
Journal of Computer and System Sciences 150 (2025) 103630

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

journal homepage: www.elsevier.com/locate/jcss

The complexity of transitively orienting temporal graphs ✩

George B. Mertzios a,∗,1, Hendrik Molter b,2, Malte Renken c,3,
Paul G. Spirakis d,4, Philipp Zschoche c

a Department of Computer Science, Durham University, UK
b Department of Computer Science, Ben-Gurion University of the Negev, Israel
c Algorithmics and Computational Complexity, Technische Universität Berlin, Germany
d Department of Computer Science, University of Liverpool, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 July 2023
Received in revised form 14 June 2024
Accepted 25 January 2025
Available online 3 February 2025

Keywords:
Temporal graph
Transitive orientation
Transitive closure
Polynomial-time algorithm
NP-hardness
Satifiability

In a temporal network with discrete time-labels on its edges, information can only
“flow'' along sequences of edges with non-decreasing (resp. increasing) time-labels. In
this paper we make a first attempt to understand how the direction of information flow
on one edge can impact the direction of information flow on other edges. By naturally
extending the classical notion of a transitive orientation in static graphs, we introduce the
fundamental notion of a temporal transitive orientation, and we systematically investigate
its algorithmic behavior. Our main result is a conceptually simple, yet technically quite
involved, polynomial-time algorithm for recognizing whether a temporal graph G is
transitively orientable. In wide contrast we prove that, surprisingly, it is NP-hard to
recognize whether G is strictly transitively orientable. Additionally we introduce further
related problems to temporal transitivity, notably among them the temporal transitive
completion problem, for which we prove both algorithmic and hardness results.

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A temporal (or dynamic) network is, roughly speaking, a network whose underlying topology changes over time. This
notion concerns a great variety of both modern and traditional networks; information and communication networks, social
networks, and several physical systems are only few examples of networks which change over time [40,43,28]. Due to its
vast applicability in many areas, the notion of temporal graphs has been studied from different perspectives under several
different names such as time-varying, evolving, dynamic, and graphs over time (see [16,14,15] and the references therein). In
this paper we adopt a simple and natural model for temporal networks which is given with discrete time-labels on the
edges of a graph, while the vertex set remains unchanged. This formalism originates in the foundational work of Kempe et
al. [29].

✩ An extended abstract of this work was published in the proceedings of the 46th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2021) [38].

* Corresponding author.
E-mail addresses: george.mertzios@durham.ac.uk (G.B. Mertzios), molterh@post.bgu.ac.il (H. Molter), m.renken@tu-berlin.de (M. Renken),

p.spirakis@liverpool.ac.uk (P.G. Spirakis), zschoche@tu-berlin.de (P. Zschoche).
1 Supported by the EPSRC grant EP/P020372/1.
2 Supported by the DFG, project MATE (NI 369/17), by the ISF, grants No. 1456/18 and No. 1070/20, and the ERC, grant number 949707.
3 Supported by the DFG, project MATE (NI 369/17).
4 Supported by the NeST initiative of the School of EEE and CS at the University of Liverpool and by the EPSRC grant EP/P02002X/1.

https://doi.org/10.1016/j.jcss.2025.103630
0022-0000/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcss.2025.103630
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2025.103630&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:george.mertzios@durham.ac.uk
mailto:molterh@post.bgu.ac.il
mailto:m.renken@tu-berlin.de
mailto:p.spirakis@liverpool.ac.uk
mailto:zschoche@tu-berlin.de
https://doi.org/10.1016/j.jcss.2025.103630
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

Definition 1 (Temporal Graph [29]). A temporal graph is a pair G = (G, λ), where G = (V , E) is an underlying (static) graph
and λ : E → 2N is a time-labeling function which assigns to every edge of G a discrete-time label. Whenever |λ(e)| = 1 for
every edge e ∈ E , then G is a single-labeled temporal graph.

In this paper we only consider single-labeled temporal graphs, while, for simplicity of presentation, we refer to them
as just temporal graphs. Mainly motivated by the fact that, due to causality, entities and information in temporal graphs
can only ``flow'' along sequences of edges whose time-labels are non-decreasing (resp. increasing), Kempe et al. introduced
the notion of a (strict) temporal path, or (strict) time-respecting path, in a temporal graph (G, λ) as a path in G with edges
e1, e2, . . . , ek such that λ(e1) ≤ . . . ≤ λ(ek) (resp. λ(e1) < . . . < λ(ek)). This notion of a temporal path naturally resembles
the notion of a directed path in the classical static graphs, where the direction is from smaller to larger time-labels along
the path. Nevertheless, in temporal paths the individual time-labeled edges remain undirected: an edge e = {u, v} with
time-label λ(e) = t can be abstractly interpreted as ``u communicates with v at time t''. Here the relation ``communicates''
is symmetric between u and v , i.e. it can be interpreted that the information can flow in either direction.

In this paper we make a first attempt to understand how the direction of information flow on one edge can impact
the direction of information flow on other edges. More specifically, naturally extending the classical notion of a transitive
orientation in static graphs [25], we introduce the fundamental notion of a temporal transitive orientation and we thoroughly
investigate its algorithmic behavior in various situations. Imagine that v receives information from u at time t1, while w
receives information from v at time t2 ≥ t1. Then w indirectly receives information from u through the intermediate vertex
v . Now, if the temporal graph correctly records the transitive closure of information passing, the directed edge from u to w
must exist and must have a time label t3 ≥ t2. In such a transitively oriented temporal graph, whenever an edge is oriented
from a vertex u to a vertex w with time-label t , we have that every temporal path from u to w arrives no later than t , and
that there is no temporal path from w to u. Different notions of temporal transitivity have also been used for automated
temporal data mining [42] in medical applications [41], text processing [47]. These notions of temporal transitivity are
dfined on the so-called ``Allen’s temporal relations'' [5], which are relations dfined on time intervals. These transitivity
notions are conceptually very different from our setting where we focus on a temporal ordering of events that happen on
the edges of a temporal graph. Furthermore, in behavioral ecology, researchers have used a notion of orderly (transitive)
triads A-B-C to quantify dominance among species. In particular, animal groups usually form dominance hierarchies in
which dominance relations are transitive and can also change with time [34].

One natural motivation for our temporal transitivity notion may come from applications where cofirmation and veri
fication of information is vital, where vertices may represent entities such as investigative journalists or police detectives
who gather sensitive information. Suppose that v queried some important information from u (the information source) at
time t1, and afterwards, at time t2 ≥ t1, w queried the important information from v (the intermediary). Then, in order to
ensure the validity of the information received, w might want to verify it by subsequently querying the information directly
from u at some time t3 ≥ t2. Note that w might first receive the important information from u through various other inter
mediaries, and using several channels of different lengths. Then, to maximize cofidence about the information, w should
query u for verfication only after receiving the information from the latest of these indirect channels.

It is worth noting here that the model of temporal graphs given in Definition 1 has been also used in its extended form,
in which the temporal graph may contain multiple time-labels per edge [36]. This extended temporal graph model has been
used to investigate temporal paths [50,10,12,17,36,3] and other temporal path-related notions such as temporal analogues
of distance and diameter [1], reachability [2] and exploration [3,1,22,21], separation [23,51,29], and path-based centrality
measures [30,13], as well as recently non-path problems too such as temporal variations of coloring [39], vertex cover [4],
matching [37], cluster editing [19], and maximal cliques [49,27,9]. However, in order to better investigate and illustrate the
inherent combinatorial structure of temporal transitivity orientations, in this paper we mostly follow the original definition
of temporal graphs given by Kempe et al. [29] with one time-label per edge [18,20,8]. Throughout the paper, whenever we
assume multiple time-labels per edge we will state it explicitly; in all other cases we consider a single label per edge.

In static graphs, the transitive orientation problem has received extensive attention which resulted in numerous efficient
algorithms. A graph is called transitively orientable (or a comparability graph) if it is possible to orient its edges such that,
whenever we orient u towards v and v towards w , then the edge between u and w exists and is oriented towards w .
The first polynomial-time algorithms for recognizing whether a given (static) graph G on n vertices and m edges is com
parability (i.e. transitively orientable) were based on the notion of forcing an orientation and had running time O (n3) (see
Golumbic [25] and the references therein). Faster algorithms for computing a transitive orientation of a given comparabil
ity graph have been later developed, having running times O (n2) [45] and O (n + m log n) [31], while the currently fastest
algorithms run in linear O (n + m) time and are based on efficiently computing a modular decomposition of G [33,32];
see also Spinrad [46]. It is fascinating that, although all the latter algorithms compute a valid transitive orientation if G is
a comparability graph, they fail to recognize whether the input graph is a comparability graph; instead they produce an
orientation which is non-transitive if G is not a comparability graph. The fastest known algorithm for determining whether
a given orientation is transitive requires matrix multiplication, currently achieved in O (n2.37286) time [6].

Our contribution. In this paper we introduce the notion of temporal transitive orientation and we thoroughly investigate
its algorithmic behavior in various situations. An orientation of a temporal graph G = (G, λ) is called temporally transitive
if, whenever u has a directed edge towards v with time-label t1 and v has a directed edge towards w with time-label
t2 ≥ t1, then u also has a directed edge towards w with some time-label t3 ≥ t2. If we just demand that this implication

2

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

holds whenever t2 > t1, the orientation is called strictly temporally transitive, as it is based on the fact that there is a strict
directed temporal path from u to w . Similarly, if we demand that the transitive directed edge from u to w has time-label
t3 > t2, the orientation is called strongly (resp. strongly strictly) temporally transitive.

Although these four natural variations of a temporally transitive orientation seem supeficially similar to each other, it
turns out that their computational complexity (and their underlying combinatorial structure) varies massively. Indeed we
obtain a surprising result in Section 3: deciding whether a temporal graph G admits a temporally transitive orientation is
solvable in polynomial time (Section 3.2), while it is NP-hard to decide whether it admits a strictly temporally transitive
orientation (Section 3.1). On the other hand, it turns out that, deciding whether G admits a strongly or a strongly strictly
temporal transitive orientation is (easily) solvable in polynomial time as they can both be reduced to 2SAT satifiability.

Our main result is that, given a temporal graph G = (G, λ), we can decide in polynomial time whether G is transitively
orientable, and at the same time we can output a temporal transitive orientation if it exists. Although the analysis and
correctness proof of our algorithm is technically quite involved, our algorithm is simple and easy to implement, as it is based
on the notion of forcing an orientation.5 Our algorithm extends and generalizes the classical polynomial-time algorithm for
computing a transitive orientation in static graphs described by Golumbic [25]. The main technical difficulty in extending
the algorithm from the static to the temporal setting is that, in temporal graphs we cannot simply use orientation forcings
to eliminate the condition that a triangle is not allowed to be cyclically oriented. To resolve this issue, we first express
the recognition problem of temporally transitively orientable graphs as a Boolean satifiability problem of a mixed Boolean
formula φ3NAE ∧ φ2SAT. Here φ3NAE is a 3NAE formula, i.e., the disjunction of clauses with three literals each, where every
clause NAE(ℓ1, ℓ2, ℓ3) is satified if and only if at least one of the literals {ℓ1, ℓ2, ℓ3} is equal to 1 and at least one of them
is equal to 0. Note that every clause NAE(ℓ1, ℓ2, ℓ3) corresponds to the condition that a specific triangle in the temporal
graph cannot be cyclically oriented. Furthermore φ2SAT is a 2SAT formula, i.e., the disjunction of 2CNF clauses with two
literals each, where every clause (ℓ1 ∨ ℓ2) is satified if and only if at least one of the literals {ℓ1, ℓ2} is equal to 1. However,
although deciding whether φ2SAT is satifiable can be done in linear time with respect to the size of the formula [7], the
problem Not-All-Equal-3-SAT is NP-complete [44].

In the second part of our paper (Section 4) we consider a natural extension of the temporal orientability problem, namely
the temporal transitive completion problem. In this problem we are given a (partially oriented) temporal graph G and a natural
number k, and the question is whether it is possible to add at most k new edges (with the corresponding time-labels) to
G such that the resulting temporal graph is (strongly/strictly/strongly strictly) transitively orientable. We prove that all four
versions of temporal transitive completion are NP-complete, even when the input temporal graph is completely unoriented.
In contrast we show that, if the input temporal graph G is directed (i.e. if every time-labeled edge has a fixed orientation)
then all versions of temporal transitive completion are solvable in polynomial time. As a corollary of our results it follows
that all four versions of temporal transitive completion are fixed-parameter-tractable (FPT) with respect to the number q of
unoriented time-labeled edges in G .

In the third and last part of our paper (Section 5) we consider the multilayer transitive orientation problem. In this problem
we are given an undirected temporal graph G = (G, λ), where G = (V , E), and we ask whether there exists an orientation F
of its edges (i.e. with exactly one orientation for each edge of G) such that, for every ‘time-layer'' t ≥ 1, the (static) oriented
graph induced by the edges having time-label t is transitively oriented in F . Problem definitions of this type are commonly
referred to as multilayer problems [11]. Observe that this problem trivially reduces to the static case if we assume that each
edge has a single time-label, as then each layer can be treated independently of all others. However, if we allow G to have
multiple time-labels on every edge of G , then we show that the problem becomes NP-complete, even when every edge has
at most two labels.

2. Preliminaries and notation

Given a (static) undirected graph G = (V , E), an edge between two vertices u, v ∈ V is denoted by the unordered pair
{u, v} ∈ E , and in this case the vertices u, v are said to be adjacent. If the graph is directed, we will use the ordered
pair (u, v) (resp. (v, u)) to denote the oriented edge from u to v (resp. from v to u). For simplicity of the notation, we
will usually drop the parentheses and the comma when denoting an oriented edge, i.e. we will denote (u, v) just by uv .
Furthermore, ûv = {uv, vu} is used to denote the set of both oriented edges uv and vu between the vertices u and v .

Let S ⊆ E be a subset of the edges of an undirected (static) graph G = (V , E), and let Ŝ = {uv, vu : {u, v} ∈ S} be the set
of both possible orientations uv and vu of every edge {u, v} ∈ S . Let F ⊆ Ŝ . If F contains at least one of the two possible
orientations uv and vu of each edge {u, v} ∈ S , then F is called an orientation of the edges of S . F is called a proper
orientation if it contains exactly one of the orientations uv and vu of every edge {u, v} ∈ S . Note here that, in order to
simplify some technical proofs, the above definition of an orientation allows F to be not proper, i.e. to contain both uv and
vu for a specific edge {u, v}. However, whenever F is not proper, this means that F can be discarded as it cannot be used
as a part of a (temporal) transitive orientation. For every orientation F denote by F −1 = {vu : uv ∈ F } the reversal of F . Note
that F ∩ F −1 = ∅ if and only if F is proper.

5 That is, orienting an edge from u to v forces us to orient another edge from a to b.

3

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

In a temporal graph G = (G, λ), where G = (V , E), whenever λ({v, w}) = t (or simply λ(v, w) = t), we refer to the tuple
({v, w}, t) as a time-edge of G . A triangle of (G, λ) on the vertices u, v, w is a synchronous triangle if λ(u, v) = λ(v, w) =
λ(w, u). Let G = (V , E) and let F be a proper orientation of the whole edge set E . Then (G, F), or (G, λ, F), is a proper
orientation of the temporal graph G; for simplicity we may also write that F is a proper orientation of G . A partial proper
orientation F of a temporal graph G = (G, λ) is an orientation of a subset of E . To indicate that the edge {u, v} of a time
edge ({u, v}, t) is oriented from u to v (that is, uv ∈ F in a (partial) proper orientation F), we use the term ((u, v), t), or
simply (uv, t). For simplicity we may refer to a (partial) proper orientation just as a (partial) orientation, whenever the term
“proper'' is clear from the context.

A static graph G = (V , E) is a comparability graph if there exists a proper orientation F of E which is transitive, that is, if
F ∩ F −1 = ∅ and F 2 ⊆ F , where F 2 = {uw : uv, v w ∈ F for some vertex v} [25]. Analogously, in a temporal graph G = (G, λ),
where G = (V , E), we dfine a proper orientation F of E to be temporally transitive, if:

whenever (uv, t1) and (v w, t2) are oriented time-edges in (G, F) such that t2 ≥ t1, there exists an oriented time-edge
(uw, t3) in (G, F), for some t3 ≥ t2.

In the above definition of a temporally transitive orientation, if we replace the condition ``t3 ≥ t2'' with ``t3 > t2'', then
F is called strongly temporally transitive. If we instead replace the condition ``t2 ≥ t1'' with ``t2 > t1'', then F is called strictly
temporally transitive. If we do both of these replacements, then F is called strongly strictly temporally transitive. Note that
strong (strict) temporal transitivity implies (strict) temporal transitivity, while (strong) temporal transitivity implies (strong)
strict temporal transitivity. Furthermore, similarly to the established terminology for static graphs, we dfine a temporal
graph G = (G, λ), where G = (V , E), to be a (strongly/strictly) temporal comparability graph if there exists a proper orientation
F of E which is (strongly/strictly) temporally transitive.

We are now ready to formally introduce the following decision problem of recognizing whether a given temporal graph
is temporally transitively orientable or not.

Temporal Transitive Orientation (TTO)

Input: A temporal graph G = (G, λ), where G = (V , E).
Question: Does G admit a temporally transitive orientation F of E?

In the above problem definition of TTO, if we ask for the existence of a strictly (resp. strongly, or strongly strictly) tempo
rally transitive orientation F , we obtain the decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive
Orientation (TTO).

Let G = (G, λ) be a temporal graph, where G = (V , E). Let G ′ = (V , E ′) be a graph such that E ⊆ E ′ , and let λ′ : E ′ →N
be a time-labeling function such that λ′(u, v) = λ(u, v) for every {u, v} ∈ E . Then the temporal graph G′ = (G ′, λ′) is called
a temporal supergraph of G . We can now dfine our next problem definition regarding computing temporally orientable
supergraphs of G .

Temporal Transitive Completion (TTC)

Input: A temporal graph G = (G, λ), where G = (V , E), a (partial) orientation F of G, and an integer k.
Question: Does there exist a temporal supergraph G′ = (G ′, λ′) of (G, λ), where G ′ = (V , E ′), and a transitive orien

tation F ′ ⊇ F of G′ such that |E ′ \ E| ≤ k?

Similarly to TTO, if we ask in the problem definition of TTC for the existence of a strictly (resp. strongly, or strongly
strictly) temporally transitive orientation F ′ , we obtain the decision problem Strict (resp. Strong, or Strong Strict) Tem

poral Transitive Completion (TTC).
Now we dfine our final problem which asks for an orientation F of a temporal graph G = (G, λ) (i.e. with exactly one

orientation for each edge of G) such that, for every ``time-layer'' t ≥ 1, the (static) oriented graph dfined by the edges
having time-label t is transitively oriented in F . This problem does not make much sense if every edge has exactly one
time-label in G , as in this case it can be easily solved by just repeatedly applying any known static transitive orientation
algorithm. Therefore, in the next problem definition, we assume that in the input temporal graph G = (G, λ) every edge of
G potentially has multiple time-labels, i.e. the time-labeling function is λ : E → 2N .

Multilayer Transitive Orientation (MTO)

Input: A temporal graph G = (G, λ), where G = (V , E) and λ : E → 2N .
Question: Is there an orientation F of the edges of G such that, for every t ≥ 1, the (static) oriented graph induced

by the edges having time-label t is transitively oriented?

4

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

Table 1
Orientation conditions imposed by a triangle (left) and an induced path of length two (right)
in the underlying graph G for the decision problems (Strict/Strong/Strong Strict) TTO. Here, �
means that no restriction is imposed, ⊥ means that the graph is not orientable, and in the case of
triangles, ``non-cyclic'' means that all orientations except the ones that orient the triangle cyclicly
are allowed.

u w

v

t3

t2t1

u w

v

t1 t2

t1 = t2 = t3 t1 < t2 = t3 t1 ≤ t2 < t3 t1 = t2 t1 < t2

TTO non-cyclic wu = w v
v w =⇒ uw
vu =⇒ wu

uv = w v uv =⇒ w v

Strong TTO ⊥ wu ∧ w v
v w =⇒ uw
vu =⇒ wu

uv = w v uv =⇒ w v

Strict TTO � non-cyclic
v w =⇒ uw
vu =⇒ wu

� uv =⇒ w v

Str. Str. TTO � vu =⇒ wu
uv =⇒ w v

v w =⇒ uw
vu =⇒ wu

� uv =⇒ w v

3. The recognition of temporally transitively orientable graphs

In this section we investigate the computational complexity of all variants of TTO. We show that TTO as well as the
two variants Strong TTO and Strong Strict TTO, are solvable in polynomial time, whereas Strict TTO turns out to be
NP-complete.

The main idea of our approach to solve TTO and its variants is to create Boolean variables for each edge of the underlying
graph G and interpret setting a variable to 1 or 0 as the two possible ways of directing the corresponding edge.

More formally, for every edge {u, v} we introduce a variable xuv and setting this variable to 1 corresponds to the
orientation uv while setting this variable to 0 corresponds to the orientation vu. Now consider the example of Fig. 3(a),
i.e. an induced path of length two in the underlying graph G on three vertices u, v, w , and let λ(u, v) = 1 and λ(v, w) = 2.
Then the orientation uv ``forces'' the orientation w v . Indeed, if we otherwise orient {v, w} as v w , then the edge {u, w} must
exist and be oriented as uw in any temporal transitive orientation, which is a contradiction as there is no edge between u
and w . We can express this ``forcing'' with the implication xuv =⇒ xw v . In this way we can deduce the constraints that all
triangles or induced paths on three vertices impose on any (strong/strict/strong strict) temporal transitive orientation. We
collect all these constraints in Table 1.

When looking at the conditions imposed on temporal transitive orientations collected in Table 1, we can observe that all
conditions except ``non-cyclic'' are expressible in 2SAT. Since 2SAT is solvable in linear time [7], it immediately follows that
the strong variants of temporal transitivity are solvable in polynomial time, as the next theorem states.

Theorem 2. Strong TTO and Strong Strict TTO are solvable in polynomial time.

In the variants TTO and Strict TTO, however, we can have triangles which impose a ``non-cyclic'' orientation of three
edges (Table 1). This can be naturally modeled by a not-all-equal (NAE) clause.6 However, if we now naïvely model the
conditions with a Boolean formula, we obtain a formula with 2SAT clauses and 3NAE clauses. Deciding whether such a
formula is satifiable is NP-complete in general [44]. Hence, we have to investigate these two variants more thoroughly.

The only difference between the triangles that impose these ``non-cyclic'' orientations in these two problem variants is
that, in TTO, the triangle is synchronous (i.e. all its three edges have the same time-label), while in Strict TTO two of the
edges are synchronous and the third one has a smaller time-label than the other two. As it turns out, this difference of the
two problem variants has important implications on their computational complexity. In fact, we obtain a surprising result:
TTO is solvable in polynomial time while Strict TTO is NP-complete.

In Section 3.1 we prove that Strict TTO is NP-complete and in Section 3.2 we provide our polynomial-time algorithm for
TTO.

3.1. Strict TTO is NP-complete

In this section we show that in contrast to the other variants, Strict TTO is NP-complete.

Theorem 3. Strict TTO is NP-complete even if the temporal input graph has only four different time labels.

6 A not all equal clause is a set of literals and it evaluates to true if and only if at least two literals in the set evaluate to different truth values.

5

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

ax a′
x bx b′

x
cx c′

x dx d′
x

1 2 1 2 1 2 1

2

Fig. 1. Illustration of the variable gadget used in the reduction in the proof of Theorem 3.

uc vc

wc

u′
c v ′

c

w ′
c

(a)

2

2

3 3

1

2

3

3

uc vc

wc

u′
c v ′

c

w ′
c

(b)

2

2

3 3

1

2

3

3

uc vc

wc

u′
c v ′

c

w ′
c

(c)

2

2

3 3

1

2

3

3

Fig. 2. Illustration of the clause gadget used in the reduction in the proof of Theorem 3 and three ways how to orient the edges in it.

Proof. We present a polynomial time reduction from (3,4)-SAT [48] where, given a CNF formula φ where each clause
contains exactly three literals and each variably appears in exactly four clauses, we are asked whether φ is satifiable or
not. Given a formula φ, we construct a temporal graph G as follows.

Variable gadget. For each variable x that appears in φ, we add eight vertices ax,a′
x,bx,b′

x, cx, c′
x,dx,d′

x to G . We connect
these vertices as depicted in Fig. 1, that is, we add the following time edges to G: ({ax,a′

x},1), ({a′
x,bx},2), ({bx,b′

x},1),
({b′

x, cx},2), ({cx, c′
x},1), ({c′

x,dx},2), ({dx,d′
x},1), ({d′

x,ax},2).

Clause gadget. For each clause c of φ, we add six vertices uc, u′
c, vc, v ′

c, wc, w ′
c to G . We connect these vertices as depicted

in Fig. 2, that is, we add the following time edges to G: ({uc, u′
c},2), (vc, v ′

c},1), ({wc, w ′
c},2), ({uc, vc},2), ({vc, wc},3),

({wc, uc},3), ({vc, w ′
c},3), ({wc, v ′

c},3).

Connecting variable gadgets and clause gadgets. Let variable x appear for the ith time in clause c and let x appear in the
jth literal of c. The four vertex pairs (ax,a′

x), (bx,b′
x), (cx, c′

x), (dx,d′
x) from the variable gadget of x correspond to the first,

second, third, and fourth appearance of x, respectively. The three vertices u′
c, v ′

c, w ′
c correspond to the first, second, and third

literal of c, respectively. Let i = 1 and j = 1. If x appears non-negated, then we add the time edge ({ax, u′
c},4). Otherwise, if

x appears negated, we add the time edge ({a′
x, u′

c},4). For all other values of i and j we add time edges analogously.
This finishes the reduction. It can clearly be performed in polynomial time.

(⇒): Assume that we have a satisfying assignment for φ, then we can orient G as follows. Then if a variable x is set
to true, we orient the edges of the corresponding variable gadgets as follows: (ax,a′

x), (bx,a′
x), (bx,b′

x), (cx,b′
x), (cx, c′

x),
(dx, c′

x), (dx,d′
x), (ax,d′

x). Otherwise, if x is set to false, we orient as follows: (a′
x,ax), (a′

x,bx), (b′
x,bx), (b′

x, cx), (c′
x, cx), (c′

x,dx),
(d′

x,dx), (d′
x,ax). It is easy so see that both orientations are transitive.

Now consider a clause in φ with literals u, v, w corresponding to vertices u′
c, v ′

c, w ′
c of the clause gadget, respectively.

We have that at least one of the three literals satifies the clause. If it is u, then we orient the edges in the clause gadgets as
illustrated in Fig. 2 (a). It is easy so see that this orientation is transitive. Furthermore, we orient the three edges connecting
the clause gadgets to variable gadgets as follows: By construction the vertices u′

c , v ′
c, w ′

c are each connected to a variable
gadget. Assume, we have edges {u′

c, x}, {v ′
c, y}, {w ′

c, z}. Then we orient as follows: (x, u′
c), (v ′

c, y), (w ′
c, z), that is, we orient

the edge connecting the literal that satifies the clause towards the clause gadget and the other two edges towards the
variable gadgets. This yields a transitive in the clause gadget. Note that the variable gadgets have time labels 1 and 2 so
we can always orient the connecting edges (which have time label 4) towards the variable gadget. We do this with all
connecting edges except (x, u′

c). This edge is oriented from the variable gadget towards the clause gadget, however it also
corresponds to a literal that satifies the clause. Then by construction, the edges incident to x in the variable gadget are
oriented away from x, hence our orientation is transitive.

Otherwise and if v satifies the clause, then we orient the edges in the clause gadgets as illustrated in Fig. 2 (b).
Otherwise (in this case w has to satisfy the clause), we orient the edges in the clause gadgets as illustrated in Fig. 2 (c). It
is easy so see that each of these orientation is transitive. In both cases we orient the edges connecting the clause gadgets
to the variable gadgets analogously to the first case discussed above. By analogous arguments we get that the resulting
orientation is transitive.

6

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

u w

v

(a)

u w

v

(b)

3

55

Fig. 3. The orientation uv forces the orientation wu and vice-versa in the examples of (a) a static graph G where {u, v}, {v, w} ∈ E(G) and {u, w} / ∈ E(G),
and of (b) a temporal graph (G, λ) where λ(u, w) = 3 < 5 = λ(u, v) = λ(v, w).

(⇐): Note that all variable gadgets are cycles of length eight with edges having labels alternating between 1 and 2 and
hence the edges have to also be oriented alternately. Consider the variable gadget corresponding to x. We interpret the
orientation (ax,a′

x), (bx,a′
x), (bx,b′

x), (cx,b′
x), (cx, c′

x), (dx, c′
x), (dx,d′

x), (ax,d′
x) as setting x to true and we interpret the

orientation (a′
x,ax), (a′

x,bx), (b′
x,bx), (b′

x, cx), (c′
x, cx), (c′

x,dx), (d′
x,dx), (d′

x,ax) as setting x to true. We claim that this yields
a satisfying assignment for φ.

Assume for contradiction that there is a clause c in φ that is not satified by this assignment. Then by construction of the
connection of variable gadgets and clause gadgets, the connecting edges have to be oriented towards the variable gadget in
order to keep the variable gadget transitive. Let the three connecting edges be {u′

c, x}, {v ′
c, y}, {w ′

c, z} and their orientation
(u′

c, x), (v ′
c, y), (w ′

c, z). Then we have that (u′
c, x) forces (u′

c, uc) which in turn forces (wc, uc). We have that (v ′
c, y) forces

(v ′
c, vc) which in turn forces (vc, uc). Furthermore, we now have that (wc, uc) and (vc, uc) force (wc, vc). Lastly, we have

that (w ′
c, z) forces (w ′

c, wc) which in turn forces (vc, wc), a contradiction to the fact that we forced (wc, vc) previously. �
3.2. A polynomial-time algorithm for TTO

Let G = (V , E) be a static undirected graph. There are various polynomial-time algorithms for deciding whether G admits
a transitive orientation F . However our results in this section are inspired by the transitive orientation algorithm described
by Golumbic [25], which is based on the crucial notion of forcing an orientation. The notion of forcing in static graphs is
illustrated in Fig. 3 (a): if we orient the edge {u, v} as uv (i.e., from u to v) then we are forced to orient the edge {v, w} as
w v (i.e., from w to v) in any transitive orientation F of G . Indeed, if we otherwise orient {v, w} as v w (i.e. from v to w),
then the edge {u, w} must exist and it must be oriented as uw in any transitive orientation F of G , which is a contradiction
as {u, w} is not an edge of G . Similarly, if we orient the edge {u, v} as vu then we are forced to orient the edge {v, w} as
v w . That is, in any transitive orientation F of G we have that uv ∈ F ⇔ w v ∈ F . This forcing operation can be captured by
the binary forcing relation � which is dfined on the edges of a static graph G as follows [25].

uv � u′v ′ if and only if
{

either u = u′ and {v, v ′} / ∈ E
or v = v ′ and {u, u′} / ∈ E

. (1)

We now extend the definition of � in a natural way to the binary relation � on the edges of a temporal graph (G, λ), see
Equation (2). For this, observe from Table 1 that the only cases, where we have uv ∈ F ⇔ w v ∈ F in any temporal transitive
orientation of (G, λ), are when (i) the vertices u, v, w induce a path of length 2 (see Fig. 3 (a)) and λ(u, v) = λ(v, w), as
well as when (ii) u, v, w induce a triangle and λ(u, w) < λ(u, v) = λ(v, w). The latter situation is illustrated in the example
of Fig. 3 (b). The binary forcing relation � is only dfined on pairs of edges {u, v} and {u′, v ′} where λ(u, v) = λ(u′, v ′), as
follows.

uv � u′v ′ if and only if λ(u, v) = λ(u′, v ′) = t and

⎧⎪⎪⎨
⎪⎪⎩

u = u′ and {v, v ′} / ∈ E,or
v = v ′ and {u, u′} / ∈ E,or
u = u′ and λ(v, v ′) < t,or
v = v ′ and λ(u, u′) < t.

(2)

Note that, for every edge {u, v} ∈ E we have that uv � uv . The forcing relation � for temporal graphs shares some prop
erties with the forcing relation � for static graphs. In particular, the rflexive transitive closure �∗ of � is an equivalence
relation, which partitions the edges of each set Et = {{u, v} ∈ E : λ(u, v) = t} into its �-implication classes (or simply, into its
implication classes). Two edges {a,b} and {c,d} are in the same �-implication class if and only if ab �∗ cd, i.e. there exists
a sequence

ab = a0b0 � a1b1 � . . . � akbk = cd, with k ≥ 0.

Note that, for this to happen, we must have λ(a0,b0) = λ(a1,b1) = . . . = λ(ak,bk) = t for some t ≥ 1. Such a sequence is
called a �-chain from ab to cd, and we say that ab (eventually) �-forces cd. Furthermore note that ab �∗ cd if and only if
ba �∗ dc. The next observation helps the reader understand the relationship between the two forcing relations � and �.

7

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

Observation 4. Let {u, v} ∈ E, where λ(u, v) = t, and let A be the �-implication class of uv in the temporal graph (G, λ). Let G ′ be
the static graph obtained by removing from G all edges {p,q}, where λ(p,q) < t. Then A is also the �-implication class of uv in the
static graph G ′ .

For the next lemma, we use the notation Â = {uv, vu : uv ∈ A}.

Lemma 5. Let A be a �-implication class of a temporal graph (G, λ). Then either A = A−1 = Â or A ∩ A−1 = ∅.

Proof. Suppose that A ∩ A−1 �= ∅, and let uv ∈ A ∩ A−1, i.e. uv, vu ∈ A. Then, for any pq ∈ A we have that pq �∗ uv and
qp �∗ vu. Since �∗ is an equivalence relation and uv, vu ∈ A, it also follows that pq,qp ∈ A. Therefore also pq,qp ∈ A−1,
and thus A = A−1 = Â. �
Definition 6. Let F be a proper orientation and A be a �-implication class of a temporal graph (G, λ). If A ⊆ F , we say that
F respects A.

Lemma 7. Let F be a proper orientation and A be a �-implication class of a temporal graph (G, λ). Then F respects either A or A−1

(i.e. either A ⊆ F or A−1 ⊆ F), and in either case A ∩ A−1 = ∅.

Proof. We dfined the binary forcing relation � to capture the fact that, for any temporal transitive orientation F of (G, λ),
if ab � cd and ab ∈ F , then also cd ∈ F . Applying this property repeatedly, it follows that either A ⊆ F or F ∩ A = ∅. If
A ⊆ F then A−1 ⊆ F −1. On the other hand, if F ∩ A = ∅ then A ⊆ F −1, and thus also A−1 ⊆ F . In either case, the fact that
F ∩ F −1 = ∅ by the definition of a temporal transitive orientation implies that also A ∩ A−1 = ∅. �

Let now ab = a0b0 � a1b1 � . . . � akbk = cd be a given �-chain. Note by Equation (2) that, for every i = 1, . . . ,k, we
have that either ai−1 = ai or bi−1 = bi . Therefore we can replace the �-implication ai−1bi−1 � aibi by the implications
ai−1bi−1 � aibi−1 � aibi , since either aibi−1 = ai−1bi−1 or aibi−1 = aibi . Thus, as this addition of this middle edge is always
possible in a �-implication, we can now dfine the notion of a canonical �-chain, which always exists.

Definition 8. Let ab �∗ cd. Then any �-chain of the form

ab = a0b0 � a1b0 � a1b1 � . . . � akbk−1 � akbk = cd

is a canonical �-chain.

The next lemma extends an important known property of the forcing relation � for static graphs [25, Lemma 5.3] to the
temporal case.

Lemma 9 (Temporal Triangle Lemma). Let (G, λ) be a temporal graph with a synchronous triangle on the vertices a,b, c, where
λ(a,b) = λ(b, c) = λ(c,a) = t. Let A, B, C be three �-implication classes of (G, λ), where ab ∈ C , bc ∈ A, and ca ∈ B, where A �= B−1

and A �= C−1 .

1. If some b′c′ ∈ A, then ab′ ∈ C and c′a ∈ B.
2. If some b′c′ ∈ A and a′b′ ∈ C , then c′a′ ∈ B.
3. No edge of A touches vertex a.

Proof. 1. Let b′c′ ∈ A, and let bc = b0c0 � b1c0 � . . . � bkck−1 � bkck = b′c′ be a canonical �-chain from bc to b′c′ . Thus
note that all edges bici−1 and bici of this �-chain have the same time-label t in (G, λ). We will prove by induction
that abi ∈ C and cia ∈ B , for every i = 0,1, . . . ,k. The induction basis follows directly by the statement of the lemma, as
ab = ab0 ∈ C and ca = c0a ∈ B .
Assume now that abi ∈ C and cia ∈ B . If bi+1 = bi then clearly abi+1 ∈ C by the induction hypothesis. Suppose now
that bi+1 �= bi . If {a,bi+1} / ∈ E then aci � bi+1ci . Then, since cia ∈ B and bi+1ci ∈ A, it follows that A = B−1, which is a
contradiction to the assumption of the lemma. Therefore {a,bi+1} ∈ E . Furthermore, since bici � bi+1ci , it follows that
either {bi,bi+1} / ∈ E or λ(bi,bi+1) < t . In either case it follows that abi � abi+1, and thus abi+1 ∈ C .
Similarly, if ci+1 = ci then ci+1a ∈ B by the induction hypothesis. Suppose now that ci+1 �= ci . If {a, ci+1} / ∈ E then
abi+1 � ci+1bi+1. Then, since abi+1 ∈ C and bi+1ci+1 ∈ A, it follows that A = C−1, which is a contradiction to the
assumption of the lemma. Therefore {a, ci+1} ∈ E . Furthermore, since bi+1ci � bi+1ci+1, it follows that either {ci, ci+1} / ∈
E or λ(ci, ci+1) < t . In either case it follows that cia � ci+1a, and thus ci+1a ∈ C . This completes the induction step.

2. Let b′c′ ∈ A and a′b′ ∈ C . Then part 1 of the lemma implies that c′a ∈ B . Now let ab = a0b0 � a1b0 � . . . � aℓbℓ−1 � aℓbℓ

= a′b′ be a canonical �-chain from ab to a′b′ . Again, note that all edges aibi−1 and aibi of this �-chain have the same
time-label t in (G, λ). We will prove by induction that c′ai ∈ B and bic′ ∈ A for every i = 0,1, . . . ,k. First recall that

8

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

Algorithm 1 Building the �-implication classes and the edge-variables.
Input: A temporal graph (G, λ), where G = (V , E).
Output: The variables {xuv , xvu : {u, v} ∈ E}, or the announcement that (G, λ) is temporally not transitively orientable.

1: s ← 0; E0 ← E
2: while E0 �= ∅ do
3: s ← s + 1; Let {p,q} ∈ E0 be arbitrary
4: Build the �-implication class As of the oriented edge pq (by Equation (2))
5: if qp ∈ As then {As ∩ A−1

s �= ∅}
6: return ``NO''
7: else
8: xs is the variable corresponding to the directed edges of As

9: for every uv ∈ As do
10: xuv ← xs ; xvu ← xs {xuv and xvu become aliases of xs and xs}
11: E0 ← E0 \ Âs

12: return �-implication classes {A1, A2, . . . , As} and variables {xuv , xvu : {u, v} ∈ E}

c′a = c′a0 ∈ B . Furthermore, by applying part 1 of the proof to the triangle with vertices a0,b0, c and on the edge
c′a0 ∈ B , it follows that b0c′ ∈ A. This completes the induction basis.
For the induction step, assume that c′ai ∈ B and bic′ ∈ A. If ai+1 = ai then clearly c′ai+1 ∈ B . Suppose now that ai+1 �= ai .
If {ai+1, c′} / ∈ E then ai+1bi � c′bi . Then, since ai+1bi ∈ C and bic′ ∈ A, it follows that A = C−1, which is a contradiction
to the assumption of the lemma. Therefore {ai+1, c′} ∈ E . Now, since aibi � ai+1bi , it follows that either {ai,ai+1} / ∈ E
or λ(ai,ai+1) < t . In either case it follows that c′ai � c′ai+1. Therefore, since c′ai ∈ B , it follows that c′ai+1 ∈ B .
If bi+1 = bi then clearly bi+1c′ ∈ A. Suppose now that bi+1 �= bi . Then, since c′ai+1 ∈ B , ai+1bi ∈ C , and bic′ ∈ A, we can
apply part 1 of the lemma to the triangle with vertices ai+1,bi, c′ and on the edge ai+1bi+1 ∈ C , from which it follows
that bic′ ∈ A. This completes the induction step, and thus c′ak = c′a′ ∈ B .

3. Suppose that ad ∈ A (resp. da ∈ A), for some vertex d. Then, by setting b′ = a and c′ = d (resp. b′ = d and c′ = a), part 1
of the lemma implies that ab′ = aa ∈ C (resp. c′a = aa ∈ B). Thus is a contradiction, as the underlying graph G does not
have the edge aa. �

Deciding temporal transitivity using Boolean satifiability. Starting with any undirected edge {u, v} of the underlying graph
G , we can clearly enumerate in polynomial time the whole �-implication class A to which the oriented edge uv belongs
(cf. Equation (2)). If the reversely directed edge vu ∈ A then Lemma 5 implies that A = A−1 = Â. Otherwise, if vu / ∈ A then
vu ∈ A−1 and Lemma 5 implies that A ∩ A−1 = ∅. Thus, we can also decide in polynomial time whether A ∩ A−1 = ∅. If
we encounter at least one �-implication class A such that A ∩ A−1 �= ∅, then it follows by Lemma 7 that (G, λ) is not
temporally transitively orientable.

In the remainder of the section we will assume that A ∩ A−1 = ∅ for every �-implication class A of (G, λ), which is a
necessary condition for (G, λ) to be temporally transitive orientable. Moreover it follows by Lemma 7 that, if (G, λ) admits
a temporally transitively orientation F , then either A ⊆ F or A−1 ⊆ F . This allows us to dfine a Boolean variable xA for
every �-implication class A, where xA = xA−1 . Here xA = 1 (resp. xA−1 = 1) means that A ⊆ F (resp. A−1 ⊆ F), where F is
the temporally transitive orientation which we are looking for. Let {A1, A2, . . . , As} be a set of �-implication classes such
that { Â1, Â2, . . . , Âs} is a partition of the edges of the underlying graph G .7 Then any truth assignment τ of the variables
x1, x2, . . . , xs (where xi = xAi for every i = 1,2, . . . , s) corresponds bijectively to one possible orientation of the temporal
graph (G, λ), in which every �-implication class is oriented consistently.

Now we dfine two Boolean formulas φ3NAE and φ2SAT such that (G, λ) admits a temporal transitive orientation if and
only if there is a truth assignment τ of the variables x1, x2, . . . , xs such that both φ3NAE and φ2SAT are simultaneously
satified. Intuitively, φ3NAE captures the ``non-cyclic'' condition from Table 1 while φ2SAT captures the remaining conditions.
Here φ3NAE is a 3NAE formula, i.e., the disjunction of clauses with three literals each, where every clause NAE(ℓ1, ℓ2, ℓ3) is
satified if and only if at least one of the literals {ℓ1, ℓ2, ℓ3} is equal to 1 and at least one of them is equal to 0. Furthermore
φ2SAT is a 2SAT formula, i.e., the disjunction of 2CNF clauses with two literals each, where every clause (ℓ1 ∨ ℓ2) is satified
if and only if at least one of the literals {ℓ1, ℓ2} is equal to 1.

For simplicity of the presentation we also dfine a variable xuv for every directed edge uv . More specifically, if uv ∈ Ai
(resp. uv ∈ A−1

i) then we set xuv = xi (resp. xuv = xi). That is, xuv = xvu for every undirected edge {u, v} ∈ E . Note that,
although {xuv , xvu : {u, v} ∈ E} are dfined as variables, they can equivalently be seen as literals in a Boolean formula over
the variables x1, x2, . . . , xs . The process of building all �-implication classes and all variables {xuv , xvu : {u, v} ∈ E} is given
by Algorithm 1.

Description of the 3NAE formula φ3NAE. The formula φ3NAE captures the ``non-cyclic'' condition of the problem variant TTO

(presented in Table 1). The formal description of φ3NAE is as follows. Consider a synchronous triangle of (G, λ) on the vertices
u, v, w . Assume that xuv = xw v , i.e., xuv is the same variable as xw v . Then the pair {uv, w v} of oriented edges belongs to the
same �-implication class Ai . This implies that the triangle on the vertices u, v, w is never cyclically oriented in any proper

7 Here we slightly abuse the notation by identifying the undirected edge {u, v} with the set of both its orientations {uv, vu}.

9

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

orientation F that respects Ai or A−1
i . Note that, by symmetry, the same happens if xv w = xuw or if xwu = xvu . Assume,

on the contrary, that xuv �= xw v , xv w �= xuw , and xwu �= xvu . In this case we add to φ3NAE the clause NAE(xuv , xv w , xwu).
Note that the triangle on u, v, w is transitively oriented if and only if NAE(xuv , xv w , xwu) is satified, i.e., at least one of the
variables {xuv , xv w , xwu} receives the value 1 and at least one of them receives the value 0.

Description of the 2SAT formula φ2SAT. The formula φ2SAT captures all conditions apart from the ``non-cyclic'' condition of
the problem variant TTO (presented in Table 1). The formal description of φ2SAT is as follows. Consider a triangle of (G, λ)

on the vertices u, v, w , where λ(u, v) = t1, λ(v, w) = t2, λ(w, v) = t3, and t1 ≤ t2 ≤ t3. If t1 < t2 = t3 then we add to φ2SAT
the clauses (xuw ∨ xw v) ∧ (xv w ∨ xwu); note that these clauses are equivalent to xwu = xw v . If t1 ≤ t2 < t3 then we add
to φ2SAT the clauses (xw v ∨ xuw) ∧ (xuv ∨ xwu); note that these clauses are equivalent to (xv w ⇒ xuw) ∧ (xvu ⇒ xwu). Now
consider a path of length 2 that is induced by the vertices u, v, w , where λ(u, v) = t1, λ(v, w) = t2, and t1 ≤ t2. If t1 = t2
then we add to φ2SAT the clauses (xvu ∨ xw v) ∧ (xv w ∨ xuv); note that these clauses are equivalent to (xuv = xw v). Finally, if
t1 < t2 then we add to φ2SAT the clause (xvu ∨ xw v); note that this clause is equivalent to (xuv ⇒ xw v).

In what follows, we say that φ3NAE ∧ φ2SAT is satifiable if and only if there exists a truth assignment τ which simulta
neously satifies both φ3NAE and φ2SAT. Given the above definitions of φ3NAE and φ2SAT, it is easy to check that their clauses
model all conditions of the oriented edges imposed by the row of ``TTO'' in Table 1.

Observation 10. The temporal graph (G, λ) is transitively orientable if and only if φ3NAE ∧ φ2SAT is satifiable.

Although deciding whether φ2SAT is satifiable can be done in linear time with respect to the size of the formula [7], the
problem Not-All-Equal-3-SAT is NP-complete [44]. We overcome this problem and present a polynomial-time algorithm for
deciding whether φ3NAE ∧ φ2SAT is satifiable as follows.

Roadmap of the entire process. Our algorithm iteratively produces at iteration j a formula φ(j)
3NAE ∧φ

(j)
2SAT, which is computed

from the previous formula φ(j−1)
3NAE ∧ φ

(j−1)
2SAT by (almost) simulating the classical greedy algorithm that solves 2SAT [7]. The

classical 2SAT-algorithm proceeds greedily as follows. For every variable xi , if setting xi = 1 (resp. xi = 0) leads to an
immediate contradiction, the algorithm is forced to set xi = 0 (resp. xi = 1). Otherwise, if each of the truth assignments
xi = 1 and xi = 0 does not lead to an immediate contradiction, the algorithm arbitrarily chooses to set xi = 1 or xi = 0, and
thus some clauses are removed from the formula as they were satified. The argument for the correctness of this classical
2SAT-algorithm is that new clauses are never added to the formula at any step. The main technical difference between
the 2SAT-algorithm and our algorithm is that, in our case, the formula φ(j)

3NAE ∧ φ
(j)
2SAT is not necessarily a sub-formula of

φ
(j−1)
3NAE ∧ φ

(j−1)
2SAT , as in some cases we need to also add clauses.

Our main technical result is that, nevertheless, if the algorithm does not return ``NO'' while applying variable forcings at
the initialization phase (during which φ(0)

3NAE ∧ φ
(0)
2SAT is computed), then the input instance is a yes-instance. In this case, the

algorithm proceeds by computing the formulas φ(j)
3NAE ∧φ

(j)
2SAT, for j = 1,2, . . ., which eventually determine a valid temporally

transitive orientation of the input temporal graph. The proof of this result (see Lemma 19 and Theorem 20) relies on a
sequence of structural properties of temporal transitive orientations which we establish. This phenomenon of deducing a
polynomial-time algorithm for an algorithmic graph problem by deciding satifiability of a mixed Boolean formula (i.e. with
both clauses of two and three literals) occurs rarely; this approach has been successfully used for the efficient recognition
of simple-triangle (known also as ``PI'') graphs [35].

Brief outline of the algorithm. In the initialization phase, we exhaustively check which truth values are forced in φ3NAE ∧φ2SAT
by using Initial-Forcing (see Algorithm 2) as a subroutine. During the execution of Initial-Forcing, we either replace the
formulas φ3NAE and φ2SAT by the equivalent formulas φ(0)

3NAE and φ(0)
2SAT, respectively, or we reach a contradiction by showing

that φ3NAE ∧ φ2SAT is unsatifiable.
The main phase of the algorithm starts once the formulas φ(0)

3NAE and φ(0)
2SAT have been computed. During this phase,

we iteratively modify the formulas such that, at the end of iteration j we have the formulas φ(j)
3NAE and φ(j)

2SAT. Note that,
during the execution of the algorithm, we can both add and remove clauses from φ(j)

2SAT. On the other hand, we can only
remove clauses from φ(j)

3NAE. Thus, at some iteration j, we obtain φ(j)
3NAE = ∅, and after that iteration we only need to decide

satifiability of φ(j)
2SAT which can be done efficiently [7].

Two crucial technical lemmas. For the remainder of the section we write xab
∗ ⇒φ2SAT xuv (resp. xab

∗ ⇒
φ

(j)
2SAT

xuv) if the truth

assignment xab = 1 forces (in 0 or more iterations) the truth assignment xuv = 1 from the clauses of φ2SAT (resp. of φ(j)
2SAT

at the iteration j of the algorithm); in this case we say that xab implies xuv in φ2SAT (resp. in φ(j)
2SAT). We next introduce the

notion of uncorrelated triangles, which lets us formulate some important properties of the implications in φ2SAT and φ(0)
2SAT.

Definition 11. Let u, v, w induce a synchronous triangle in (G, λ), where each of the variables of the set {xuv , xvu, xv w , xw v ,
xwu, xuw} belongs to a different �-implication class. If none of the variables of the set {xuv , xvu, xv w , xw v , xwu, xuw} implies
any other variable of the same set in the formula φ2SAT (resp. in the formula φ(0)

2SAT), then the triangle of u, v, w is φ2SAT

uncorrelated (resp. φ(0)
2SAT-uncorrelated).

10

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

Now we present our two crucial technical lemmas (Lemmas 12 and 13) which prove some structural properties of the
2SAT formulas φ2SAT and φ(0)

2SAT. These structural properties will allow us to prove the correctness of our main algorithm in
this section (Algorithm 4). In a nutshell, these two lemmas guarantee that, whenever we have specific implications in φ2SAT

(resp. in φ(0)
2SAT), then we also have some specific other implications in the same formula.

Lemma 12. Let u, v, w induce a synchronous and φ2SAT-uncorrelated triangle in (G, λ), and let {a,b} ∈ E be an edge of G such that
|{a,b}∩{u, v, w}| ≤ 1. If xab

∗ ⇒φ2SAT xuv , then xab also implies in φ2SAT at least one of the four variables in the set {xv w , xw v , xuw , xwu}.

Proof. Let t be the common time-label of all the edges in the synchronous triangle of the vertices u, v, w . That is, λ(u, v) =
λ(v, w) = λ(w, u) = t . Denote by A, B , and C the �-implication classes in which the directed edges uv , v w , and wu belong,
respectively. Let xab = xa0b0 ⇒φ2SAT xa1b1 ⇒φ2SAT . . . ⇒φ2SAT xak−1bk−1 ⇒φ2SAT xakbk = xuv be a φ2SAT-implication chain from xab to
xuv . Note that, without loss of generality, for each variable xaibi in this chain, the directed edge aibi is a representative of a
different �-implication class than all other directed edges in the chain (otherwise we can just shorten the φ2SAT-implication
chain from xab to xuv). Furthermore, since xakbk = xuv , note that akbk and uv are both representatives of the same �
implication class A. Therefore Lemma 9 (the temporal triangle lemma) implies that wak ∈ C and bk w ∈ B . Therefore we can
assume without loss of generality that u = ak and v = bk . Moreover, let A′ / ∈ {A, A−1, B, B−1, C, C−1} be the �-implication
class in which the directed edge ak−1bk−1 belongs. Since xak−1bk−1 ⇒φ2SAT xakbk , note that without loss of generality we can
choose the directed edge ak−1bk−1 to be such a representative of the �-implication class A′ such that either ak−1 = ak or
bk−1 = bk . We now distinguish these two cases.

Case 1: u = ak = ak−1 and v = bk �= bk−1 . Then, since xak−1bk−1 = xakbk−1 ⇒φ2SAT xakbk = xuv and λ(ak,bk) = t , it follows
that λ(u,bk−1) ≥ t + 1. Suppose that {w,bk−1} / ∈ E . Then xubk−1 ⇒φ2SAT xuw , which proves the lemma. Now suppose that
{w,bk−1} ∈ E . If λ(w,bk−1) ≤ λ(u,bk−1) − 1 then xubk−1 ⇒φ2SAT xuw , which proves the lemma. Suppose that λ(w,bk−1) ≥
λ(u,bk−1) + 1. Then xubk−1 ⇒φ2SAT xwbk−1 ⇒φ2SAT xwu , i.e. xubk−1

∗ ⇒φ2SAT xwu , which again proves the lemma. Suppose finally
that λ(w,bk−1) = λ(u,bk−1). Then, since λ(u, w) = t < λ(w,bk−1) = λ(u,bk−1), it follows that wbk−1 � ubk−1. If {v,bk−1} / ∈
E then xubk−1 = xwbk−1 ⇒φ2SAT xw v , which proves the lemma. Now let {v,bk−1} ∈ E . If λ(v,bk−1) ≤ λ(w,bk−1) − 1 then
xubk−1 = xwbk−1 ⇒φ2SAT xw v , which proves the lemma. If λ(v,bk−1) ≥ λ(w,bk−1)+ 1 then xubk−1 = xwbk−1 ⇒φ2SAT xvbk−1 ⇒φ2SAT

xw v , which proves the lemma. If λ(v,bk−1) = λ(w,bk−1) then ubk−1 � vbk−1, and thus xubk−1 = xak−1bk−1 ⇏φ2SAT xakbk = xuv ,
which is a contradiction.

Case 2: u = ak �= ak−1 and v = bk = bk−1 . Then, since xak−1bk−1 = xak−1bk ⇒φ2SAT xakbk = xuv and λ(ak,bk) = t , it follows
that λ(v,ak−1) ≤ t − 1. Suppose that {w,ak−1} / ∈ E . Then xak−1 v ⇒φ2SAT xw v , which proves the lemma. Now suppose that
{w,ak−1} ∈ E . If λ(w,ak−1) ≤ t − 1 then xak−1 v ⇒φ2SAT xw v , which proves the lemma. Suppose that λ(w,ak−1) = t . Then,
since λ(v,ak−1) ≤ t − 1, it follows that v w � at−1 w . If {u,ak−1} / ∈ E then also at−1 w � uw , and thus xw v = xwu , which is
a contradiction to the assumption that the triangle of u, v, w is uncorrelated. Thus {u,ak−1} ∈ E . If λ(u,ak−1) ≤ t − 1 then
again ak−1 w � uw , which is a contradiction. On the other hand, if λ(u,ak−1) ≥ t then xak−1 v = xak−1bk−1 ⇏φ2SAT xakbk = xuv ,
which is a contradiction.

Finally suppose that λ(w,ak−1) ≥ t + 1. Then, since λ(v, w) = t and λ(v,ak−1) ≤ t − 1, it follows that xv w ⇒φ2SAT

xak−1 w ⇒φ2SAT xak−1 v . However, since xak−1 v = xak−1bk ⇒φ2SAT xakbk = xuv , it follows that xv w
∗ ⇒φ2SAT xuv , which is a contra

diction to the assumption that the triangle of u, v, w is uncorrelated. �
Lemma 13. Let u, v, w induce a synchronous and φ(0)

2SAT-uncorrelated triangle in (G, λ), and let {a,b} ∈ E be an edge of G such that
|{a,b}∩{u, v, w}| ≤ 1. If xab

∗ ⇒
φ

(0)
2SAT

xuv , then xab also implies in φ(0)
2SAT at least one of the four variables in the set {xv w , xw v , xuw , xwu}.

Proof. Assume we have |{a,b} ∩ {u, v, w}| ≤ 1 and xab
∗ ⇒

φ
(0)
2SAT

xuv . Then we make a case distinction on the last implication

in the implication chain xab
∗ ⇒

φ
(0)
2SAT

xuv .

1. The last implication is an implication from φ2SAT, i.e., xab
∗ ⇒

φ
(0)
2SAT

xpq⇒φ2SAT xuv . If {p,q} ⊆ {u, v, w} then we are done,
since we can assume that {p,q} �= {u, v} because no such implications are contained in φ2SAT. Otherwise Lemma 12
implies that xpq also implies at least one of the four variables in the set {xv w , xw v , xuw , xwu} in φ2SAT. If follows that
xab also implies at least one of the four variables in the set {xv w , xw v , xuw , xwu} in φ(0)

2SAT.

2. The last implication is not an implication from φ2SAT, i.e., xab
∗ ⇒

φ
(0)
2SAT

xpq⇒φINIT xuv , there the implication xpq⇒φINIT xuv

was added to φ(0)
2SAT by Initial-Forcing. If xpq⇒φINIT xuv was added in Line 7 or Line 10 of Initial-Forcing, then we

have that {p,q} ⊆ {u, v, w} and {p,q} �= {u, v}, hence the u, v, w is not a φ(0)
2SAT-uncorrelated triangle, a contradiction. If

xpq⇒φINIT xuv was added in Line 14 of Initial-Forcing, then we have that xpq⇒φINIT xuw , hence we are done. �
Detailed description of the algorithm. We are now ready to present our polynomial-time algorithm (Algorithm 4) for de

ciding whether a given temporal graph (G, λ) is temporally transitively orientable. The main idea of our algorithm is as

11

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

Algorithm 2 Initial-Forcing.
Input: A 2-SAT formula φ2SAT and a 3-NAE formula φ3NAE

Output: A 2-SAT formula φ(0)
2SAT and a 3-NAE formula φ(0)

3NAE such that φ(0)
2SAT ∧ φ

(0)
3NAE is satifiable if and only if φ2SAT ∧ φ3NAE is satifiable, or the announce

ment that φ2SAT ∧ φ3NAE is not satifiable.

1: φ
(0)
3NAE ← φ3NAE; φ

(0)
2SAT ← φ2SAT {initialization}

2: for every variable xi appearing in φ(0)
3NAE ∧ φ

(0)
2SAT do

3: if Boolean-Forcing

(
φ

(0)
3NAE, φ

(0)
2SAT, xi ,1

)
= “NO'' then

4: if Boolean-Forcing

(
φ

(0)
3NAE, φ

(0)
2SAT, xi ,0

)
= “NO'' then

5: return ``NO'' {both xi = 1 and xi = 0 invalidate the formulas}
6: else

7:
(
φ

(0)
3NAE, φ

(0)
2SAT

)
← Boolean-Forcing

(
φ

(0)
3NAE, φ

(0)
2SAT, xi ,0

)
8: else

9: if Boolean-Forcing

(
φ

(0)
3NAE, φ

(0)
2SAT, xi ,0

)
= “NO'' then

10:
(
φ

(0)
3NAE, φ

(0)
2SAT

)
← Boolean-Forcing

(
φ

(0)
3NAE, φ

(0)
2SAT, xi ,1

)
11: for every clause NAE(xuv , xv w , xwu) of φ(0)

3NAE do

12: for every variable xab do

13: if xab
∗ ⇒

φ
(0)
2SAT

xuv and xab
∗ ⇒

φ
(0)
2SAT

xv w then {add (xab ⇒ xuw) to φ(0)
2SAT}

14: φ
(0)
2SAT ← φ

(0)
2SAT ∧ (xba ∨ xuw)

15: Repeat Lines 2 and 11 until no changes occur on φ(0)
2SAT and φ(0)

3NAE

16: return
(
φ

(0)
3NAE, φ

(0)
2SAT

)

follows. First, the algorithm computes all �-implication classes A1, . . . , As by calling Algorithm 1 as a subroutine. If there
exists at least one �-implication class Ai where uv, vu ∈ Ai for some edge {u, v} ∈ E , then we announce that (G, λ) is a
no-instance, due to Lemma 7. Otherwise we associate to each �-implication class Ai a variable xi , and we build the 3NAE

formula φ3NAE and the 2SAT formula φ2SAT, as described in Section 3.2.
In the initialization phase of Algorithm 4, we call algorithm Initial-Forcing (see Algorithm 2) as a subroutine. Starting

from the formulas φ3NAE and φ2SAT, in Initial-Forcing we build the formulas φ(0)
3NAE and φ(0)

2SAT by both (i) checking which
truth values are being forced in φ3NAE ∧φ2SAT (lines 2-10), and (ii) adding to φ2SAT some clauses that are implicitly implied in
φ3NAE ∧ φ2SAT (lines 11-14). More specifically, Initial-Forcing proceeds as follows: (i) whenever setting xi = 1 (resp. xi = 0)
forces φ3NAE ∧φ2SAT to become unsatifiable, we choose to set xi = 0 (resp. xi = 1); (ii) if x ⇒

φ
(0)
2SAT

a and x ⇒
φ

(0)
2SAT

b, and if we

also have that NAE(a,b, c) ∈ φ
(0)
3NAE, then we add x ⇒

φ
(0)
2SAT

c to φ(0)
2SAT, since clearly, if x = 1 then a = b = 1 and we have to set

c = 0 to satisfy the NAE clause NAE(a,b, c). The next observation follows easily by Observation 10 and by the construction
of φ(0)

3NAE and φ(0)
2SAT in Initial-Forcing.

Observation 14. The temporal graph (G, λ) is transitively orientable if and only if φ(0)
3NAE ∧ φ

(0)
2SAT is satifiable.

The main phase of the algorithm starts once the formulas φ
(0)
3NAE and φ

(0)
2SAT have been computed. As we prove

in Lemma 19, if the algorithm does not conclude at the initialization phase that the input instance is a no-instance, the
instance is a yes-instance. During any iteration j ≥ 1 of the algorithm, we pick an arbitrary variable xi and we assign it the
truth value 1 (note that this is an arbitrary choice; we could equally choose to assign to xi the value 0). Once we have
set xi = 1, we call algorithm Boolean-Forcing (see Algorithm 3) as a subroutine to check which implications this value
of xi has on the current formulas φ(j−1)

3NAE and φ(j−1)
2SAT and which other truth values of variables are forced. The correctness

of Boolean-Forcing can be easily verfied by checking all subcases of Boolean-Forcing. During such a call of Boolean

Forcing (i.e. during an iteration j ≥ 1 in the main phase of the algorithm), we replace the current formulas by φ(j)
3NAE and

φ
(j)
2SAT, respectively. Summarizing, in its initialization phase, the algorithm decides whether the input temporal graph can

be transitively oriented (i.e. solves the decision version of the problem), while in its main phase it computes a temporally
transitive orientation.

Correctness of the algorithm. We now formally prove that Algorithm 4 is correct. More specifically, we show that if Al
gorithm 4 gets a yes-instance as input then it outputs a temporally transitive orientation, while if it gets a no-instance as

12

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

Algorithm 3 Boolean-Forcing.
Input: A 2-SAT formula φ2, a 3-NAE formula φ3, and a variable xi of φ2 ∧ φ3, and a truth value Value ∈ {0,1}
Output: A 2-SAT formula φ′

2 and a 3-NAE formula φ′
3, obtained from φ2 and φ3 by setting xi = Value, or the announcement that xi = Value does not

satisfy φ2 ∧ φ3.

1: Let a and b be such that xab = xi ; xab ← Value

2: φ′
2 ← φ2; φ′

3 ← φ3

3: while φ′
2 has a clause (xuv ∨ xpq) and xuv = 1 do

4: Remove the clause (xuv ∨ xpq) from φ′
2

5: while φ′
2 has a clause (xuv ∨ xpq) and xuv = 0 do

6: if xpq = 0 then return ``NO''
7: Remove the clause (xuv ∨ xpq) from φ′

2
8: xpq ← 1; Repeat lines 3 and 5 until no changes occur in φ′

2. {Implement all changes to φ′
2 that are implied by setting xpq = 1}

9: for every clause NAE(xuv , xv w , xwu) of φ′
3 do {synchronous triangle on vertices u, v, w}

10: if xuv
∗ ⇒φ′

2
xv w then {add (xuv ⇒ xuw) ∧ (xuw ⇒ xv w) to φ′

2}
11: φ′

2 ← φ′
2 ∧ (xvu ∨ xuw) ∧ (xwu ∨ xv w)

12: Remove the clause NAE(xuv , xv w , xwu) from φ′
3

13: if xuv already got the value 1 or 0 then
14: Remove the clause NAE(xuv , xv w , xwu) from φ′

3

15: if xv w and xwu do not have yet a truth value then

16: if xuv = 1 then {add (xv w ⇒ xuw) to φ′
2}

17: φ′
2 ← φ′

2 ∧ (xw v ∨ xuw)

18: else {xuv = 0; in this case add (xuw ⇒ xv w) to φ′
2}

19: φ′
2 ← φ′

2 ∧ (xwu ∨ xv w)

20: if xv w = xuv and xwu does not have yet a truth value then
21: xwu ← 1 − xuv ; Repeat lines 3 and 5 until no changes occur in φ′

2. {Implement all changes to φ′
2 that are implied by setting xwu = 1 − xuv }

22: if xv w = xwu = xuv then return ``NO''

23: Repeat lines 3, 5, and 9 until no changes occur in φ′
2 and φ′

3.

24: return (φ′
2, φ′

3)

Algorithm 4 Temporal transitive orientation.
Input: A temporal graph (G, λ), where G = (V , E).
Output: A temporal transitive orientation F of (G, λ), or the announcement that (G, λ) is temporally not transitively orientable.

1: Execute Algorithm 1 to build the �-implication classes {A1, A2, . . . , As} and the Boolean variables {xuv , xvu : {u, v} ∈ E}
2: if Algorithm 1 returns ``NO'' then return ``NO''

3: Build the 3NAE formula φ3NAE and the 2SAT formula φ2SAT

4: if Initial-Forcing (φ3NAE, φ2SAT) �= “NO'' then {Initialization phase}

5:
(
φ

(0)
3NAE, φ

(0)
2SAT

)
← Initial-Forcing (φ3NAE, φ2SAT)

6: else {φ3NAE ∧ φ2SAT leads to a contradiction}
7: return ``NO''
8: j ← 1; F ← ∅ {Main phase}
9: while a variable xi appearing in φ(j−1)

3NAE ∧ φ
(j−1)
2SAT did not yet receive a truth value do {arbitrary choice of xi }

10:
(
φ

(j)
3NAE, φ

(j)
2SAT

)
← Boolean-Forcing

(
φ

(j−1)
3NAE , φ

(j−1)
2SAT , xi ,1

)
11: j ← j + 1

12: for i = 1 to s do
13: if xi did not yet receive a truth value then xi ← 1
14: if xi = 1 then F ← F ∪ Ai else F ← F ∪ Ai

15: return the temporally transitive orientation F of (G, λ)

input then it outputs ``NO''. The main result of this section is Theorem 20, in which we prove that Temporal Transitive
Orientation (TTO) is correct and runs in polynomial time.

The next crucial observation follows immediately by the construction of φ3NAE in Section 3.2, and by the fact that, at
every iteration j, Algorithm 4 can only remove clauses from φ(j−1)

3NAE .

13

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

Observation 15. When Boolean-Forcing (Algorithm 3) removes a clause from φ(j−1)
3NAE , then this clause is satified by all satisfying

assignments of φ(j)
2SAT.

Next, we prove a crucial and involved technical lemma about the Boolean forcing steps of Algorithm 4. This lemma will
allow us to deduce that, during the main phase of Algorithm 4, whenever a new clause is added to the 2SAT part of the
formula, this happens only in lines 17 and 19 of Boolean-Forcing (Algorithm 3). That is, whenever a new clause is added
to the 2SAT part of the formula in line 11 of Algorithm 3, this can only happen during the initialization phase of Algorithm 4.

Lemma 16. Consider an execution of Boolean-Forcing (Algorithm 3) which is called in an iteration j ≥ 1 (i.e. in the main phase) of
Algorithm 4. Then Lines 11 and 12 of Boolean-Forcing are not executed.

Proof. Assume for contradiction that Lines 11 and 12 of Algorithm 3 are executed in iteration j of Algorithm 4. Let j ≥ 1
be the first iteration where this happens. This means that there is a clause NAE(xuv , xv w , xwu) of φ′

3 and an implication
xuv

∗ ⇒φ′
2

xv w during the execution of Algorithm 3.

We first partition the implication chain xuv
∗ ⇒φ′

2
xv w into ``old'' and ``new'' implications, where ``old'' implications are

contained in φ(0)
2SAT and all other implications (that were added in the previous iterations 1,2, . . . , j − 1) are considered

“new''. For simplicity of notation, we will refer to these ``new'' implications using the symbol ``⇒BF''. Recall here that,
whenever xab ⇒BF xcd , we have that λ(a,b) = λ(c,d) by Boolean-Forcing. If there are several NAE clauses and implication
chains that fufill the condition in Line 10 of Algorithm 3, we assume that xuv

∗ ⇒φ′
2

xv w is one that contains a minimum

number of ``new'' implications. Observe that, since we assume xuv
∗ ⇒φ′

2
xv w is a condition for the first execution of Lines 11

and 12 of Algorithm 3, it follows that all ``new'' implications in xuv
∗ ⇒φ′

2
xv w were added in Line 17 or Line 19 of Boolean

Forcing (i.e. Algorithm 3) in previous iterations.
Assume that xuv

∗ ⇒φ′
2

xv w contains only ``old'' implications. Then, this execution of Lines 11 and 12 of Algorithm 3
happens during the initialization phase of Algorithm 4. This is a contradiction to the assumption that this execution of
Lines 11 and 12 of Algorithm 3 happens at iteration j ≥ 1 of Algorithm 4. Therefore xuv

∗ ⇒φ′
2

xv w contains at least one

“new'' implication. We now distinguish the cases where xuv
∗ ⇒φ′

2
xv w contains ``old'' implications or not.

Case I: xuv
∗ ⇒φ′

2
xv w contains at least one ``old'' implication. We assume without loss of generality that xuv

∗ ⇒φ′
2

xv w contains
an ``old'' implication that is directly followed by a ``new'' implication (if this is not the case, then we can consider the
contraposition of the implication chain).

Note that, since the ``new'' implication was added in Line 17 or Line 19 of Algorithm 3, we can assume without loss of
generality that the ``new'' implication is xab⇒BFxcb and that xca = 1 for some synchronous triangle on the vertices a,b, c
(this is the Line 17 case, Line 19 works analogously). That is, we have NAE(xab, xbc, xca) ∈ φ

(0)
3NAE. Let xpq⇒φ

(0)
2SAT

xab be the

“old'' implication. Then we have that xpq⇒φ
(0)
2SAT

xab⇒BFxcb is contained in xuv
∗ ⇒φ′

2
xv w . Furthermore, by definition of φ(0)

2SAT,
we have that |{p,q} ∩ {a,b, c}| ≤ 1, hence we can apply Lemma 13 and obtain one of the following four scenarios:

1. xpq
∗ ⇒

φ
(0)
2SAT

xcb:

In this case we can replace xpq⇒φ
(0)
2SAT

xab⇒BFxcb with xpq⇒φ
(0)
2SAT

xcb in the implication chain xuv
∗ ⇒

φ
(j)
2SAT

xv w to obtain an
implication chain from xuv to xv w with strictly fewer ``new'' implications, a contradiction.

2. xpq
∗ ⇒

φ
(0)
2SAT

xbc :

Now we have that xpq⇒φ
(0)
2SAT

xab and xpq
∗ ⇒

φ
(0)
2SAT

xbc . Then by definition of φ(0)
2SAT we also have that xpq⇒φ

(0)
2SAT

xac . Recall
that we have set xca = 1, that is, xac = 0. Therefore, by Lines 8 and 21 of Boolean-Forcing, we have already set xpq = 0,
and therefore the implication xpq⇒φ

(0)
2SAT

xab does not exist in φ′
2 anymore, which is a contradiction.

3. xpq
∗ ⇒

φ
(0)
2SAT

xca:

Now we have that xpq⇒φ
(0)
2SAT

xab and xpq
∗ ⇒

φ
(0)
2SAT

xca . Then by definition of φ(0)
2SAT we also have that xpq⇒φ

(0)
2SAT

xcb . From
here it is the same as Case 1.

4. xpq
∗ ⇒

φ
(0)
2SAT

xac : Same as Case 2.

Hence, we have a contradiction in every case and can conclude that xuv
∗ ⇒φ′

2
xv w does not contain any ``old'' implications.

Case II: xuv
∗ ⇒φ′

2
xv w contains only ``new'' implications. To analyze this case, we first introduce the notion of alternating

and non-alternating sequences of ``new'' implications, as follows. Whenever the sequence xuv
∗ ⇒BF xv w contains at least

14

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

a c

b

d

(a)

t

t

t

t

t

a c

b

d

(b)

t

t

t

t

t

a c

b

d

(c)

t

t

t

t

t

Fig. 4. Illustration of alternating and non-alternating sequences of implications that can occur at the two synchronous triangles on the vertices {a,b, c}
and {a, c,d}. The red directed edges illustrate variables that have already been set to 1 by the algorithm Boolean-Forcing. Figure (a): non-alternating
implications xab⇒BFxac⇒BFxad , which occur whenever xbc = xcd = 1 (red edges). Figure (b): non-alternating implications xba⇒BFxca⇒BFxda , which occur
whenever xcb = xdc = 1 (red edges). Figure (c): alternating implications xab⇒BFxac⇒BFxdc , which occur whenever xbc = xda = 1 (red edges). In all three
figures, the green dash-dotted line indicates that edge {a,d} may exist (with some time label) or may not exist.

one pair of consecutive direct implications of the form xab⇒BFxac⇒BFxad (see Fig. 4(a)), or of the form xba⇒BFxca⇒BFxda

(see Fig. 4(b)), we call xuv
∗ ⇒BF xv w a non-alternating sequence of implications; otherwise we call it alternating (see Fig. 4(c)).

That is, if xuv
∗ ⇒BF xv w is alternating, then it either has the form

xuv = xu1 v1⇒BFxu2 v1⇒BFxu2 v2⇒BFxu3 v2

∗ ⇒BF xu j vi = xv w , (3)

or it has the form

xuv = xu1 v1⇒BFxu1 v2⇒BFxu2 v2⇒BFxu2 v3

∗ ⇒BF xui v j = xv w , (4)

where either j = i or j = i +1. Fig. 4 illustrates some examples of alternating and non-alternating sequences of implications.
We now distinguish the cases where xuv

∗ ⇒BF xv w is an alternating or a non-alternating sequence of implications. Note
that, as all these are ``new'' implications, all edges which are involved in xuv

∗ ⇒BF xv w have the same label t . That is, for
every variable xab that appears in the sequence xuv

∗ ⇒BF xv w of implications, we have that λ(a,b) = t .

Case II-A: xuv
∗ ⇒BF xv w is a non-alternating sequence of implications. Without loss of generality, let this sequence

xuv
∗ ⇒BF xv w contain the pair of consecutive direct implications xab⇒BFxac⇒BFxad (the case where it contains the impli

cations xba⇒BFxca⇒BFxda can be treated in exactly the same way).
Let a,b, c be the vertices of the synchronous triangle that caused the implication xab⇒BFxac , and let a′, c′,d be the

vertices of the synchronous triangle that caused the implication xac⇒BFxad , where xac = xa′c′ and xad = xa′d . Then, Lemma 9
(the temporal triangle lemma) implies that the edges {a,d} and {c,d} exist in the graph and that ad (resp. cd) belongs to
the same �-implication class with a′d (resp. c′d). Therefore we can assume without loss of generality that a = a′ and c = c′ .

Then, since xab⇒BFxac and xac⇒BFxad are direct ``new'' implications, it follows that xbc = xcd = 1 (as these implications
have only been added by Lines 17 or 19 of Boolean-Forcing).

Let {b,d} / ∈ E or λ(b,d) < t . Then φ(0)
2SAT by definition contains xab⇒φ

(0)
2SAT

xad . Thus, we can replace within xuv
∗ ⇒BF xv w the

two ``new'' implications xab⇒BFxac⇒BFxad by the ``old'' implication xab⇒φ
(0)
2SAT

xad , thus resulting to a sequence of implications
from xuv to xv w that has fewer ``new'' implications, a contradiction to our assumption.

Let λ(b,d) > t . Then φ(0)
2SAT by definition contains xcd⇒φ

(0)
2SAT

xbd and xbd⇒φ
(0)
2SAT

xba . Thus, since xcd = 1, it follows Boolean

Forcing sets xab = 0, which is a contradiction to the assumption that the implication xab⇒BFxac belongs to φ′
2.

Let now λ(b,d) = t . Then NAE(xbc, xcd, xdb) ∈ φ
(0)
3NAE. If xbc is set to 1 before xcd is set to 1 (i.e. at an earlier iteration

of Boolean-Forcing), then Boolean-Forcing adds (in Line 17) to φ′
2 the direct implication xcd⇒BFxbd . In this case, when

xcd is set to 1 at a subsequent iteration of Boolean-Forcing, xbd is also set to 1. Similarly, if xcd is set to 1 before xbc
is set to 1, then Boolean-Forcing adds to φ′

2 the direct implication xdb⇒BFxcb , which is equivalent to xbc⇒BFxbd . In this
case, when xbd is set to 1 at a subsequent iteration of Boolean-Forcing, xbd is also set to 1. Finally, if both xbc and xcd are
set to 1 at the same iteration, Boolean-Forcing also sets xbd to 1 in Line 21. Summarizing, in any case Boolean-Forcing

always sets xbd = 1, and thus it also adds to φ′
2 the implication xab⇒BFxad . Thus, we can replace within xuv

∗ ⇒BF xv w the
two implications xab⇒BFxac⇒BFxad by the single implication xab⇒BFxad , thus resulting to a sequence of implications from
xuv to xv w that has fewer ``new'' implications, a contradiction to our assumption.

Case II-B: xuv
∗ ⇒BF xv w is an alternating sequence of implications. Let this sequence be of the form of (3) where j = i (the

cases where j = i + 1 or where the sequence is of the form of (4) can be treated analogously), that is,

xuv = xu1 v1⇒BFxu2 v1⇒BFxu2 v2⇒BFxu3 v2

∗ ⇒BF xui vi = xv w . (5)

15

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

Similarly to Case II-A, by iteratively applying Lemma 9 (the temporal triangle lemma), we may assume without loss of
generality that all implications of (5) are added to φ′

2 by the synchronous triangles on the vertices {u1, v1, u2}, {v1, u2, v2},
{u2, v2, u3}, . . ., {vi−1, ui, vi}. Furthermore, as all the implications of (5) have been added to φ′

2 by Boolean-Forcing, it
follows that xui ui−1 = xui−1ui−2 = . . . = xu2u1 = 1 and xv1 v2 = xv2 v3 = . . . = xvi−1 vi = 1.

Now, since xui vi = xv w (i.e. ui vi belongs to the same �-implication class with v w), it follows by Lemma 9 (the temporal
triangle lemma) that the edge {u1, ui} exists in the graph and that u1ui belongs to the same �-implication class with
u1 v = uv (and thus, in particular, λ(u1, ui) = λ(u1, v) = t).

Recall that λ(u1, u2) = t and xu2u1 = 1. We now prove by induction that, for every j = 3, . . . , i, we have λ(u1, u j) ≥ t and
xu j u1 = 1.

For the induction basis, let j = 3. If {u1, u3} / ∈ E or λ(u1, u3) < t , then φ(0)
2SAT by definition contains xu3u2⇒φ

(0)
2SAT

xu1u2 . This
is a contradiction, as xu3u2 = xu2u1 = 1. Therefore {u1, u3} ∈ E and λ(u1, u3) ≥ t . If λ(u1, u3) = t then Boolean-Forcing sets
xu3u1 = 1 (see Line 21 of Boolean-Forcing). If λ(u1u3) > t then φ(0)

2SAT contains xu2u1⇒φ
(0)
2SAT

xu3u1 . Therefore, since xu2u1 = 1,
it follows in this case as well that Boolean-Forcing sets xu3u1 = 1. This completes the induction basis.

For the induction step, let 4 ≤ j ≤ i, and assume by the induction hypothesis that t′ = λ(u1, u j−1) ≥ t and xu j−1u1 =
1. Recall that λ(u j−1, u j) = t and xu j u j−1 = 1. If {u1, u j} / ∈ E or λ(u1, u j) < t′ , then φ

(0)
2SAT by definition contains

xu j u j−1⇒φ
(0)
2SAT

xu1u j−1 . This is a contradiction, as xu j u j−1 = xu j−1u1 = 1. Therefore {u1, u j} ∈ E and λ(u1, u j) ≥ t′ . If λ(u1, u j) =
t′ = t then Boolean-Forcing sets xu j u1 = 1 (see Line 21 of Boolean-Forcing). If λ(u1, u j) = t′ > t or if λ(u1, u j) > t′ ≥ t

then φ(0)
2SAT contains xu j−1u1⇒φ

(0)
2SAT

xu j u1 . Therefore, since xu j−1u1 = 1, it follows in this case as well that Boolean-Forcing

sets xu j u1 = 1. This completes the induction step.
Therefore, in particular, for j = i we have that xui u1 = 1. Thus, since u1ui belongs to the same �-implication class with

u1 v = uv , it follows that xuv = 1, which is a contradiction to the assumption that xuv
∗ ⇒BF xv w is contained in φ′

2. This
completes the proof. �

In the next lemma we prove that, if Algorithm 4 does not return ``NO'' after the initialization phase (in Line 7), then
the 2SAT formula φ(0)

2SAT is satifiable. Furthermore, as we prove in Lemma 18, in this case also the 2SAT formulas φ(j)
2SAT are

satifiable for every j ≥ 1.

Lemma 17. Assume that Algorithm 4 does not return ``NO'' in the initialization phase (i.e. in Line 7). Then there exists no variable xuv

in φ(0)
2SAT such that xuv

∗ ⇒
φ

(0)
2SAT

xvu , and thus φ(0)
2SAT is satifiable.

Proof. Since Algorithm 4 does not return ``NO'' in Line 7, it follows that Line 5 of Initial-Forcing (Algorithm 2) is not
executed, when Initial-Forcing is called by Algorithm 4. Furthermore, before Initial-Forcing finishes, it checks in Line 15
whether any of the formulas φ(0)

3NAE or φ(0)
2SAT have been changed since the last iteration of Lines 2 and 11.

Let xuv be an arbitrary variable in φ(0)
2SAT, i.e. in the 2SAT part of the formula after Initial-Forcing has finished. Since

xuv did not get a Boolean value during the execution of Initial-Forcing, it follows that, when Initial-Forcing stops, setting
xuv to 1 (resp. to 0) does not cause a contradiction. Indeed, otherwise Initial-Forcing would set xuv equal to 0 (resp. 1).
Therefore, once Initial-Forcing finishes, there cannot exist any variable xuv in φ(0)

2SAT such that xuv
∗ ⇒

φ
(0)
2SAT

xvu (as other

wise Initial-Forcing would set xuv = 0). This completes the lemma. �
Lemma 18. Assume that Algorithm 4 does not return ``NO'' in the initialization phase (i.e. in Line 7). Then, at any point during an
arbitrary call of Boolean-Forcing at the iteration j ≥ 1 of Algorithm 4, there does not exist any variable xuv in φ′

2 such that xuv
∗ ⇒φ′

2

xvu , and thus φ′
2 is satifiable.

Proof. Let j = 1. At the very beginning of iteration j = 1 (where no changes have been made to φ′
2 by Boolean-Forcing) it

follows immediately by Lemma 17 that there is no variable xuv in φ′
2 = φ

(0)
2SAT such that xuv

∗ ⇒φ′
2

xvu .

Now, let j ≥ 1. Assume that, at the very beginning of iteration j, there is no variable xuv in φ′
2 = φ

(j−1)
2SAT such that

xuv
∗ ⇒φ′

2
xvu . For the sake of contradiction, assume that, at some point during the execution of this call of Boolean-Forcing,

there exists a variable xuv in φ′
2 such that xuv

∗ ⇒φ′
2

xvu . Assume that this is the earliest point during the execution of this

call of Boolean-Forcing where such an implication chain xuv
∗ ⇒φ′

2
xvu exists in φ′

2. Furthermore, among all implication

chains xuv
∗ ⇒φ′

2
xvu , consider one that has the smallest number of ``new'' implications.

Similarly to the proof of Lemma 16, we partition the implication chain xuv
∗ ⇒φ′

2
xvu into ``old'' implications (which

are also present in φ
(0)
2SAT) and ``new'' implications (which were added by Boolean-Forcing during some iteration j′ ∈

{1,2, . . . , j}). Similarly to Lemma 16, for simplicity of notation we refer to these ``new'' implications using the symbol

16

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

“⇒BF''. Recall that, whenever xab ⇒BF xcd , we have that λ(a,b) = λ(c,d) by Boolean-Forcing. Note that xuv
∗ ⇒φ′

2
xvu con

tains at least one ``new'' implication, as otherwise xuv
∗ ⇒

φ
(0)
2SAT

xvu which is a contradiction by Lemma 17.

Case I: xuv
∗ ⇒φ′

2
xvu contains at least one ``old'' implication. Consider an ``old'' implication xpq⇒φ

(0)
2SAT

xab within the implica

tion chain xuv
∗ ⇒φ′

2
xvu , which is followed by a ``new'' implication (if there is no such pair of consecutive implications, then

there is one in the contraposition of the implication chain). By Lemma 16, the ``new'' implication was added by Boolean

Forcing in Line 17 or Line 19. We can assume without loss of generality that the ``new'' implication is xab⇒BFxcb and that
xca = 1 for some synchronous triangle on the vertices a,b, c (this is the case of Line 17, Line 19 works analogously). That
is, we have NAE(xab, xbc, xca) ∈ φ

(0)
3NAE. Summarizing, we have that xpq⇒φ

(0)
2SAT

xab⇒BFxcb is contained in xuv
∗ ⇒φ′

2
xvu . Further

more, by construction of φ(0)
2SAT, we have that |{p,q} ∩ {a,b, c}| ≤ 1, hence we can apply Lemma 13 and obtain one of the

following four scenarios:

1. xpq
∗ ⇒

φ
(0)
2SAT

xcb:

In this case we can replace xpq⇒φ
(0)
2SAT

xab⇒BFxcb with xpq⇒φ
(0)
2SAT

xcb in the implication chain xuv
∗ ⇒φ′

2
xvu to obtain an

implication chain from xuv to xvu in φ′
2 with strictly fewer ``new'' implications, a contradiction.

2. xpq
∗ ⇒

φ
(0)
2SAT

xbc :

Now we have that xpq⇒φ
(0)
2SAT

xab and xpq
∗ ⇒

φ
(0)
2SAT

xbc . Then by definition of φ(0)
2SAT we also have that xpq⇒φ

(0)
2SAT

xac . Recall
that we have set xca = 1 (which triggered the addition of the implication xab⇒BFxcb), that is, xac = 0. Therefore, by
Lines 8 and 21 of Boolean-Forcing, we have already set xqp = 1, i.e. xpq = 0, and therefore the implication xpq⇒φ

(0)
2SAT

xab

does not exist in φ′
2 anymore, which is a contradiction.

3. xpq
∗ ⇒

φ
(0)
2SAT

xca:

Now we have that xpq⇒φ
(0)
2SAT

xab and xpq
∗ ⇒

φ
(0)
2SAT

xca . Then by definition of φ(0)
2SAT we also have that xpq⇒φ

(0)
2SAT

xcb . From
here it is the same as Case 1.

4. xpq
∗ ⇒

φ
(0)
2SAT

xac : Same as Case 2.

Case II: xuv
∗ ⇒φ′

2
xvu contains only ``new'' implications. Similarly to Case II of the proof of Lemma 16, we use the notion of

alternating and non-alternating sequences of ``new'' implications. In a nutshell, whenever the sequence xuv
∗ ⇒BF xvu contains

at least one pair of consecutive direct implications of the form xab⇒BFxac⇒BFxad , or of the form xba⇒BFxca⇒BFxda , the
sequence of implications xuv

∗ ⇒BF xvu is called non-alternating; otherwise it is called alternating. That is, if xuv
∗ ⇒BF xvu is

alternating, then it either has the form

xuv = xu1 v1⇒BFxu2 v1⇒BFxu2 v2

∗ ⇒BF xvu = xv1u1 , (6)

or it has the form

xuv = xu1 v1⇒BFxu1 v2⇒BFxu2 v2

∗ ⇒BF xvu = xv1u1 . (7)

We now distinguish the cases where xuv
∗ ⇒BF xv w is an alternating or a non-alternating sequence of implications. Note

that, as all these are ``new'' implications, all edges which are involved in xuv
∗ ⇒BF xvu have the same label t . That is, for

every variable xab that appears in the sequence xuv
∗ ⇒BF xvu of implications, we have that λ(a,b) = t .

Case II-A: xuv
∗ ⇒BF xvu is a non-alternating sequence of implications. This case can be treated in exactly the same way

as Case II-A in the proof of Lemma 16, where we just replace ``xv w '' with ``xvu''. The main idea of the proof is that, if
xuv

∗ ⇒BF xvu is non-alternating, then there exists an implication sequence that contains fewer ``new'' implications, which is
a contradiction.

Case II-B: xuv
∗ ⇒BF xvu is an alternating sequence of implications. First let this sequence be of the form of (6). As the

implication xu1 v1⇒BFxu2 v1 of (6) has been added to φ′
2 by Boolean-Forcing, it follows that xu2u1 = 1 and λ(u1, u2) =

t . That is, there is a synchronous triangle on the vertices {u1, v1, u2}, and we have the implication sequence xu2 v1

∗ ⇒BF
xv1u1 . Therefore, Lines 11 and 12 of Boolean-Forcing are executed during some iteration j ≥ 1 (i.e. in the main phase) of
Algorithm 4, which is a contradiction by Lemma 16.

Now let the sequence xuv
∗ ⇒BF xvu be of the form of (7). Similarly to Case II-A in the proof of Lemma 16, by iteratively

applying Lemma 9 (the temporal triangle lemma), we may assume without loss of generality that the first two implications

17

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

of (7) are added to φ′
2 by the synchronous triangles on the vertices {u1, v1, v2} and {u1, v2, u2}. Furthermore, as the impli

cations xu1 v1⇒BFxu1 v2 and xu1 v2⇒BFxu2 v2 of (7) have been added to φ′
2 by Boolean-Forcing, it follows that xu2u1 = 1 and

xv1 v2 = 1.

Assume that {u2, v1} / ∈ E or λ(u2, v1) < t . Then φ(0)
2SAT by definition contains xu2u1⇒φ

(0)
2SAT

xv1u1 . Thus, since xu2u1 = 1, it
follows Boolean-Forcing sets xv1u1 = 1, which is a contradiction to the assumption that the implication xu1 v1⇒BFxu1 v2

belongs to φ′
2.

Assume that λ(u2, v1) > t . Then φ(0)
2SAT by definition contains xu1 v1⇒φ

(0)
2SAT

xu2 v1 and xu2 v1⇒φ
(0)
2SAT

xu2 v2 , while both these
implications are ``old'' (as these are implications that involve non-synchronous edges). Therefore there exists the sequence of
implications xuv = xu1 v1⇒φ

(0)
2SAT

xu2 v1⇒φ
(0)
2SAT

xu2 v2

∗ ⇒BF xvu = xv1u1 , which contains fewer ``new'' implications, a contradiction.

Finally assume that λ(u2, v1) = t . Then, since xu2u1 = 1 and xv1 v2 = 1 and the triangles on the vertices {u1, v1, u2} and
{v1, u2, v2} are synchronous, it follows that we also have the implications xu1 v1⇒BFxu2 v1⇒BFxu2 v2 . Therefore, additionally
to (7), also (6) is a sequence of (equally many) ``new'' implications from xuv to xvu , and thus a contradiction is implied as
explained above. This completes the proof. �

In the next lemma we prove a strong structural property of our algorithm. Given this property, we will be able to show
that, if the algorithm does not return ``NO'' during the initialization phase, then the instance is actually a yes-instance. That
is, during all the subsequent iterations j ≥ 1, the algorithm only constructs a valid transitive orientation, while the decision
variant of the problem can simply be answered at the end of the initialization phase.

Lemma 19. For every iteration j ≥ 1 of Algorithm 4, every call of Boolean-Forcing (in Line 10 of Algorithm 4) does not return ``NO''.

Proof. Boolean-Forcing can possibly return ``NO'' either in Lines 5-7 or in Line 22. First note that, for every call of Boolean

Forcing in Algorithm 4, there is a variable xab which is set to 1 (in Line 10 of Algorithm 4).
Assume that Boolean-Forcing returns ``NO'' in Lines 5-7. Let (xuv ∨ xpq) be the clause of φ′

2 which is considered in Line 5
of Boolean-Forcing. As all forcings during the execution of Boolean-Forcing are made by assuming that a specific variable
xab = 1, we have the following:

• xab
∗ ⇒φ′

2
xvu (as xuv = 0 in Line 5 of Boolean-Forcing)

• xab
∗ ⇒φ′

2
xqp (as xpq = 0 in Line 6 of Boolean-Forcing)

• xvu⇒φ′
2
xpq (due to the existence of the clause (xuv ∨ xpq) in φ′

2)

From the above implications we have that

xab
∗ ⇒φ′

2
xvu⇒φ′

2
xpq

∗ ⇒φ′
2

xba,

which is a contradiction by Lemma 18.
Assume that Boolean-Forcing returns ``NO'' in Line 22. Then, there exists a clause NAE(xuv , xv w , xwu) in φ(0)

3NAE such that,
during the execution of iteration j of Algorithm 4, we are forced to set each of the variables xuv , xv w , xwu to the same truth
value, say without loss of generality, xuv = xv w = xwu = 1. Furthermore assume without loss of generality that, among these
three variables, xuv is the first one that is set to 1 by Boolean-Forcing.

Let xuv be set to 1 at an earlier iteration of Boolean-Forcing than xv w and xwu . Then Boolean-Forcing adds (in Line 17)
to φ′

2 the clause (xw v ∨ xuw). In this case, when xv w (resp. xwu) is set to 1 at a subsequent iteration of Boolean-Forcing,
xuw (resp. xw v) is also set to 1 (in Lines 5-8 of Boolean-Forcing). This is a contradiction to our assumption that Boolean

Forcing sets xuv = xv w = xwu = 1.
Let xuv be set to 1 at the same iteration of Boolean-Forcing as one of the variables xv w or xwu ; say, without loss of

generality, with xv w . Then, as xuv = xv w = 1, Boolean-Forcing sets xwu = 0 (in Line 21). This is again a contradiction to
our assumption that Boolean-Forcing sets xuv = xv w = xwu = 1. �

We are now ready to combine all the above technical results to obtain the main result of this section in the next theorem,
regarding the correctness and the running time of Algorithm 4.

Theorem 20. Algorithm 4 correctly solves TTO in polynomial time.

Proof. First assume that Algorithm 4 returns ``NO''. Due to Lemma 19, this can only happen in Line 7 of Algorithm 4, which
means that Initial-Forcing has found a contradiction in φ(0)

3NAE ∧φ
(0)
2SAT. Thus, clearly φ(0)

3NAE ∧φ
(0)
2SAT is not satifiable, i.e. (G, λ)

is not transitively orientable.
Now assume that Algorithm 4 does not return ``NO''. Than, during its main phase, Algorithm 4 repeatedly calls Boolean

Forcing, and it repeatedly removes clauses from φ(0)
3NAE, until they are all removed. By Observation 15, whenever such

18

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

a clause is removed during the iteration j ≥ 1 of Algorithm 4, this clause is satified by all satisfying assignments of
φ

(j)
2SAT, and thus it remains satified by the truth assignment that is eventually computed by Algorithm 4. Let j0 ≥ 1 be the

iteration of Algorithm 4, after which all clauses of φ(0)
3NAE have been removed. Then φ(j0)

2SAT is satifiable by Lemma 18, and
the subsequent calls of Boolean-Forcing (in Line 10 of Algorithm 4) provide a satisfying assignment of φ(j0)

2SAT.

Let j1 ≥ j0 be the last iteration of Algorithm 4; note that φ(j1)
3NAE ∧ φ

(j1)
2SAT is empty. Then, in Line 13, the algorithm gives

the arbitrary truth value xi = 1 to every variable xi which did not yet get any truth value yet. This is a correct decision as all
these variables are not involved in any Boolean constraint of φ(j1)

3NAE ∧φ
(j1)
2SAT (which is empty). Finally, the algorithm orients in

Line 14 all edges of G according to the corresponding truth assignment. The returned orientation F of (G, λ) is temporally
transitive as every variable was assigned a truth value according to the Boolean constraints throughout the execution of the
algorithm.

Summarizing, the truth assignment produced by Algorithm 4 satifies φ(0)
3NAE ∧ φ

(0)
2SAT, and thus the algorithm returns a

valid temporally transitive orientation of the input temporal graph (G, λ). This completes the proof of correctness of Algo
rithm 4.

Lastly, we prove that Algorithm 4 runs in polynomial time. The �-implication classes of (G, λ) can be clearly com
puted by Algorithm 1 in polynomial time. Boolean-Forcing iteratively adds and removes clauses from the 2SAT formula
φ′

2, while it can only remove clauses from the 3NAE formula φ′
3. Whenever a clause is added to φ′

2, a clause of φ′
3 is re

moved. Therefore, as the initial 3NAE formula φ3 has at most polynomially-many clauses, we can add clauses to φ′
2 only

polynomially-many times. In all remaining steps, Boolean-Forcing just checks clauses of φ′
2 and φ′

3 and it forces certain
truth values to variables, and thus the total running time of Boolean-Forcing is polynomial. Furthermore, in Initial-Forcing

and Algorithm 4 (the main algorithm) the Boolean-Forcing subroutine is only invoked at most four times for every variable
in φ(0)

3NAE ∧ φ
(0)
2SAT. Hence, we have an overall polynomial running time. �

4. Temporal transitive completion

We now study the computational complexity of Temporal Transitive Completion (TTC). In the static case, the so-called
minimum comparability completion problem, i.e. adding the smallest number of edges to a static graph to turn it into a
comparability graph, is known to be NP-hard [26]. Note that minimum comparability completion on static graphs is a special
case of TTC and thus it follows that TTC is NP-hard too. Our other variants, however, do not generalize static comparability
completion in such a straightforward way. Note that for Strict TTC we have that the corresponding recognition problem
Strict TTO is NP-complete (Theorem 3), hence it follows directly that Strict TTC is NP-hard. For the remaining two variants
of our problem, we show in the following that they are also NP-hard, giving the result that all four variants of TTC are
NP-hard. Furthermore, we present a polynomial-time algorithm for all four problem variants for the case that all edges of
underlying graph are oriented, see Theorem 22. This allows directly to derive an FPT algorithm for the number of unoriented
edges as a parameter.

Theorem 21. All four variants of TTC are NP-hard, even when the input temporal graph is completely unoriented.

Proof. We give a reduction from the NP-hard Max-2-Sat problem [24].

Max-2-Sat

Input: A boolean formula φ in implicative normal form8 and an integer k.
Question: Is there an assignment of the variables which satifies at least k clauses in φ?

We only describe the reduction from Max-2-Sat to TTC. However, the same construction can be used to show NP
hardness of the other variants.

Let (φ,k) be an instance of Max-2-Sat with m clauses. We construct a temporal graph G as follows. For each variable x
of φ we add two vertices denoted vx and vx , connected by an edge with label 1. Furthermore, for each 1 ≤ i ≤ m −k + 1 we
add two vertices vi

x and vi
x connected by an edge with label 1. We then connect vi

x with vx and vi
x with vx using two edges

labeled 4. Thus vx,vx,vi
x,vi

x is a 4-cycle whose edges alternating between 1 and 4. Afterwards, for each clause (a ⇒ b) of φ
with a,b being literals, we add a new vertex wa,b . Then we connect wa,b to va by an edge labeled 2 and to vb by an edge
labeled 3. Consider Fig. 5 for an illustration. Observe that G can be computed in polynomial time.

We claim that (G = (G, λ),∅,m − k) is a yes-instance of TTC if and only if φ has a truth assignment satisfying k clauses.
For the proof, begin by observing that G does not contain any triangle. Thus an orientation of G is (weakly) (strict)

transitive if and only if it does not have any oriented temporal 2-path, i.e. a temporal path of two edges with both edges
being directed forward. We call a vertex v of G happy about some orientation if v is not the center vertex of an oriented
temporal 2-path. Thus an orientation of G is transitive if and only if all vertices are happy.

8 i.e. a conjunction of clauses of the form (a ⇒ b) where a,b are literals.

19

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

vx vx
1

44

1

vy

vy

1

4

4

1

vz

vz

1

4

4

1

wx,y
2

3

wx,z
2

3
wy,z

2

35

Fig. 5. Temporal graph constructed from the formula (x ⇒ y) ∧ (x ⇒ z) ∧ (y ⇒ z) for k = 1 with orientation corresponding to the assignment x = true,
y = false, z = true. Since this assignment does not satisfy the third clause, the dashed blue edge is required to make the graph temporally transitive.

(⇐): Let α be a truth assignment to the variables (and thus literals) of φ satisfying k clauses of φ. For each literal a
with α(a) = true, orient all edges such that they point away from va and vi

a , 1 ≤ i ≤ m − k + 1. For each literal a with
α(a) = false, orient all edges such that they point towards va and vi

a , 1 ≤ i ≤ m − k + 1. Note that this makes all vertices
va and vi

a happy. Now observe that a vertex wa,b is happy unless its edge with va is oriented towards wa,b and its edge
with vb is oriented towards vb . In other words, wa,b is happy if and only if α satifies the clause (a ⇒ b). Thus there are at
most m − k unhappy vertices. For each unhappy vertex wa,b , we add a new oriented edge from va to vb with label 5. Note
that this does not make va or vb unhappy as all adjacent edges are directed away from va and towards vb . The resulting
temporal graph is transitively oriented.

(⇒): Now let a transitive orientation F ′ of G′ = (G ′, λ′) be given, where G′ is obtained from G by adding at most m −k time
edges. Clearly we may also interpret F ′ as an orientation induced of G . Set α(x) = true if and only if the edge between vx
and vx is oriented towards vx . We claim that this assignment α satifies at least k clauses of φ.

First observe that for each variable x and 1 ≤ i ≤ m − k + 1, F ′ is a transitive orientation of the 4-cycle vx,vx,vi
x,vi

x if
and only if the edges are oriented alternatingly. Thus, for each variable, at least one of these k + 1 4-cycles is oriented
alternatingly. In particular, for every literal a with α(a) = true, there is an edge with label 4 that is oriented away from
va . Conversely, if α(b) = false, then there is an edge with label 1 oriented towards vb (this is simply the edge from vb).

This implies that every edge with label 2 or 3 oriented from some vertex wc,d (where either a = c or a = d) towards va
with α(a) = true requires E(G ′) \ E(G) to contain an edge from wc,d to some vi

a . Analogously every edge with label 2 or 3
oriented from va with α(a) = false to some wc,d requires E(G ′) \ E(G) to contain an edge from va to wc,d .

Now consider the alternative orientation F ′′ obtained from α as detailed in the converse orientation of the proof. For
each edge between va and wc,d where F ′ and F ′′ disagree, F ′′ might potentially require E(G ′) \ E(G) to contain the edge
vcvd (labeled 5, say), but in turn saves the need for some edge wc,dvi

a or vawc,d , respectively. Thus, overall, F ′′ requires at
most as many edge additions as F ′ , which are at most m −k. As we have already seen in the converse direction, F ′′ requires
exactly one edge to be added for every clause of φ which is not satified. Thus, α satifies at least k clauses of φ. �

We now show that TTC can be solved in polynomial time, if all edges are already oriented, as the next theorem states.
While we only discuss the algorithm for TTC the algorithm only needs marginal changes to work for all other variants.

Theorem 22. An instance (G, F ,k) of TTC where G = (G, λ) and G = (V , E), can be solved in O (m2) time if F is an orientation of E,
where m = |E|.

The actual proof of Theorem 22 is deferred to the end of this section. The key idea for the proof is based on the following
definition. Assume a temporal graph G and an orientation F of G to be given. Let G ′ = (V , F) be the underlying graph of
G with its edges directed according to F . We call a (directed) path P in G ′ tail-heavy if the time-label of its last edge is
largest among all edges of P , and we dfine t(P) to be the time-label of that last edge of P . For all u, v ∈ V , denote by
Tu,v the maximum value t(P) over all tail-heavy (u, v)-paths P of length at least 2 in G ′; if such a path does not exist then
Tu,v = ⊥. If the temporal graph G with orientation F can be completed to be transitive, then adding the time edges of the
set

20

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

a
b c

d2 1 3

Tb,d = 3

Ta,d = 3

Fig. 6. Example of a tail-heavy path.

X(G, F) := {
(uv, Tu,v)

∣∣ Tu,v �= ⊥}
,

which are not already present in G is an optimal way to do so. Consider Fig. 6 for an example.

Lemma 23. The set X(G, F) can be computed in O (m2) time, where G is a temporal graph with m time-edges and F an orientation of
G .

Proof. For each edge v w , we can take G ′ (dfined above), remove w and all arcs whose label is larger than λ(v, w), and
do a dept-first-search from v to find all vertices u which can reach v in the resulting graph. Each of these then has
Tu,w ≥ λ(v, w). By doing this for every edge v w , we obtain Tu,w for every vertex pair u, w . The overall running time is
clearly O (m2). �

Until the end of this section we are only considering the instance (G, F ,k) of TTC, where G = (G, λ), G = (V , E), and
F is an orientation of G . Hence, we can say a set X of oriented time-edges is a solution to I if X ′ := {{u, v} | (uv, t) ∈ X}
is disjoint from E , satifies |X | = |X ′| ≤ k, and F ′ := F ∪ {uv | (uv, t) ∈ X} is a transitive orientation of the temporal graph
G + X := ((V , E ∪ X ′), λ′), where λ′(e) := λ(e) if e ∈ E and λ′(u, v) := t if X contains (uv, t) or (vu, t).

The algorithm we use to show Theorem 22 will use X(G, F) to construct a solution (if there is any) of a given instance
(G, F ,k) of TTC where F is a orientation of E . To prove the correctness of this approach, we make use of the following.

Lemma 24. Let I = (G = (G, λ), F ,k) be an instance of TTC, where G = (V , E) and F is an orientation of E and X an solution for I .
Then, for any (vu, T v,u) ∈ X(G, F) there is a (vu, t) in G + X with t ≥ T v,u .

Proof. Let (v0 vℓ, T v0,vℓ
) ∈ X(G, F), and G ′ = (V , F). Hence, there is a tail-heavy (v0, vℓ)-path P in G ′ of length ℓ ≥ 2. If

ℓ = 2, then clearly G + X must contain the time edge (v1 vℓ, t) such that t ≥ T v1,vℓ
. Now let ℓ > 2 and V (P) := {vi | i ∈

{0,1, . . . , ℓ}} and E(P) = {vi−1 vi | i ∈ [ℓ]}. Since there is a tail-heavy (vℓ−2, vℓ)-path in G ′ of length 2, G + X must contain a
time-edge (vℓ−2 vℓ, t) with t ≥ T v0,vℓ

. Therefore, the (directed) underlying graph of G+ X contains a tail-heavy (v0, vℓ)-path
of length ℓ − 1. By induction, G + X must contain the time edge (v1 vℓ, t′) such that t′ ≥ t ≥ T v0,vℓ

. �
Form Lemma 24, it follows that we can use X(G, F) to identify no-instances in some cases.

Corollary 25. Let I = (G = (G, λ), F ,k) be an instance of TTC, where G = (V , E) and F is an orientation of E. Then, I is a no-instance,
if for some v, u ∈ V

1. there are time-edges (vu, t) ∈ X(G, F) and (uv, t′) ∈ X(G, F),
2. there is an edge uv ∈ F such that (vu, T v,u) ∈ X(G, F), or
3. there is an edge vu ∈ F such that (vu, T v,u) ∈ X(G, F) with λ(v, u) < T v,u .

We are now ready to prove Theorem 22.

Proof of Theorem 22. Let I = (G = (G, λ), F ,k) be an instance of TTC, where F is a orientation of E . First we compute
X(G, F) in polynomial time, see Lemma 23. Let Y = {(vu, t) ∈ X(G, F) | {v, u} �∈ E} and report that I is a no-instance if
|Y | > k or one of the conditions of Corollary 25 holds true. Otherwise report that I is a yes-instance. This gives an overall
running time of O (m2).

Clearly, if one of the conditions of Corollary 25 holds true, then I is a no-instance. Moreover, by Lemma 24 any solution
contains at least |Y | time edges. Thus, if |Y | > k, then I is a no-instance.

If we report that I is a yes-instance, then we claim that Y is a solution for I . Let F ′ ⊇ F be a orientation of G + Y .
Assume towards a contradiction that F ′ is not transitive. Then, there is a temporal path ((vu, t1), (uw, t2)) in G + Y such
that there is no time-edge (uw, t) in G + Y , with t ≥ t2. By definition of X(G, F), the directed graph G ′ = (V , F) contains
a tail-heavy (v, u)-path P1 with t1 = t(P1) and a tail-heavy (u, w)-path P2 with t2 = t(P2) ≥ t1. By concatenation of P1
and P2, we obtain that the G ′ contains a (v, w)-path P ′ of length at least two such that t2 = t(P ′). Thus, t2 ≤ T v,w and
(v w, T v,w) ∈ X(G)�-a contradiction. �

21

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

1,4 2,4

2,4

1,4 3,4

2,4

x1

x2 x3

1 1

2 2 2 3

Fig. 7. Temporal graph constructed from the formula NAE(x1, x2, x2)∧NAE(x1, x2, x3) and orientation corresponding to setting x1 = false, x2 = true, and
x3 = false. Each attachment vertex is at the clockwise end of its edge.

Using Theorem 22 we can now prove that TTC is fixed-parameter tractable (FPT) with respect to the number of unori
ented edges in the input temporal graph G .

Corollary 26. Let I = (G = (G, λ), F ,k) be an instance of TTC, where G = (V , E). Then I can be solved in O (2q · m2), where q =
|E| − |F | and m the number of time edges.

Proof. Note that there are 2q ways to orient the q unoriented edges. For each of these 2q orientations of these q edges,
we obtain a fully oriented temporal graph. Then we can solve TTC on each of these fully oriented graphs in O (m2) time by
Theorem 22. Summarizing, we can solve TTC on I in 2q · m2 rime. �
5. Deciding multilayer transitive orientation

In this section we prove that Multilayer Transitive Orientation (MTO) is NP-complete, even if every edge of the given
temporal graph has at most two labels. Recall that this problem asks for an orientation F of a temporal graph G = (G, λ)

(i.e. with exactly one orientation for each edge of G) such that, for every ``time-layer'' t ≥ 1, the (static) oriented graph
dfined by the edges having time-label t is transitively oriented in F . As we discussed in Section 2, this problem makes
more sense when every edge of G potentially has multiple time-labels, therefore we assume here that the time-labeling
function is λ : E → 2N .

Theorem 27. MTO is NP-complete, even on temporal graphs with at most two labels per edge.

Proof. We give a reduction from monotone Not-All-Equal-3Sat, which is known to be NP-hard [44]. So let φ =∧m
i=1 NAE(yi,1, yi,2, yi,3) be a monotone Not-All-Equal-3Sat instance and X := {x1, . . . , xn} := ⋃m

i=1{yi,1, yi,2, yi,3} be the
set of variables.

Start with an empty temporal graph G . For every clause NAE(yi,1, yi,2, yi,3), add to G a triangle on three new vertices
and label its edges ai,1,ai,2,ai,3. Give all these edges label n + 1. For each of these edges, select one of its endpoints to
be its attachment vertex in such a way that no two edges share an attachment vertex. Next, for each 1 ≤ i ≤ n, add a new
vertex vi . Let Ai := {ai, j | yi, j = xi}. Add the label i to every edge in Ai and connect its attachment vertex to vi with an edge
labeled i. See also Fig. 7.

We claim that G is a yes-instance of MTO if and only if φ is satifiable.

(⇐): Let α : X → {true,false} be an assignment satisfying ω. For every xi ∈ X , orient all edges adjacent to vi away from
vi if α(xi) = true and towards vi otherwise. Then, orient every edge ai, j towards its attachment vertex if α(yi, j) = true
and away from it otherwise.

Note that in the layers 1 through n every vertex either has all adjacent edges oriented towards it or away from it. Thus
these layers are clearly transitive. It remains to consider layer n + 1 which consists of a disjoint union of triangles. Each
such triangle ai,1,ai,2,ai,3 is oriented non-transitively (i.e. cyclically) if and only if α(yi,1) = α(yi,2) = α(yi,3), which never
happens if α satifies φ.

(⇒): Let ω be an orientation of the underlying edges of G such that every layer is transitive. Since they all share the same
label i, the edges adjacent to vi must be all oriented towards or all oriented away from vi . We set α(xi) = false in the
former and α(xi) = true in the latter case. This in turn forces each edge ai, j to be oriented towards its attachment vertex if
and only if α(ai, j) = true. Therefore, every clause NAE(yi,1, yi,2, yi,3) is satified, since the three edges ai,1,ai,2,ai,3 form
a triangle in layer n + 1 and can thus not be oriented cyclically (i.e. all towards or all away from their respective attachment
vertices). �

22

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

6. Conclusion

We introduced and studied four natural variants of temporal graph transitivity. Although these four variants look su
peficially similar, they turn out to have massive differences in their computational complexity. Two variants (Strong TTO

and Strong Strict TTO) are solvable by straightforward reductions to 2SAT. For TTO we provided a technically involved
polynomial-time algorithm which solves the problem by first reducing it to the satifiability of a mixed Boolean formula
(having both clauses with three and with two literals) and by then using a series of structural properties to devise a
polynomial-time algorithm. That is, we reduce TTO to the satifiability problem of a special subclass of mixed Boolean for
mulas which turns out to be efficiently solvable. We leave it open for future research whether a compact set of conditions
can be given which dfine this subclass of mixed Boolean formulas, as this might be of independent interest. The last variant
Strict TTO turns out to be NP-hard.

We further studied the ``completion''-problem corresponding to each of the four temporal transitivity variants, that is,
finding the minimum number of time edges that need to be added to a given temporal graph to make it transitive. We
show for all four completion problem variants that they are NP-hard. However if the edges of the temporal input graph are
already oriented, we obtain polynomial-time solvability which we can easily generalize to an FPT-algorithm for the number
of unoriented edges as a parameter. Here, we in particular leave the parameterized complexity with respect to the solution
size or other parameters open for future research. Lastly, we investigate a natural extension of transitivity to multilayer
graphs and show that deciding whether a given multilayer graph is transitive is NP-hard.

CRediT authorship contribution statement

George B. Mertzios: Conceptualization, Formal analysis, Investigation, Methodology, Writing -- original draft, Writing --
review & editing. Hendrik Molter: Conceptualization, Formal analysis, Investigation, Methodology, Writing -- original draft,
Writing -- review & editing. Malte Renken: Conceptualization, Formal analysis, Investigation, Methodology, Writing -- original
draft, Writing -- review & editing. Paul G. Spirakis: Conceptualization, Formal analysis, Investigation, Methodology, Writing --
original draft, Writing -- review & editing. Philipp Zschoche: Conceptualization, Formal analysis, Investigation, Methodology.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com
peting interests: George B. Mertzios reports financial support was provided by Engineering and Physical Sciences Research
Council (EPSRC grant EP/P020372/1). Hendrik Molter reports financial support was provided by German Research Founda
tion (DFG project MATE, NI 369/17). Hendrik Molter reports financial support was provided by Israel Science Foundation
(ISF grants 1456/18 and 1070/20). Hendrik Molter reports financial support was provided by European Research Council
(ERC grant 949707). Malte Renken reports financial support was provided by German Research Foundation (DFG project
MATE, NI 369/17). Paul G. Spirakis reports was provided by Engineering and Physical Sciences Research Council (EPSRC
grant EP/P02002X/1).

Data availability

No data was used for the research described in the article.

References

[1] E.C. Akrida, L. Gasieniec, G.B. Mertzios, P.G. Spirakis, Ephemeral networks with random availability of links: the case of fast networks, J. Parallel Distrib.
Comput. 87 (2016) 109--120.

[2] E.C. Akrida, L. Gasieniec, G.B. Mertzios, P.G. Spirakis, The complexity of optimal design of temporally connected graphs, Theory Comput. Syst. 61 (3)
(2017) 907--944.

[3] E.C. Akrida, G.B. Mertzios, S.E. Nikoletseas, C.L. Raptopoulos, P.G. Spirakis, V. Zamaraev, How fast can we reach a target vertex in stochastic temporal
graphs?, J. Comput. Syst. Sci. 114 (2020) 65--83.

[4] E.C. Akrida, G.B. Mertzios, P.G. Spirakis, V. Zamaraev, Temporal vertex cover with a sliding time window, J. Comput. Syst. Sci. 107 (2020) 108--123.
[5] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (11) (1983) 832--843.
[6] J. Alman, V.V. Williams, A rfined laser method and faster matrix multiplication, in: Proceedings of the 2021 ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2021, pp. 522--539.
[7] B. Aspvall, M.F. Plass, R.E. Tarjan, A linear-time algorithm for testing the truth of certain quantfied Boolean formulas, Inf. Process. Lett. 8 (3) (1979)

121--123.
[8] K. Axiotis, D. Fotakis, On the size and the approximability of minimum temporally connected subgraphs, in: Proceedings of the 43rd International

Colloquium on Automata, Languages, and Programming, (ICALP), 2016, 149.
[9] M. Bentert, A.-S. Himmel, H. Molter, M. Morik, R. Niedermeier, R. Saitenmacher, Listing all maximal k-plexes in temporal graphs, ACM J. Exp. Algorith

mics 24 (1) (2019) 13.
[10] M. Bentert, A.-S. Himmel, A. Nichterlein, R. Niedermeier, Efficient computation of optimal temporal walks under waiting-time constraints, Appl. Netw.

Sci. 5 (1) (2020) 73.
[11] R. Bredereck, C. Komusiewicz, S. Kratsch, H. Molter, R. Niedermeier, M. Sorge, Assessing the computational complexity of multilayer subgraph detection,

Netw. Sci. 7 (2) (2019) 215--241.

23

http://refhub.elsevier.com/S0022-0000(25)00012-1/bibD1B080984BAECF054E3C3C080640E570s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibD1B080984BAECF054E3C3C080640E570s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib729D6FC71426C7D403477E250FAE416As1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib729D6FC71426C7D403477E250FAE416As1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib0D28DB89BBB78D287D7D9B485584D240s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib0D28DB89BBB78D287D7D9B485584D240s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib54D5487B1B0AD4D1D8B5D5010BC031A9s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibA895681B9C69A6CF46D7361959781B86s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibAE6290868DDF54095533CA2AF1608D3Fs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibAE6290868DDF54095533CA2AF1608D3Fs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibD460BB92D0DAD1870413CB9B537B0022s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibD460BB92D0DAD1870413CB9B537B0022s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibF015D99A4F3BDFFE3EF6DF155C720735s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibF015D99A4F3BDFFE3EF6DF155C720735s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib209CC1E9D2694B31DDB85AED66031E47s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib209CC1E9D2694B31DDB85AED66031E47s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib05A6BB6BF94C9183F77D3EF1FFD724BFs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib05A6BB6BF94C9183F77D3EF1FFD724BFs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib3B864F6D7EFFC3EBB4A13BF3AA47B841s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib3B864F6D7EFFC3EBB4A13BF3AA47B841s1

G.B. Mertzios, H. Molter, M. Renken et al. Journal of Computer and System Sciences 150 (2025) 103630

[12] B.-M. Bui-Xuan, A. Ferreira, A. Jarry, Computing shortest, fastest, and foremost journeys in dynamic networks, Int. J. Found. Comput. Sci. 14 (02) (2003)
267--285.

[13] S. Buß, H. Molter, R. Niedermeier, M. Rymar, Algorithmic aspects of temporal betweenness, in: Proceedings of the 26th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), ACM, 2020, pp. 2084--2092.

[14] A. Casteigts, P. Flocchini, Deterministic Algorithms in Dynamic Networks: Formal Models and Metrics, Technical report, Defence R&D Canada, April
2013.

[15] A. Casteigts, P. Flocchini, Deterministic Algorithms in Dynamic Networks: Problems, Analysis, and Algorithmic Tools, Technical report, Defence R&D
Canada, April 2013.

[16] A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-varying graphs and dynamic networks, Int. J. Parallel Emerg. Distrib. Syst. 27 (5) (2012)
387--408.

[17] A. Casteigts, A.-S. Himmel, H. Molter, P. Zschoche, Finding temporal paths under waiting time constraints, Algorithmica 83 (9) (2021) 2754--2802.
[18] A. Casteigts, J.G. Peters, J. Schoeters, Temporal cliques admit sparse spanners, in: Proceedings of the 46th International Colloquium on Automata,

Languages, and Programming (ICALP), vol. 132, 2019, 134.
[19] J. Chen, H. Molter, M. Sorge, O. Suchý, Cluster editing in multi-layer and temporal graphs, in: Proceedings of the 29th International Symposium on

Algorithms and Computation (ISAAC), 2018, 24.
[20] J. Enright, K. Meeks, G. Mertzios, V. Zamaraev, Deleting edges to restrict the size of an epidemic in temporal networks, J. Comput. Syst. Sci. 119 (2021)

60--77.
[21] J. Enright, K. Meeks, F. Skerman, Assigning times to minimise reachability in temporal graphs, J. Comput. Syst. Sci. 115 (2021) 169--186.
[22] T. Erlebach, M. Hoffmann, F. Kammer, On temporal graph exploration, in: Proceedings of the 42nd International Colloquium on Automata, Languages,

and Programming (ICALP), 2015, pp. 444--455.
[23] T. Fluschnik, H. Molter, R. Niedermeier, M. Renken, P. Zschoche, Temporal graph classes: a view through temporal separators, Theor. Comput. Sci. 806

(2020) 197--218.
[24] M. Garey, D. Johnson, L. Stockmeyer, Some simplfied NP-complete graph problems, Theor. Comput. Sci. 1 (3) (1976) 237--267.
[25] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd edition, Elsevier, 2004.
[26] S.L. Hakimi, E.F. Schmeichel, N.E. Young, Orienting graphs to optimize reachability, Inf. Process. Lett. 63 (5) (1997) 229--235.
[27] A.-S. Himmel, H. Molter, R. Niedermeier, M. Sorge, Adapting the Bron-Kerbosch algorithm for enumerating maximal cliques in temporal graphs, Soc.

Netw. Anal. Min. 7 (1) (2017) 35.
[28] P. Holme, J. Saramäki, Temporal Network Theory, vol. 2, Springer, 2019.
[29] D. Kempe, J.M. Kleinberg, A. Kumar, Connectivity and inference problems for temporal networks, J. Comput. Syst. Sci. 64 (4) (2002) 820--842.
[30] H. Kim, R. Anderson, Temporal node centrality in complex networks, Phys. Rev. E 85 (2) (2012) 026107.
[31] R.M. McConnell, J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, in: Proceedings of the 5th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1994, pp. 536--545.
[32] R.M. McConnell, J.P. Spinrad, Linear-time transitive orientation, in: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 1997, pp. 19--25.
[33] R.M. McConnell, J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1--3) (1999) 189--241.
[34] D.B. McDonald, D. Shizuka, Comparative transitive and temporal orderliness in dominance networks, Behav. Ecol. 24 (2) (2013) 511--520.
[35] G.B. Mertzios, The recognition of simple-triangle graphs and of linear-interval orders is polynomial, SIAM J. Discrete Math. 29 (3) (2015) 1150--1185.
[36] G.B. Mertzios, O. Michail, P.G. Spirakis, Temporal network optimization subject to connectivity constraints, Algorithmica 81 (4) (2019) 1416--1449.
[37] G.B. Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, P. Zschoche, Computing maximum matchings in temporal graphs, J. Comput. Syst. Sci. 137 (2023)

1--19.
[38] G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis, P. Zschoche, The complexity of transitively orienting temporal graphs, in: Proceedings of the 46th

International Symposium on Mathematical Foundations of Computer Science (MFCS), in: LIPIcs, vol. 202, Schloss Dagstuhl - Leibniz-Zentrum für Infor
matik, 2021, 75.

[39] G.B. Mertzios, H. Molter, V. Zamaraev, Sliding window temporal graph coloring, J. Comput. Syst. Sci. 120 (2021) 97--115.
[40] O. Michail, P.G. Spirakis, Elements of the theory of dynamic networks, Commun. ACM 61 (2) (Jan. 2018) 72.
[41] R. Moskovitch, Y. Shahar, Medical temporal-knowledge discovery via temporal abstraction, in: Proceedings of the AMIA Annual Symposium, 2009,

p. 452.
[42] R. Moskovitch, Y. Shahar, Fast time intervals mining using the transitivity of temporal relations, Knowl. Inf. Syst. 42 (1) (2015) 21--48.
[43] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, V. Latora, Graph metrics for temporal networks, in: Temporal Networks, Springer, 2013.
[44] T.J. Schaefer, The complexity of satifiability problems, in: Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC), 1978,

pp. 216--226.
[45] J.P. Spinrad, On comparability and permutation graphs, SIAM J. Comput. 14 (3) (1985) 658--670.
[46] J.P. Spinrad, Efficient Graph Representations, Fields Institute Monographs, vol. 19, American Mathematical Society, 2003.
[47] X. Tannier, P. Muller, Evaluating temporal graphs built from texts via transitive reduction, J. Artif. Intell. Res. 40 (2011) 375--413.
[48] C.A. Tovey, A simplfied NP-complete satifiability problem, Discrete Appl. Math. 8 (1) (1984) 85--89.
[49] T. Viard, M. Latapy, C. Magnien, Computing maximal cliques in link streams, Theor. Comput. Sci. 609 (2016) 245--252.
[50] H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, H. Wu, Efficient algorithms for temporal path computation, IEEE Trans. Knowl. Data Eng. 28 (11) (2016)

2927--2942.
[51] P. Zschoche, T. Fluschnik, H. Molter, R. Niedermeier, The complexity of finding separators in temporal graphs, J. Comput. Syst. Sci. 107 (2020) 72--92.

24

http://refhub.elsevier.com/S0022-0000(25)00012-1/bib7AA342C765A8146B5707B788CD4AB03Fs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib7AA342C765A8146B5707B788CD4AB03Fs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibE3480B1A05D02B9B0A65B64DC1C1CA24s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibE3480B1A05D02B9B0A65B64DC1C1CA24s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibDEB51C3250D439868B3B17F5E2121418s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibDEB51C3250D439868B3B17F5E2121418s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib2BC372B5BCD083C304A240E06D4D3B90s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib2BC372B5BCD083C304A240E06D4D3B90s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibE186DF33AD9721275C197226F1C160ECs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibE186DF33AD9721275C197226F1C160ECs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibA393AFC7E42A23D6858F4FC9E3A5ECC8s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib160B140CEE680149CF0C341397697B11s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib160B140CEE680149CF0C341397697B11s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib782F6672025CD9965871C66095E5DE38s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib782F6672025CD9965871C66095E5DE38s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib879337A4355F135710956D300FBEEB83s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib879337A4355F135710956D300FBEEB83s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibFF1CEDBE264027890A4112DAA396FF21s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibA585B9F28CE5A5AE2673812A97A05099s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibA585B9F28CE5A5AE2673812A97A05099s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibDAF6A5229CFDCE0ED7244B7BBEE9A5ABs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibDAF6A5229CFDCE0ED7244B7BBEE9A5ABs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibE8023EAD0C16DF5560D7BC83DBF04FE0s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib35CEE2A784A5D4E1C39F9FB59478E760s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib01657A5E53F0A194856D7F09282744C7s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibCD668298D6E3267FBA8425FFA4E6B202s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibCD668298D6E3267FBA8425FFA4E6B202s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib973DA43D14149424254B8B42D4A3FB0Fs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib44C29429D50FFFA145CFC2DD0746EDA0s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibFA315A351D68A6AF92848F44680BE2C4s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibD2C299766D6C32E6886CD7D86F96F7B6s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibD2C299766D6C32E6886CD7D86F96F7B6s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib690767576E9B184F3D3981E9A1B2CAA9s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib690767576E9B184F3D3981E9A1B2CAA9s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib608A944DC7AC138B031C7BBDC01C161Cs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibAAA6F15D3EA448B605C20902D033AA3Fs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibE39C8085FAAA7A7FF013D562A6328CE4s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib139BD139A455B376367EFDEA91EB83B5s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib64ACBFF9B1C260362B5036AC0BDA9E10s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib64ACBFF9B1C260362B5036AC0BDA9E10s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib7726658CEB42A437BBEBF14782823485s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib7726658CEB42A437BBEBF14782823485s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib7726658CEB42A437BBEBF14782823485s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibECFE44A2B5F4DC6FC8CD390AC35585A7s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib9AA0A59686134CCAB3BE2CE622F94AC3s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibA71339DAA48EFD374C3CD37338C8F2EEs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibA71339DAA48EFD374C3CD37338C8F2EEs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib0A3E2221E5ADBC30EDC6BED41DBFA8C9s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib3C9A8288FEB6507E078C287439A8B2DAs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib2D306DF8AE6E42A804478EC9E279E00Es1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib2D306DF8AE6E42A804478EC9E279E00Es1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibBAC751E4609CA7D98E67065FB245B5CEs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibF0ECF33AF23B7BE52097DCC777EE4E93s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib7CFD484FB7409C4537DDA24F79BBFC9Cs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibAE516CBEEBF871842E6537F2288885DDs1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib493E145E1E0876ACB4A57EF84B04C40Es1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibDA5B3EA3F33708E793879AD52A296716s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bibDA5B3EA3F33708E793879AD52A296716s1
http://refhub.elsevier.com/S0022-0000(25)00012-1/bib25E1B6B516860122E99F279B432145DDs1

	The complexity of transitively orienting temporal graphs
	1 Introduction
	2 Preliminaries and notation
	3 The recognition of temporally transitively orientable graphs
	3.1 Strict TTO is NP-complete
	3.2 A polynomial-time algorithm for TTO

	4 Temporal transitive completion
	5 Deciding multilayer transitive orientation
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

