algorithm is
one of the most commonly used sampling-based methods for
path planning in dynamic environments [6]. RRT does not
require modeling of the planning space and can quickly gen-
erate feasible paths by randomly exploring the search space,
demonstrating strong search capabilities [7]. However, due to
its lack of motion constraints, the paths generated by RRT
often have unsmooth points, which poses a problem for robot
swarms that generally require smooth movements [8], [9]. The
lack of smoothness can lead to jerky motions and increased
wear and tear on the robotic platforms, making it essential
to incorporate path smoothing techniques [10]. To address

This work was partially supported by EU H2020 RoboRoyale [964492] and
Horizon Europe Sensorbees [101130325] projects.

K. Zhang, M. Zahmatkesh, F. Arvin and J. Hu are with the
Department of Computer Science, Durham University, DH1 3LE,
Durham, UK. (e-mail:{kaihuai.zhang; mohsen.zahmatkesh; farshad.arvin;
junyan.hu}@durham.ac.uk)

M. Stefanec is with the Department of Zoology, Institute of Biology,
University of Graz, Graz, Austria (e-mail:martin.stefanec@uni-graz.at)

the smoothness issue, various path smoothing techniques have
been proposed. Bezier curves and B-splines are commonly
used for this purpose, but they often lack the local control and
natural transitions needed for complex environments [11].

Collision avoidance is another critical aspect of multi-
robot systems. The artificial potential field (APF) method is
a popular approach for collision avoidance, where robots can
be treated as particles moving under the influence of artifi-
cial forces [12]. The APF method generates attractive forces
towards the goal and repulsive forces away from obstacles,
guiding the robots along a collision-free path. However, the
traditional APF method has several limitations, such as local
minima and poor real-time performance [13]. Local minima
can trap robots in positions where the net force is zero,
preventing them from reaching their goals [14].

II. METHODOLOGY

The goal of this paper is to develop a comprehensive
approach that integrates the RRT algorithm, an improved
APF method, and Catmull-Rom spline smoothing to ensure
that all robots move towards a common goal, achieve force
equilibrium, and effectively avoid active obstacles.

A. Smoothing RRT Path Planning with Catmull-Rom Splines

The first step is to generate an initial path for each robot
by using the RRT algorithm. The RRT algorithm works by
exploring the area around the starting point and builds a tree
of possible paths leading to the goal [15]. Here’s how the RRT
path planning process works:

Algorithm 1 RRT-Based Path Planning
1: Start the tree with the robot’s initial position.
2: for each step do
3: Randomly pick a point in the search area.
4: Find the closest node in the tree to this point.
5: Extend the tree from the nearest node towards the

picked point.
6: if goal position is reached then
7: Stop the process.
8: end if
9: end for

10: Return the path from the start to the goal.

The RRT algorithm can be mathematically described as
follows. Let X be the search space, xinit be the initial position,
and xgoal be the goal position. The tree T is initialized with
the root node xinit. At each iteration, a random sample xrand



is drawn from X . The nearest node xnearest in T to xrand is
found using the distance metric ∥xrand −xnearest∥. A new node
xnew is then created by moving from xnearest towards xrand by
a step size ϵ. The process continues until xgoal is reached or a
maximum number of iterations is exceeded [16].

xnew = xnearest + ϵ
xrand − xnearest

∥xrand − xnearest∥
(1)

To find the closest node, we use a measure of distance,
which is calculated as follows:

∥xrand − xnearest∥ =

(
n∑

i=1

(xi
rand − xi

nearest)
2

)1/2

(2)

As the tree grows, the probability of sampling the goal
position increases. This means that eventually, the algorithm
will find a path to the destination [17].

Once the initial path is generated using the RRT algorithm,
it is often not smooth and may contain sharp turns. To address
this, we apply Catmull-Rom spline interpolation to smooth the
path.

Catmull-Rom splines, a type of interpolating spline, are
chosen for their simplicity and efficiency. Unlike other spline
methods, Catmull-Rom splines do not require solving equa-
tions, making them computationally efficient. This is espe-
cially useful in real-time applications where computing power
might be limited. Catmull-Rom splines make sure the path
goes through all control points, which is important for keeping
the planned path in multi-robot systems [18].

The Catmull-Rom spline is defined by a set of control points
{Pi}. For a given segment between control points Pi and Pi+1,
the spline is given by:

P (t) = 0.5
[
(2Pi) + (−Pi−1 + Pi+1)t

+ (2Pi−1 − 5Pi + 4Pi+1 − Pi+2)t
2

+ (−Pi−1 + 3Pi − 3Pi+1 + Pi+2)t
3
]
,

(3)

where t is the parameter that varies from 0 to 1 along the
segment [19].

The smoothed path ensures that the robots can move
smoothly and efficiently towards their goals.

B. Collision Avoidance with Improved APF

While following the smoothed path, the robots must avoid
collisions with obstacles and other robots. The APF method
uses the second point from the smoothed path as the goal
point to calculate attractive and repulsive forces, guiding the
robot in real-time. The traditional APF method generates
attractive forces towards the goal and repulsive forces away
from obstacles, guiding the robots along a collision-free path
[12]. However, the traditional APF method has the following
limitations, which could be overcome by the proposed design:

1) High Attractive Force at a Distance: When far from the
goal, the attractive force is very intense, while the repulsive
force from obstacles is relatively minor. This imbalance can
lead to collisions as the robot is less pushed away from
obstacles. To address this, we modify the attractive potential

function. The improved attractive potential field Uatt(q) is
given by:

Uatt(q) =

{
1
2Katt∥q − qg∥2, if ∥q − qg∥ ≤ d

dKatt∥q − qg∥ − 1
2Kattd

2, if ∥q − qg∥ > d
(4)

where Katt is the attractive scale factor, q is the robot’s
position, qg is the goal position, and d is a specific distance
called the distance factor.

The corresponding attractive force Fatt(q) is:

Fatt(q) = −∇Uatt(q) =

{
Katt(qg − q), if ∥q − qg∥ ≤ d

−dKatt
q−qg

∥q−qg∥ , if ∥q − qg∥ > d
(5)

2) Local Minima Problem: The traditional APF method
can get stuck in local minima, where the robot might be
unable to find a path to the goal within the allowed iterations.
To prevent robots from getting trapped in local minima, an
additional random perturbation is introduced. This is achieved
by periodically adding a small random value to the force
components, helping the robot to escape from local minima.
The random perturbation can be represented as:

Fperturb,x = Fatt,x + (rand()− 0.5) ∗ 0.1, (6)

Fperturb,y = Fatt,y + (rand()− 0.5) ∗ 0.1, (7)

where rand() generates a random number between 0 and 1.
3) Difficulties Near Obstacles: When obstacles are near the

goal, the attractive force decreases and the repulsive force
increases. This can make it hard for the robot to reach the
goal as strong repulsive forces may push it away, even when
it’s close. To address this, we modify the repulsive potential
function. The improved repulsive potential field Urep(q) is
given by:

Urep(q) =

 1
2η
(

1
ρ(q,qobs)

− 1
ρ0

)2
ρn(q, qg), if ρ(q, qobs) ≤ ρ0

0, if ρ(q, qobs) > ρ0
(8)

where η is a positive constant, ρ(q, qobs) is the distance to the
obstacle, ρ0 is the influence distance, qg is the goal position,
and n is a positive number (typically n = 2).

The corresponding repulsive force Frep(q) = −∇Urep(q) is:

if ρ(q, qobs) ≤ ρ0 :

a1η (A)
ρn(q, qg)

ρ2(q, qobs)
+ a2

n

2
η (A)

2 · ρn−1(q, qg), (9)

if ρ(q, qobs) > ρ0 : 0, (10)

where
A =

1

ρ(q, qobs)
− 1

ρ0
,

a1 = ∇ρ(q, qobs) =
q − qobs

∥q − qobs∥
,

a2 = −∇ρ(q, qg) = − q − qg
∥q − qg∥

.

Additionally, to ensure collision avoidance among robots,
each robot is also considered as a dynamic obstacle to other
robots. This means that the repulsive forces from neighboring



Fig. 1. The principle of the repulsive forces generated by nearby obstacles
and UAVs within sensing range.

robots within the sensing range are also considered, which
is shown in Fig. 1. This setup helps in maintaining a safe
distance between robots, preventing collisions and ensuring
smooth navigation.

The total force acting on each robot is the sum of the
attractive force and the repulsive forces from both dynamic
obstacles and other robots. The total force Ftotal(q) is given
by:

Ftotal(q) = Fatt(q) +
∑
i

Frep,i(q), (11)

where Fatt(q) is the attractive force towards the goal, and
Frep,i(q) is the repulsive force from the i-th neighboring
obstacle or robot.

These improvements enhance the overall efficiency and
reliability of the APF method, making it more suitable for
dynamic and complex environments.

III. SIMULATION RESULTS

In this section, the feasibility and performance of the
proposed approach are verified by multiple simulations.

A. Simulation Setup

The simulation grid size was set to 100x100 units. The goal
position was set in the center of the top-right corner.

1) Robot Density Scenarios: To validate the performance
and applicability of our method, we conducted two experi-
ments with different densities of robots and obstacles.

In the low robot density scenario, the starting positions
of 3 robots were randomly generated within a defined start
zone ranging from [0, 20]. In the low robot density scenario,
10 dynamic obstacles were randomly placed. These obstacles
were positioned in such a way that they did not overlap with
the robots’ goal’s safe zone. The safe zone was defined as [80,
100]. Both obstacles and robots were generated to prevent any
overlap at the start, avoiding collisions at the start.

In the high robot density scenario, the starting positions of
6 robots were randomly generated within a defined start zone
ranging from [0, 30]. In this scenario, 20 dynamic obstacles
were randomly placed. These obstacles were positioned such

TABLE I
SIMULATION PARAMETERS

Parameter Low High
Grid size 100x100 100x100
Goal pos. (90, 90) (85, 85)
No. of robots 3 6
Start zone [0, 20] [0, 30]
Safe zone [80, 100] [70, 100]
Obstacles 10 20
RRT iter. 1000 1000
RRT step 1 unit 1 unit
Attr. gain 0.5 0.5
Repl. gain 0.5 0.5
Infl. dist. 25 units 25 units
Step rate 0.05 0.05
Epoch 10000 10000
Force Thresh. 0.03 0.035

that they did not overlap with the robots’ goal’s safe zone. The
safe zone was defined as [70, 100]. Both obstacles and robots
were generated to prevent any overlap at the start, avoiding
collisions at the start. It is also reasonable that the start zone
and safe zone are larger in the high-density scenario for the
increased number of robots and obstacles.

Within the safe zone, the repulsive forces from non-robot
obstacles were ignored, but the repulsive forces from other
robots were still considered. This ensured that robots could
navigate safely within the safe zone without being affected by
dynamic obstacles, while still avoiding collisions with each
other.

To escape local minima, each robot will also receive small
random perturbations.

2) Multi-Robot Attractive-Repulsive Force Balance Con-
trol: To save computational resources and improve efficiency,
we introduced the concept of a force equilibrium threshold.
When the resultant force on each robot is less than this force
equilibrium threshold, the robots are considered to be in a state
of force equilibrium.

Multiple robots share a common goal, and the simulation
ends when the robots reach a state of force equilibrium. The
attractive force is reduced and the repulsive force between
robots is increased when they enter the safe zone. This
adjustment ensures that the robots maintain a certain distance
from each other and form a stable geometric layout, such as
a triangle, near the goal.

3) Simulation Parameters: The simulation parameters used
in both the low and high density scenarios are summarized in
Table I. These parameters include the grid size, goal position,
RRT algorithm settings, and the specific gains for the attractive
and repulsive forces in the artificial potential field method. The
chosen parameters ensure a consistent and fair evaluation of
the proposed method across different scenarios.

B. Robot Positions at Different Progress Points

Figure 2 shows the positions of the robots at 20%, 50%, and
80% of the total journey, as well as the total paths taken by
all robots from their initial positions to the goal, for the low



(a) Robot positions at 20% progress (b) Robot positions at 50% progress

(c) Robot positions at 80% progress (d) Final trajectories

Fig. 2. Robot positions and trajectories under low-density moving obstacles.

robot density. These figures illustrate how the robots navigate
through the environment and avoid obstacles. Note that the
positions of the obstacles change over time due to the dynamic
nature of the environment, which is reflected in the different
progress points.

From these figures, it is evident that the robots are able
to navigate towards the goal while avoiding obstacles effec-
tively. The positions at different progress points show a clear
trajectory towards the goal, indicating the effectiveness of the
proposed method in guiding the robots. At 20% progress, the
robots have just started their journey and are beginning to
navigate around the obstacles. By 50% progress, the robots
have successfully avoided several obstacles and are halfway
to the goal. At 80% progress, the robots are nearing the goal,
demonstrating the method’s ability to maintain a clear path
even as the robots approach their destination. The total paths
taken by all robots provide a comprehensive view of the entire
journey, illustrating the effectiveness of the proposed method
in guiding multiple robots through the environment while
avoiding obstacles. The dynamic nature of the environment
causes the positions of the obstacles to change over time,
which is why the obstacles’ positions differ at each progress
point.

C. Effect of Increased Density

To evaluate the robustness of the proposed method under
higher robot density, we increased the number of robots and
obstacles. Figure 3 shows the positions of the robots at 20%,
50%, and 80% of the total journey, as well as the total paths
taken by all robots in the high density scenario. Similar to
the low density scenario, the positions of the obstacles change
over time due to the dynamic nature of the environment.

The high density scenarios demonstrate that the proposed
method can handle higher robot densities effectively. The

(a) Robot positions at 20% progress (b) Robot positions at 50% progress

(c) Robot positions at 80% progress (d) Final trajectories

Fig. 3. Robot positions and trajectories under high-density moving obstacles.

robots maintain a clear trajectory towards the goal, and the
avoidance of obstacles remains effective. This indicates the
scalability of the method in more complex environments
with higher robot densities. At 20% progress, the robots are
beginning to navigate the denser environment, showing initial
adjustments to avoid collisions. By 50% progress, the robots
have successfully navigated around more obstacles and are
halfway to the goal, demonstrating the method’s ability to
handle increased complexity. At 80% progress, the robots are
nearing the goal, maintaining effective obstacle avoidance and
clear paths despite the higher density. The total paths taken by
all robots highlight the method’s ability to manage multiple
robots in a more crowded environment, ensuring that each
robot reaches its goal while avoiding collisions.

D. Time vs. Distance to Goal

Figure 4(a) shows the relationship between time and the
average distance to the goal for the robots in the low density
scenario. Figure 4(b) shows the same relationship for the high
density scenario.

In both scenarios, the average distance to the goal decreases
over time, indicating that the robots are effectively moving
towards the goal. The rate of decrease in distance is slightly
slower in the high density scenario, which is expected due
to the higher complexity and potential for more interactions
between robots. However, the overall trend remains consistent,
demonstrating the robustness of the proposed method. The
time-distance graphs show that the robots are consistently
reducing their distance to the goal, with a steady decline in
both scenarios. The high density scenario shows a slightly
slower rate of decline, reflecting the added complexity and
interactions, but the overall effectiveness of the method is not
compromised.



(a) (b)

Fig. 4. Time vs. average distance to goal at (a) low-density and (b) high-
density scenarios.

E. Additional Evaluation Metrics

In addition to the previously discussed performances and
matrices, some additional evaluation metrics used to assess
the performance of the proposed method include:

• Computational Efficiency: The time taken to generate
and smooth the paths, as well as the time taken for real-
time adjustments.

• Path Smoothness: The smoothness of the generated
paths, measured by the number of sharp turns and
changes in direction.

• Collision Rate: The number of collisions with obstacles
and other robots during the navigation.

1) Computational Efficiency: The computational efficiency
was measured by recording the computation time at each
time step. The experiments were conducted on a system with
a 12th Gen Intel(R) Core(TM) i5-12400 2.50 GHz CPU,
using MATLAB R2022a. Figure 5(a) shows the computational
efficiency for the low-density scenario, while Figure 5(b)
shows the same for the high-density scenario.

In the low-density scenario, the computation time ranged
from approximately 0.01 to 0.02 seconds. There were larger
fluctuations when the robots encountered obstacles. However,
as the robots approached their target points and began to
enter a state of near force equilibrium, the computation time
decreased from 0.02 to around 0.01 seconds. This shows the
algorithm’s efficiency and ability to manage real-time path
planning.

In the high-density scenario, the computation time ranged
from approximately 0.02 to 0.04 seconds. The increased
complexity led to more fluctuations. Similarly, as the robots
neared their target points and started to reach a state of
near force equilibrium, the computation time decreased from
0.04 to around 0.02 seconds. Even with the higher density,
the algorithm still achieved reasonable computation times,
highlighting its robustness and efficiency.

2) Path Smoothness and Collision Counts: The path
smoothness and collision counts were also evaluated. The path
smoothness is measured as the average angular change along
the path, and collisions are counted when the distance between
robots is less than 1 unit. The minimum safe distance between
robots is primarily reflected in the repulsive force calculations
to ensure that robots maintain a safe distance from each other.

(a) (b)

Fig. 5. Computational efficiency in (a) low-density and (b) high-density
scenarios.

TABLE II
PATH SMOOTHNESS AND COLLISION COUNTS

Metric Value
Low-Density Scenario
Average Path Smoothness of Each robot 0.2648, 0.2497,

0.1428
Average Total Collisions 0.00
Increased-Density Scenario
Average Path Smoothness of Each robot 0.3038, 0.2075,

0.2601, 0.1894,
0.1144, 0.0815

Average Total Collisions 0.10

TABLE III
EXPERIMENTAL TEST PARAMETERS

Parameter Value (cm)
Flight zone size 200x200
Goal position (170, 170)
UAV 1 initial point (18, 42, 20)
UAV 2 initial point (14, 10, 50)
UAV 3 initial point (44, 10, 70)
Obstacle 1 position (80, 80)
Obstacle 2 position (100, 120)
Obstacle 3 position (130, 100)

The data in Table II reveal that the average path smoothness
is slightly higher in the high-density scenario, suggesting more
angular changes because of the increased complexity. The
average total collisions are also greater in the high-density
scenario, showing a higher chance of interactions between
robots. However, the low number of collisions in both sce-
narios shows that the proposed method successfully prevents
accidents, proving that the repulsive force calculations are
effective in keeping safe distances.

IV. EXPERIMENTAL VALIDATION

To assess the feasibility and effectiveness of the proposed
method in practice, an experimental test is conducted using
three aerial vehicles with six degrees of freedom (6DoF). The
UAV platform used is Crazyflie V2.1, and the localization
system is equipped with Lighthouse V2.0 base stations. The
flight environment is an indoor area with three obstacles. The
details of the experimental setup are illustrated in Table III.



Fig. 6. Progress of the task being achieved by a team of three UAVs at different
time instants.

Time Step 200

Time Step 90

Time Step 0

Fig. 7. Real-world flight trajectories of the UAVs during the task.

Fig. 8. Trajectory tracking error in XY directions.

Some snapshots of the experiments at different time instants
are shown in Fig. 6. As illustrated in Fig. 7, UAV 1 and
UAV 2 approach the obstacles at time step 90, creating
smooth curves. Meanwhile, UAV 3 finds its optimal linear
path without encountering any obstacles. Ultimately, all three
UAVs successfully complete their optimal trajectories and
reach the target point with 200 time steps. Fig. 8 shows the
absolute tracking errors of the three UAVs in the X and Y
directions. It is evident that all three tracking errors approach
zero, indicating that the UAVs successfully reached their goal
points. During the landing procedure after the completion of
the task, however, two of the UAVs slightly diverge from their
goal points to avoid potential collisions.

V. CONCLUSION

In this paper, we propose a novel method which combines
RRT and an improved APF to achieve efficient multi-robot
navigation in complex dynamic environments. The improved
APF dynamically adjusts repulsive forces to escape local
minima and improve overall efficiency. The effectiveness of
the proposed method is validated by multiple simulations
and real flight analysis. Future directions include optimizing
the computational complexity of the planning algorithm and
incorporating adaptive mechanisms to adjust the parameters
based on the environment and robot dynamics.
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