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Abstract The increasing availability of remotely sensed data has provided an enormous quantity of
information for studying the geomorphology of exposed surfaces of alluvial plains. In many cases, the key for
reconstructing their formation lies in the recognition of optical traces related to abandoned palaeochannels and
their morphometric characteristics. Abundant braided palaeohydrographic traces are documented in alluvial
plains of northern Italy, where large sectors of the present surface correspond to landforms related to
fluvioglacial systems supplied by Alpine glaciers during the Last Glacial Maximum (LGM). Nevertheless, the
complexity of multichannel patterns, the overlapping field division systems and urbanization, hinder the efforts
to manually map these traces. In this work, we used high‐resolution aerial photos of the proximal sector of the
Friulian Plain (NE Italy) to train an Attention‐UNet deep learning algorithm to segment palaeohydrographic
traces. The trained model was used to automatically recognize braided palaeochannels over 232 km2. The
resulting map represents a significant step for investigating the long‐term alluvial dynamics. Moreover, we
assessed the robustness of our method by deploying the model in three other areas in northern Italy with
comparable characteristics, as well as in Montenegro, near Podgorica. In each case, the braided pattern was
successfully mapped by the algorithm. This work highlights the breakthrough potential of deep learning
methods to rapidly detect complex geomorphological traces in cultivated plains, taking into consideration
advantages, challenges and limitations.

Plain Language Summary Revealing how the landscape of partly urbanized alluvial plains has
changed in the last ten thousand years can be achieved through the identification of traces of ancient river
channels which are visible in satellite images and aerial photos. For example, a great quantity of these traces is
present in the plains in northern Italy, where the surface is largely made of braided ancient channels related to
the Last Glacial Maximum (28,000–19,000 years BP). However, manually mapping these channels is very
challenging due to the complexity of the braided pattern, the overlapping of dense field divisions and the
presence of urban centers. In this work, we trained an Artificial Intelligence to automatically map the relict river
channels over a sector of the alluvial plain of over 200 km2. The model also successfully mapped braided ancient
channels in four other sites in northern Italy and Montenegro, suggesting that this model could be used in more
alluvial plains in Italy and Europe. The positive results are one of the first implementations of artificial
intelligence in the field of landscape evolution over long time intervals and will allow scientists to obtain
detailed maps of complex geomorphological ancient features.

1. Introduction
In the past 10 years, the rapid rise of deep learning algorithms such as Convolutional Neural Networks (CNNs)
has dramatically changed remote sensing studies. Commonly deployed for object recognition (LeCun
et al., 2015), and medical science images (Litjens et al., 2017), deep learning algorithms have also been sub-
sequentially adapted to land cover classification (Kussul et al., 2017), urban scenes segmentation (Cordts
et al., 2016), crop studies (Jha et al., 2019), sedimentary geology (Zhang, S. et al., 2020), landslides detection and
monitoring (Huang et al., 2020), and many more applications (e.g., Camps‐Valls et al., 2021; Ma et al., 2019).
CNNs have yielded unprecedented results in river science (Carbonneau & Bizzi, 2024; Kabir et al., 2020)
enabling classification, mapping, and quantification of fluvial landforms (e.g., Carbonneau, Belletti, et al., 2020;
Carbonneau, Dugdale, et al., 2020).

CNNs are a type of deep learning supervised model which works by performing convolutions on the image and
backpropagating the loss with respect to the training data in order to optimize weights held in the convolution
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kernels (Camps‐Valls et al., 2021). In remote sensing applications, one of the common tasks of CNNs is to
segment and identify selected features and classes of objects (Ma et al., 2019). Semantic segmentation refers to
the task of assigning each pixel of the input image to a class (Chen et al., 2018; Tuia et al., 2021). Models
implemented in the field of remote sensing are usually made of an encoder–decoder structure (Long et al., 2014)
such as UNets (Ronneberger et al., 2015). This architecture consists of a series of convolutional layers extracting
feature maps with increasing depth and decreasing spatial extent (the encoder), followed by a symmetrical part of
deconvolutional layers that up‐samples feature maps to a tensor with the same size as the input tensor. The
encoder permits feature maps in deeper layers to receive spatial information from increasingly large areas, whilst
the decoder is connected to the corresponding feature maps in the encoder through skip connection, which
consists of stacking them before the deconvolutional layer. In this work, we trained a type of UNet referred to as
Attention‐UNet (Oktay et al., 2018), which introduces attention gates (AG) to skip connection in the decoder. AG
takes feature maps from the decoder and the corresponding feature maps from the encoder as inputs, which are
summed element‐wise so that aligned weights will become larger, the result is then passed through an activation
layer collapsing its dimension and a sigmoid layer rescaling the vector between 0 and 1. The weights are then
multiplied to the feature map coming from the encoder before it is stacked to the corresponding map in the
decoder and passed through the deconvolutional layer (Oktay et al., 2018). This process leads to larger weights
being multiplied to relevant parts of the image, so that during training the model will be encouraged to focus on
these areas (Figure 1). Attention‐UNets were originally proposed for the segmentation of medical images, but
have been successfully implemented in geosciences from landslide detection (e.g., Nava et al., 2022) to palae-
ochannel identification in seismic images (e.g., Zhong et al., 2024).

In most of the large alluvial plains and alluvial fans, the key for reconstructing the past landscape evolution lies in
the recognition of abandoned channel belts (e.g., In Berendsen & Stouthamer, 2001; Kiss et al., 2014; Oya, 1995)
are often visible through high resolution remotely sensed data (e.g., Waller et al., 2018). Currently, the surface of
alluvial plains is often affected by anthropogenic activities that strongly reworked or sealed the original topog-
raphy, due to plowing and leveling operations related to agriculture, as well as urban expansion. These distur-
bances have been going on for millennia in most parts of the continents or more recently in other regions (e.g., In
Brown, 1997; In Gibling, 2021; Prümers et al., 2022). In general, besides eroding the original landforms of the
alluvial plains, the historical and modern agricultural practices led to exposure of the traces of palaeohydrographic

Figure 1. Simplified architecture of the Attention‐UNet used in this work. (a) Input RGB image tile with size of 256 × 256 m; (b) output binary segmented tile with size
of 256 × 256 m. In blue, the encoder part and in green, the decoder part of the algorithm. Skip connection indicates which feature maps from the encoder and decoder are
taken as input of AG and then concatenate before deconvolution (ConvTranspose). AG represents the attention gates.
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features, that in many environments would be otherwise covered by forest and practically invisible through
remote sensing.

This work focuses on the identification of gravelly braided palaeohydrography, a river morphology characterized
by multiple intersecting channels separated by exposed fluvial bars. In all the cases identified in this study, the
petrographic composition of the gravels is strongly dominated by carbonate rocks. These palaeohydrographic
systems cover a large sector of the alluvial plains, and are characterized by alternating abandoned channels and
fluvial bar deposits that mainly form as fluvioglacial outwashes in colder climates and have at least about 20 ka.
Thus, the surface has been exposed to atmospheric and biological processes for at least 20 ka. This has led to the
formation of well‐developed soils, characterized by the accumulation of new‐formation clays with a typical
reddish color due to the abundance of residual oxides. The soil profile overlays the original topography of
alternating fluvial bars and channels, and ancient and modern plow activities have removed part of it, exposing the
top portion of the carbonate gravelly bars, whilst ticker reddish argillic horizons have been preserved in corre-
spondence of the channels, which are slightly depressed and allowed a thicker soil formation and accumulation
(Figure 3). As a consequence, the modest difference in topography between channels and bars is accompanied by
a clear contrast in the spectral signature revealed by RGB imagery. In particular, the signature of the clay
overlaying the channel is darker, whilst the carbonate gravels exposed over the fluvial bars are lighter. In this
work, we took advantage of this stark chromatic and tone difference to distinguish the multiple intersecting
channels of the braided palaeohydrographic system. Hence, for the aim of this study, the words palaeochannel and
palaeohydrographic trace refer to the darker clays overlaying the abandoned channels, whilst the lighter spectral
signature of the exposed bars is considered as the background.

Mapping these palaeohydrographic tracks is generally of paramount importance for supporting territorial plan-
ning and land management, because of the specific geotechnical, hydrogeological and environmental properties
(e.g., lithology, permeability and depositional geometries) connected to the different portions forming the alluvial
landforms and related deposits (e.g., In Bridge, 2003; Oya, 1995).

It is worth noting that the large majority of the geomorphological mapping through remotely sensed images
considers only the distal portion of the plains, where the relict hydrographic traces are single‐channel features and
they display a sinuous or meandering planform (e.g., Cassiani et al., 2020; Mahammad & Islam, 2021). A very
restricted number of studies carried out detailed investigations on sectors with braided palaeochannels and several
of them considered rather limited zones, mainly in the recent proglacial sandar of southern Iceland (e.g., Waller
et al., 2018). On the contrary, a lot of attention has been devoted to active braided and wandering rivers, because
of the feedback in understanding the fluvial processes, the possibility to check in the field the simulations obtained
by numerical models and to perform automatic or semi‐automatic recognition of fluvial landforms (e.g., Car-
bonneau & Bizzi, 2024; Ziliani & Surian, 2012).

Despite their visibility in remotely sensed data, manually mapping relict braided traces is generally very chal-
lenging. Their widespread distribution, the overlapping shapes, together with the presence of intersecting roads,
urban centers and different croplands, make manual mapping a time‐consuming and often frustrating effort for
researchers. Consequently, geomorphologists may abandon the idea of mapping these traces altogether or limit
this activity to small areas.

Our work aims to pioneer the implementation of an Attention‐UNet architecture for the fast mapping of palae-
ohydrographic traces in alluvial plains, with special focus on braided patterns. This study also seeks to address
challenges such as: the inconsistent appearance of traces due to diverse croplands, intersecting roads, and ur-
banization; and the limited availability of data sets. Here, we present and discuss the results, highlighting the level
of accuracy, limitations and advantages of applying these kinds of automated mapping workflows. As one of the
first implementations in the field, we also aim to encourage scientists working on late Quaternary landscape
evolution to improve the use of similar deep learning algorithms in their research.

As a test site, we selected a portion of NE Italy, which corresponds to one of the alluvial plains where the relict
traces are particularly evident at the surface. In fact, their detailed mapping allowed significant advances in
deciphering both the evolution of the fluvial systems and the archaeological patterns (e.g., Cassiani et al., 2020;
Fontana, Monegato, et al., 2014; Ninfo et al., 2009; Tozzi & Harari, 1984). Nevertheless, investigations carried
out in this area mostly neglected the proximal sector of the plain where, even if braided pattern is dominant, it has
been mainly mapped with a general symbology indicating the occurrence of ancient multiple palaeochannels, but
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avoiding the details of the relict landforms (Bondesan et al., 2015; Fontana et al., 2019). At the same time, the area
is currently characterized by rather large active streams that are fed by the Alps (i.e., Isonzo, Torre, Tagliamento,
Piave and Brenta rivers) and display a typical braided pattern in the apical sector of the alluvial plain (Surian &
Rinaldi, 2003; Tockner et al., 2003).

2. Setting
The main study area is located in the Friulian Plain in north‐eastern Italy and corresponds to part of the apical
sector of the alluvial megafans of the Tagliamento, Corno, Cormor and Torre streams (Figure 2). These depo-
sitional systems were formed during the Last Glacial Maximum (LGM, 28–19 ka BP), when they were directly
fed by the huge liquid and solid discharge supported by the front of the glacier occupying the mountain catchment
of the Tagliamento River (Fontana et al., 2008, 2014b), which in that period reached the plain and formed the
morainic amphitheater (Monegato et al., 2007). Since about 19 ka cal BP, almost all the proximal sector of the
Friulian Plain was already abandoned by the alluvial activity and Corno and Cormor transformed from major
glacial outwashes to minor streams with local hilly catchments. The passage from fluvioglacial to fluvial con-
ditions led the Tagliamento and Torre rivers to strongly reduce their solid and water discharge; thus, during the
Late Glacial and Holocene, they were active only in the distal portion of their megafan (Fontana et al., 2008).

The study area is made of gravelly fluvioglacial sediments associated with braided channel belts, that deposited
during the second part of the LGM (i.e., 24–19 ka cal BP) and that extended downstream up to the present spring
line , while downstream of this boundary, the LGM deposits are dominated by silt and clay (Fontana, Monegato,
et al., 2014, Fontana et al., 2008). The area where the model has been trained has an extent of 42 km2 (Figure 2)
and, as well as the other test sites, is characterized by an abundance of braided palaeohydrographic traces visible
through optical remotely sensed data (aerial photos and satellite images). The visibility of these marks is mainly
the result of pedogenetic and anthropogenic activities.

Figure 2. (a) Locations of the main study area (green star) and other selected test sites (yellow stars); (b) Detailed map of the train and test areas with indication of
geological units forming the surface of the Friulian Plain.
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The petrographic composition of the gravels fed by the Tagliamento glacier is strongly dominated by carbonate
rocks (around 70%), such as limestone and dolostone, and the prolonged geomorphological stability of the
investigated area has been exposing the top portion of these sediments to atmospheric and biological processes for
the last 20 ka (Zanferrari, Avigliano, Grandesso, et al., 2008, Zanferrari, Avigliano, Monegato, et al., 2008).
Another significant property of the study area is the limited presence of urbanized zones, with small scattered
villages, but the large majority of the topographic surface corresponds to cultivated cropland.

The sedimentologic and pedologic characteristics described for the main study area are also quite similar in the
other smaller areas that have been selected with the aim of testing the methodology and assessing the general-
ization capability of the automated mapping model. They are also characterized by braided paleochannels and
dominated by carbonatic clasts that display a high visibility in RGB aerial images. The sites are located at an
increasing distance from the area where the model was trained and they were formed by different fluvial and
fluvioglacial systems from the one fed by the Tagliamento glacier. They are the areas of Orzano (Friulian Plain),
Montebelluna (Venetian Plain), Montichiari (Lombard Plain), and the zone near the airport of Podgorica in
Montenegro (alluvial fan of Cem River) (Figure 2).

The area of Orzano (46°3'13.50'N, 13°21'55.81''E) extends for 12 km2 and is located in the eastern portion of the
Friulian Plain, only 9 km east from the main study site. The surface was formed by gravelly braided channels of
the Natisone River, which during LGM was fed by the glacier occupying the mountain catchment of the Isonzo
River (Fontana, 2024).

The zone of Montebelluna (45°43'38.52''N, 12°1'20.02''E) has an area of 3 km2, is located in the Venetian Plain,
about 80 kmwest of the main study area, and it is part of the apical sector of the alluvial megafan ofMontebelluna.
This was formed by the Piave River in a pre‐LGM period and likely at the end of the Middle Pleistocene, during
the penultimate glaciation (Fontana, Mozzi, & Marchetti, 2014). The top surface displays traces of braided
channels formed by fluvial or fluvioglacial gravel deposits.

The Montichiari site (45°26'50.73''N, 10°20'22.20''E) has an extent of 15 km2 and is located in the Lombard Plain,
210 km west of the main study area. The surface is made of gravelly braided channels that belong to the apical
sector of the LGM alluvial megafan of the Chiese River (Fontana, Mozzi, & Marchetti, 2014).

Figure 3. The appearance of palaeohydrographic traces in the study area. (a) Schematic cross‐section of the study area surface
corresponding to the schematic planar view, with vertical exaggeration 16x. The inclined lines are plowing furrows and
highlight the strong reworking of the topsoil; (b) Schematic planar view of the top surface corresponding to the aerial photo
example. Lighter colors indicate a fluvial bar, darker colors a channel; (c) Example of aerial photo from the training data set
corresponding to the schematic representation above.
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The last site of comparison is in Montenegro (42°22'57.88''N, 19°17'36.17''E) extending for 6 km2 and is located
near the airport of Podgorica, about 600 km south–east of the main study area. The analyzed surface is part of the
gravelly alluvial fan of the Cem River, that has a mountain catchment in the Dinaric Alps between Montenegro
and Albania and which was interested by glacial advances during the last Pleistocene glaciations (Hughes
et al., 2011; Radusinović & Pajović, 2024).

It is worth noting that the main study area is bounded on the west by the present channel of the Tagliamento River,
which is the reference stream for investigating the semi‐natural dynamic of gravelly braided rivers in the Alps
(e.g., Bertoldi et al., 2009). Thus, the reconstruction of the morphometry of a large portion of the braided alluvial
plain formed by this river system in the past could support an important comparison for understanding the present
processes. 3 Methods and Workflow.

The original data set for the main study area consists of aerial orthophotos acquired in May and June of 2012 by
the Civil Protection of the Regione Autonoma Friuli Venezia Giulia, which can be freely viewed on the Geoportal
of the Regione Autonoma Friuli Venezia Giulia (https://eaglefvg.regione.fvg.it). They were collected using an
Ultracam Eagle camera—manufactured by Vexcel Imaging GmbH—mounted on a Pilatus Porter PC‐6 airplane.
They have a spatial resolution of 0.10 m in RGB color bands.

In this work, we obtained the data set of the entire Friulian Plain, from which we selected the study area
boundaries. Afterward, we down sampled the orthophoto to 1 m/px resolution to improve the performance of the
following steps.

We pre‐processed the images by selecting a training area of 6 × 7 km from the original study area, consisting of
607 tiles obtained by dividing the original photos in 256 × 256 m tiles. QGIS software (version 3.22.5) was used
to manually draw and label the palaeochannels over this area. For the scope of this work, palaeochannel
boundaries were defined as the edges of the dark argillic soils visible in the photos. Moreover, to limit user bias,
the entire manual labeling process was performed by the same user. Since a major issue in mapping palae-
ohydrographic traces in the study area is the presence of modern road patterns overlaying the geomorphological
evidence, we intervene on the ground truth labels by specifically drawing palaeochannels considering their
continuity, ignoring interrupting infrastructures, and labeling the tracts of crossing roads as part of the palae-
ohydrography. Conversely, if large urban centers or vegetated fields were present, no ground truth labels were
drawn. Labels were subsequentially converted into binary rasters.

The orthophoto and the labels were divided into tiles of 256 × 256 m. Dimensions and spatial resolution of the
tiles were chosen as a compromise between the size of the palaeochannel traces–which we observed to vary
greatly from a few meters to over 100 m in width–and the time required to train a deep learning model. This
compromise aimed to ensure that the dimensions of the palaeochannels fit inside the tile size. The entire workflow
of this study is shown in Figure 4. Images and corresponding label tiles were randomly subdivided into training
and test data sets, with the test data set consisting of 111 tiles. Afterward, due to the small number of tiles, data
augmentation was used on the training data set to significantly increase its size. Augmentation consists of various
techniques ranging from pixel to spatial transformations, which create new training samples from the existing
images (Shorten &Khoshgoftaar, 2019). The implementation was carried out through the Albumentation (version
1.3.1) library on Python (Buslaev et al., 2020). The final augmented data set was obtained using a combination of
the following techniques: crop, vertical and horizontal flip, transpose, 90° rotation. Specifically, Random-
CropSize clips a random part of the image–limiting the height and width of the crop to 120 × 120 px—and resizes
it to the original 256 × 256 px;vertical and horizontal flip switch the input vertically and horizontally, respec-
tively;transpose inverts rows and columns; RandomRotate90 randomly rotates an image of 90° one or more times.
The final data set consisted of 24,800 tiles. To tackle class imbalance between features and background, tiles with
no palaeochannel present were excluded, reducing the total number of tiles to 21,874. Finally, this data set was
randomly divided into training and validation data sets, with the validation set corresponding to 20% of the 21,874
tiles.

To process the images, we implemented a CNN model through the Keras (version 2.10.0) and Tensorflow
(version 2.10.1) libraries in a Python environment (version 3.10). Various model architectures were tested, from
FCN with ResNet (He et al., 2016) and ConvNext (Liu et al., 2022) as encoding backbones, to simple UNets
(Ronneberger et al., 2015). At the end, the Attention‐UNet (Oktay et al., 2018) architecture was chosen.
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The choice of using an Attention‐UNet model in this work was based on two main considerations. Firstly, we
investigated other types of segmentation models, such as FCNs with ResNet50 or ConvNextTiny as backbones in
the encoder part of the algorithm, but found that the high number of trainable parameters–30 million and 29
million, respectively–coupled with the small size of our data set, led to severe overfitting issues. In contrast, the
smaller size of UNets seemed to perform much better and avoid overfitting on the validation data set. Secondly,
Attention‐UNets have been successfully adopted in geomorphology in recent years (Nava et al., 2022; Zhong
et al., 2024), specifically to deal with binary segmentation problems and high‐class imbalance data sets. In
general, we observed that when attention blocks were added to a simple UNet architecture, the model was greatly
encouraged to focus on the segmentation of palaeochannels, and the performance on the test data set was vastly
improved. In the study area of the Friulian Plain, the attention gates work exceptionally well in training the UNet
to not give much importance to the complex background of forested, urban, and crop areas; rather the model
learned to focus on identifying the braided pattern of palaeochannels. This advantage, coupled with the small
number of trainable parameters characterizing the Attention‐UNet model, allowed us to train a successful deep
learning algorithm.

Figure 4. The workflow diagram, highlighting the main steps in the application of the deep learning algorithm. Different colors are used to distinguish processes applied
to the training set (yellow), test set (green), and the entire study area (blue).
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Attention gates were implemented following the methodology described by Abraham and Khan (2018) and Nava
et al. (2022). The model architecture is made up of four encoding blocks and four decoder blocks. Each encoding
block consists of two convolutional layers (convolution + batch normalization + activation) followed by a
maxpooling. The number of filters in the first encoding block is 8 and 128 in the last one (Figure 1). This choice is
mainly based on the computational limits of training a model with a large number of filters. Each decoder block is
made by an attention gate block applying weights to the feature map coming from the encoder, followed by a
deconvolutional layer applied to the feature map in the decoder, and a concatenation of the two resulting maps. In
the decoder, we used the He Uniform distribution (He et al., 2015) to initialize weights. In order to tackle the
overfitting issue, we added Dropout equal to 0.1 at the end of each encoder block. Dropout is a common technique
used in CNNs which consists in dropping random nodes during training to improve the generalization of the
model, especially useful for small data sets such as the one used in this work (cf. Srivastava et al., 2014).
Similarly, a kernel regularizer in the form of weight decay (L2= 0.01) was used in each convolutional layer in the
encoder blocks (Cortes et al., 2012). The addition of these two techniques aimed to improve the overfitting risk
caused by the small input data set. The loss function optimizer is Adam (Kingma & Ba, 2014) and the loss
function Dice Loss (Milletari et al., 2016), following the implementation of Abraham and Khan (2018) and Nava
et al. (2022).

Dice Loss = 1 −
2∑N

i=1pigi

∑N
i=1pi +∑N

i=1gi
(1)

Equation 1 represents the dice loss of a binary segmentation. pi is the predicted pixel value and gi is the ground
truth value. N is the total number of pixels. The dice loss is a measure of the overlap between a predicted seg-
mentation mask and the ground truth mask. It is defined as the intersection of the two masks divided by their sum.

The number of trainable parameters in the model was 571,556. The batch size we used was 32 as a compromise
between computational costs and better performance. The learning rate was 5e− 5. The entire architecture and
implementation is described in detail at https://doi.org/10.5281/zenodo.13762915.

After training, we derived the following metrics: Precision, Recall, F1‐Score, and IoU‐Score. Precision is defined
as the ratio between the number of true positives–pixels correctly classified by the model–and the sum of true
positives and false positives. If the number of false positives is equal to zero, then precision is equal to one.
Precision measures the ability of the model to not classify background pixels as features (Equation 2). On the
contrary, recall is the ratio between true positives and the sum of true positives and false negatives. If the number
of false negatives is equal to zero, then recall equal to one. Recall measures the capability of the model to identify
all pixels belonging to the feature class (Equation 3). F1‐Score is the harmonic mean between precision and recall,
and it measures the performance of the model based on class, essentially permitting to focus on maximizing both
precision and recall (Equation 4). IoU‐Score–which stands for Intersection over Union score–is another evalu-
ation metric, specifically designed for segmentation models. It is defined as the ratio between true positives and
the sum of true positives, false positives, and false negatives. It measures the overlap between prediction and
ground truth (Equation 5).

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1Score =
2 ∗ Precision ∗Recall
Precision + Recall

(4)

IoUScore =
TP

TP + FP + FN
(5)

Where TP is true positive, FP is false positive, and FN is false negative.

The trained model was evaluated on the test data set using precision, recall, F1‐Score and IoU Score. To further
investigate the performance of the model, we also calculated the mean absolute difference in frequency of channel
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between predictions and ground truths. This value allowed us to check the
frequency of pixels assigned to channel in the ground truth and in the pre-
dicted tiles, and assess whether the lower values of F1‐Score were caused by
minor differences in the localization of the palaeochannel boundaries, or in a
prediction completely different from the ground truth labels.In the post-
processing phase of this work, we applied the trained model to the entire study
area (232 km2). Afterward, we extracted palaeochannel centerlines through
skeletonization using the Scikit‐Image (version 0.22) library on Python (van
der Walt et al., 2014). Centerlines permit to better visualize the quantity of
palaeochannels, as well as their direction and braided pattern. Overall, we
observed that the direction of the hydrographic traces is from north to south,
following the general slope of this sector of the Friulian Plain; therefore, we

considered perpendicular west–east transects in order to extract the quantity of channels. Twenty transects were
drawn with a spacing of 1 km each, starting from the northern border of the study area. In order to properly extract
the number of channels per km we further considered the presence of large vegetated areas and urbanized centers,
impeding the identification of traces and proceeded to subtract them from the total length of the transects.
Centerlines were used to calculate the number of channels per km over a selection of transects using Python.
Channel density–interpreted as the ratio between the area occupied by palaeochannels and the total area–was also
extracted from the segmented map.

In order to assess the generalization capability of the trained model, we selected four additional test sites char-
acterized by braided palaeohydrographic traces. In the case of the Orzano site, which is also located in the Friulian
Plain, the input data set consists of orthophotos from the same data set as the main study area. As for the other case
studies, we selected satellite images from the Google Earth platform (images from Maxar Technologies) with
similar HSV (hue, saturation and value) of the original data set, down sampling them to 1 m resolution (12 May
2012 image for Montebelluna, 11 May 2009 image for Montichiari, 18 May 2012 image for Montenegro). The
same preprocessing steps as before were used, manually labeling palaeochannels and subdividing input images
into 256 × 256 px tiles. Afterward, we evaluated the trained model on the new sites, assessing the same metrics.

To obtain a visual explanation of the identification made by the Attention‐UNet algorithm, we decided to
implement saliency maps both on the main test data set and on the four additional sites in Python using Ten-
sorFlow. Saliency maps provide a way to decipher black‐box models represented by CNNs, shedding information
on the generalization capability of the trained models and on which features are the most important in the pre-
diction of classes (Szczepankiewicz et al., 2023). We used Gradient‐weighted Class Activation Mapping (Grad‐
CAM) as proposed by Selvaraju et al. (2020), which applies a gradient‐based weighting to class activation maps.
It uses gradients associated to the class computed on the last layer to produce a heat map that highlights regions of
the image that have the greatest impact on network prediction. The choice of this method of visual explanation is
based on the results of the comparison of different saliency maps described in Szczepankiewicz et al. (2023).
Grad‐CAM heat maps were computed on the last concatenation layer of the decoder part of the Attention‐Unet,
which reflects the regions contributing to the output segmentation by also integrating the importance of the
attention gates used in the upsampling part of the UNet.

3. Results
The model took 150 training epochs to converge. On the test data set it reached an F1‐Score of 0.79 (Table 1). The
histogram of F1‐Score highlighted that the majority of the predicted tiles had an F1‐Score higher than 0.8,
although a tail of very low values was present (Figure 5). We observed that these values correspond to tiles
characterized by dense vegetation (mainly woods, but sometimes also crops) or by an obvious overlapped
anthropogenic pattern (i.e., built areas or pervasive field division systems), where the model struggled to correctly
identify palaeochannels. In general, however, lower F1‐Scores were mainly the result of minimum differences in
placing the edges of the channels between the predicted and the ground truth labels (Figure 6).

The model showed a considerate ability to learn channel continuity and ignore interfering road segments in the
test data set. Although specific infrastructures–mainly the largest ones–remain problematic for the trained model
(Figure 6b), the UNet was successfully able to preserve the palaeohydrographic continuity in the final segmented
map of the study area. Despite this ability being obtained at the expense of a decrease in all metrics scores in the

Table 1
Performance of the Attention‐UNet Model Over Different Sites

Site Precision Recall F1‐Score IoU Score

Test Area 0.76 0.81 0.79 0.65

Orzano 0.55 0.84 0.66 0.50

Montebelluna 0.90 0.59 0.71 0.56

Montichiari 0.64 0.59 0.61 0.45

Podgorica Airport 0.48 0.66 0.54 0.38

Note. Evaluated metrics are: precision, recall, F1‐Score, and IoU Score.
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test data set–from F1‐Score = 0.84 to F1‐Score = 0.79–we argue that the
usefulness of the model greatly increased as did the geomorphological
meaning of the final map.

To assess the generalization capability of the trained model, we selected four
additional test sites, at increasing distances from the main study area. The
comparison with the training site displays lower values of F1‐Score in all the
new cases, ranging from 0.71 in the Montebelluna site, to 0.54 in the Podg-
orica Airport site. The same was also reflected in all the other metrics
(Table 1).

Grad‐CAM was calculated on the main test data and on the additional sites to
visualize which regions of one image contributed the most to the palae-
ochannel identification. The resulting heat maps highlight that the model
correctly assigns a larger importance to the darker palaeochannel traces and
much lower to the lighter background areas (Figure 7). Furthermore, the
highest values in the heat maps are often found at the edges of the palae-
ochannels, suggesting that the model relies on the stark chromatic change
between channel and bars to identify the presence of the palaeohydrography.

Conversely, the impact of intersecting roads, urban structures and vegetated fields is evident in the alternating
high and low importance that the algorithm might wrongly assign to some of these regions (see Figures 7b, 7c
and 7d).

Deploying the trained Attention‐UNet model allowed us to map LGM braided palaeochannels over an area of
232 km2, corresponding to a significant sector of the Friulian Plain. Centerlines were extracted in order to assess
the quantity of palaeochannels and their braided patterns. We found the mean number of channels per km to be 14,
varying from a maximum of 18 to a minimum of 10. Compared to the present‐day Tagliamento River, the mean
number of active channels per cross‐section–around 1 km in width–is 4 (Egozi & Ashmore, 2008; Surian &
Rinaldi, 2003). However, if historical cartography from the 19th century is considered, the number of active
channels of the Tagliamento River in the study area is approximately 10 (Surian et al., 2009).

The binary map segmented by the Attention‐UNet model was also used to calculate the density of the palae-
ochannels, essentially corresponding to the ratio between the area occupied by channels and the size of the kernel–
equal to 16 km2. The choice of the kernel size was mostly a compromise between the widths of the channels, the
size of the urban centers, and the spatial resolution of the map. In order to properly compare densities through the
site, we subtracted vast urban and forested areas from the original density. We found that, over the study area, the
palaeochannel density varies from 69.1% to 44.7% with a mean density of 53.5%, indicating that more than half of
the top surface is occupied by palaeohydrographic traces.

4. Discussion
This work successfully trained a deep learning model to segment braided palaeochannels, demonstrating the
ability of these type of algorithms to recognize a complex multichannel pattern of palaeohydrography despite the
presence of overlaying human infrastructures and agricultural land divisions. In the study area, the pervasive
intersection of roads and the different patches of crops represent the main pattern in optical remotely sensed
images. Successful segmentation of palaeochannels in their natural continuity, ignoring intersecting urban in-
frastructures, constitutes the main difficulty when training AI algorithms to identify geomorphological features in
a densely cultivated plain. It is likely that this is also the main reason why this methodology has seldomly been
attempted in this field of study. Conversely, our findings demonstrate that the recognition of the underlying
palaeohydrographic pattern in these settings can be successfully obtained from deep learning.

We found the positive performance of the Attention‐UNet model to be in agreement with the geoscience literature
using this algorithm. Multiple studies have applied this model to segment landslides using either LiDAR, optical,
or SAR data sets (e.g., Fang et al., 2022; Nava et al., 2022; Shi et al., 2023; Zhang, B. et al., 2024) obtaining F1 F1‐
Scores between 0.61 and 0.87, depending on the type of remotely sensed data. As for palaeochannel detection,
despite the current lack of papers focusing on their identification, Zhong et al. (2024) successfully used the al-
gorithm to recognize fluvial landforms in seismic stratigraphic images reporting an F1‐Score of 0.85. Our

Figure 5. Histogram evaluating F1‐Score in the test data set.

Journal of Geophysical Research: Earth Surface 10.1029/2024JF008051

VANZANI ET AL. 10 of 17

 21699011, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JF008051 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [26/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 6. Inputs and output tiles of the Attention‐UNet model. The dimension of each tile is 256 × 256 m. In the Difference
Mask, the colors are white for true positive, black for true negative, red for false positive, and yellow for false negative. (a, b)
Test Area Site; (c) Orzano Site; (d) Montebelluna Site; (e) Montichiari Site; (f) Podgorica Airport Site.
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findings underline the potential of attention gates in UNet models for identifying and segmenting palaohy-
drography also in optical remotely sensed images.

Moreover, the model demonstrated to generalize well even outside of the training and testing study area, as
highlighted by the identification of braided palaeohydrographic traces formed by different fluvial systems, in
different land use settings. The drop in performance observed in the additional testing sites is mainly related to a
number of differences characterizing the case studies such as the diverse data set source, the land use, the size of
the palaeochannels, and the spectral signature of the traces (Figure 6). More in detail, the data set of orthophotos
analyzed in the training area is not available in Montebelluna, Montichiari, and Podgorica , and consequently,
high‐resolution images from the Google Earth platform were used as input data sets. The variation in acquisition
date and location inheritably carries a variance in the RGB spectral signature of the argillic soils overlaying
palaeochannels and the gravelly sediment overlaying fluvial bars. In the cases of Montichiari and Podgorica
Airport, as well as Orzano–for which we used the original Civil Protection data set–the narrower size of the
palaochannels is also a determining factor in the lower performance of the model, which tends to overestimate the
width of the channels compared to the ground truth labels. Finally, in the Podgorica Airport site, the farmland is
mainly occupied by orchards, whose linear layout adds noise to the palaeohydrographic pattern, constituting the
main cause of the lower F1‐Score in the case study. Despite all these limitations, the model demonstrated an
ability to recognize the presence of braided palaeochannels in the majority of the sites. These findings are
particularly important as they suggest that deep learning models trained to identify palaeohydrography in the
Friulian Plain could also be implemented on a broader scale, and used to extract information on other alluvial
plains characterized by similar optical traces in Italy and elsewhere.

The possibility of rapidly obtaining large, detailed maps of the spatial distribution and morphology of the
palaeochannels can strongly assist and improve the geomorphological research. Specifically, manual mapping
these multichannel traces is very time consuming, whilst the model trained in this work could allow for a rapid
deployment on new sites without requiring for a full‐scale manual labeling effort. Nevertheless, it is important to
stress out that the ability of the trained algorithm to identify the palaeochannels is highly dependent on the quality
of the manual labeling activity in the pre‐processing phase. In particular, the ability of the human operator to
correctly identify the braided channels and select the boundaries of the geomorphological traces is complicated by
the complex multichannel pattern. Therefore, the selection of a training data set characterized by an exceptional

Figure 7. Original images and Grad‐CAM heat maps. In blue lowest values, in dark red highest values. (a) Main study area, notice the highest values in correspondence
of the palaeochannel edges and the lower value on the road; (b) main study area; (c) Podgorica Airport site; (d) Montichiari site.
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visibility and clarity of the palaeohydrographic traces was critical to reduce uncertainties through the creation of
the labeled data set.

The results of the model also show the effect of the main anthropogenic features hampering the detection of traces.
Intersecting roads, urban structures and vegetated fields obstruct the visibility of the underlying palaeochannels,
and complicate efforts to map the palaeohydrography in its continuity. Whilst the presence of roads was partly
resolved through the creation of a ground truth data set where intersecting pathways were ignored in order to
encourage the model to understand channel continuity, the other two elements remain a critical issue. In fact, both
urban structures and vegetated fields prevent the identification of the RGB chromatic difference used to identify
the palaeochannels (Figure 3), and lead to the creation of blank spots in the resulting map in correspondence to
these areas (Figure 8). These spots do not indicate the lack of palaeohydrographic traces, but rather the absence of
data from which it would be possible to map their pattern, leading to the inevitable interruption of channel
continuity. Notwithstanding, this limit is not restricted to the application of the Attention‐UNet model, but also
applies to traditional manual mapping, and it is one of the main obstacles in the detection of these traces in a
partially urbanized alluvial plain setting such as those identified by this work.

The investigation of the Grad‐CAM heat maps was of critical importance to understand how and why the
Attention‐UNet model was able to identify the braided palaeohydrography. Results allowed us to confirm that the
algorithm was based on the identification of the right features, and explain its ability to generalize on the
additional test sites (Figure 7). Furthermore, assessing which regions are most important for the identification of
the features gave insight into how the model defines the geomorphological traces. Heat maps show that the al-
gorithm relies on the stark chromatic contrast at the edge of palaeochannel traces, as well as on the darker spectral
signature of the clay overlaying the channels as a whole. This decisioning is in line with the method used by the

Figure 8. End to end implementation of palaeochannel segmentation. (a) A sub sector of the main study area aerial photo;
(b) segmentation and skeletonization of the palaeochannels resulting from the deep learning model workflow,
palaeochannels are in white, background in black, skeleton in blue. The large background patches correspond to the
vegetated fields in (a); (c) the final interpretation depicting darker shades of blue for evidencing some of the main channel
belts.
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user to create the ground truth data set, and the one commonly used in traditional manual mapping of palae-
ohydrographic evidence. Therefore, we found that the careful selection of a data set where the spectral signature
of these geomorphological elements displays a high contrast with the background is the key element for a suc-
cessful reconstruction of the braided pattern, both in the case of human and deep learning based mapping.

Nevertheless, the resulting palaeohydrographic map highlights that this method can assist in the characterization
of the spatial distribution and planar morphology of these traces over hundreds of km2. Whereas previous works
relied on the precise manual mapping of palaeochannels over limited areas and with a rather recent age (e.g.,
Chandler et al., 2017; Evans & Orton, 2014; Waller et al., 2018), we found that AI models can successfully
improve time efficiency and increase the scale of investigation, encouraging the description of complex and often
neglected relict features in alluvial plain environments.

Furthermore, these maps of palaeohydrographic traces will provide a plethora of new data related to the abun-
dance, the morphometry, and the directions of the ancient channel belts (Figure 8). These are key data for
unlocking the ability to assess the ancient fluvial processes that led to the formation of the alluvial plains in their
apical sector, aiming to detect, separate and characterize the main channel belts. In particular, considering the
study area in Friuli Venezia Giulia, the new maps generated by deep learning application could support in-
vestigations about the imprint of LGM glaciers in the alluvial plain, as well as compare modes and times of
activity of the different outwash streams that were fed by different sectors of the same glacier, supplied by the
Tagliamento catchment. At present, even if some geomorphological sub‐units might be distinguished in the plain
dominated by braided traces, according to the orientation and morphometry of the palaeochannels, generally it is
not easy to recognize the channels that were really active at the same time and to delimit the boundary of a channel
belt. It is worth noting this limit as it is of crucial importance for any geomorphic and hydrographic characteristic
that one might want to extract from the palaeohydrographic maps. Thus, channel densities calculation, as well as
the estimation of the number of channels per kilometres might be misleading, and should be cautiously compared
with present‐day braiding indexes. Therefore, in this work we provided these calculations tentatively, mainly to
show the potential information supported by these new maps and not to present a quantitative comparison be-
tween ancient and present Tagliamento braided channels.

It is also significant to note that the optical traces identified and mapped in this work consist of LGM gravelly
sediments that have been later affected by the pedogenesis and strongly impacted by the modern anthropogenic
activity. Consequently, an issue arises if palaeochannel widths are considered. In fact, the boundaries of a fluvial
trace are mapped according to the limit existing between the dark color of the soil over the palaeochannel and the
lighter one on the fluvial bar (Figure 3). Thus, different intensities and timespans of agricultural activities are
leading to changes in the palaeochannel widths detected through visible images. In particular, as deeper plowing
is progressively eroding a thicker portion of soil, even in the short term, this process exposes wider portions of
gravelly fluvioglacial sediments, in turn probably reducing the widths of the fluvial traces and their visibility.

Despite the limitations listed above, we are confident that deep learning algorithms such as the one used in this
work could offer new perspectives and possibilities to landscape evolution studies and Quaternary mapping. The
successful deployment of our AI model over a study area of 232 km2 illustrates how studies could overcome the
struggles of manually mapping complex features, such as braided patters, and almost instantaneously obtain a
geomorphological map of specific landforms. The promising results achieved on different alluvial plains suggest
that these models can generalize well on a regional and possibly even global scale. Furthermore, similar archi-
tectures could be tuned to identify a broad variety of different geomorphologicals and potentially gearchaeo-
logical traces. Examples of some other features that could be recognized are dolines, tidal channels, aeolian dunes,
and ancient roads and settlements. Finally, automatically segmented maps of palaeochannels can constitute a
valuable base for a complete geomorphological map, for the identification of channel belts and flow directions,
and for the differentiation of different fluvial units (Figure 8).

5. Conclusions
In this paper, we trained and tested a deep learning algorithm to identify and map braided palaeochannel traces on
alluvial plains using remotely sensed optical data. The Attention‐UNet architecture was chosen and trained on
21,874 images of 256 × 256 m of size. On the test data set, we obtained an F1‐Score equal to 0.79. Afterward, we
deployed the trained model over an area of 232 km2 located in the Friulian Plain and successfully mapped the
traces of braided channels, which cover 53.5% of the entire zone, with an average of 14 channels per km. The
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model was further tested on four other alluvial plains formed during the late Pleistocene in Friuli Venezia Giulia,
Veneto, and Lombard regions in northern Italy, and in the alluvial fan of the Cem River near Podgorica in
Montenegro. The results show good generalization potential despite local differences, suggesting that the model
could be implemented in other similar settings at a regional scale. Through our findings, we argue that deep
learning algorithms can offer great advantages and breakthrough potential to late Quaternary landscape studies
focusing on cultivated and partly urbanized settings, and complex landform patterns.
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trained model on the entire study area is available at https://geodati.gov.it/resource/id/r_friuve:m10603‐cc‐
i10641. The python code, test data sets, model weights and results discussed in this study are preserved at Zenodo
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