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Abstract

Accurate prediction of gas concentrations at longwall mining faces is critical for safety production, yet current methods still face
challenges in interpretability and reliability. This study aims to enhance prediction accuracy and model interpretability by employ-
ing advanced feature selection techniques. We integrate Shapley Additive Explanations (SHAP) into feature selection process to
identify and quantify the contributions of multivariate features to gas concentration variations. The effectiveness of SHAP-based
feature selection is systematically evaluated alongside Principal Component Analysis, Dynamic Time Warping, and unfiltered fea-
tures, across four baseline predictive models chosen based on their structural characteristics: Long Short-Term Memory, Gated
Recurrent Unit, Transformer and Graph Neural Network. Using public dataset from the Upper Silesian coal basin in Poland, we
demonstrate that models trained with SHAP-selected features outperform baseline models, particularly in terms of accuracy and
reliability for long-term predictions. By identifying the most relevant features and clarifying their interactions, this study enhances
predictive performance and provides deeper insights into the dynamics governing gas concentrations, emphasising the value of
advanced, interpretable feature selection techniques in developing robust models for industrial applications in mining.

Keywords: Explainable Artificial Intelligence (XAI), Multivariate Time Series Prediction, Shapley Additive Explanations
(SHAP), Longwall Mining Safety, Gas Concentration Modelling

1. Introduction1

Predicting gas concentrations at longwall mining faces is es-2

sential for ensuring mining safety Fan et al. (2023). In the semi-3

enclosed tunnel environment, underground monitoring data of-4

ten display intricate coupling patterns Diaz et al. (2022) and5

spatiotemporal correlations Palka et al. (2023). While the in-6

teractions between various factors influencing gas concentra-7

tion are apparent, accurately quantifying and representing these8

interactions remains a challenge Barnewold and Lottermoser9

(2020). To ensure precision in prediction, it is critical to iden-10

tify the most relevant and influential features from the extensive11

array of underground sensors Liu et al. (2023), as these key fea-12

tures directly impact the prediction targets, thereby providing a13

robust foundation for reliable prediction in complex mining en-14

vironments Liang et al. (2023).15

However, determining the most influential factors is chal-16

lenging Dougherty et al. (2023), particularly due to the linear17

and nonlinear coupling relationships between monitoring data18

Zhao et al. (2023), which makes it more complex to identify the19

features that have the greatest impact on gas concentration pre-20

dictions Wen et al. (2023). For instance, temperature variations21

influence gas behaviour by altering solubility, while changes22

in airflow affect the diffusion rates of gases Nie et al. (2024).23
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These coupled factors intricately influence gas dynamics in un-24

derground environments, exacerbated by the dynamic nature of25

mining operations, underscores the need for advanced meth-26

ods to improve gas concentration predictions and ensure safety27

Chaturvedi (2023). Refining feature selection in longwall min-28

ing operations necessitates the adoption of advanced method-29

ologies to accurately quantify and prioritise the most influential30

factors affecting gas concentration, thereby enhancing predic-31

tion accuracy amidst complex coupling challenges.32

Feature selection is crucial for refining gas concentration33

predictive models, particularly in mining environments where34

complex, non-linear relationships between variables are preva-35

lent Zhang and Wang (2023). This process involves identify-36

ing the most relevant variables from extensive datasets to en-37

hance model accuracy and interpretability Hassija et al. (2024);38

Angelov et al. (2021). Techniques such as principal compo-39

nent analysis (PCA) Maćkiewicz and Ratajczak (1993), dy-40

namic time warping (DTW) Müller (2007), and Pearson cor-41

relation are commonly employed to reduce dimensionality and42

highlight influential features Masini et al. (2023). However,43

these methods often focus on statistical correlations, poten-44

tially overlooking nuanced interactions and leading to a loss of45

critical information Zamanzadeh Darban et al. (2024). To ad-46

dress these shortcomings, advanced methods such as explain-47

able artificial intelligence (XAI) offer a promising alternative48

Ahmed et al. (2022). XAI techniques are capable of uncover-49

ing and elucidating the complex dependencies influencing gas50

concentration variations with greater clarity. Notably, XAI has51
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been successfully applied in environmental domains, including52

gully erosion Gholami et al. (2023), land subsidence Gholami53

et al. (2024b), wildfire susceptibility prediction Abdollahi and54

Pradhan (2023), and dust emission assessments Gholami et al.55

(2024a). Integrating these interpretative methods into gas con-56

centration prediction frameworks could significantly enhance57

transparency, reliability, and practical applicability within min-58

ing contexts.59

The advent of explainable artificial intelligence Minh et al.60

(2022) further enhances the feature selection process. Explain-61

able AI techniques, such as SHapley Additive exPlanations62

(SHAP) Lundberg and Lee (2017); Parsa et al. (2020) and Lo-63

cal Interpretable Model-agnostic Explanations (LIME) Ribeiro64

et al. (2016), provide insights into the contribution of each fea-65

ture to the model’s predictions. These methods not only im-66

prove the transparency of deep learning models but also facili-67

tate a deeper understanding of the underlying data interactions.68

By leveraging explainable AI, researchers and engineers can69

ensure that the selected features align with domain knowledge70

and operational realities, thereby enhancing the reliability and71

trustworthiness of the predictive models.72

To advance this research, a comprehensive feature selec-73

tion study is proposed, focused on predicting gas concen-74

trations specifically at the upper corner of the coal mining75

face. The study employ four distinct feature selection method-76

ologies—Principal Component Analysis (PCA) Maćkiewicz77

and Ratajczak (1993), Dynamic Time Warping (DTW) Müller78

(2007), SHapley Additive exPlanations (SHAP) Lundberg and79

Lee (2017), and an unfiltered entire dataset to identify the most80

pertinent sensor data influencing gas concentration. The identi-81

fied features will be evaluated across four baseline multivariate82

time series prediction models, selected based on their structural83

architectures to assess the effectiveness of the feature selection84

method under different model frameworks: Long Short-Term85

Memory (LSTM) Hochreiter and Schmidhuber (1997), Gated86

Recurrent Unit (GRU) Cho et al. (2014), Transformer Vaswani87

et al. (2017), and Graph Neural Network (GNN) Scarselli et al.88

(2008). Each model will be run three times with varying sliding89

window sizes and different random seeds to minimise experi-90

mental error and enhance result reliability.91

This approach enables a rigorous comparison of the effective-92

ness of each feature selection method in enhancing the accuracy93

of gas concentration predictions. Furthermore, it provides in-94

sights into the underlying patterns within longwall mining face95

data, yielding interpretable results that can inform safety mea-96

sures.97

The principal contributions of this paper are as follows:98

• To the best of our knowledge, this is the first study to ap-99

ply the SHAP local explanation method to investigate the100

coupled relationships of gas concentration features at the101

longwall mining face.102

• Using real-world data from longwall mining face, we com-103

prehensively evaluate methods for selecting gas concentra-104

tion characteristics at the mining face and rigorously vali-105

date their effectiveness.106

• Our study offers insights into the dynamics of gas concen-107

tration at longwall mining face, contributing to the devel-108

opment of robust gas management strategies and enhanced109

safety measures in mining operations.110

2. Related Work111

Effective feature selection enhances model performance and112

interpretability by reducing dimensionality and focusing on the113

most impactful variables Arrieta et al. (2020). Those echniques114

include Principal Component Analysis (PCA) Maćkiewicz and115

Ratajczak (1993), Mutual Information, and Recursive Fea-116

ture Elimination (RFE) Yoon et al. (2005). Advanced meth-117

ods such as SHapley Additive exPlanations (SHAP) Aldrees118

et al. (2024); Song et al. (2023) and Local Interpretable Model-119

agnostic Explanations (LIME) are also employed. These tech-120

niques facilitate understanding of complex interactions among121

variables and improve predictive accuracy in various applica-122

tions.123

Feature selection methods, while widely applied across vari-124

ous industrial sectors Chushig-Muzo et al. (2024) Hooker et al.125

(2021), remain relatively traditional within the mining industry126

and have not yet reached the same level of diversity or advance-127

ment. Liu et al. Liu et al. (2020) introduced a hybrid feature se-128

lection model for coal and gas outbursts, utilising random for-129

est to identify the most relevant features. Zhou et al. Zhou130

et al. (2022) used four basic feature selection methods to iden-131

tify optimal features and built predictive models with classical132

machine learning algorithms. Miao et al. Miao et al. (2024)133

developed a coal mine rock burst risk prediction model using134

standard machine learning and feature selection algorithms to135

identify key indicators. Chen et al. Chen and Dong (2020) im-136

plemented a sequential approach for water inflow prediction in137

coal mines, combining conventional feature selection and opti-138

misation techniques. Huang et al. De et al. (2021) employed139

a multi-objective feature selection model to remove redundant140

and irrelevant features, enhancing fault diagnosis performance.141

While these methods have improved safety and operational142

efficiency, the mining industry still lags in adopting sophisti-143

cated, explainable AI (XAI) techniques. Integrating advanced144

XAI methods for feature selection is essential to enhance model145

interpretability and trust.146

Table 1: Characteristics and Measurement Units of Sensors
Sensor Characteristics

MM Methane(Gas concentration)(%CH4)
AN Anemometer(m/s)
TP Temperature(°C)
RH Humidity(%RH)
BA Barometer(hPa)
CM High concentration methane meter(%CH4)

AM/DM Mining equipment(A)
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Figure 1: Structure of the Longwall Mining Face and Naïve Pearson Correlation Analysis of Gas Concentration

Figure 2: Time Series and Statistical Histogram of Data from Longwall Mining Face
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3. Background147

In this section, we present some background about longwall148

mining face, highlight the challenges through an initial dataset149

analysis, and define the research problem under investigation.150

3.1. Dataset151

The publicly available dataset used in this study was ob-152

tained from the Upper Silesian coal basin in Poland Ślęzak et al.153

(2018). Real-time data were collected from the underground154

environment of the longwall mining face, encompasses key en-155

vironmental parameters such as Methane (Gas concentration),156

Anemometer, Temperature, Humidity, Barometer etc., as de-157

tailed in Table. 1, resulting in a high-frequency multidimen-158

sional time series. The dataset includes temporal sensory read-159

ings from two distinct sensor arrays, captured from March 2160

to June 16, 2014. This repository comprises 9, 199, 930 data in-161

stances, each detailed with a timestamp and measurements from162

28 sensors. Fig. 1 shows the mining face layout from which the163

dataset was derived, where fresh airflow is introduced from the164

intake airway, sweeping across the mining face and expelling165

exhaust through the return airway. This trend is visualised in166

Fig. 2, where observing the gas concentration variations over167

a 24-hour period (1440 minutes), it is a clear temporal depen-168

dency, and the data exhibit an apparent co-movement pattern169

across the time series. Similar temporal trends are also evi-170

dent in the wind speed and temperature variables. However, al-171

though the gas concentration migrates along the airflow within172

the working face, a straightforward application of correlation173

fails to capture this relationship.174

Figure 3: Pearson Correlation Heatmap of All Sensor Data in the Longwall
Mining Face

Sensor point MM264 measures the gas concentration at the175

upper corner of the mining face, located at the intersection of176

the return airway and the roof. This region is a critical accumu-177

lation zone where methane from the goaf and emissions gen-178

erated during mining operations converge due to ventilation-179

induced airflow, resulting in elevated localised concentrations.180

Given its significance in monitoring gas dynamics, this point is181

selected as the multivariate prediction target, while data from182

other sensors are classified as either endogenous or exogenous183

inputs. Endogenous data include sensor readings directly asso-184

ciated with MM264, such as those from MM263 and MM256,185

which are located downstream along the gas flow path. Dur-186

ing this process, gas concentration gradually propagates from187

upstream positions, such as MM261, to downstream sensors188

like MM256, creating a chain of dynamic gas concentration189

distribution. In contrast, exogenous data utilise additional in-190

formation from peripheral areas of the mining face, including191

the physical properties of the coal seam (e.g., gas content, gas192

permeability) and environmental factors (e.g., face temperature,193

humidity, and atmospheric pressure). Exogenous data provide194

critical external context for understanding the spatio-temporal195

variations in gas concentration patterns.196

Figure 4: Pearson Correlation of MM264 with Various Features Across Differ-
ent Window Sizes in the Longwall Mining Face

Direct correlation analysis reveals minimal linear associa-197

tion between nearby sensors (e.g., MM263 and MM264), as198

shown in Fig. 3. The generally low correlation values across199

the dataset underscore the complexity and nonlinearity of fac-200

tors influencing gas concentration within the longwall mining201

face. Nonetheless, these findings offer valuable prior insights.202

For instance, an analysis of average correlation across differ-203

ent time windows (as shown in Fig. 4) illustrates the influence204

of window size on sensor correlation. As the window size in-205

creases, all sensor pairs display greater trend consistency at206

larger window sizes even when the overall correlation remains207

low. This observation suggests that by selecting an appropriate208

time window, it is possible to more effectively capture underly-209
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ing patterns in gas concentration fluctuations and identify latent210

associations between sensors.211

For all sensor configuration, as detailed in Table. 2, includes212

the minimum, maximum, mean, standard deviation, median,213

and data length for each sensor, providing a comprehensive214

overview of their distributions and variability. A variety of sen-215

sor types work together to deliver holistic environmental moni-216

toring, capturing factors that impact the longwall environment.217

This multi-sensor data enables continuous assessment and ad-218

justment, supporting accurate upper corner monitoring and pro-219

moting safe production.220

Table 2: Statistical Characteristics of Sensor Data
Sensor Min Max Mean Std. Dev. Median Lengths

MM252 -0.1 30 0.038 0.121 0 9199930
MM261 0 30 0.049 0.125 0 9199930
MM262 -0.2 30 0.051 0.136 0 9199930
MM263 -2 30 0.248 0.197 0.2 9199930
MM264 -2 40 0.327 0.206 0.3 9199930
MM256 0 30 0.43 0.204 0.4 9199930
MM211 -2 30 0.7 0.151 0.7 9199930

AN311 -266 5 3.484 0.611 3.6 9199930
AN422 0 2.4 1.655 0.128 1.6 9199930
AN423 -2.4 5.3 1.498 0.33 1.4 9199930
TP1721 0 27.9 25.477 0.932 25.4 9199930
TP1711 0 31.2 28.894 0.757 28.8 9199930
RH1722 0 71 49.283 6.143 48 9199930
RH1712 0 86 68.687 7.268 69 9199930
BA1723 0 1131.7 1106.161 7.625 1105.9 9199930
BA1713 0 1130.9 1105.597 7.617 1105.3 9199930

CM861 -0.2 67.7 32.92 21.395 43.7 9199930
CR863 -8 258 75.081 55.161 78 9199930
P_864 0 435.4 86.967 29.158 94.2 9199930
TC862 0 40.5 29.898 9.898 32.9 9199930
WM868 0 6.39 1.803 1.32 2.2 9199930

AMP1_IR -255 988 5.854 24.413 0 9199930
AMP2_IR -255 1009 5.741 24.25 0 9199930
DMP3_IR -255 216 4.201 17.342 0 9199930
DMP4_IR -255 198 3.97 17.313 0 9199930
AMP5_IR -255 121 0.414 10.966 0 9199930
V 0 100 1.347 5.997 0 9199930

3.2. Problem Definition221

The objective of multivariate gas concentration prediction is222

to estimate future trends in gas concentration across the long-223

wall mining face. This is achieved using multidimensional224

time-series data collected from multiple sensors, encompass-225

ing various influencing factors. Let X = {xt}
T
t=1 represent the226

multivariate time series data collected by a network of sensors,227

where each xt ∈ Rd is a d-dimensional observation vector at228

time t. Specifically, xt = [x(1)
t , x

(2)
t , . . . , x

(d)
t ]⊤, with x(i)

t indi-229

cating the reading from the i-th sensor at time t, such as gas230

concentration, wind speed, or temperature. The target variable,231

denoted as Y = {yt}
T
t=1, represents the observed gas concentra-232

tion at each time t.233

Based on the above definitions, the multivariate gas concen-234

tration prediction problem can be formulated as a time-series235

regression task, aiming to learn a non-linear mapping function236

f (·) such that:237

ŷt+τ = f (xt, xt−1, . . . , xt−n+1; θ) (1)

where θ represents the model parameters, n is the input time238

series window length, τ is the prediction horizon, and ŷt+τ is the239

model’s predicted gas concentration at future time t + τ.240

To capture the dynamic characteristics of gas concentration,241

we employ a fixed-length time window of size n, utilising ob-242

servations from the past n time steps to forecast the gas concen-243

tration at future time t + τ. Specifically, the input data matrix244

Xt ∈ Rn×d is defined as:245

Xt = [xt−n+1, xt−n+2, . . . , xt]⊤ (2)

The model’s objective is to minimise the loss function L be-246

tween the predicted values ŷt+τ and the true values yt+τ, typi-247

cally using the mean squared error (MSE):248

L(θ) =
1
N

N∑
i=1

(
yti+τ − ŷti+τ

)2 (3)

where N is the number of training samples.249

Based on existing studies (e.g., Zhou et al. (2021); Vaswani250

et al. (2017)), the time window length n is commonly set to 24,251

48, 96 and 168 time steps to capture periodic fluctuations and252

trends in the data. In this study, the time window length n is253

set to [24, 48, 96, 168], and the prediction horizon τ is set to254

12. The prediction can thus be expressed as f (·), enabling it to255

utilise multivariate observations from the past n time steps to256

accurately forecast the gas concentration τ time steps ahead:257

ŷt+τ = f (Xt; θ) (4)

By minimising the loss functionL(θ), we optimise the model258

parameters θ to improve prediction accuracy.259

4. Methodology260

This section provides a detailed description of the framework261

for multivariate gas concentration prediction in the longwall262

mining face using feature selection techniques. Followed by a263

discussion of the various feature selection methods employed,264

and the baseline models used for multivariate time series pre-265

diction.266

4.1. Multivariate Time Series Feature Selection Methods267

Given the extensive dataset obtained from the Upper Sile-268

sian coal basin, comprising over nine million data instances269

collected from 28 sensors, identifying the most relevant fea-270

tures is paramount for effective model training and prediction.271

We plan to employ four different methods for feature selection272

and compare their efficacy: SHAP (SHapley Additive exPla-273

nations), PCA (Principal Component Analysis) with 95% con-274

fidence, DTW (Dynamic Time Warping), and a baseline ap-275

proach which is no feature selection. SHAP offer a robust and276

interpretable way to determine the importance of each feature,277

providing clear insights into their contributions to the predic-278

tion accuracy. PCA with 95% confidence effectively reduces279

dimensionality by capturing the majority of the data’s variance,280

simplifying the dataset while retaining the most significant in-281

formation. DTW measures temporal similarity between time282
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Figure 5: Framework for Multivariate Gas Concentration Prediction in Longwall Mining Face Using Feature Selection Techniques

series, making it ideal for aligning features with similar tem-283

poral patterns to the target variable, even if they are shifted in284

time. And by using all features serves as a control to evaluate285

the raw data’s predictive power and the overall impact of feature286

selection methods.287

This study compares and evaluates the effectiveness of288

SHAP, PCA, DTW, and a baseline approach in selecting the289

most relevant features, as illustrated in Fig. 5, covering data290

collection, feature selection, and multivariate time series pre-291

diction. This comparison seeks to identify the optimal method292

for enhancing the accuracy and interpretability of gas concen-293

tration predictions in longwall mining operations.294

4.1.1. SHAP295

SHAP (Shapley Additive exPlanations) Lundberg and Lee296

(2017), which harnesses the Shapley values from cooperative297

game theory Shapley et al. (1953), provides a solid theoreti-298

cal foundation for assigning contributions to individual features299

within predictive models. The explanation model can be sim-300

plified as Eq.5.301

g(x′) = ϕ0 +

M∑
i=1

ϕix′i (5)

where x′ ∈ {0, 1}M , ϕi ∈ R and M symbolises the quantity302

of simplified input features, as also proposed in LIME Ribeiro303

et al. (2016). Portraying an explanatory model g as a linear304

function wherein binary variables signify the inclusion or ex-305

clusion of input features from the original model f . In LIME,306

the contribution of each feature ϕi is represented through a lin-307

ear summation of the model’s predictions, presuming the in-308

dependence of features. Contrastingly, SHAP, which is an in-309

stantiation of an additive feature attribution method, employs310

Shapley values to apportion the contribution of each feature to311

the model’s prediction, which can be defined as in Eq.6312

ϕi =
∑

S⊆F\{i}

|S |!(|F| − |S | − 1)!
|F|!

[
fS∪{i}(xS∪{i}) − fS (xS )

]
(6)

where F represents the ensemble of features, S denotes a subset313

of F excluding feature i, and ϕi indicates the predictive outcome314

of model f employing solely the feature set S . The function315

fS∪{i}(xS∪{i}) − fS (xS ) gives the prediction with feature i, while316

fS (xS ) gives the prediction without it. Each feature’s influence317

is deduced by assessing the model’s prediction in both scenar-318

ios: the inclusion and exclusion of the feature, averaged over319

all conceivable subsets. Consequently, SHAP transcends the320

basic linear model, emerging as an intricate explanatory frame-321

work that accounts for the interdependencies and interactions322

amongst features.323

Compared with LIME, SHAP’s approach is founded on theo-324

retical underpinnings of cooperative game theory, ensuring eq-325

uitable and consistent distribution of attributions amongst fea-326

tures. Distinct from LIME’s penchant for localised approxima-327

tions—prone to yielding interpretations that are accurate within328

a narrow context, but may falter on a universal scale—SHAP329

considers the full spectrum of the dataset in evaluating feature330

significance. And unlike PI (Permutation Importance) Breiman331

(2001), SHAP calculates the imputation of predictions rather332
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than model performance, which makes it easy to interpret. The333

aggregate of SHAP values for all features precisely equates to334

the deviation of the model’s prediction from a predetermined335

baseline. This principle resonates with the logical presump-336

tion that the sum of contributions from all features should cor-337

respond with the variation in output. Such a quality is espe-338

cially beneficial for elucidating a clear and coherent delineation339

of feature contributions, bolstering the intelligibility and trans-340

parency of the model’s interpretative process. This is the main341

reason why the SHAP method was chosen for this research.342

4.1.2. PCA (Principal Component Analysis) with 95% Confi-343

dence344

Principal component analysis (PCA) Maćkiewicz and Rata-345

jczak (1993), a well-established dimensionality reduction tech-346

nique, addresses the challenge of high-dimensional data by347

transforming the original features into a new set of mutually or-348

thogonal principal components through linear transformation.349

These components are ranked by the variance they explain, with350

the first few typically capturing the majority of the data’s infor-351

mational content. In this study, we selected the principal com-352

ponents that explain 95% of the variance to reduce data dimen-353

sionality. Although PCA is an unsupervised feature selection354

method that does not rely on the target variable and can simplify355

the data by reducing the number of features, it is employed here356

primarily for comparison with other methods. While PCA can357

lower computational complexity and retain essential data infor-358

mation, its utility in this context is as a benchmark against more359

targeted approaches.360

Figure 6: Euclidean Distance and Dynamic Time Warping.

4.1.3. DTW (Dynamic Time Warping)361

Dynamic Time Warping (DTW) Müller (2007) offers a so-362

lution to this limitation by allowing for adjustments along the363

time axis, aligning two sequences to effectively identify similar364

patterns, especially when there are temporal offsets or delays.365

For assessing the similarity between two temporal sequences,366

regardless of their alignment or length differences. In the coal367

mining context, accurately tracking gas movement from one368

sensor to another is complicated by wind-induced timing vari-369

ances. Fig. 6 illustrates a comparison between DTW and Eu-370

clidean distances.371

DTW achieves this by flexibly aligning the sequences, ad-372

dressing challenges associated with temporal offsets and scal-373

ing. For two sensors, S ensor1 = {x1, x2, ..., xn} and S ensor2 =374

{y1, y2, ..., ym}, the DTW distance, denoted as D[n][m].375

Figure 7: LSTM Units

4.2. Multivariate Time Series Prediction Models376

In this study we selected four time series prediction models,377

which are Long short-term memory (LSTM) as baseline model378

Hochreiter and Schmidhuber (1997) by introducing a gating379

mechanism, it successfully addresses the common issues of gra-380

dient vanishing and exploding in long time series data, making381

it widely used in time series prediction. LSTM units control382

the flow of information through input gates, forget gates, and383

output gates as shown in Fig. 7, which allowing the LSTM to384

retain dependencies over long time spans. This gating mecha-385

nism enables LSTMs to selectively retain or forget information,386

adapting to different time series patterns.387

Figure 8: GRU Units

Gated recurrent units (GRU) Cho et al. (2014) as shown in388

Fig. 8 is a simplified variant of LSTM, designed to reduce389
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model complexity while maintaining the ability to handle long-390

term dependencies. GRU merges the input gate and forget gate391

into a single update gate, simplifying the computation process.392

Additionally, GRU uses reset gates and update gates to control393

the updating and resetting of information flow, balancing com-394

putational efficiency and performance.395

Figure 9: Attention Mechanism

The Transformer mechanism as shown in Fig. 9, by intro-396

ducing a self-attention mechanism, significantly enhances the397

capability of time series prediction, particularly in capturing398

long-term dependencies. Compared to traditional RNN mod-399

els, Transformers Vaswani et al. (2017) are better at captur-400

ing global dependencies in long time series and offer higher401

parallel efficiency during training. This makes Transformers402

especially suitable for applications that require handling high-403

dimensional, multivariate time series data, such as comprehen-404

sive environmental data analysis in coal mine safety monitor-405

ing.406

Figure 10: Graph Neural Networks Prediction

Despite the commendable performance of models such as407

LSTM, GRU and Transformers in handling time-series data,408

commonly applied in industrial settings such as real-time gas409

concentration monitoring in longwall mining faces Liu and410

Meidani (2024), these approaches inherently struggle with cap-411

turing the non-Euclidean spatial dependencies underlying com-412

plex gas diffusion patterns. As a result, interpreting interdepen-413

dencies among various monitoring points remains challenging,414

limiting the overall accuracy of spatiotemporal predictions.415

In contrast, Graph Neural Networks (GNNs) Scarselli et al.416

(2008) explicitly model spatial relationships by representing417

monitoring points as graph nodes and their interactions as edges418

Cheng et al. (2022); Xu et al. (2023). As shown in Fig. 10,419

variables such as gas concentration, temperature, and airflow420

velocity within the historical interval [t − S , t] form the input421

nodes, with spatial or physical connections defined as edges.422

This structure leverages both spatial and temporal dimensions,423

facilitating forecasts from t + 1 to t + h that more accurately424

represent diffusion pathways and delayed propagation effects425

across multiple monitoring locations.426

4.3. Evaluation Criterion427

We use mean absolute error (MAE), mean squared error428

(MSE), root mean squared error (RMSE), and mean absolute429

percentage error (MAPE) as performance metrics to evaluate430

the models, defined in Eq. 7, Eq. 8, Eq. 9, and Eq. 10 respec-431

tively.432

MAE =
1
N

N∑
i=1

|yi − ŷi| (7)

MS E =
1
N

N∑
i=1

(yi − ŷi)2 (8)

RMS E =

√√√
1
N

N∑
i=1

(yi − ŷi)2 (9)

MAPE =
1
N

N∑
i=1

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ × 100% (10)

5. Experiments and Results433

5.1. Feature Selection Results434

The final results of the feature selection methods as shown in435

Fig. 11 including Principal Component Analysis (PCA), SHAP,436

and Dynamic Time Warping (DTW)—distinguished by differ-437

ent colors. The figure illustrates the layout of sensors in a coal438

mining face and the application of the feature selection meth-439

ods to each sensor, excluding the pipeline extraction of gas440

P864. The primary target is the MM264 sensor at the upper441

corner, highlighted with a purple arrow to indicate it as the tar-442

gets for feature selection. Sensors marked with blue borders443

represent features selected using the SHAP method; red bor-444

ders indicate those selected using DTW; and yellow borders445

denote features selected using PCA95. Some sensors, such446

as MM256, MM263, and MM211, are consistently selected by447

multiple methods, highlighting their significance in the feature448

selection process. The baseline approach utilizes all 28 sensors449

for model training and prediction. In contrast, PCA, used as450

an unsupervised method, selected fifteen features. The super-451

vised SHAP method identified the nine most relevant features,452

8



Figure 11: Comparison of Features Selected for Gas Concentration Prediction.

and DTW also selected nine features for comparison. The dia-453

gram also shows the wind direction and the layout of the mine454

passages.455

Figure 12: SHAP Summary Plot of Feature Importance and Distribution

A summary plot of SHAP values illustrates the importance of456

each feature in the gas concentration prediction model and the457

direction of their impact, as shown in Fig. 12. Where the ver-458

tical axis lists features that significantly affect prediction per-459

formance, including MM263, BA1723, and MM211. Positive460

or negative SHAP values indicate whether each feature has a461

positive or negative influence on the model output, while the462

color reflects the magnitude of the feature values. This repre-463

sentation reveals the importance of key features, facilitating the464

identification and analysis of the main driving factors behind465

gas concentration changes in longwall mining environments,466

thereby providing a reference for feature selection and model467

optimization.468

Figure 13: SHAP Values for Feature Impact Analysis on Model Output

To demonstrate how the impact of each feature on the model469

output varies across different instances, a SHAP value heatmap470

is utilized in Fig. 13. The horizontal axis represents different in-471

stances, while the vertical axis lists a set of key features. Colors472

ranging from blue (negative impact) to red (positive impact) de-473

pict the dynamic contribution of each feature to the prediction474

output. The model output trend at the top provides context for475

the feature impacts, making it easier to observe the relationship476

9



between feature variations and output changes. This indicates477

that the influence of key features dynamically changes under478

different operating conditions, revealing complex relationships479

within the predictive model and aiding in understanding the ac-480

tual role of features in gas concentration prediction.481

Figure 14: Mean Absolute SHAP Value Ranking of Key Features across Dif-
ferent Window Sizes

Furthermore, the ranking of average absolute SHAP values482

of key features under different time windows quantifies the in-483

fluence of each feature on gas concentration prediction. As in484

Fig. 14, the horizontal axis represents the average SHAP value485

of the features, where larger values indicate a more important486

impact on the model output. Features MM211 and MM263 ex-487

hibit the highest average SHAP values, indicating they play a488

major role in the prediction. Additionally, features like BA1723489

and MM211 have a high impact under different time windows,490

reflecting the dynamic influence of time window selection on491

feature importance.492

In Fig. 15, an analysis of the average SHAP values of fea-493

tures MM211 and MM263 under different time windows fur-494

ther evaluates the impact of the time window on feature impor-495

tance. The distribution of average SHAP values for the MM211496

feature at different window sizes (24, 48, 96, and 168) shows497

that its influence on the prediction is significantly higher at a498

window size of 48 compared to other settings. Similarly, the499

average SHAP value distribution for the MM263 feature indi-500

cates that its influence is most prominent at a window size of501

24, gradually diminishing as the window size increases.502

5.2. Experimental Details503

In this study, we evaluated four deep learning architectures504

for multivariate gas concentration prediction: Long Short-Term505

Memory (LSTM) networks, Gated Recurrent Units (GRU),506

Transformers, and Graph Neural Networks (GNN), for a more507

detailed architecture see Table. 3. The dataset was partitioned508

with an 80:20 ratio, reserving 80% for training and 20% for509

testing. Each model was trained and tested on identical datasets510

with input sequence lengths of [24, 48, 96, 168] time steps and511

a prediction horizon of 12 time steps.512

Figure 15: Mean SHAP Value Analysis of Feature Importance Across Different
Time Windows for MM211 and MM263

Experimental was conducted on AMD EPYC 7542 32-Core513

Processor with NVIDIA GeForce RTX 3090 GPUs, running514

on Ubuntu 22.04.1 LTS Jellyfish. The software setup included515

Python 3.7 and PyTorch with CUDA 11.2.516

All models were trained using consistent hyperparameters517

and training configurations to ensure a fair comparison. Com-518

mon settings included Adam optimizer with an initial learning519

rate of 1 × 10−4, which decayed by a factor of 0.5 after each520

epoch to facilitate convergence Zhou et al. (2021). Training521

was conducted for up to 100 epochs with early stopping based522

on validation loss to prevent overfitting. A batch size of 64 was523

used across all experiments and a teacher forcing ratio of 0.5524

was applied during training.525

5.3. Gas Concentration Prediction Performance526

We evaluated multiple models across various sliding time527

windows, employing sequence lengths of 24, 48, 96, and528

168. This approach captures temporal dependencies at multi-529

ple scales. The dataset was split into an 80%:20% ratio for530

training and testing, respectively, and we compared four base-531

line models—Long Short-Term Memory (LSTM), Gated Re-532

current Unit (GRU), Transformer, and Graph Neural Network533

(GNN)—alongside their feature selection-enhanced counter-534

parts: SHAP, PCA95, and DTW-improved versions. The re-535

sults are presented in Tables 4 and 5. We report MSE, MAE,536

RMSE, and MAPE to provide a comprehensive assessment of537

predictive accuracy and error characteristics. MSE and RMSE538

are more sensitive to larger errors, MAE captures the average539

absolute error, and MAPE reflects the relative percentage error540

with respect to actual values.541

Among the evaluated models, the SHAP GNN consistently542

demonstrates low prediction errors across all sequence lengths.543

For example, with a sequence length of 24, the SHAP GNN544

attains an MSE of 0.0406 and MAE of 0.1318, coupled with545
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Table 3: Summary of Model Hyperparameters

Method Hyperparameters Value

LSTM

Hidden Dimension 512
Number of Layers 3 layers
Activation Function Tanh and Sigmoid
Sequence Length [24, 48, 96, 168]
Batch Size 64
Optimizer Adam; Initial learning rate of 1e−4, decaying two times smaller

every epoch
Dropout Rate 0.05
Number of Runs 3 times with random seed
Epochs 100
Early Stopping Yes

GRU

Hidden Dimension 512
Number of Layers 3 layers
Activation Function Tanh and Sigmoid
Sequence Length [24, 48, 96, 168]
Batch Size 64
Optimizer Adam; Initial learning rate of 1e−4, decaying two times smaller

every epoch
Dropout Rate 0.05
Number of Runs 3 times with random seed
Epochs 100
Early Stopping Yes

Transformer

Hidden Dimension 512
Number of Layers 4 Encoder/Decoder layers
Activation Function ReLU
Sequence Length [24, 48, 96, 168]
Batch Size 64
Optimizer Adam; Initial learning rate of 1e−4, decaying two times smaller

every epoch
Dropout Rate 0.05
Number of Runs 3 times with random seed
Epochs 100
Other Parameters Attention Heads = 8
Early Stopping Yes

GNN

Hidden Dimension 512
Number of Layers Determined by Block Size = 3
Activation Function ReLU
Sequence Length [24, 48, 96, 168]
Batch Size 64
Optimizer Adam; Initial learning rate of 1e−4, decaying two times smaller

every epoch
Dropout Rate 0.05
Number of Runs 3 times with random seed
Epochs 100
Early Stopping Yes
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Table 4: Baseline and Feature Selection Enhancements for Multivariate Long-Sequence Time-Series Prediction Results (MSE and MAE)

Methods
24 48 96 168

MSE MAE MSE MAE MSE MAE MSE MAE

LSTM Hochreiter and Schmidhuber (1997) 0.0825 0.1544 0.1292 0.1896 0.0940 0.1697 0.1023 0.1729

GRU Cho et al. (2014) 0.0821 0.0945 0.1048 0.1843 0.0893 0.1571 0.0869 0.1462

Transformer Vaswani et al. (2017) 0.0774 0.1245 0.0863 0.1118 0.0815 0.1161 0.0872 0.1158

GNN Scarselli et al. (2008) 0.0429 0.1404 0.0428 0.1403 0.0427 0.1398 0.0443 0.1392

SHAP LSTM 0.0720 0.1124 0.0721 0.1085 0.0737 0.1067 0.0671 0.1057

SHAP GRU 0.0746 0.1024 0.0750 0.1006 0.0773 0.1053 0.0745 0.1009

SHAP Transformer 0.0751 0.1003 0.0701 0.1000 0.0884 0.1112 0.0826 0.1048

SHAP GNN 0.0406 0.1318 0.0418 0.1332 0.0402 0.1262 0.0410 0.1301

PCA95 LSTM 0.0924 0.1507 0.1024 0.1804 0.0960 0.1574 0.1023 0.1692

PCA95 GRU 0.0912 0.1497 0.1020 0.1737 0.1001 0.1666 0.0976 0.1596

PCA95 Transformer 0.0803 0.1208 0.0869 0.1210 0.0870 0.1223 0.0868 0.1138

PCA95 GNN 0.04285 0.1402 0.0428 0.1403 0.0470 0.1459 0.0426 0.1392

DTW LSTM 0.0774 0.1113 0.0788 0.1178 0.0772 0.1143 0.0802 0.1148

DTW GRU 0.0832 0.1134 0.0818 0.1084 0.0796 0.1070 0.0828 0.1061

DTW Transformer 0.0917 0.1170 0.0894 0.1137 0.0865 0.1008 0.0776 0.1013

DTW GNN 0.0428 0.1393 0.0430 0.1405 0.0430 0.1398 0.0427 0.1403

an RMSE of 0.2015 and MAPE of 0.4834. These values indi-546

cate that the SHAP GNN not only maintains high accuracy but547

also effectively handles instances where larger prediction errors548

might occur. Its stability is evident even at a sequence length of549

168, where MSE remains at 0.0410 and MAE at 0.1301, sug-550

gesting that the model adapts well to longer input sequences551

without significant performance deterioration.552

Comparatively, the original GNN model also shows good553

performance but with slightly higher error metrics than the554

SHAP GNN. For example, with a sequence length of 96, the555

original GNN has an MSE of 0.0427, whereas the SHAP556

GNN’s MSE is 0.0402. This difference may be attributed to the557

effectiveness of the SHAP feature selection method in extract-558

ing important features, thereby reducing the MSE and RMSE,559

which enhances predictive accuracy, especially for larger errors.560

Baseline models such as LSTM and GRU exhibit relatively high561

error metrics without feature selection. For instance, the origi-562

nal LSTM with a sequence length of 48 has an MSE of 0.1292,563

MAE of 0.1896, RMSE of 0.3595, and MAPE of 0.6346, indi-564

cating larger average prediction errors and less accuracy in pre-565

dicting instances with larger errors. Incorporating SHAP fea-566

ture selection reduces the error metrics of the LSTM model; at567

the same sequence length, the SHAP LSTM reduces the MSE568

to 0.0721, MAE to 0.1085, RMSE to 0.2685, and MAPE to569

0.4925, demonstrating that the feature selection method effec-570

tively reduces the average absolute prediction error and relative571

error.572

The original GNN model also yields robust results, though573

its error metrics are slightly higher than those of the SHAP574

GNN. For instance, at a sequence length of 96, the original575

GNN has an MSE of 0.0427, whereas the SHAP GNN reduces576

it to 0.0402. This improvement highlights the effectiveness of577

SHAP-based feature selection, which appears to preserve and578

emphasise critical features more effectively than methods like579

PCA95. In contrast, baseline models such as LSTM and GRU580

without feature selection generally report higher error metrics.581

For example, an LSTM at a sequence length of 48 exhibits an582

MSE of 0.1292 and MAE of 0.1896, values that are notably re-583

duced when SHAP feature selection is applied (MSE = 0.0721,584

MAE = 0.1085). The incorporation of SHAP thus aids these585

models in better identifying and focusing on key input features,586

subsequently lowering both absolute and relative prediction er-587

rors.588

The effect of feature selection methods varies by model.589

While SHAP consistently lowers the errors across different590

model architectures—most notably with GNN—PCA95 some-591

times increases error metrics, likely due to the loss of critical592

feature information through dimensionality reduction. For ex-593

ample, the PCA95 LSTM at a sequence length of 24 records594

an MSE of 0.0924, exceeding the original LSTM’s MSE of595

0.0825. Similarly, the Transformer model performs well at596

shorter sequence lengths but does not show a clear advan-597

tage at longer intervals, even after applying SHAP. For exam-598

ple, though the SHAP Transformer improves upon the origi-599

nal Transformer at a sequence length of 48 (MSE from 0.0863600

down to 0.0701), its performance does not continue to improve601
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Table 5: Baseline and Feature Selection Enhancements for Multivariate Long-Sequence Time-Series Prediction Results (RMSE and MAPE)

Methods
24 48 96 168

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

LSTM Hochreiter and Schmidhuber (1997) 0.2873 0.6054 0.3595 0.6346 0.3067 0.5620 0.3199 0.6374

GRU Cho et al. (2014) 0.2713 0.6031 0.3238 0.8112 0.2988 0.7405 0.2948 0.6822

Transformer Vaswani et al. (2017) 0.2783 0.5243 0.2939 0.5018 0.2855 0.5209 0.2954 0.5525

GNN Scarselli et al. (2008) 0.2070 0.5032 0.2069 0.4963 0.2066 0.4831 0.2105 0.5122

SHAP LSTM 0.2683 0.4979 0.2685 0.4925 0.2716 0.4945 0.2591 0.4949

SHAP GRU 0.2732 0.4961 0.2739 0.5033 0.2781 0.5045 0.2729 0.4918

SHAP Transformer 0.2740 0.4956 0.2649 0.4890 0.2973 0.5295 0.2874 0.5019

SHAP GNN 0.2015 0.4834 0.2045 0.4719 0.2004 0.4632 0.2024 0.4873

PCA95 LSTM 0.3040 0.5709 0.3200 0.6174 0.3099 0.5402 0.3198 0.5889

PCA95 GRU 0.3019 0.7403 0.3195 0.8383 0.3164 0.8430 0.3124 0.6867

PCA95 Transformer 0.2834 0.4899 0.2948 0.5417 0.2949 0.5064 0.2946 0.5068

PCA95 GNN 0.2090 0.5178 0.2070 0.5026 0.2165 0.5068 0.2064 0.5126

DTW LSTM 0.2783 0.4931 0.2808 0.4971 0.2779 0.4944 0.2832 0.5152

DTW GRU 0.2885 0.5077 0.2860 0.5001 0.2821 0.4898 0.2878 0.4883

DTW Transformer 0.3029 0.5037 0.2991 0.5291 0.2941 0.5094 0.2786 0.4933

DTW GNN 0.2069 0.4989 0.2074 0.5015 0.2073 0.4921 0.2067 0.4986

at longer sequence lengths, indicating that the Transformer’s602

capacity for modelling extended input sequences may not fully603

align with these feature selection strategies.604

In summary, the SHAP GNN model demonstrates superior605

overall performance, consistently delivering low MSE, MAE,606

RMSE, and MAPE values across diverse sequence lengths.607

This finding underscores the potential of SHAP to highlight608

critical variables more effectively than PCA or DTW. Although609

other models also benefit from SHAP-based feature selection610

to varying degrees, the gains are most pronounced for the611

GNN, suggesting that integrating topological structures with ju-612

diciously selected features is especially beneficial for accurate613

and stable gas concentration predictions.614

5.4. Final Predictions615

The final predictions are displayed in Fig. 16, based on the re-616

sults summarised in Table. 4 and Table. 5. In particular, Fig. 16617

(a)-(d) present the predicted time-series curves of gas concen-618

tration accros four different models. Fig. 16 (e)-(h) illustrate619

scatter plots of prediction accuracy, with the 45-degree diag-620

onal line representing ideal agreement between predicted and621

target values; the closer the points are to this line, the higher622

the model’s prediction accuracy. Fig. 16 (i)-(l) further provide623

a magnified view of specific regions from the second layer of624

scatter plots, highlighting the effects of different feature selec-625

tion methods on local prediction accuracy in gas concentration626

prediction.627

The performance of different models—including LSTM,628

GRU, Transformer, and GNN—exhibits notable variations in629

gas concentration prediction. As illustrated in Fig. 16. It can be630

observed that LSTM and GRU exhibit larger prediction errors631

in certain intervals, while the Transformer and GNN models632

(particularly the SHAP-based variants) produce predictions that633

are closer to the target values, as shown in Fig. 16 (c) and (d).634

In handling outliers, the SHAP-based Transformer and GNN635

models (in blue) outperform models using PCA and DTW.636

In Fig. 16 (e)–(h), the comparison between the models’ pre-637

dicted values and the actual values is illustrated through scatter638

plots, where GNN model (Fig. 16 (h)) is generally denser and639

closer to the 45-degree line, especially with the assistance of the640

SHAP feature selection method, which further enhances predic-641

tion accuracy. Moreover, in magnified local regions Fig. 16 (i)-642

(l), the impact of SHAP feature selection on enhancing model643

accuracy becomes more pronounced, rendering the model more644

sensitive in selecting critical features. The effects of different645

feature selection methods on fine-grained predictions are fur-646

ther demonstrated. Notably, the prediction results using the647

SHAP feature selection method (marked with blue points) are648

denser and closer to the diagonal line, indicating the efficacy of649

SHAP in refining feature selection. This leads to higher pre-650

diction accuracy in local regions and reduces the deviation of651

outlier points. This outcome is particularly evident in the GNN652

model (Fig. 16 (l)); in regions where all four feature selection653

methods perform well, the SHAP method predicts even more654

accurately, causing the blue scatter points to almost adhere to655
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Figure 16: Performance comparison of feature selection methods across different prediction models.

the diagonal line, demonstrating strong predictive consistency.656

The experimental results show that SHAP-based feature se-657

lection outperforms traditional methods like PCA and DTW in658

multivariate time series prediction. SHAP more effectively cap-659

tures complex patterns, improves accuracy, and enhances model660

stability by reducing residuals and managing outliers.661

Fig. 17 illustrates the computational time per epoch (in662

seconds) for various predictive models—LSTM, GRU, Trans-663

former, and GNN—and their enhanced versions using SHAP,664

PCA95, and DTW feature selection methods. Models are eval-665

uated across prediction horizons of 24, 48, and 168 time steps,666

represented by red, green, and blue bars, respectively. The top667

graph compares the original feature set with SHAP-selected668

features, showing that SHAP-enhanced models, particularly the669

Transformer and GNN, generally reduce computational time670

per epoch. The bottom graph contrasts PCA95 and DTW fea-671

ture selection methods, indicating that PCA95-enhanced mod-672

els exhibit consistent computational times across different hori-673

zons, while DTW-selected features may increase computational674

time in GRU and Transformer models due to added complexity.675

6. Conclusion676

This study underscores the crucial role of advanced feature677

selection in predicting gas concentrations at longwall mining678

faces. By applying and comparing four feature selection tech-679

niques—SHAP, PCA, DTW, and an unfiltered baseline across680

multiple prediction models, SHAP emerged as the most ef-681

fective method for enhancing both model accuracy and inter-682

Figure 17: Time Consumption
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pretability. The SHAP-based approach delivered more pre-683

cise predictions while offering critical insights into the in-684

terdependencies among key variables, thereby deepening the685

understanding of gas concentration dynamics. These results686

highlight the importance of sophisticated feature selection in687

developing robust models, especially within complex, high-688

dimensional datasets typical of industrial environments. How-689

ever, the study’s generalisability is limited, as the dataset may690

not fully reflect the variability across diverse mining envi-691

ronments, and the SHAP-based interpretability may not suf-692

ficiently explain anomalies in model outputs, which are criti-693

cal for early warning. Our future work will focus on validat-694

ing these methods across diverse datasets and developing ad-695

vanced interpretability techniques to better capture and explain696

outliers. Aims to support more robust early-warning systems,697

refine feature selection processes, and strengthen model relia-698

bility in practical applications.699
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