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Abstract

The 1-in-3 and Not-All-Equal satisfiability problems for Boolean CNF formulas
are two well-known NP-hard problems. In contrast, the promise 1-in-3 vs. Not-All-
Equal problem can be solved in polynomial time. In the present work, we investigate
this constraint satisfaction problem in a regime where the promise is weakened from either
side by a rainbow-free structure, and establish a complexity dichotomy for the resulting
class of computational problems.

1 Introduction

Let ϕ be a Boolean formula given as a conjunction of clauses, each consisting of three (un-
negated) variables. Consider the following question:

Is there a truth assignment such that
each clause has exactly one true variable?

This is a well-known NP-hard computational problem, called (monotone) 1-in-3 Sat [33].
Similarly, the question

Is there a truth assignment such that
each clause has at least one true and one false variable?

∗An extended abstract of part of this work has appeared in the Proceedings of LICS 2024 [22]. This
work was supported by EPSRC Fellowship EP/X033201/1, UKRI EP/X024431/1, and a Clarendon Fund
Scholarship. Partially funded by the National Science Centre, Poland under the Weave-UNISONO call in
the Weave programme 2021/03/Y/ST6/00171. For the purpose of Open Access, the authors have applied
a Creative Commons Attribution (CC BY) license to any Accepted Manuscript version arising. All data is
provided in full in the results section of this paper.
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is the NP-hard problem known in the literature as 3-Not-All-Equal (NAE) Sat [51, 33].
In these and other variants, the Boolean satisfiability problem has had a central importance
in the development of complexity theory, its investigation dating back at least to [26]. Notice
that the first notion of satisfiability is stronger than the second: Any 1-in-3 assignment is also
an NAE assignment. Consider now the promise satisfiability problem that asks to distinguish
whether a formula ϕ is satisfiable in the strong sense (a 1-in-3 assignment exists) or ϕ is not
even satisfiable in the weak sense (an NAE assignment does not exist). This problem —
known as “1-in-3 vs. NAE” [12] — is a relaxation of both problems considered above, in
that it admits any answer on those formulas that are satisfiable in the weak but not in the
strong sense. Equivalently, one is promised that the input formula is not of that kind. Let us
try to solve this problem, using an algorithm from [12]. For any clause in ϕ involving three
variables x, y, z, consider the linear equation

x+ y + z = 1. (1)

This results in a linear system, which may be solved over the integers in polynomial time
by using, essentially, Gaussian elimination.1 If there is no integer solution, we are sure that,
in particular, no {0, 1} solution exists: ϕ does not admit a 1-in-3 assignment. If there is
an integer solution, we round it by turning positive values into 1 and non-positive values
into 0. Since no three positive (respectively, non-positive) integers can sum up to 1, we are
guaranteed that the output of this process is a valid NAE assignment — while it is not
necessarily a 1-in-3 assignment, as is witnessed, for example, by the solution to (1) given by
x = y = 2, z = −3.

In other words, while 1-in-3 Sat is NP-hard, if we are promised that all of the unsatisfiable
formulas we are considering are not even satisfiable in the weaker NAE sense, the problem
becomes tractable (solvable in polynomial time). Similarly (and dually), the promise that all
NAE-satisfiable formulas are also 1-in-3-satisfiable turns NAE into a tractable problem. It
is then natural to investigate what happens if we modify the promise. Clearly, a stronger
promise would lead to an even easier problem and, in particular, to a tractable one. What
if we weaken it? How does the promise impact on the complexity behaviour of the problem?
Where is the boundary of tractability?

In order to formulate these questions in a formal way, it shall be convenient to use the
paradigm of Constraint Satisfaction Problems (CSPs), which provides a broader context for
capturing Boolean satisfiability problems, as well as other computational problems such as
graph and hypergraph colouring. We can phrase a CSP as a homomorphism problem, where
the objective is to test for the existence of a homomorphism between an instance structure
X and a template structure A. In the setting of satisfiability of Boolean formulas, we should
think of X as a proxy for the formula ϕ, while A encodes the satisfiability notion we are
considering. In this formulation, X and A are two similar (finite) relational structures, con-
sisting of finite domains (X and A, respectively), as well as relations (RX ⊆ Xr and RA ⊆ Ar,
respectively) for each relation symbol R, where the positive integer r is the arity of R. A
homomorphism between X and A is a map f : X → A that preserves the relations; i.e.,
f(x) ∈ RA whenever x ∈ RX, where f is applied entrywise. We denote the existence of
a homomorphism by X → A. The CSP parameterised by A, denoted by CSP(A), is the
computational problem: “Given an instance X, output Yes if X → A and No if X 6→ A”.

1More precisely, by the integral version of Gaussian elimination that corresponds, in matrix terms, to
computing the Hermite or Smith normal forms of the matrix of the linear system [43].
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If we define the Boolean structure 1-in-3 whose unique relation, of arity 3, is the set

{(0, 0, 1), (0, 1, 0), (1, 0, 0)},

then CSP(1-in-3) is precisely the 1-in-3 Sat problem. Similarly, we can formulate the NAE
Sat problem as the CSP parameterised by the Boolean structureNAE whose unique relation,
of arity 3, is the set {

(0, 0, 1), (0, 1, 0), (1, 0, 0),
(1, 1, 0), (1, 0, 1), (0, 1, 1)

}
.

Other classic examples of CSPs are homomorphisms problems for digraphs (which are re-
lational structures having a single, binary relation) and, more generally, hypergraphs. In
particular, the CSP parameterised by the n-clique Kn is the well-known graph n-colouring
problem.

Several decades of research efforts have equipped the framework of CSPs with a rather
sharp set of tools — mostly coming from universal algebra — that can be leveraged to explain
the computational complexity of satisfiability problems. More precisely, the complexity of
CSP(A) is entirely determined by a certain type of identities holding in the polymorphism
clone of A, which contains all homomorphisms of the form Ak → A (where Ak is the k-fold
direct power of A) [42, 41, 20, 47, 8, 7].

This correspondence between polymorphisms and complexity — ultimately based on a
Galois connection between sets of relations and operations — has been invaluable in the ex-
ploration of the complexity landscape of CSPs. Eventually, it has led to the positive resolution
of Feder-Vardi’s Dichotomy Conjecture (now Theorem) by Zhuk [54] and Bulatov [19], which
asserts that a CSP is tractable in polynomial time if it has a polymorphism satisfying an
identity of a certain kind, and it is NP-hard otherwise [29].

Promise problems like 1-in-3 vs. NAE are captured by a paradigm, known as Promise
CSPs (PCSPs for short), that generalises CSPs. Here, the template is a pair (A,B) of (finite)
structures, and the computational problem PCSP(A,B) is “Given an instance X, output Yes
if X → A and No if X 6→ B”. In order for the Yes and the No instances to be disjoint, we
require that A → B. PCSPs were introduced in [2, 12] to unify the study of approximability
of perfectly satisfiable CSPs. The PCSP framework vastly extends CSPs: Firstly, several
well-known computational problems can be formulated in the former, but not in the latter.
Primary examples include the approximate colouring problems, which we shall discuss in
more detail later. Secondly, already the early exploration of PCSPs unveiled a number of new
phenomena — absent in the non-promise setting — that quickly called for a more general and
conceptually different approach to their study, going beyond the universal-algebraic approach
to CSPs. The crux of this need lies in the fact that the Galois connection for PCSPs is
far less structured than the one for CSPs: While the complexity of PCSPs is still governed
by polymorphisms (which are now homomorphisms Ak → B), the algebraic structure that
they form does not admit composition in the promise context. A consequence of this fact is
that the universal-algebraic tools that allow generating an infinite set of new identities from
a single polymorphic identity fail for PCSPs. This, in turn, stimulated the use of different
tools to study PCSP polymorphisms, including Boolean function analysis [13], topology [46],
matrix and tensor theory [25, 23, 24], and Fourier analysis [37].

It is, of course, a very natural question whether the CSP dichotomy extends to PCSPs.
Before being able to even conjecture a dichotomy for such a wide class of problems, it would be

3



beneficial to obtain classifications in well-chosen special cases. When the Feder-Vardi conjec-
ture was made, it was supported, in particular, by important special cases that were classified
at the time: the Boolean CSP (i.e., the domain of A is {0, 1}) [51], the afore-mentioned
graph colouring problem [44], and the undirected graph homomorphism problem (i.e., A is
an undirected graph) [38]. (Note that the second problem is a special case of the third.) The
promise versions of the Boolean CSP, graph colouring, and graph homomorphism problem
have been studied and there are some partial complexity classification results about them
(see, e.g. [2, 12, 13, 30, 4, 46]), but full classifications even in these cases are believed to be
difficult to obtain. In particular, the promise version of graph colouring is the well-known
approximate graph colouring problem: checking whether a given graph is n-colourable or
not even m-colourable, for given n ≤ m. The complexity of this problem, that corresponds
to PCSP(Kn,Km), is a long-standing open question in computer science [32]. It was only
resolved in certain special cases [45, 11, 4, 40, 46] or under strong complexity-theoretic as-
sumptions such as variants of the Unique Games Conjecture [27, 34, 18]. Other particular
examples of PCSPs have been studied in [3, 15, 17, 49, 48]. The PCSP templates considered
there have either small domains or specific structure.

The 1-in-3 vs. NAE problem — i.e. PCSP(1-in-3,NAE) — is in many respects a pro-
totypical example of PCSP, in that it witnesses several of the new behaviours separating the
promise and the non-promise worlds. Next, we discuss three of these separating behaviours.

(i) If three structures A,B,C are such that A → C → B, then PCSP(A,B) reduces
to CSP(C) through the trivial reduction that does not change the instance.2 Hence,
if CSP(C) is tractable, the exact same algorithm solving it also solves PCSP(A,B).
The tractability of many PCSPs can be certified through this pattern, by exhibiting a
suitable structureC. For finite C, this is provably not the case for PCSP(1-in-3,NAE):
It was established in [4] that any finite structure C for which 1-in-3 → C → NAE is
such that CSP(C) is NP-hard.3 This means that for PCSP(1-in-3,NAE) the source
of its tractability lies outside of the scope of non-promise finite CSPs and comes from
infinite-domain CSPs. (We note that there is no dichotomy for infinite-domain CSPs [9],
although there is a conjecture that the dichotomy for finite-domain CSPs extends to a
certain well-behaved class of infinite-domain CSPs, cf. [10].)

(ii) Local consistency is an algorithmic technique that consists in relaxing the question “Does
a homomorphism X → A exist?” by testing whether all subinstances of X of bounded
size admit a system of compatible homomorphisms to A. This method applies to both
CSPs and PCSPs; the templates that can be solved by enforcing local consistency are
said to have a bounded width. In the realm of CSPs, local consistency has precisely the
same power as the linear-programming based Sherali-Adams hierarchy [52]. However,
it was recently shown in [1] that PCSP(1-in-3,NAE) is solved by some fixed round of
the Sherali-Adams hierarchy and yet it has unbounded width, thus implying a lack of
collapse of the two algorithmic models for PCSPs.

(iii) Another singular behaviour of PCSP(1-in-3,NAE) emerged in the context of robust

2In the PCSP literature, this situation is known as a sandwich [12].
3We remark that the statement is false if we admit structures having an infinite domain. In fact, the

algorithm based on Gaussian elimination that was described at the beginning of the Introduction can be
reformulated as a reduction of PCSP(1-in-3,NAE) to CSP(Z), where Z = (Z; {(x, y, z) ∈ Z

3 | x+ y+ z = 1})
satisfies 1-in-3 → Z → NAE.
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algorithms. The class of CSPs that can be solved robustly — i.e., through some algo-
rithm that is not highly sensitive to small noise in the instance — coincides with the
class of bounded-width problems [5]. Nevertheless, it was established in [14] that the
problem PCSP(1-in-3,NAE) can be solved robustly although it is of unbounded width
— thus yielding another discrepancy between the promise and the non-promise settings.

For these reasons, a deeper understanding of why problems akin to PCSP(1-in-3,NAE)
are tractable can shed light on the new type of behaviours we expect to find in the complexity
landscape of promise problems. To that end, in this paper we investigate the tractability
boundary of problems that weaken the promise of PCSP(1-in-3,NAE) either from the left
or from the right — when the weakened version of the promise continues to share key features
with 1-in-3 and NAE (namely being symmetric and rainbow-free), we find a dichotomy for
the corresponding fragments of PCSPs. We note that [17], motivated by the same goal,
considered a certain class of Boolean templates that result from weakening the promise of one
of the two structures. Unlike [17], we go beyond Boolean domains.

The relational structures 1-in-3 and NAE contain one ternary relation, which is sym-
metric, i.e., it is invariant under permutations of the arguments, and it is rainbow-free, i.e., it
does not contain any tuple (x, y, z) whose arguments are all distinct (note that this is always
the case for Boolean ternary structures). Following [3], we describe this type of relational
structures by associating digraphs to them. More precisely, given a digraph G = (V,E), we
let Ĝ be the relational structure defined by

Ĝ = (V ; {(x, x, y), (x, y, x), (y, x, x) | (x, y) ∈ E}).

For example, if G is a single directed edge (from 0 to 1) or a single undirected edge, the
corresponding structure Ĝ is 1-in-3 or NAE, respectively. It is easy to check that we have
G → H if and only if Ĝ → Ĥ. Moreover, PCSP(G,H) always reduces to PCSP(Ĝ, Ĥ),
but the latter problem can be harder — for example, if G = H is an undirected edge,
PCSP(G,H) = CSP(G) is the (tractable) 2-colouring problem, whereas PCSP(Ĝ, Ĥ) =
CSP(Ĝ) = CSP(NAE) is NP-hard.

We are now ready to state our main results, which concern the regime where the promise
of the 1-in-3 vs. NAE problem is “broken” from either side — i.e., one of the two structures
in the template (1-in-3,NAE) is replaced by a different structure.4 First, fix 1-in-3 and
consider any digraph G such that (1-in-3, Ĝ) is a valid template — which happens if and
only if 1-in-3 → Ĝ or, equivalently, if and only if G contains at least one edge.

Theorem 1. PCSP(1-in-3, Ĝ) is tractable if G has a directed cycle of length at most 3, and
it is NP-hard otherwise.

Second, fix NAE and consider any digraph G such that (Ĝ,NAE) is a valid template —
which happens if and only if Ĝ → NAE or, equivalently, if and only if the graph obtained
from G by forgetting directions is bipartite. Following [39], we say that a digraph is balanced
if each of its oriented cycles has as many edges in one direction as in the other.

Theorem 2. PCSP(Ĝ,NAE) is tractable if G is balanced, and it is NP-hard otherwise.

4We remark that PCSPs (and CSPs) can also be formulated in their search version, as opposed to the
decision versions discussed in this Introduction. The two versions are polynomial-time equivalent for CSPs [20];
for PCSPs, decision reduces to search, but it is not known whether an efficient reduction in the other direction
always exists. Our results hold for both decision and search versions of PCSPs.
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Related work. We now discuss prior work on the problem PCSP(1-in-3,A). All our
tractable cases can be solved by the Affine Integer Programming (AIP) relaxation of [12].
This provides more evidence for the conjecture, first formally stated in the work [50], that
PCSP(1-in-3,A) is tractable if and only if it is solved by AIP.

Given a digraph G, let Ĝ+ denote the ternary structure obtained from Ĝ by adding
all rainbow tuples (i.e., tuples (x, y, z) with x, y, z all distinct) to the relation. Let Ti de-
note the transitive tournament with i vertices. [3] classified the complexity of all problems
PCSP(1-in-3,A) whereA has a 3-element domain, with the exception of PCSP(1-in-3, T̂+

3 ).
5

Note that 1-in-3 is precisely T̂+
2 . In [3], it is conjectured that PCSP(T̂+

k , T̂
+
ℓ ) is NP-hard for

k ≤ ℓ.6 Versions of this problem for higher arities were shown to be hard in [49, 48], and the
techniques of [49, Theorem 26] show that to prove this conjecture it is necessary and sufficient
to show that

PCSP(T̂+
2 , T̂

+
k ) = PCSP(1-in-3, T̂+

k )

is NP-hard for all k ≥ 2. In [31], it was proved that PCSP(T̂+
3 , T̂

+
4 ) is NP-hard using

topological methods. We view our hardness results as a partial step towards the resolution
of this conjecture, in the rainbow-free regime: It immediately follows from Theorem 1 that
PCSP(1-in-3, T̂k) is NP-hard for k ≥ 2; what the conjecture then requires is for hardness to
hold even if rainbow tuples are allowed.

Nakajima and Živný [50] classified all PCSPs which have the form PCSP(1-in-3,A)
where A is symmetric and functional, that is, the relation of A does not contain tuples
(x, y, z), (x, y, z′) with z 6= z′. Thus, these results fail to classify PCSP(1-in-3, Ĝ) whenever
G has a vertex with out-degree at least 2. On the other hand, unlike this paper, some of the
structures A for which [50] gave a classification do have rainbow tuples.

Comparing with the literature on PCSP(1-in-3,A), we find it interesting that the dual
extension PCSP(A,NAE) has been significantly less investigated. We are aware of only
two papers in this line of work. Firstly, [17] studied PCSP(A,NAE) for Boolean (possibly
non-symmetric) A obtained from 1-in-3 by adding extra tuples. Secondly, [30] established a
classification of Boolean symmetric PCSPs — however, up to isomorphism, the only Boolean
symmetric relational structures with one ternary relation that map to NAE are ({0, 1}; ∅),
1-in-3, and NAE. Thus, for the case PCSP(Ĝ,NAE) with Ĝ Boolean, the results of [30]
only yield trivial results: The problem is tractable when G is empty or has a loop, or when
Ĝ = 1-in-3, and is otherwise NP-complete. Our results thus additionally cover all other
digraphs G — i.e., the non-Boolean setting.

The rest of the paper is dedicated to the proofs of Theorems 1 and 2, which are given in
Sections 3 and 4, respectively, after introducing some preliminary notions in Section 2. In
Section 5, we shall outline some natural directions for future investigation.

Acknowledgements We thank all anonymous reviewers of various versions of this paper
for their comments and suggestions for changes.

5In [3], T̂3 and T̂
+

3 are denoted by T1 and T
+

1 , respectively.
6In [3], T̂+

k is denoted by LOk.
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2 Preliminaries

We denote by [n] the set {1, 2, . . . , n}. Moreover, we denote by [n,m) the set {n, . . . ,m− 1}.
We say that a collection of sets A1, . . . , An is disjoint if Ai ∩ Aj = ∅ whenever i 6= j. We
consider that N = {0, 1, . . . , }, i.e. the natural numbers include 0.

Relational structures and homomorphisms Except for digraphs, all relational struc-
tures that appear in this paper are pairs A = (A;RA), where A is the domain and RA ⊆ A3

is a ternary relation. A relational structure A is called symmetric if the relation RA is
symmetric, i.e., invariant under any permutation of its three arguments.

Given two relational structures A = (A;RA) and B = (B;RB), a homomorphism from
A to B is a function h : A → B such that (h(x), h(y), h(z)) ∈ RB whenever (x, y, z) ∈ RA.
We denote the existence of a homomorphism from A to B by A → B. A pair of relational
structures (A,B) with A → B is called a (PCSP) template.

Polymorphisms, minions We say that a function f : An → B has arity ar(f) = n. For
such a function, we say that a coordinate i ∈ [n] is essential if there exist a1, . . . , an, a

′
i ∈ A

such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an)
6=

f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an).

An n-ary function f has essential arity at most k if it has at most k essential coordinates. Let
(A,B) be a template. An n-ary function f is a polymorphism of (A,B) if (xi, yi, zi) ∈ RA

for every i ∈ [n] implies

(f(x1, . . . , xn), f(y1, . . . , yn), f(z1, . . . , zn)) ∈ RB.

We denote by Pol(n)(A,B) the set of n-ary polymorphisms of (A,B) and by Pol(A,B) the
set of all polymorphisms of (A,B). Polymorphisms form a minion, which we define below.
Given an n-ary function f : An → B and a map π : [n] → [m], an m-ary function g : Am → B

is called a minor of f given by the map π if

g(x1, . . . , xm) = f(xπ(1), . . . , xπ(n)).

We write f
π
−→ g or g = fπ if g is the minor of f given by the map π. A minion on a pair

of sets (A,B) is a non-empty set of functions from An to B (for n ∈ N) that is closed under
taking minors. For any template (A,B), the set of polymorphisms Pol(A,B) is a minion [4].
A map ψ : M → N from a minion M to a minion N is a minion homomorphism if ψ
preserves arities, i.e., ar(g) = ar(ψ(g)) for any g ∈ M , and ψ preserves minors, i.e., for each
π : [n] → [m] and each n-ary g ∈ M we have ψ(g)(xπ(1), . . . , xπ(n)) = ψ(g(xπ(1), . . . , xπ(n))).

NP-hardness Certain properties of the polymorphisms of (A,B) guarantee the NP-hardness
of PCSP(A,B) [4, 16, 6]. We use the following result from [16]; see also [6].

Theorem 3 ([16, Corollary 4.2]). Let k, ℓ be positive integers, and let (A,B) be a template.
Suppose that I is an assignment that takes any polymorphism f ∈ Pol(A,B) to a subset of
[ar(f)] of size at most k. Suppose that for any chain of minors

f1
π1,2
−−→ f2

π2,3
−−→ · · ·

πℓ−1,ℓ
−−−−→ fℓ

7



where f1, . . . , fℓ ∈ Pol(A,B), there exist 1 ≤ i < j ≤ ℓ such that πi,j(I(fi))∩ I(fj) 6= ∅, where
πi,j = πj−1,j ◦ · · · ◦ πi,i+1. Then PCSP(A,B) is NP-hard.

Intuitively, one thinks of the mapping I as nondeterministically “decoding” a polymor-
phism f to one of its coordinates. We bound the number of elements in I(f) in order to
bound the nondeterminism. For the decoding to be good enough to work, it must satisfy the
chain condition in the theorem.

Another important hardness result we will use is the following, which is a direct corollary
of [4, Corollary 5.2], rephrased in terms of essential arity.

Theorem 4. Let (A,B) be a template. If Pol(3)(A,B) contains only non-constant functions
of essential arity 1, then PCSP(A,B) is NP-hard.

(In fact, if the condition of Theorem 4 holds, then the condition of Theorem 3 also holds,
for k = 1 and ℓ = 2.) Theorems 3 and 4 hold for both decision and search versions of PCSP.

Digraphs Unless said otherwise, all digraphs in this paper are finite. A loopless digraph G

is a tournament if, for any two distinct vertices x, y, precisely one of the pairs (x, y) and (y, x)
is a directed edge of G. A tournament is transitive if its edge relation is transitive. Note
that a tournament is transitive if and only if it has no directed cycles of length 3. We will
use the well-known result that a tournament is acyclic if and only if it is transitive, cf. [36,
Corollary 5a, (1–2)]. We let Ti denote the transitive tournament on i vertices. Following [35],
an oriented path or oriented cycle is a digraph formed by choosing an orientation for each
edge of a path or cycle. The net length of an oriented path or cycle is the absolute value of
the number of forward edges minus the number of backward edges, for an arbitrary direction
of the path or cycle. (By taking the absolute value of this difference, the direction we traverse
the path or cycle does not matter.) In contrast, a directed cycle is a digraph isomorphic to
the digraph with edges 1 → 2 → · · · → k → 1 for some k ∈ N. An oriented path is minimal
if no subpath has a strictly greater net length. We shall make use of the following result.

Theorem 5 ([35, Claim 1]). Let P,P′ be minimal oriented paths of the same net length.
Then there exists an oriented path Q that can be homomorphically mapped to P and P′ with
beginnings and ends preserved (with suitably chosen traversing directions).

Note that Q needs to be a minimal path of the same net length as P and P′. Hence,
Theorem 5 can be extended to a finite number of minimal oriented paths P,P′,P′′, . . . of
equal net length.

For an integer i ≥ 2, we let Di be the directed cycle on i vertices and Li be the directed
path on i vertices. We also let D1 be a single vertex with a loop and L1 be an isolated
vertex, while Lω = (N; {(x, x + 1) | x ∈ N}) denotes the infinite directed path. A digraph G

is balanced if each of its oriented cycles has zero net length. Equivalently, this means that
G → Lω [39]. We will show (cf. Proposition 8) that this is also equivalent to the condition
Ĝ → Z, where Z is the relational structure over the domain Z whose unique, ternary relation
is {(x, y, z) ∈ Z

3 | x+ y + z = 1}, see Footnote 3.

Trees We will need the following fact about binary trees that can be easily shown by
induction. All of our trees will be rooted.

Lemma 6. A binary tree with more than 2n leaves must have a path from the root to a leaf
containing at least n+ 2 vertices.
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Primitive positive formulas, definitions We will define the notions of primitive positive
(pp) formulas and definitions for the special case of relational structures with one ternary
relation symbol R. A pp-formula is an existentially quantified conjunction of (positive) atomic
formulas, that are of the form x = y or R(x, y, z) for variables x, y, z. For example,

∃y∃z R(x, y, z) ∧ (x = y)

is a pp-formula. For a relational structure A = (A;RA) and a pp-formula ϕ(x, y, z) in which
only x, y, z are free, we define ϕA as a ternary relation that contains a tuple (a, b, c) if and only
if substituting (a, b, c) for (x, y, z), interpreting existential quantification as being over A, and
interpreting R as RA leads to a true statement. We say that ϕ interpreted in A = (A;RA)
pp-defines B = (B;RB) if A = B and RB = ϕA.

For templates (A,B) and (A′,B′), we say that (A,B) pp-defines (A′,B′) whenever there
exists a pp-formula ϕ(x, y, z) in which precisely x, y, z are free, for which ϕ interpreted in
A pp-defines A′, and ϕ interpreted in B pp-defines B′. We shall use the following result
from [12], cf. also [41, 21] for the analogous result for (non-promise) CSPs.

Theorem 7 ([12]). Suppose the template (A,B) pp-defines (A′,B′). Then PCSP(A′,B′)
reduces to PCSP(A,B) in logarithmic space.

3 Breaking the promise from the right

Let G be a digraph such that (1-in-3, Ĝ) is a valid template (equivalently, the edge set of G
is nonempty). In this section, we will prove the following result.

Theorem 1. PCSP(1-in-3, Ĝ) is tractable if G has a directed cycle of length at most 3, and
it is NP-hard otherwise.

The tractability part of Theorem 1 follows from the next, graph-theoretic result.7

Proposition 8. For any digraph G, the following holds

(i) Ĝ → Z if and only if G → Lω if and only if G is balanced, and

(ii) Z → Ĝ if and only if Di → G for some i ∈ {1, 2, 3}. Moreover, if a homomorphism
from Z to Ĝ exists, then it can be efficiently computed.

Proof. For a relational structure A = (A;R) with one ternary symmetric relation R, define
Ã to be the graph (A,E) where (x, y) ∈ E if and only if (x, x, y) ∈ R. Note that Ĝ → A if
and only if G → Ã.8

Observe that Z̃ = (Z; {(a, 1−2a) : a ∈ Z}). This structure is a disjoint union of (countably
many) forward-infinite directed paths: First, every vertex has exactly one outgoing and at
most one incoming edge (odd a has in-degree 1 while even a has in-degree 0). Second, note that
(0, 1) and (1,−1) are edges in Z̃ and for the remaining edges (a, 1− 2a) we have |a| < |1− 2a|
which proves that forward paths lead away from 0 and that Z̃ is acyclic. Thus Z̃ ⇆ Lω. It
follows that G → Z̃ if and only if G → Lω; respectively, Z̃ → G if and only if Lω → G.

7The second part of the proposition that follows may be derived from a result in [15]. We include a shorter,
self-contained proof for completeness.

8In other words, ·̂ and ·̃ form a Galois connection under the preordering given by →.
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(i) Ĝ → Z if and only if G → Z̃, if and only if G → Lω. For the second equivalence: as
G is finite, G → Lω if and only if G → L|G|, which is equivalent to G being balanced by
e.g. [39, Proposition 1.13].

(ii) For the “if” direction: a homomorphism hi : Z → D̂i exists for i ∈ [3] (namely
h1(x) = 0, h2(x) = [x > 0], h3(x) = x mod 3), so Di → G for i ∈ [3] implies Z → D̂i → Ĝ.
Conversely, let f : Z → Ĝ be a homomorphism, and assume that f is surjective (we can take
the image of the map in place of Ĝ) and that D1 and D2 do not map to G. We will show
that G is a non-transitive tournament; as such, the graph must contain D3 and the proof is
finished.9 Take any v 6= v′ vertices of G and find a, a′ such that f(a) = v, f(a′) = v′. The
triplet (a, a′, 1 − a− a′) belongs to the relation of Z. Therefore, either (v, v′) or (v′, v) is an
edge of G — since G additionally does not contain directed cycles of length at most 2 by
assumption, we have that G is a tournament. Since f : Z → Ĝ, we have Z̃ → G and hence
Lω → G, so by the pigeonhole principle G must contain a directed cycle and, thus, it cannot
be transitive.

Finally, if Z → Ĝ, using the second part of the lemma we deduce that Di → G (and hence
D̂i → Ĝ) for some i ∈ {1, 2, 3}. Both homomorphisms D̂i → Ĝ and Z → D̂i are efficiently
computable, and their composition yields a concrete homomorphism from Z to Ĝ.

Proof of tractability in Theorem 1. If Di → G for some i ∈ {1, 2, 3}, it follows from Propo-
sition 8 that 1-in-3 → Z → Ĝ. Therefore, PCSP(1-in-3, Ĝ) trivially reduces to CSP(Z),
which is tractable as it corresponds to solving linear Diophantine systems [43].

In the rest of this section, we prove the hardness part of Theorem 1. We note that this
proof can be seen as a generalisation of the proof of hardness of PCSP(1-in-3, T̂3) from [3],
where Tk is a directed tournament on k vertices.10 To that end, fix G and suppose it contains
no directed cycles of length at most 3. If we consider the edge relation of G, we see that it is
irreflexive (since G has no loops) and antisymmetric (since G has no directed cycles of length
2). Unfortunately it is not transitive — nonetheless we will see the edge relation as a kind of
weak order relation, and we will prove that it is “transitive enough” for our purposes. Thus,
write < for the edge relation of G (keeping in mind that < is not in general transitive), and
define ≤, >,≥ in the obvious way. Write x ≃ y if x = y or x < y or x > y.

In this section, all polymorphisms will be from the polymorphism minion Pol(1-in-3, Ĝ).
Note that such polymorphisms are simply functions from {0, 1}n to V , the vertex set of G.
We can see such a function as a function from 2[n] to V , i.e. from subsets of [n] to V . The fact
that f ∈ Pol(n)(1-in-3, Ĝ) is a polymorphism then implies that, for any partition A,B,C of
[n], two of f(A), f(B), f(C) are equal, and the last is strictly greater (i.e., there is an edge
in G from the two equal elements to the third one). In this interpretation, for π : [n] → [m],
observe that fπ = f ◦ π−1, where π−1 : 2[m] → 2[n] is the preimage function: x ∈ π−1(S) if
and only if π(x) ∈ S.

Definition 9. For a polymorphism f ∈ Pol(n)(1-in-3, Ĝ), call a set X ⊆ [n] a hitting set (for
f) if it has a subset Y ⊆ X such that, for all Z ⊆ [n] with f(Z) = f(Y ), we have X ∩ Z 6= ∅.
In this case, say that f(Y ) is a hitting value for X.

9To see why any non-transitive tournament T must contain D3, consider the smallest cycle within T. It
cannot be of length 1 or 2; if it is of length 3 then we are done; if it is of length 4 or above, then it cannot be
minimal since any chord within the cycle gives rise to a smaller cycle.

10
T̂3 is denoted by T1 in [3].
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Note that the property of being a hitting set is upwards closed; i.e., if X is hitting and
W ⊇ X, then W is hitting as well.

Theorem 10. Let G be a digraph without directed cycles of length at most 3 and let N be
the number of vertices of G. Then every polymorphism f ∈ Pol(1-in-3, Ĝ) has a nonempty
hitting set of size at most (N + 1)(1 +N +N22N ).

As we shall see next, the result above is sufficient for establishing the NP-hardness part
of Theorem 1.

Proof of Theorem 1. For any f ∈ Pol(1-in-3, Ĝ), define I(f) to be a hitting set for f of
minimum size — it exists and its size is bounded by some function of N by Theorem 10.
Observe that, as G is fixed, N is a constant, so the size of I(f) is bounded by a constant.
Moreover, it is nonempty as ∅ is never a hitting set. Consider any N + 1 polymorphisms of
Pol(1-in-3, Ĝ) connected by a chain of minors. By the pigeonhole principle, polymorphisms
f

π
−→ g must exist within this chain such that I(f) and I(g) have a hitting value in common.

Suppose this value is c. Thus I(g) contains a set X such that g(X) = c, and I(f) intersects all
sets Y within the domain of f for which f(Y ) = c. Since g(X) = c, we have f(π−1(X)) = c

and thus I(f) ∩ π−1(X) 6= ∅. Thus π(I(f)) ∩ I(g) 6= ∅. By Theorem 3 (with ℓ = N + 1 and
k = (N + 1)(1 +N +N22N )), it follows that PCSP(1-in-3, Ĝ) is NP-hard.

In the remainder of this section, we shall prove Theorem 10. Henceforth, we fix a directed
graph G with N vertices and no directed cycles of length at most 3, and a polymorphism
f ∈ Pol(n)(1-in-3, Ĝ). We first show that, in this case, [n] is a hitting set for f .

Lemma 11. [n] is a hitting set for f .

Proof. Since f is a polymorphism, the tuple

(f(∅), f(∅), f([n]))

must belong to the relation of Ĝ, which means that f(∅) < f([n]). Since G has no loops,
f(∅) 6= f([n]). We then have from Definition 9 that [n] is a hitting set, as witnessed by the
subset [n] ⊆ [n].

Next, we give two laws governing f .

Lemma 12 (Disjointness law). For disjoint A,B ⊆ [n], we have f(A) ≃ f(B).

Proof. Consider the partition A,B, [n] \ (A ∪B). Since f is a polymorphism, the tuple

(f(A), f(B), f([n] \ (A ∪B)))

belongs to the relation of Ĝ. Hence, either f(A) = f(B) < f([n] \ (A ∪ B)), or f(A) =
f([n] \ (A ∪B)) < f(B), or f(B) = f([n] \ (A ∪B)) < f(A).

Lemma 13 (Union law). Consider disjoint A,B,C ⊆ [n]. LetM be the multiset [f(A), f(B), f(A∪
C), f(B ∪ C)]. There exists an element m of M with multiplicity 2 or 4, which we call the
pseudo-minimum of M . If m has multiplicity 2 and m̂, m̃ are the remaining (possibly equal)
elements of M , then at least one of the following occurs:

• m < m̂ and m < m̃, or
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• m < m̂ < m̃, or

• m < m̃ < m̂.

Proof. Let D = [n] \ (A∪B ∪C). By disjointness, f(A∪C) ≃ f(B) and f(A) ≃ f(B ∪C). If
neither of these pairs have equal values, then one element in each pair is equal to f(D) (due
to the partitions A ∪ C,B,D and A,B ∪ C,D), and is less than the other value in the pair.
This corresponds to the case where m < m̂ and m < m̃. Now assume that the elements in
at least one of the pairs coincide — say f(A) = f(B ∪ C). If the elements of the other pair
are not equal, then one of the two values is equal to f(D), and the other is greater; since
f(A) < f(D) (due to partition A,B ∪C,D), this corresponds to the case where m < m̃ < m̂

or the case where m < m̂ < m̃. If also the other pair has equal values, then by disjointness
f(A) ≃ f(B). If f(A) 6= f(B) we get the case where m < m̂ and m < m̃; and if f(A) = f(B)
then all four elements of M coincide, so we are in the case where m has multiplicity 4.

Remark 14. The pseudo-minimum is not necessarily a true minimum, since in the case where
m < m̂ < m̃ (or symmetrically m < m̃ < m̂) it is possible that m 6≤ m̃ (respectively m 6≤ m̂).
Nonetheless, since G has no directed cycles of length 3, we have that m 6> m̃ (respectively,
m 6> m̂) even in this case. Indeed, in all cases, for any m′ ∈ M we have that m 6> m′, since
otherwise a directed cycle of length at most 3 would appear.

Our final goal is to establish that f has a hitting set of bounded size. The following
lemma shows that a long sequence of sets whose images under f are strictly increasing yields
a hitting set.

Lemma 15. Suppose there exist sets X1, . . . ,Xk ⊆ [n] with k > N , where f(X1) < · · · <
f(Xk). Then

⋃
ℓXℓ is a hitting set.

Proof. Suppose for contradiction that for all i, j ∈ [k] we have f(Xi) ≃ f(Xj). Thus,
f(X1), . . . , f(Xk) induce a tournament in G. This tournament is not acyclic, since f(X1) <
· · · < f(Xk) must contain a directed cycle by the pigeonhole principle. Therefore, G is not
transitive, which means that it must contain a directed cycle of length at most 3, a contra-
diction.

Thus, there exist i, j ∈ [k] such that f(Xi) 6≃ f(Xj). By (the contrapositive of) the
disjointness law, any set Y ⊆ [n] such that f(Y ) = f(Xi) 6≃ f(Xj) is not disjoint from Xj.
Hence, Xi ∪Xj is a hitting set. Since hitting sets are upwards closed and

⋃
ℓXℓ ⊇ Xi ∪Xj,

we find that
⋃

ℓXℓ is a hitting set, too.

The next three lemmata will partially determine f(X ∪ S ∪ T ) in terms of f(X ∪ S) and
f(X ∪ T ), under the assumption that f(X) = f(Y ) and X,Y, S, T are disjoint. These proofs
are based on repeated applications of the union law, and involve a case analysis.

Lemma 16. For disjoint X,Y, S, if f(X ∪ S) 6> f(X) = f(Y ) then f(X ∪ S) = f(Y ∪ S).

Proof. By the disjointness law, f(X ∪ S) ≃ f(Y ) = f(X). Since f(X ∪ S) 6> f(X), we have
f(X ∪ S) ≤ f(X). Apply the union law to X, Y , and S.

Suppose first that the pseudo-minimum of the multiset

[f(X), f(Y ), f(X ∪ S), f(Y ∪ S)]
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is f(X) = f(Y ). Recall that f(X ∪ S) ≤ f(X), and since f(X) is the pseudo-minimum,
f(X ∪ S) 6< f(X). So f(X ∪ S) = f(X). Since the pseudo-minimum must appear 2 or 4
times, it follows that f(Y ∪ S) = f(X) = f(Y ) = f(X ∪ S), as required.

Otherwise, if the pseudo-minimum is f(X ∪ S) (or symmetrically f(Y ∪ S)), since the
minimum must appear 2 or 4 times, and f(X) = f(Y ) is not the pseudo-minimum, we have
that f(X ∪ S) = f(Y ∪ S).

Lemma 17. If X,Y, S, T are disjoint, f(X ∪ S) = f(X ∪ T ), and f(X) = f(Y ), then either
f(X) ≤ f(X ∪ S ∪ T ) or f(X ∪ S) < f(X ∪ S ∪ T ).

Proof. Apply the union law to X, Y , and S. Since f(X) = f(Y ), there are two possibilities
for the pseudo-minimum of

[f(X), f(Y ), f(X ∪ S), f(Y ∪ S)].

Namely, if the pseudo-minimum is f(X ∪ S) or f(Y ∪ S), then since the pseudo-minimum
appears 2 or 4 times either all 4 elements are equal or f(X ∪ S) = f(Y ∪ S) is the pseudo-
minimum. Otherwise, the pseudo-minimum must be f(X) = f(Y ).

Case 1. Assume that the pseudo-minimum is f(X ∪S) = f(Y ∪ S). Since f(X) = f(Y ),
we deduce that f(X ∪S) = f(Y ∪S) ≤ f(X) = f(Y ). Apply the union law to Y , X ∪T , and
S. Since f(X ∪ T ) = f(X ∪ S) = f(Y ∪ S) ≤ f(Y ), the pseudo-minimum of

[f(Y ), f(X ∪ T ), f(Y ∪ S), f(X ∪ T ∪ S)]

is f(X ∪ T ) = f(Y ∪ S). We thus have four cases:

• f(X ∪ T ) = f(Y ∪ S) = f(Y ) = f(X ∪ T ∪ S),

• f(Y ) > f(X ∪ T ) = f(Y ∪ S) < f(X ∪ T ∪ S),

• f(X ∪ T ) = f(Y ∪ S) < f(Y ) < f(X ∪ T ∪ S),

• f(X ∪ T ) = f(Y ∪ S) < f(X ∪ T ∪ S) < f(Y ).

Keeping in mind that f(X) = f(Y ) and f(X ∪ S) = f(Y ∪ S), the conclusion follows in all 4
cases.

Case 2. Assume that the pseudo-minimum is equal to neither f(X ∪ S) nor f(Y ∪ S).
Thus the pseudo-minimum is f(X) = f(Y ). In this case, f(Y ) 6> f(X ∪ S) = f(X ∪ T ) and
f(Y ) 6> f(Y ∪ S). By assumption, f(Y ) 6= f(X ∪ T ) and f(Y ) 6= f(Y ∪ S). By disjointness,
f(Y ) ≃ f(X ∪ T ) and f(Y ) = f(X) ≃ f(Y ∪ S), so it follows that f(Y ) < f(X ∪ T ) and
f(Y ) < f(Y ∪ S). Now, apply the union law to Y , X ∪ T , and S. Since f(Y ) < f(X ∪ T )
and f(Y ) < f(Y ∪ S), the pseudo-minimum of

[f(Y ), f(X ∪ T ), f(Y ∪ S), f(X ∪ T ∪ S)]

must be f(Y ) = f(X ∪ T ∪ S), and the conclusion follows.

Lemma 18. If X,Y, S, T are disjoint and f(X) = f(Y ) = f(X ∪ S) = f(X ∪ T ), then
f(X) = f(X ∪ S ∪ T ).
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Proof. SinceG has no loops, f(X∪S) 6> f(X) and f(X∪T ) 6> f(X). Therefore, by Lemma 16,
f(Y ∪S) = f(X ∪S) = f(X) and f(Y ∪T ) = f(X ∪T ) = f(X). Let us now apply the union
law to Y , X∪S, and T . Since three of the elements of [f(Y ), f(X∪S), f(Y ∪T ), f(X∪S∪T )]
are equal, the fourth is also.

The next lemma is the crucial one: Given some nonempty set X, it either creates a hitting
set of bounded size immediately, or finds some set X ′ of bounded size such that f(X) < f(X ′).
The conclusion will follow by repeatedly applying this lemma.

Lemma 19. Consider a nonempty set X ⊆ [n]. Then either a hitting set of size at most
|X|+ 2N exists, or we can find a nonempty set X ′ ⊆ [n] of size at most 1 + |X|+N2N such
that f(X) < f(X ′).

Proof. We can assume that |X| ≤ n − 2 as, otherwise, it would follow from Lemma 11 that
[n] is the required hitting set. Thus, let a 6= b ∈ [n] \X, and suppose that X ∪ {a, b} is not
hitting (if it were, it would be the required hitting set). Thus, some set Y ⊆ [n] \ (X ∪ {a, b})
exists such that f(X) = f(Y ). Let S = [n] \ (X ∪ Y ∪ {a}); since b ∈ S, S 6= ∅.

Create a partition P1, . . . , Pk of S, that initially consists of one singleton for each element
of S. While

(i) all the parts P such that f(X ∪ P ) < f(X) have size |P | ≤ 2N−1, and

(ii) there exist distinct parts Pi, Pj such that f(X ∪ Pi) = f(X ∪ Pj) < f(X),

merge any two such parts Pi and Pj . Observe that at all times all parts must have size at
most 2N , since they are either singletons or the union of two parts with size at most 2N−1. It
follows that this procedure must eventually terminate; we now consider what happens when
it does, depending on the reason for termination.

First, suppose that the procedure terminates because (i) ceases to hold; i.e., we arrive at a
part P with size greater than 2N−1 with f(X∪P ) < f(X). P was created by repeated merges
of parts in the partition; thus, consider a binary tree rooted at P where each vertex is labelled
by a subset of P that was at some point a part in the partition, and the children of a vertex
are the parts that were merged to form that part. Consider any non-root vertex in the tree,
and suppose it is labelled by part P ′. Since P ′ was merged with some other part, it must be
the case that f(X∪P ′) < f(X). Since this is true by assumption for P as well, it is true for all
the parts that appear in the tree. Now, consider any non-leaf vertex, labelled by part Q ∪R,
where its children are labelled by Q and R. Since Q and R are merged, f(X ∪Q) = f(X ∪R)
and Q∩R = ∅. Thus, apply Lemma 17 to X,Y,Q,R and note that f(X) 6≤ f(X∪Q∪R), since
f(X ∪Q∪R) < f(X); it follows that f(X∪Q) < f(X∪Q∪R) and f(X ∪R) < f(X ∪Q∪R).
In other words, for any two parts A and B where the vertex corresponding to A is a child of
the vertex corresponding to B, we have f(X ∪A) < f(X ∪B). Since the tree has more than
2N−1 leaves, by Lemma 6 we can find a path in the tree starting at the root with at least
N +1 vertices. Call the labels of the vertices of such path P ′

k = P,P ′
k−1, . . . , P

′
1, starting from

the root and going to the leaves. Since f(X ∪P ′
1) < f(X ∪P ′

2) < · · · < f(X ∪P ′
k), we obtain

from Lemma 15 that the set X ∪
⋃

ℓ∈[k] P
′
ℓ is a hitting set. Using that P is a superset of all

sets appearing in the path and that hitting sets are upwards closed, we conclude that X ∪ P
is a hitting set. Recall that |P | ≤ 2N . So, the required hitting set is X ∪ P .

Second, suppose that the procedure terminates because the condition (ii) ceases to hold
(regardless of whether (i) holds or not). By the pigeonhole principle there exist at most N
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parts P for which f(X ∪ P ) < f(X). Let Z be the union of these parts and the set {a} (if
there are not any such parts then Z = {a}), and let Q1, . . . , Qℓ be the remaining parts; i.e.,
f(X ∪ Qi) 6< f(X). Observe that |Z| ≤ 1 + N2N . There are now two cases. First, suppose
that for some i ∈ [ℓ] we have f(X) < f(X ∪Qi). In this case, since |X ∪Qi| ≤ |X|+ 2N , the
set X ′ = X∪Qi witnesses that the statement of the lemma holds. Otherwise, for every i ∈ [ℓ],
since f(X) 6< f(X∪Qi) and f(X∪Qi) 6< f(X), yet f(X) = f(Y ) ≃ f(X∪Qi) by disjointness,
we find that f(X) = f(X ∪Qi). By Lemma 18 applied ℓ− 1 times, f(X ∪

⋃
iQi) = f(X) =

f(Y ). (This also holds when there are no sets Qi, since X∪
⋃

iQi = X in this case.) Now, the
partition X ∪

⋃
iQi, Y, Z implies that f(X ∪

⋃
iQi) = f(Y ) < f(Z) (as f is a polymorphism),

and thus f(X) = f(Y ) < f(Z). Thus, as |Z| ≤ 1 +N2N , the set X ′ = Z witnesses that the
statement of the lemma holds.

Proof of Theorem 10. Create a sequence of nonempty sets

X1, . . . ,XN+1 ⊆ [n]

in the following way. Let X1 = {1}. For i ∈ [N ], apply Lemma 19 to Xi. If it yields a
nonempty hitting set of size at most |Xi|+ 2N , then let Xi+1 be this hitting set. Otherwise,
if it yields a nonempty set X ′ of size at most 1 + |Xi| + N2N for which f(Xi) < f(X ′),
set Xi+1 = X ′. Note that |Xi+1| ≤ 1 + |Xi| + N2N and |X1| = 1, so, for all i ∈ [N ],
|Xi+1| ≤ 1 + i(1 +N2N ) ≤ 1 +N(1 +N2N ) = 1 +N +N22N . If Xℓ is a hitting set for some
ℓ ∈ [N+1], the conclusion follows. Otherwise, we must have f(X1) < f(X2) < · · · < f(XN+1),
in which case, by Lemma 15,

⋃
iXi is a hitting set. Since |

⋃
iXi| ≤ (N + 1)(1 +N +N22N ),

the conclusion follows in this case, too.

4 Breaking the promise from the left

Let G be a digraph such that (Ĝ,NAE) is a valid template (equivalently, the graph obtained
from G by forgetting the directions is bipartite; in this case, we say that G is bipartite). In
this section, we will prove the following result.

Theorem 2. PCSP(Ĝ,NAE) is tractable if G is balanced, and it is NP-hard otherwise.

The tractability part is a direct application of Proposition 8.

Proof of tractability in Theorem 2. If G is balanced, applying both parts of Proposition 8, we
find

Ĝ → Z → D̂2 = NAE.

Therefore, PCSP(Ĝ,NAE) reduces to CSP(Z) and is thus tractable.

We now turn to prove the hardness part of Theorem 2. Suppose that G is unbalanced —
i.e., G 6→ Lω. Note that, since G is bipartite, the net length of any oriented cycle is even.
The proof of hardness in Theorem 2 shall follow from the combination of the next two facts.

Proposition 20. For any positive integer k, PCSP(D̂2k,NAE) is NP-hard.

Proposition 21. For any bipartite digraph G that contains an oriented cycle with net length
2k 6= 0, PCSP(D̂2k,NAE) reduces in polynomial time to PCSP(Ĝ,NAE).
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These two results will be proved in Section 4.1 and Section 4.2, respectively.

Proof of hardness in Theorem 2. Suppose that G contains an oriented cycle of nonzero net
length. Since G is bipartite, this net length must be even, say 2k. By Proposition 21,
PCSP(D̂2k,NAE) reduces to PCSP(Ĝ,NAE). NP-hardness of PCSP(Ĝ,NAE) then follows
by Proposition 20.

4.1 Hardness of cycle vs. NAE

In this section, we prove the following result.

Proposition 20. For any positive integer k, PCSP(D̂2k,NAE) is NP-hard.

In the following proof, we make use of the fact that, for f ∈ Pol(3)(D̂2k,NAE),

f(x, y, z) = f(x′, y′, z′)

(x, x′, x′′), (y, y′, y′′), (z, z′, z′′) ∈ RD̂2k

}
⇒ f(x, y, z) 6= f(x′′, y′′, z′′) (2)

This fact follows directly from the definitions of polymorphisms and of NAE. Furthermore,

f(x, y, z) 6= f(x′, y′, z′) 6= f(x′′, y′′, z′′) ⇒ f(x, y, z) = f(x′′, y′′, z′′), (3)

since NAE is Boolean. Finally, since D̂2k can be described as the template whose domain is
[0, 2k) and whose relation contains all permutations of tuples of the form (x, x, x+1 mod 2k),
we will consider addition over [0, 2k) to be done modulo 2k. In particular, these facts imply

f(x, y, z) 6= f(x+ 1, y + 1, z + 1), (4)

for x, y, z ∈ [0, 2k).

Proof. The result clearly holds for k = 1, since in this case PCSP(D̂2k,NAE) = CSP(NAE),
which is NP-hard. Thus, assume k ≥ 2. We show that every ternary polymorphism of
(D̂2k,NAE) is non-constant and has essential arity 1. This is sufficient for hardness by
Theorem 4. Since, by (4), f(x, y, z) 6= f(x+1, y+1, z+1) for any x, y, z ∈ [0, 2k), we deduce
by induction that f(x, y, z) = z + f(x− z, y − z, 0) mod 2 for x, y, z ∈ [0, 2k). It thus follows
that it is sufficient to describe the matrix Mxy = f(x, y, 0) in order to characterise f entirely.
We now observe the following.

(i) If M contains two adjacent equal elements, then the row or column on which they are
found is constant. To see why, suppose without loss of generality that f(x, y, 0) =Mxy =
Mx,y+1 = f(x, y + 1, 0) for some x, y ∈ [0, 2k). Thus, by (2), applied to (x, y, 0), (x, y +
1, 0), (x+1, y, 1), we have f(x, y, 0) 6= f(x+1, y, 1). Furthermore, by (4), f(x, y−1, 0) 6=
f(x+ 1, y, 1). Thus, by (3), Mx,y−1 = f(x, y − 1, 0) = f(x, y, 0) =Mxy. Repeating this
observation 2k − 2 times yields the result.

(ii) If a row or column of M is non-constant, then it alternates between 0 and 1. This is
just the contrapositive of (i).
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(iii) The following configurations cannot appear in M :


0 ⋆ ⋆

⋆ ⋆ 1
⋆ 1 ⋆


 ,



1 ⋆ ⋆

⋆ ⋆ 0
⋆ 0 ⋆


 .

Equivalently, letting (x, y) be the coordinates of the middle element in the patterns
above: if Mx+1,y = Mx,y+1 then Mx−1,y−1 = Mx+1,y. To see why this is the case,
note that f(x + 1, y, 0) = Mx+1,y = Mx,y+1 = f(x, y + 1, 0), so by (2) applied to
(x + 1, y, 0), (x, y + 1, 0), (x, y, 1), we have that Mx+1,y = f(x + 1, y, 0) 6= f(x, y, 1).
Furthermore, by (4), Mx−1,y−1 = f(x− 1, y − 1, 0) 6= f(x, y, 1). So, by (3), Mx−1,y−1 =
Mx,y+1.

These facts together show thatM is completely determined by its 2×2 submatrixM ′ located
in the upper-left corner of M : These four entries dictate the rows and columns they are on by
(i) and (ii), and these rows and columns determine all of M in the same way. By propagating
out in this way, one easily shows that, if

M ′ ∈

{[
0 0
0 0

]
,

[
1 1
1 1

]
,

[
1 0
1 0

]
,

[
0 1
0 1

]
,

[
1 1
0 0

]
,

[
0 0
1 1

]}
,

then f is non-constant and has essential arity 1.11 For the remaining ten configurations, by
propagating out we see that the 4× 4 submatrix located in the upper-left corner of M must
follow one of the five patterns in Figure 1 or one of the patterns obtained from those in
Figure 1 by swapping 0s and 1s. These patterns do not respect rule (iii) due to the shaded
elements.

0 1 0 1

1 1 1 1

0 1 0 1

1 1 1 1






,

1 0 1 0

1 1 1 1

1 0 1 0

1 1 1 1






,

1 1 1 1

0 1 0 1

1 1 1 1

0 1 0 1






,

1 1 1 1

1 0 1 0

1 1 1 1

1 0 1 0






,

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0







Figure 1: Patterns from the proof of Proposition 20.

4.2 Reduction

In this section, we prove the following result.

Proposition 21. For any bipartite digraph G that contains an oriented cycle with net length
2k 6= 0, PCSP(D̂2k,NAE) reduces in polynomial time to PCSP(Ĝ,NAE).

In order to design the reduction, we will need a key insight, which we prove now. The
reasoning builds up on an idea in [53]. In the following, for two oriented paths P = p1 . . . pn
and Q = q1 . . . qm, we let P+Q denote the path formed by taking the disjoint union of P and
Q and then identifying pn with q1; and we let P−Q denote the path formed by identifying
pn with qm. Furthermore, recall that L2 denotes the oriented path p1p2 with one directed
edge (p1, p2).

11In particular, f is one of the 6 functions (x1, x2, x3) 7→ xi + c mod 2, for i ∈ [3], c ∈ [2].
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Proposition 22. Let C be an oriented cycle of net length n ≥ 1. There exists an oriented
path P and a set of vertices a0, . . . , an−1 of C such that

(i) for each i, P−P homomorphically maps into C in a way that its endpoints map to ai,
and

(ii) for each i, L2+P−P homomorphically maps into C in a way that its first vertex maps
to ai and its last vertex maps to ai+1 mod n.

Proof. We first choose a positive orientation of C, i.e., an orientation such that the difference
between the numbers of edges directed forward and backward is positive (and thus equal to
the net length).

We now proceed to choose a “starting point”. Label the vertices of C as c0, c1, c2, . . . , cp =
c0, where c0 is an arbitrary vertex and the other vertices are picked according to the positive
orientation, in the natural way. Let C̃ be the oriented path obtained from C by deleting the
edge connecting c0 and cp−1. Assign levels to vertices in a natural way: c0 has level 0 (denoted
lvl(c0) = 0), c1 has level 1 or −1 depending on the direction of the first edge, and so on. Let
µ be the minimum level of the vertices of C̃ (note that this is a non-positive number), and
let v be the last vertex of C̃ of level µ.

Let now C∗ be an oriented path starting at v and winding around C a certain amount of
times (the number is inessential, as long as it is sufficiently large) in the positive orientation.
Assign levels to vertices of the oriented path C∗ in the same way as before. Clearly, lvl(v) = 0;
the choice of v guarantees that the levels of all other vertices are strictly positive. (Indeed,
the first time we wind around C this is the case, and every successive time we wind around
C the levels are increased by the net length of C, which is positive.) Further, for i = 0, . . . , n,
we let ai be the last vertex in C∗ of level i. Note that a0, . . . , an−1 appear in the first copy of
C. Moreover, a0 = v, while an coincides with the duplicate of v in the second copy of C. It
remains to find the oriented path P.

First, for every i = 0, . . . , n − 1, we will find a minimal path Pi of net length p so that
Pi − Pi connects ai to itself. This is very easy: We start with ai and go along C∗ until we
hit the first element of level i+ p. This is our Pi; the path is minimal since no element after
ai has level i, and since we chose the first element of level i + p to be the end. Moreover, ai
is clearly connected to itself via Pi −Pi in C.

Next, for each i = 0, . . . , n − 1, we let a′i be the element on C∗ coming after ai. Clearly,
by the definition of ai, lvl(a

′
i) = i + 1, and all the vertices of C∗ after a′i have level ≥ i + 1.

As before, we go along C∗ until we hit the first vertex of level i+1+ p, say bi. Let Qi be the
part of C∗ connecting a′i to bi; it has net length p and it is minimal. By the choice of p, along
the way, we hit the element ai+1. Let Q

′
i be the part of Qi connecting ai+1 to bi; it is clearly

minimal by the choice of ai+1 and bi, and it has net length p. Additionally, L2 + Qi − Q′
i

connects ai to ai+1 by construction.
Now let P be the oriented path homomorphically mapping to every Pi, Qi, and Q′

i (it
exists by Theorem 5). Using that a0 and an are the same vertex in C, it follows that P

satisfies the conclusion of the lemma.

Remark 23. Proposition 22 also holds if one replaces C with any directed graph G that
contains an oriented cycle of net length n ≥ 1. Indeed, one only needs to apply the result to
any oriented cycle contained in G.
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Reduction We reduce PCSP(D̂2k,NAE) to PCSP(Ĝ,NAE). For any oriented path P

with vertex set {v1, . . . , vn}, whose first vertex is v1, whose last vertex is vn, and whose edge

set is E(P), define the pp-formula x
P
−→ y by

∃u1, . . . , un (x = u1) ∧ (y = un) ∧
∧

(vi,vj)∈E(P)

R(ui, ui, uj).

This pp-formula is such that, in the structure Ĝ, x
P
−→ y is true if and only if P homomorphi-

cally maps into G in a way that v1 is mapped to x and vn is mapped to y.

Lemma 24. There is a pp-formula ϕ such that

(i) ϕ interpreted in D̂i pp-defines D̂i for any i ∈ N, and

(ii) if ϕ interpreted in Ĝ pp-defines T, then D̂2k homomorphically maps into T.

Proof. Consider the path P for G provided by Proposition 22 (see Remark 23), and define
the formula ϕ(x, y, z) by

∃x′, y′, z′ R(x′, y′, z′) ∧ x
P−P
−−−→ x′ ∧ y

P−P
−−−→ y′ ∧ z

P−P
−−−→ z′.

This is not a pp-formula, but it is equivalent to one, by “pulling out” the existential quantifiers

hidden in ⋆
P−P
−−−→ ⋆.

To see why the first item follows, note that P − P has net length 0 and thus, in D̂i, we
have x′ = x, y′ = y, and z′ = z.

To see why the second item follows, consider the vertices

a0, . . . , a2k−1

given by Proposition 22. Suppose we label the vertices of D̂2k by 0, 1, . . . , 2k − 1. Then the
desired homomorphism is the one sending i to ai. Letting ⊕ be addition modulo 2k, that this
is a homomorphism is equivalent to saying that

ϕ(ai, ai, ai⊕1) ∧ ϕ(ai, ai⊕1, ai) ∧ ϕ(ai⊕1, ai, ai)

is true in Ĝ for all i = 0, . . . , 2k − 1. Since ϕ is clearly symmetric, it is only necessary to
prove that ϕ(ai, ai, ai⊕1) holds. Recall that L2 +P−P homomorphically maps into G such
that its beginning is mapped to ai and its end is mapped to ai⊕1. In other words, there exists
some vertex b such that an edge from ai to b exists in G, and P−P maps into G such that

its beginning is mapped to b and its end is mapped to ai⊕1. As a consequence, b
P−P
−−−→ ai⊕1 is

true when interpreted in Ĝ; by the symmetry of P−P, ai⊕1
P−P
−−−→ b is true as well. Thus, the

witnesses to the truth of ϕ(ai, ai, ai⊕1) are x
′ = ai, y

′ = ai, and z
′ = b. Indeed, R(ai, ai, b) is

true since there is an edge from ai to b; ai
P−P
−−−→ ai is true by Proposition 22; and ai⊕1

P−P
−−−→ b

is true as shown above.

Proof of Proposition 21. Applying Lemma 24, we find that there exists a pp-formula ϕ such
that, if ϕ interpreted in Ĝ pp-defines T, then D̂2k → T, and ϕ interpreted in NAE = D̂2

pp-defines NAE. Hence, (Ĝ,NAE) pp-defines (T,NAE). By Theorem 7, PCSP(T,NAE)
reduces to PCSP(Ĝ,NAE). On the other hand, we have that PCSP(D̂2k,NAE) reduces
to PCSP(T,NAE), since D̂2k → T. Combining the two reductions, we obtain the required
result.
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5 Future directions

The results obtained in the current work identified two features of the satisfiability problem
1-in-3 vs. NAE that can be regarded as the reason for its tractability: The problem is
solvable in polynomial time because 1-in-3 corresponds to a balanced digraph, or because
NAE corresponds to a small cycle. We completely classified the complexity of the extensions
of the 1-in-3 vs. NAE problem obtained by breaking the promise either from the left or
from the right, in the symmetric rainbow-free regime. It is noteworthy that the classifications
for the two cases are in terms of structural properties of the underlying graphs having two
different natures. Indeed, the key property guaranteeing tractability of templates of the
form (1-in-3, Ĝ) is local, in that it corresponds to the presence of small directed cycles in
G. In contrast, the balancedness property, regulating the complexity of templates of the
form (Ĝ,NAE), cannot be detected by looking at small subgraphs of Ĝ, and is thus a global
property.

As mentioned in the Introduction, our results fit within the broader picture of the com-
plexity investigation of PCSPs. In this sense, we see two natural directions for future analysis:

(i) breaking the promise from both sides simultaneously;

(ii) relaxing the symmetricity and rainbow-freeness assumptions.

The direction (i) corresponds to studying the complexity of problems PCSP(Ĝ, Ĥ) for
arbitrary pairs of digraphs G and H such that G → H. Our results imply a classification of
problems of this sort in the bipartite regime.

Corollary 25. Let G → H be two bipartite digraphs with nonempty edge sets. Then
PCSP(Ĝ, Ĥ) is tractable if G is balanced and H has a directed cycle of length at most 3;
otherwise, PCSP(Ĝ, Ĥ) is NP-hard.

Proof. The tractability result follows since when G has no oriented cycles with nonzero net
length andH has a directed cycle of length at most 3, we have that Ĝ → Z → Ĥ. For hardness,
note that PCSP(Ĝ, Ĥ) is at least as hard as PCSP(1-in-3, Ĥ) and PCSP(Ĝ,NAE). Hence,
the hardness follows from Theorems 1 and 2.

Observe that the tractability boundary in this case is a conjunction of a condition on G and
a condition on H, with these conditions being independent. Is this a coincidence, or does the
independence of the properties drawing the tractability boundary for PCSPs hold in a more
general regime?

All tractable cases of problems PCSP(Ĝ, Ĥ) that we are aware of are those that can
sandwich Z, D̂1, or D̂3 (excluding trivial cases when G has no edges): CSP(D̂1) is trivial,
as every instance has a solution; CSP(D̂3) corresponds to solving linear equations modulo 3;
CSP(Z) corresponds to solving linear Diophantine systems.12 Are all remaining problems in
this class NP-hard?13

12Note that sandwiching D̂3 does not imply sandwiching Z: For an example of a PCSP that sandwiches
D̂3, but not Z, without having any structure in the template homomorphically equivalent to D̂3, let X be the
unique tournament on 4 vertices that has a cycle of length 4, and consider PCSP(D̂9, X̂).

13Note that the statement is true if G contains an undirected edge D2. Indeed, in this case, letting h be the
size of H, and NAEh = ([h]; [h]3 \ {(1, 1, 1), . . . , (h, h, h)}), as D1 6→ H, we have the sandwich NAE = D̂2 →

Ĝ → Ĥ → NAEh, and PCSP(NAE,NAEh) is NP-hard by [28].

20



Problem 26. Show that PCSP(Ĝ, Ĥ) is tractable if and only if (Ĝ, Ĥ) sandwiches Z, D̂1,
or D̂3.

We proved this to be true when G is balanced (and contains at least one edge), or when
G is an arbitrary unbalanced bipartite digraph and H = D2. It is known (see e.g. [35]) and
easy to show that G → D3 if and only if all oriented cycles in G have net length divisible
by 3. Thus, to answer the above question in the positive, it would be sufficient to prove
NP-hardness for the following two cases: (a) when G is an oriented cycle of net length not
divisible by 3 and H is a complete graph with at least three vertices, and (b) when G is an
oriented cycle of nonzero net length divisible by 3 and H is D3-free.

To see why this is the case, note that when G has no edges PCSP(Ĝ, Ĥ) is tractable; when
G is balanced and has an edge then PCSP(Ĝ, Ĥ) is tractable if and only if PCSP(1-in-3, Ĥ)
is; when all cycles of G have net length divisible by 3 and D̂3 → Ĥ then PCSP(Ĝ, Ĥ) is
tractable by reduction to CSP(D̂3). The remaining cases are when G is unbalanced yet all
cycles have net length divisible by 3, and H is D3-free, which is hard by reducing from case
(b) above, and when G has an oriented cycle of net length indivisible by 3, which is hard by
a reduction from case (a) above. Thus we state the following problem.

Problem 27. Show that PCSP(Ĝ, Ĥ) is NP-hard when:

(a) G is an oriented cycle of net length not divisible by 3 and H is a complete graph with
at least 3 vertices, or

(b) G is an oriented cycle of net length divisible by 3 and H contains no copy of D3.

The previous discussion amounts to the fact that a positive solution to Problem 27 implies
a positive solution to Problem 26.

We now discuss direction (ii). It was observed in [3, 17] that assuming the structure A

in a problem PCSP(1-in-3,A) to be symmetric does not yield a loss of generality, as, if A
is non-symmetric, replacing it with the maximal symmetric substructure does not alter the
complexity of the problem. In [3], essentially the following question was posed: Are tem-
plates of the form (1-in-3,A) tractable precisely when A contains one of the three structures
D̂1, D̂2, D̂3 as a substructure? When A is rainbow-free, the current work shows that this is
indeed the case.

Finally, we observe that extending our results in both directions (i) and (ii) simultaneously
would amount to classifying the complexity of all problems PCSP(A,B) with A and B having
a single, ternary relation. Through a similar argument as in [12] (see also [29]), this is easily
seen to be equivalent to a classification for all PCSPs. Such a wide classification appears to
be out of reach for the current techniques.
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[8] Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. Isr. J. Math,
223(1):363–398, Feb 2018. arXiv:1510.04521, doi:10.1007/s11856-017-1621-9.

[9] Manuel Bodirsky and Martin Grohe. Non-dichotomies in Constraint Satisfaction Com-
plexity. In Proc.35th International Colloquium on Automata, Languages and Programming
(ICALP’08), volume 5126 of Lecture Notes in Computer Science, pages 184–196. Springer, 2008.
doi:10.1007/978-3-540-70583-3_16.

[10] Manuel Bodirsky, Michael Pinsker, and András Pongrácz. Projective clone homomorphisms. The
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[24] Lorenzo Ciardo and Stanislav Živný. Approximate graph colouring and the hollow shadow. In
Proc. 55th Annual ACM Symposium on Theory of Computing (STOC’23), pages 623–631. ACM,
2023. arXiv:2211.03168, doi:10.1145/3564246.3585112.
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