
ID: pcbi.1012770 — 2025/2/19 — page 1 — #1

PLOS COMPUTATIONAL BIOLOGY

OPEN ACCESS

Citation: Childs J, Gomes TB, Vincent AE,
Golightly A, Lawless C (2025) Bayesian
classification of OXPHOS deficient skeletal
myofibres. PLoS Comput Biol 21(2): e1012770.
https://doi.org/10.1371/journal.pcbi.1012770

Editor: Yang Lu, University of Waterloo,
CANADA

Received: July 18, 2024

Accepted: January 7, 2025

Published: February 19, 2025

Copyright: © 2025 Childs et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Data availability statement: All code required
to replicate the results can be found at
https://github.com/jordanbchilds/
oxphosDeficientClassification & https:
//github.com/jordanbchilds/analysis2Dmito.

Funding: JC is funded by Engineering and
Physical Sciences Research Council
(EP/L015358/1). AV is supported by a NUAcT
fellowship from Newcastle University and a
Henry Wellcome Postdoctoral Fellowship
(215888/Z/19/Z). AV, CL and TBG are
supported by the NIHR Newcastle Biomedical
Research Centre awarded to the Newcastle
upon Tyne Hospitals NHS Foundation Trust and

RESEARCH ARTICLE

Bayesian classification of OXPHOS
deficient skeletal myofibres
Jordan Childs

 

 

1,2, Tiago Bernardino Gomes
 

 

1,2,3,4, Amy E. Vincent1,2,3,
Andrew Golightly5, Conor Lawless

 

 

1,2∗

1Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, United
Kingdom, 2 Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne,
United Kingdom, 3 NIHR Biomedical Research Centre, Newcastle University, Newcastle-upon-Tyne,
United Kingdom, 4 NHS Highly Specialised Service for Rare Mitochondrial Disorders,
Newcastle-upon-Tyne, United Kingdom, 5 Department of Mathematical Sciences, Durham University,
Durham, United Kingdom

∗ cnr.lwlss@gmail.com

Abstract
Mitochondria are organelles in most human cells which release the energy required for
cells to function. Oxidative phosphorylation (OXPHOS) is a key biochemical process
within mitochondria required for energy production and requires a range of proteins and
protein complexes. Mitochondria contain multiple copies of their own genome (mtDNA),
which codes for some of the proteins and ribonucleic acids required for mitochondrial
function and assembly. Pathology arises from genetic defects in mtDNA and can reduce
cellular abundance of OXPHOS proteins, affecting mitochondrial function. Due to the
continuous turn-over of mtDNA, pathology is random and neighbouring cells can possess
different OXPHOS protein abundance. Estimating the proportion of cells where OXPHOS
protein abundance is too low to maintain normal function is critical to understanding dis-
ease severity and predicting disease progression. Currently, one method to classify sin-
gle cells as being OXPHOS deficient is prevalent in the literature. The method compares
a patient’s OXPHOS protein abundance to that of a small number of healthy control sub-
jects. If the patient’s cell displays an abundance which differs from the abundance of the
controls then it is deemed deficient. However, due to the natural variation between sub-
jects and the low number of control subjects typically available, this method is inflexible
and often results in a large proportion of patient cells being misclassified. These mis-
classifications have significant consequences for the clinical interpretation of these data.
We propose a single-cell classification method using a Bayesian hierarchical mixture
model, which allows for inter-subject OXPHOS protein abundance variation. The model
accurately classifies an example dataset of OXPHOS protein abundances in skeletal
muscle fibres (myofibres). When comparing the proposed and existing model classifi-
cations to manual classifications performed by experts, the proposed model results in
estimates of the proportion of deficient myofibres that are consistent with expert manual
classifications.
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Author summary
Mitochondria are responsible for energy production within cells and mitochondrial
diseases correspond to a group of rare genetic disorders which can affect their function.
However, it is common for each cell to not be affected in the same way, and neighbour-
ing cells are often observed with varying levels of mitochondrial function. Estimating the
proportion of affected cells in a sample is important for measuring disease progression
and severity. One way to measure mitochondrial function is through the abundance of
proteins related to their function. Using this data we have developed a method to classify
single cells with a mitochondrial defect which allows for the natural variability between
subjects. We show that our approach produces classifications in higher agreement with
those performed by experts when compared to an existing classification method.
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Introduction
Mitochondria are organelles within eukaryotic cells responsible for producing adenosine
triphosphate (ATP), the chemical used to store and release energy. They contain many copies
of their own DNA (mtDNA), a state known as polyploidy. MtDNA encodes several proteins
as well as mitochondrial transfer and ribosomal ribonucleic acid molecules, essential for
mitochondrial function [1]. Depending on cell type, a single cell can contain hundreds of
thousands of mtDNA copies [2]. MtDNA polyploidy and continuous mtDNA turnover make
mitochondrial genetics quite unusual in that their population dynamics strongly affect the
concentration of mitochondrial proteins within the cell [3–5].

Mitochondrial diseases are a group of rare genetic conditions that affect the ability of a
mitochondrion to produce ATP through oxidative phosphorylation (OXPHOS) [6]. They are
caused by variations in either the nuclear or mitochondrial genomes [7]. Inherited nuclear-
encoded variants are present throughout life, at either one or two copies per cell, and are
present at the same zygosity in all cells within an organism. Mitochondrial diseases caused
by variants in mtDNA are different. The polyploidy of mtDNA allows a wide range of vari-
ant proportions to exist within a single cell. For example, in a cell with N copies of mtDNA
and two mtDNA species: one healthy (wild-type) and one variant, proportions of variant
molecules can take any value in the range 0, 1

N ,
2
N , ..., 1. The continuous replication and degra-

dation of mtDNA allows the proportion of variant mtDNA to vary dynamically through-
out the life of a single-cell [7–9]. The biochemical threshold theory proposes that mitochon-
drial function becomes disrupted (acquires an OXPHOS defect) if the variant proportion of
mtDNA passes a pathogenic threshold [10]. Variations in mtDNA can impact subunits of the
OXPHOS complexes or the translation of these proteins, often leading to a lower abundance
of some OXPHOS subunits. Mitochondrial disease symptoms vary depending on the mtDNA
variant present and the tissues affected.

Symptoms and variant proportions in children can differ drastically from those in par-
ents (mothers) due to the random segregation of mtDNA populations during the meiotic
cell divisions required for the germ line to develop [7]. Symptom severity can also differ
between tissues due to mtDNA segregation during mitotic cell division required to develop
the soma. MtDNA replication associated with cell division is known as strict replication. Ran-
dom mtDNA replication occurring throughout cell life (and independent of cell division) is
known as relaxed replication [11].

Segregation and both forms of replication contribute to the stochasticity of mtDNA pop-
ulation dynamics, resulting in adjacent cells possessing very different proportions of variant
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mtDNA.This results in a random mosaic pattern of healthy and dysfunctional cells within the
same tissue [12], as demonstrated in Fig 1.

MtDNA mutation events allow variant mtDNA to be acquired during ageing and can accu-
mulate within a subject without causing mitochondrial disease [13]. The chances of a de novo
variant population arising that significantly affects tissue function are negligible in healthy
subjects. However, it is possible that a variant mtDNA population clonally expands to become
the majority population within a single cell [5]. The proportion of cells within a tissue with
an OXPHOS defect is an important measure of pathological progression: a higher proportion
means fewer cells are functioning normally, and there is an increased likelihood of clinical
symptoms and tissue pathology.

Quantifying and characterising the dysfunction of cells within a tissue is not trivial [14].
Single-cell observations of relative protein abundances can be made by cutting cross-sections
of tissue samples from healthy control or patient subjects, immunolabelling for a targeted
panel of proteins by immunofluorescence (IF) and imaging [14] or by Imaging Mass Cytom-
etry (IMC) [15]. IMC and IF measure the spatial distribution of proteins as pixel intensities
within an image of a tissue cross-section. The relative protein abundance in a single cell is
calculated by first segmenting single-cell cross-sections from imaging data and calculating
the average intensity per segmented cell. The mean intensity is assumed to be proportional
to the number of protein molecules within the cross-section, and we refer to this as protein
abundance. Previously, both IF and IMC have been validated using sequential cytochrome
c oxidate/Succinate Dehydrogenase histochemistry, demonstrating that the protein levels of
complex IV proteins are biologically relevant in terms of complex IV activity [14,15].

Fig 1. Random, mosaic pattern of single skeletal muscle fibres OXPHOS protein abundance within a cross-
section. Pseudo image of approximately 130 skeletal muscle fibre cross-sections captured by imaging mass cytometry
after needle biopsy of a patient (P05) with a nuclear DNA variant causing multiple deletions in mtDNA. Yellow shows
the level of VDAC (mitochondrial mass surrogate), red shows the level of MTCO1 (OXPHOS protein), and white
shows the level of DMD (cell membrane marker).

https://doi.org/10.1371/journal.pcbi.1012770.g001
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The dataset we use here is taken from samples of skeletal muscle tissue biopsies from
patients with a nuclear-encoded defect in mtDNA replication and maintenance [9,16]. Con-
sequently, the patients are predisposed to rapidly accumulate de novomtDNA variants, com-
pared to natural ageing. We use single skeletal muscle fibre (myofibre) protein abundance
data and aim to identify each myofibre within the patient samples which has an OXPHOS
defect. A patient myofibre is assumed to have an OXPHOS defect if its OXPHOS protein
abundance is unlike that of healthy control subjects [14,15]. Throughout the paper, we use the
termmyofibre as this is the cell type of the example dataset however the methods presented
here could be applied to any cell type.

Patients with mitochondrial disease exhibit a mixture of myofibres in their biopsies that are
variably affected by disease pathology, as seen in Fig 1. A proportion of these myofibres will
be very similar to that of a healthy individual with correctly functioning mitochondria and
exhibit a strong positive correlation between the mean intensities of different mitochondrial
proteins [14]. In comparison, a subset of myofibres will be impacted by mitochondrial dis-
ease pathology, which impacts both the function of the mitochondria and the abundance of
OXPHOS proteins. Within this group there will typically be a mix of myofibres, which have
a reduction in protein subunits that form OXPHOS complexes I, III, IV and/or V and asso-
ciated dysfunction of these complexes [14]. Therefore, when we consider the classification of
myofibres we can think of splitting these into two groups: like-control, where the mitochon-
dria function and protein abundances are similar to that of a healthy myofibres, and, not-like-
control where the myofibres are impacted by one or more changes in OXPHOS subunit abun-
dance and OXPHOS complex activity. Importantly, their relative abundances allow for the
identifications of biologically relevant functional and dysfunctional myofibres [14,15].

Previous work
One approach to visualise mitochondrial OXPHOS protein abundance profiles is to use a
2Dmito plot. These are 2-dimensional scatter plots of single-myofibre mitochondrial pro-
tein abundances, containing many single-myofibre observations from a few healthy control
subjects and one patient subject. They illustrate how OXPHOS protein abundance (y-axis)
varies with mitochondrial mass (x-axis). The mitochondrial mass accounts for the variation
in mitochondria population size within myofibres. In this dataset, VDAC, a protein found on
the outer membrane of mitochondria, is used as a surrogate for mitochondrial mass. Example
2Dmito plots can be seen in Fig 2.

Previously, Rocha et al. implemented a classification pipeline based on a frequentist lin-
ear regression framework to label each myofibre in a patient tissue sample as like-control or
not-like-control [14]. The classification pipeline works as follows. The single-myofibre pro-
tein abundances are log-transformed, as suggested by the Box-Cox test. Data from all control
subjects are combined into a single dataset. A frequentist linear model is fitted to the single-
myofibre measurements of log OXPHOS protein abundance (the response variable) with a
single predictor, the corresponding measurements of log mitochondrial mass. The classifica-
tion is described in Eqs 1 and 2. Here, {Xc

j ,Yc
j } are the measurements of log mitochondrial

mass and log OXPHOS protein abundance of the j-th control myofibre. The linear model is

Yc
j ∼N (mXc

j + c, 𝜏–1) , (1)

where N(𝜇, 𝜏–1) denotes a normal distribution with expectation 𝜇 and precision 𝜏. The slope
and intercept of the regression model are denotedm and c respectively.
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Fig 2. Single-myofibre OXPHOS protein abundances split into two populations; like-control and not-like-control. Single-fibre protein abundances were collected by
Imaging Mass Cytometry (IMC) from skeletal muscle myofibres from four healthy control subjects (grey, 1,155 myofibres) and one patient, P09, (pink, 571 myofibres).

https://doi.org/10.1371/journal.pcbi.1012770.g002

Rocha et al. classify a patient’s myofibre, {Xp
j ,Y

p
j }, into four arbitrary groups based upon a

continuous Z-score which measures the vertical distance of each myofibre from the model’s
expected value [14]. However, Warren et al. found that, instead of a continuum of deficiency,
most patient OXPHOS protein abundance data could be more naturally split into exactly two
myofibre populations: like-control and not-like-control [15]. This two-class split is also con-
sistent with the biochemical threshold theory [10]. Warren et al. also found some patients
where specific proteins were more abundant than in control subjects and, consequently,
implemented a ternary classification [15]. Classifying a patient myofibre as being over- or
under-expressed if OXPHOS protein abundance fell above or below the 95% predictive inter-
val of a linear model fitted to the control subjects’ data.

Following the classification model of Warren et al., the jth patient myofibre, {Xp
j ,Y

p
j }, is

classified as being not-like-control if it lies outside the 95% predictive interval at the point Xp
j ,

computed using the frequentist linear model [15]. Therefore, let the binary variable Zj be

Zj =
⎧⎪⎪⎨⎪⎪⎩

1 Yp
j ∉ [Lj,Uj],

0 otherwise
(2)

indicating that the patient’s j-th myofibre possesses an OXPHOS defect if Zj = 1, Lj and Uj are
the lower and upper bounds of the 95% predictive interval for Xp

j .
The frequentist linear model classification pipeline, proposed by Rocha et al. [14], has

become prevalent within the literature, with over 120 papers citations since publication, of
which more than 25 have used this method directly [17–20]. As we will show in this paper,
the rigidity of the frequentist linear model can result in a large proportion of misclassifica-
tions. This occurs when the patient’s protein abundance differs in any way from the con-
trol’s. We propose a Bayesian hierarchical alternative to the existing frequentist classification
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pipeline that allows healthy patient myofibres to differ from the controls to tolerate technical
and natural variability affecting protein abundance measurements.

Bayesian methods are used throughout the literature in the study of complex biological
systems. Their inherent ability to account for uncertainty in model parameters and prediction
makes them well-suited for quantifying the natural variation and observational error com-
monly seen in biological datasets. For methods and applications of Bayesian statistics within
biological sciences see [21–26].

Data and exploratory analysis
The data. The data used here come from skeletal muscle biopsies of 12 patients with

genetically and clinically characterised mitochondrial disease caused by variants in their
nuclear DNA [27]. Nuclear variants harboured by the patients disrupt mtDNA replication and
maintenance, causing mtDNA variants to arise, by mutation events, much more rapidly than
by normal ageing. Excess muscle was collected from the hamstring muscle of four healthy
control subjects during anterior cruciate ligament surgery. 6 µm tissue cross-sections were cut
from the biopsies and assessed using IMC. IMC is a destructive measuring process by which a
laser ablates metal-label antibody-stained tissue sections in 1µm2 dots with each laser pulse.
Metal abundance in the vapour from the ablated area is measured by mass cytometry. The
abundance of up to 40 proteins can be measured simultaneously and assembled into a his-
tological pseudo-image (one pixel per pulse) to represent the spatial distribution of protein
abundances within and between myofibres. The average protein abundance of each myofibre
is calculated as the average signal per protein channel after segmenting the image pixels into
individual myofibres using a cell membrane marker (DMD in this case) and the mitocyto seg-
mentation tool [15]. A 2Dmito plot is created from the average protein abundance per myofi-
bre from one patient and all control subjects. The IMC procedure for one patient, P08, failed,
and this patient was removed from the dataset.

The dataset includes measurements for a large number of proteins. Here, we restrict anal-
ysis to the OXPHOS proteins CYB, NDUFB8, and MTCO1, the latter two being the most fre-
quently used proteins to assess mitochondrial OXPHOS subunits in the literature [9,14,28,29].
VDAC protein data were also included as a surrogate measure of mitochondrial mass. A full
description of data collection methods can be found in Vincent et al. [27]. The number of
myofibres in the resulting healthy control samples ranges from 154 to 363 per section, and the
patient samples range between 151 and 1,199.

Manual classification. To evaluate model performance three experts manually classi-
fied the OXPHOS status of patient myofibres, based on their OXPHOS protein abundances.
Each selected the patient myofibres within a 2Dmito plot which they believed to be not-like-
control, in the relevant OXPHOS protein. However, experts can disagree on which myofibres
are like-control and which are not. Therefore, only myofibres agreed upon by all three were
considered not-like-control. An example of the manual classifications can be seen in Fig 3.
In this work, we consider the manual classifications as a ground-truth state, against which we
compare the existing and proposed classification methods.

Data exploration. Log-transformation of the data was proposed to bring the Rocha et al.
control subject data in line with assumptions of linear regression, e.g. independent and nor-
mally distributed residuals with a constant variance [14]. However, the log transformation
does not make a large difference with this particular dataset. Using the Box-Cox power trans-
formation separately on each control subject and OXPHOS protein, we see that no data trans-
form is suggested for control subjects C01, C02 and C03 in proteins NDUFB8 and CYB, and a
transformation of approximately x ∶→ x1.5 is suggested for MTCO1. C04 is different, and it is
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Fig 3. Frequentist classification arbitrarily splits healthy myofibre populations. (top) Frequentist model’s 95% predictive interval and classifications for all three
OXPHOS proteins in P09 with 571 myofibres (coloured points). Control myofibres are shown in grey (1,155 from four healthy subjects). Patient myofibres are coloured
blue or red, depending if the model classified them as like-control or not-like-control respectively. The 95% predictive interval and fitted values for the model are shown
in green. The manually classified not-like-control myofibres are shown with a small yellow dot within the myofibre’s point.

https://doi.org/10.1371/journal.pcbi.1012770.g003

suggested that no transformation is required for MTCO1, but NDUFB8 and CYB are approx-
imately transformed by x ∶→ x0.75. Nevertheless, we log-transformed the protein abundances
as this transformation has been shown to drastically reduce non-normality in other similar
datasets collected by both IMC and IF and on a range of mitochondrial proteins, including the
OXPHOS proteins analysed here [14,15,27].

We aim to classify each patient myofibre as like-control or not-like-control for each
OXPHOS protein and quantify the proportion of not-like-control myofibres within each
patient sample and OXPHOS protein. Therefore, we must characterise the protein abundance
profiles in healthy subjects to identify not-like-control myofibres by comparison. The control
data show a strong linear relationship between the mitochondrial mass marker VDAC and
each of the OXPHOS proteins. Fig 2 shows example 2Dmito plots for all OXPHOS proteins in
patient P09.

We find a population of myofibres lying adjacent to the healthy myofibres from the control
subjects, showing a strong linear relationship and a small, separate population below these. It
is common to see the second population showing no (or very little) correlation between the
OXPHOS protein abundance and mitochondrial mass (VDAC). We define the population of
myofibres that show a similar profile to the controls as like-control and the other population
as not-like-control. Importantly, the first panel in Fig 2 also demonstrates that the population
of healthy myofibres in a patient sample can have slopes and intercepts that are different from
the healthy myofibres from control subjects.

Existing classification method. The control subjects show a strong linear relationship
between (log) OXPHOS protein abundance and (log) VDAC.Therefore, it is natural to first
fit the existing frequentist linear model classification pipeline. Fig 3 shows the classifications
of patient P09 in the dataset for all three OXPHOS proteins. Patient myofibres are shown in
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blue or red, indicating a like-control or not-like-control classification respectively. The man-
ually classified myofibres are highlighted with a yellow dot if they are not-like-control. The
quality of the classifications in this patient are very mixed. The model has correctly classi-
fied the CYB status of most myofibres. A small number of myofibres in the edge of the group
lying adjacent to the controls are incorrectly classified as not-like-control. Classification of the
patient’s myofibres MTCO1 status has failed, arbitrarily splitting the manually classified like-
control myofibres in two, resulting in many misclassifications. The classification for NDUFB8
has also failed; almost all myofibres have been classified as not-like-control, in contradiction
to the manual classifications. For this patient, between 14% and 79% of myofibres are misclas-
sified by the frequentist linear regression, compared to the manual classifications. Confusion
matrices, shown Table 1, further highlight the differences between the manual and frequentist
linear model classifications. All of the misclassifications were false positives, being classified as
not-like-control by the frequentist linear model but as like-control by experts.

The problem with the existing frequentist linear model pipeline is highlighted in the classi-
fications: it does not allow single-myofibre OXPHOS protein abundance in patients to deviate
from the control subjects’ OXPHOS protein abundance. This assumption is likely too strong,
given the natural genetic and environmental variability between human subjects. Ethical and
financial constraints typically mean that the number of healthy control subjects from whom
biopsies are available is low, usually three or four. The failure of the frequentist linear model
for this dataset implies that this is not enough to capture the variability in OXPHOS protein
abundance data.

Methods
Ethics statement
Data collection and analysis complied with protocols approved by the Ethical Committee of
the Martin Luther University Halle-Wittenberg. All subjects provided written informed con-
sent before being included in the study. Two subjects; P07, and P08 were investigated with
informed consent by the Newcastle Tyneside Local Research Ethics committees (REC ref.
2002/205). Control tissue was collected with informed consent from patients before under-
going cruciate ligament surgery, with approval from Newcastle and North Tyneside Local
Research Ethics Committees (RED ref. 12/NE/0395).

Bayesian hierarchical model
In healthy control subjects, single myofibre OXPHOS protein abundance appears to have a
strong linear relationship to mitochondrial mass [14,15,27]. The same relationship is seen in
patient myofibres which are believed healthy by experts. Therefore, we propose that a linear
model will be a good fit to the like-control patient and control subject single-myofibre logged
OXPHOS protein abundance data.

Table 1. Frequentist method inconsistently classifies patient myofibres. The confusion matrices when classify-
ing the myofibres of P09, comparing the frequentist linear model’s classifications and the manual classifications.
Following Eq 2 a myofibre is labelled as 1 not-like-control and 0 if like-control.

NDUFB8 CYB MTCO1
Manual Manual Manual
0 1 0 1 0 1

Freq 0 74 0 0 461 0 0 246 0
1 451 46 1 79 31 1 281 44

https://doi.org/10.1371/journal.pcbi.1012770.t001
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For data represented in a single 2Dmito plot, we adopt a hierarchical model to explicitly
account for inter- and intra-subject variability, as well as the borrowing of strength across
different subjects. Moreover, we fit this model in the Bayesian paradigm, which allows the
incorporation of prior knowledge for the unknown parameters and coherent propagation of
parameter uncertainty in predictions. The model, described below, is independently fitted to
the data in one 2Dmito plot. Consequently, for the observed IMC dataset the Bayesian hier-
archical model is independently fitted 33 times (11 patients and three OXPHOS proteins).
The assumption of independence between data in distinct 2Dmito plots allows generalisa-
tion of the model to other observed datasets which could consist of different OXPHOS pro-
teins. Moreover, inclusion of an additional patient level in the hierarchy would require a large
number of patients to accurately capture between patient variability.

As with the frequentist linear model, we propose to use the single-myofibre protein abun-
dance data from k–1 control subjects. We emphasise that the control data are not aggregated,
and we treat each control subject as a separate experimental unit in the hierarchy. The patient
forms the final experimental unit, giving k groups in total. Each unit contains multiple single-
myofibre observations of OXPHOS protein abundance and corresponding mitochondrial
mass.

Patient myofibres are classified as part of a two-component mixture model. The first com-
ponent is intended to model like-control myofibres with the Bayesian hierarchical linear
model described above. As it is assumed that all control subject myofibres are healthy, they
are modelled using the first component with an associated probability of 1.0. The second com-
ponent is only fit to patient data and is intended for any myofibre which is not-like-control.
The mixture model naturally gives rise to the proportion of not-like-control myofibres, this
being equivalent to the probability that an unseen myofibre be modelled with the second
component.

However, myofibres showing an OXPHOS defect can display a wide range of protein abun-
dance profiles, see Figs B–D in S1 Appendix. Consequently, adopting a different model for
not-like-control myofibres would likely lead to over-fitting. Therefore, we choose the second
component to have the same slope and intercept as the first but with a constant, arbitrarily
large, variance. The large variance is intended to represent any myofibres whose protein abun-
dance profile is inconsistent with the first component. A constant precision also removes the
risk of label switching, a problem commonly seen in Bayesian mixture modelling, see Jasra et
al. for a discussion [30].

A hierarchical structure is placed on the slope and intercept parameters, giving a different
slope and intercept for each control subject and patient, thus allowing for the natural inter-
subject variability. Previous work has provided ample support for the correlation between
the mitochondrial mass marker VDAC and OXPHOS proteins in healthy controls [14,15,27].
This work also demonstrates a similar relationship in a subset of myofibres from patients and
a disruption of this relationship in a proportion of myofibres in patient muscle biopsies, with
patient samples consisting of a mix of myofibres that are like-control and not-like-control.
Consequently, we assume that the precision in the linear model is equal for all subjects repre-
sented in a 2Dmito plot.

The model below describes the jth myofibre from subject i, from the data represented in
a given 2Dmito plot. The log transformed OXPHOS protein abundance is denoted Yij, and
the log transformed abundance of VDAC is denoted Xij. The prior specification and corre-
sponding parameters are omitted here and discussed in the next section. All parameters in the
model below are considered unknown and to be inferred, except 𝛾, which is the precision of
the second component and assumed fixed and known. The choice of 𝛾 and its impact on the
model are discussed in Sect 3.2.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012770 February 19, 2025 9/ 22

https://doi.org/10.1371/journal.pcbi.1012770


ID: pcbi.1012770 — 2025/2/19 — page 10 — #10

PLOS COMPUTATIONAL BIOLOGY Classification of OXPHOS status in skeletal myofibres

Let 1,… , k – 1 index the control subjects, and k correspond to the patient. For i = 1,… , k – 1

Yij|mi, ci, 𝜏 ∼N (miXij + ci, 𝜏–1) , (3)

wheremi and ci are the slope and intercept of the ith subject and 𝜏 is the model precision. The
patient subject is modelled using a two-component linear mixture model, of the form

Ykj|mk, ck, 𝜏,𝛾 ∼ (1 – 𝜋)N(mkXkj + ck, 𝜏–1)
+ 𝜋N(mkXkj + ck,𝛾–1). (4)

The latent variable Zj denotes the classification of the jth patient myofibre. We assume that

Zj|𝜋 ∼ Bern(𝜋), (5)

where Bern(p) denotes a Bernoulli distribution with probability of success p.
Hierarchical priors are placed on the slope and intercept for each subject, for i = 1,… , k,

giving

mi|𝜇m, 𝜏m ∼ TN(𝜇m, 𝜏–1m , 0.1),
ci|𝜇c, 𝜏c ∼N(𝜇c, 𝜏–1c ). (6)

Here TN(𝜇,𝜎2, a) denotes a left-truncated normal distribution on the range [a,∞). We have
chosen to truncate the normal distribution as it is assumed that the correlation between mito-
chondrial mass and protein abundance is positive. The parameters 𝜇m,𝜇c, 𝜏m and 𝜏c are the
expected values and the precisions of the slope and intercept terms respectively. Their values
are inferred from the dataset, and again we defer discussion of their prior specification until
the next section.

Prior specification
The scale and shape of data differ between proteins and data collection methods. For example,
IF experiments give images with higher spatial resolution and higher bit depth compared to
IMC. Instead of attempting to construct prior beliefs for each data type, we propose using the
control data collected under the same experimental conditions. For a specific OXPHOS pro-
tein, a simple linear model is fitted to each control subject data independently, in a frequentist
setting, to gain a set of estimates of the model parameters; slope, intercept, and precision. The
resulting set of parameter estimates is used to inform our beliefs a priori by letting the mean
of each set be the expected value of 𝜇m,𝜇c and 𝜏, respectively.

The analysis aims to classify patient myofibres as being like-control or not-like-control in
comparison to a set of known healthy myofibres. Using control subject data in the construc-
tion of a prior specification, before formal inference, allows us to glean as much information
from the control subjects as possible. The choice of prior parameters which are not informed
by the control subject data is discussed below. The effect of these parameter uncertainties on
the resulting myofibre classifications are assessed in Sect 3.2.

We use normal distributions to summarise our prior beliefs about 𝜇m and 𝜇c, that is 𝜇m ∼
N (am, bm) and 𝜇c ∼N (ac, bc). The values am and ac are the means of the appropriate frequen-
tist estimates from the control data. As their expectations were informed from the control
subject data, we chose prior variances which reflect our fairly high certainty in their values
and set bm = bc = 0.252.
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We use a gamma distribution to summarise our prior beliefs about model precision, so that
𝜏 ∼Ga (g,h), where g and h denote the shape and rate. The parameters are chosen so that the
prior mode matches the mean of the model precisions obtained from the initial fit to the con-
trol subject data and the variance is 10.0, representing relatively weak beliefs about precision
uncertainty.

The parameters 𝜏m and 𝜏c are both summarised by independent gamma distributions,
𝜏m ∼Ga (gm,hm) and 𝜏c ∼Ga (gc,hc), a priori. Given the variation between samples, it is rea-
sonable to expect their values to be below 100.0 and greater than 1.0. We, therefore, chose a
prior mean and variance of 50.0; the shape and rate are then found to be gm = gc = 1.020 and
hm = hc = 51.981.

Experts have prior beliefs about the proportion of not-like-control myofibres, 𝜋, however,
these beliefs depend heavily on the patient mutation type, age, and the OXPHOS protein in
question. For this particular experiment, it is believed that no sample has a not-like-control
proportion above 50% in any protein channel [9]. To maintain some generality to analyse
all patients with the same prior, we chose a flat prior distribution on the interval [0.0.5],
described by 𝜋 ∼Uniform(0, 0.5).

The remaining parameter 𝛾 is not inferred. We choose 𝛾 to be four or five orders of mag-
nitude smaller than 𝜏 and set 𝛾 = 0.0001. The impact of different values of 𝛾 on the resulting
myofibre classifications is considered in Sect 3.2.

Fig A in S1 Appendix is a directed acyclic graph showing, for example, dependencies for
this model (which model parameters are informed by the control subject data) and highlights
the hierarchical structure of the model.

Computational methods
Inference for this model was carried out using STAN [31] via the R package rstan [32].
STAN offers an efficient exploration of the parameter space and a high effective sample size
when compared to JAGS [33], another tool for Bayesian inference. High density intervals
(HDIs), referred to throughout, were calculated using the R package HDInterval [34].
Posterior chains were checked for convergence by inspecting the multivariate and individual
effective sample sizes for each parameter chain and the R-hat and by visual inspection of trace
plots [35,36]. Chains which showed signs of non-convergence were removed. To maintain a
constant number of posterior draws, the chain with the highest minimum effective sample
size for an individual parameter was used as the basis for inference.

The Bayesian hierarchical model is more computationally intensive than the frequentist
linear model, which can classify all myofibres from an entire dataset within a few seconds.
However, we believe the computational cost of the model does not hinder its use and the
increase in predictive power outweighs any computational cost. In this dataset, there are a
total of 1,155 control myofibres and an additional 152–1,199 patient myofibres. This gives
between 1,307 to 2,354 data points per 2Dmito plot and per inference scheme. The wall clock
time to execute one run of the inference scheme (one chain) for a single patient (and control
subjects) ranged between 44 and 155 seconds. The inference scheme was run with 22,000 iter-
ations (including a 20,000 burn-in period), which we find to be satisfactory for convergence.
The code was run on a 2023 Macbook Pro with an M2 Pro chip and 16 GB of RAM.

We created an R package, analysis2Dmito, to allow the pipeline and model described
here to be used by others. It is available on GitHub, (https://github.com/jordanbchilds/
analysis2Dmito) and provides functions to fit the model and visualise the model output,
along with complete function documentation, example scripts and guides. The package
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README.md file on the repository homepage describes how to wrangle data into an appro-
priate format, for use in the main inference and plotting functions.

Observed and synthetic OXPHOS datasets and relevant R scripts specific to this
work can be found in a dedicated GitHub repository, (https://github.com/jordanbchilds/
oxphosDeficientClassification). R scripts for analysis are also available in the repository, along
with a description of their output in the README file.

Results
Model output
Using the output of the Bayesian hierarchical model, single-myofibre classifications and 95%
posterior predictive intervals for patient P09 are shown in Fig 4. All classifications can be seen
in Figs B–D in S1 Appendix. Visually, the Bayesian model has performed much better than
the frequentist model. In particular, it has not arbitrarily bisected the patient’s like-control
myofibre population, unlike the frequentist linear model. The confusion matrices, Table 2,
confirm this finding with the percentage of myofibre misclassifications ranging from 0.5% to
1.8%, for this patient. Hence at a single-myofibre level, the Bayesian model classifications are
more comparable to the manual classifications by experts than the frequentist linear model.

Updated parameter beliefs are encoded by the joint posterior distribution over all levels
of the hierarchy, for all datasets represented by a 2Dmito plot. In some cases, little is learnt
about the parameters 𝜏m and 𝜏c, and their marginal posterior distributions closely resemble
the prior specification. However, the marginal posterior distributions for the expected slope
and intercept parameters, 𝜇m and 𝜇c, show that the analysis has been informative for all cases.
Fig 5 shows the prior specification and marginal posterior distributions for the OXPHOS pro-
tein NDUFB8 in P09, shown in the left panel of Fig 4. In this dataset, the parameters 𝜇m and

Fig 4. Bayesian model correctly identifies the majority of like-control patient myofibres. Model posterior and classifications for three OXPHOS proteins for P09 with
571 myofibres (coloured points). Control myofibres are shown in grey (1,155 myofibres from four healthy subjects). Patient myofibres are shown on a scale of blue to red,
depending on their probability of being not-like-control. The 95% posterior predictive interval and fitted values for the healthy patient (log) OXPHOS abundance and
shown in green.

https://doi.org/10.1371/journal.pcbi.1012770.g004
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Table 2. Bayesian classification method consistently matches manual classification. Confusion matrices when
classifying P09 patient myofibres, comparing the Bayesian classification method to the manual classifications. A
single-myofibre was characterised as like-control if the expected marginal posterior probability of the myofibre being
not-like-control was less than 50%.

NDUFB8 CYB MTCO1
Manual Manual Manual
0 1 0 1 0 1

Bayes 0 525 10 0 525 3 0 539 2
1 0 36 1 2 41 1 1 29

https://doi.org/10.1371/journal.pcbi.1012770.t002

𝜇c do not have substantially different posterior expectations versus the prior equivalent. How-
ever, this is to be expected given the high degree of certainty assigned to their a priori values.
The analysis is particularly informative about the population slope and intercept, as seen in
the dashed lines of Fig 5. The reduction in variance seen here is primarily due to the reduction
in variance of their expected values, 𝜇m and 𝜇c. The slopes and intercepts for individual sam-
ples in the 2Dmito plot can also be seen in the bottom panels of Fig 5. The variables 𝜋 and 𝜏
also show a decrease in uncertainty, as seen in Fig 5.

Inspecting the marginal posterior distributions for the slopes and intercepts highlights the
inter-subject variability. Fig 5 shows an example of these posteriors, when fitting the Bayesian
model to data represented in one 2Dmito plot. Substantial differences can be seen between
posterior beliefs of each subject. In this example, the patient slope is much lower than the
control subjects, with no overlap in the bulk of their densities. We see a clear difference in the
posterior distribution for the model intercept between control subjects. Similar differences
can be found throughout the whole observed IMC dataset.

Sensitivity to prior specification
The inference pipeline requires the prior specification of several parameters, see Fig A in S1
Appendix. A number of prior parameters are informed by control subject data, however, sev-
eral have been selected by us. To examine the impact, and assess the robustness of the anal-
ysis to the prior parameter choices, the inference scheme was implemented with different
hyper-parameters. We first consider different values of 𝛾; recall that this parameter is not
inferred and it is sensible to assume this may impact the resulting posterior distribution and,
importantly, myofibre classifications.

We consider the mean absolute difference (MAD) between the proportion of not-like-
control myofibres predicted by the Bayesian model and the proportion found by manual clas-
sification for varying values of 𝛾. Fig 6 shows that, for the values tested, 𝛾 = 0.0001 minimises
this criterion. However, values of 𝛾 between [0.00001, 0.01] resulted in similarly low MADs,
indicating that any of these may also be appropriate.

To investigate sensitivity to prior distributions, the model was refit with two sets of pri-
ors, one with increased and one with decreased prior uncertainty. We eschew an assessment
of the prior uncertainty in 𝜋 as it has a flat prior, as discussed in Sect 2.3. However, the prior
uncertainty for all other parameters, 𝜇m, 𝜏m, 𝜇c, 𝜏c and 𝜏, was altered. The prior densities of
the altered parameters can be seen in Fig F in S1 Appendix, the prior variances were inflated
and deflated by a factor of 5.0.

The two inference schemes are inspected by their inferred value of 𝜋, see Fig G in S1
Appendix. When comparing the two posterior beliefs, no evidence of a substantial difference
between them was found for any 2Dmito plot. A difference was considered substantial if 0.0
lay outside of the posterior 95% high density interval (HDI).
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Fig 5. Marginal prior and posterior densities for all parameters after classifying myofibres from P09 by NDUFB8. Kernel density estimates of 20,000 draws from
prior (pink) and posterior (green) distributions. Posterior densities of patient slope and intercept are thick, solid green. The control posteriors are shown as transparent
green. Dotted lines indicate the population marginal densities of the population-level distributions of the slope and intercept, N (𝜇m,𝜏–1m ) and N (𝜇c,𝜏–1c ).

https://doi.org/10.1371/journal.pcbi.1012770.g005
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Fig 6. Difference between Bayesian model and manual classification is minimised at 𝛾= 0.0001. The mean abso-
lute difference (MAD) between the Bayesian proportion of difference and the manual classification calculated across
all samples and proteins within the dataset was calculated for varying values of 𝛾.

https://doi.org/10.1371/journal.pcbi.1012770.g006

Comparison with frequentist classifications
The Bayesian approach has resulted in a very different classification to the frequentist
approach. The differences are highlighted in the proportions of myofibres classified as not-
like-control by the two models. They can be seen in Fig 7, which compares the proportion of
not-like-control myofibres from the two models to that of the manual classification. The dif-
ferences between proportions for the frequentist model range between 7% and 85%, with a
mean difference of 32%, while the expected differences under the Bayesian model range from
–3% to 6%, with a mean expected posterior difference of –0.1%. Here, the expected value was
calculated as the posterior median. Further, we calculate the probability of observing the fre-
quentist linear model estimate of the not-like-control proportion or more extreme, given the
appropriate Bayesian posterior. The probabilities range is (≤ 2.0 × 10–4, 6.0 × 10–4], suggesting
a substantial difference between the estimates of the two models for all inferred proportions.

Simulation study
Generating synthetic data. We investigate the performance of the Bayesian hierarchi-

cal model using two synthetic datasets. The first, which we refer to as D01, is a dataset whose
OXPHOS abundances resemble that of the observed IMC dataset. The second, D02, has larger
OXPHOS abundances to resemble data collected by IF, which have larger protein abundance
values due to higher resolution images [14,29]. We also impose a larger inter-subject variabil-
ity in D02 to demonstrate the flexibility of the Bayesian model.

Synthetic (log) OXPHOS protein abundances were generated for the control subjects and
patient represented in each 2Dmito plot from the observed IMC dataset. To generate D01,
ground truth parameter values were randomly sampled from the posterior distributions after
fitting the Bayesian model to the data represented in each 2Dmito plot. The ground truth
OXPHOS status of each synthetic patient myofibre was independently sampled, dependent on
the ground truth proportion of not-like-control myofibres. Finally, conditioning on ground-
truth parameter values and (log) mitochondrial mass, synthetic (log) OXPHOS protein abun-
dances for like-control myofibres were sampled from component one of the hierarchical
model. For not-like-control patient myofibres synthetic (log) OXPHOS protein abundances
were sampled from a linear model with lower expectation and higher variance, relative to the
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Fig 7. The difference between the frequentist and manual estimates of the proportion of not-like-control is
larger than that of the Bayesian and manual estimates. The differences between the manual and frequentist
classifications are point estimates and are shown as triangles. The difference between the Bayesian and manual classi-
fications is distributions summarised by 5,000 posterior draws. Each posterior sample of the difference distribution is
shown as a small transparent circle. The dashed line is zero. Therefore, the distance between the dashed line and the
points is the difference in the estimated proportion of not-like control myofibres from the two methods models and
the manual classification.

https://doi.org/10.1371/journal.pcbi.1012770.g007

like-control protein abundance sampling distribution, to resemble observed under-expressed
OXPHOS abundance. To generate D02, (log) mitochondrial mass measurements were linearly
transformed and inter-subject variability was increased; the remaining steps were as above. A
detailed description of how both synthetic datasets were generated can be found in Text A in
S1 Appendix.

Model performance on simulated data. The Bayesian hierarchical model and the fre-
quentist linear model were fitted to the data represented in all synthetic 2Dmito plots. To
evaluate model performance we compare two metrics; the difference in posterior proportion
of not-like-control myofibres and the classifications of individual myofibres to the ground
truth.

After fitting the Bayesian model to D01, a total of six synthetic myofibres, from a possi-
ble 19,533, were misclassified when compared to their ground-truth states. For simplicity, the
Bayesian model single-myofibre classifications were characterised by their expected marginal
posterior probabilities of being not-like-control. If the expected probability was above 50%,
the myofibre was characterised as not-like-control and like-control otherwise. Fig L in S1
Appendix shows the 2Dmito plots of the synthetic data which contain the misclassifications.
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Five of the six misclassified myofibres were false-negatives, being classified as like-control
in contradiction to their ground-truth. For all five false-negative classifications, the single-
myofibre OXPHOS protein abundances closely resemble that of the like-control myofibres.
The one false-positive classification was for an unusually high protein abundance when com-
pared to the rest of the data and it lay outside the 95% posterior predictive interval for like-
control OXPHOS protein abundance. Synthetic myofibres showing abnormally high or low
abundances are expected when randomly generating large numbers of synthetic data points
and thus some misclassifications are to be expected.

The posterior 99% HDIs for 𝜋 contain the ground-truth value for all patients and
OXPHOS proteins, showing no evidence of a difference. The range of the expected poste-
rior differences between the Bayesian hierarchical model proportion of not-like-control and
ground-truth is [–0.07, 0.03]. In contrast, the range of the differences between the frequen-
tist model estimate of the not-like-control proportion and the ground-truth is [–0.006, 0.868].
The posterior probability of observing the frequentist linear model estimates of not-like-
control proportion or more extreme, given the Bayesian posterior, is less than 1% for 24 out
of 33 estimates in D01. This suggests substantial differences between the classifications of the
two models. The difference between the ground-truth not-like-control proportion and those
learnt from the two models can be seen in Fig K in S1 Appendix.

For D02, the Bayesian model shows a better fit to the ground-truth than the frequentist
linear model, with an expected error in not-like-control proportion between [–0.036, 0.055]
compared to [–0.042, 0.881] under the frequentist model. Again, all ground-truth not-like-
control proportions are found within the corresponding posterior 99% HDI, see Fig N in
S1 Appendix. As with D01, the model results in some false-negative misclassifications for
synthetic myofibres which have abnormally high OXPHOS abundances, see Fig O in S1
Appendix.

Finally, we examine the susceptibility of the Bayesian model to over-fitting by randomly
splitting D01 into training and validation subsets, with an 80-20 split. The Bayesian hierarchi-
cal model parameters were inferred using only the training data, and the marginal posterior
probability of being not-like-control was calculated for all synthetic single-myofibres. These
posterior probabilities were compared to those found when inferring parameters on the whole
dataset. No evidence of a difference between them was found, by checking that 0.0 lay within
the posterior difference 99% HDI, underlining the predictive power of the model.

Discussion
The proportion of not-like-control myofibres can be an important tool for quantifying the
pathological progression of disease over time in skeletal muscle, as well as the effect of dis-
ease treatments by comparing the proportions of not-like-control myofibres before and after
treatment. Being able to robustly identify like-control (assumed to be healthy) and not-like-
control (assumed to have some OXPHOS defect) myofibres within the same individual allows
for their direct comparison and to learn about other differences associated with dysfunction.

We have proposed a Bayesian hierarchical model to classify single-myofibres as having
mitochondrial dysfunction based on their OXPHOS protein abundance. The model accounts
for inter-subject variability by implementing a hierarchical model, borrowing strength
between control and patient subjects. In contrast, the frequentist linear model’s binary classi-
fications, the Bayesian inference scheme infers a posterior probability of each patient myofibre
being not-like-control, integrating over parameter uncertainty.

The Bayesian model has classifications in agreement with experts’ beliefs compared to the
existing frequentist linear model. It has been shown to identify groups of like-control patient
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myofibres, which the frequentist model misclassified. Additionally, the posterior beliefs of the
Bayesian model for both single-myofibre classifications and, consequently, not-like-control
proportions show substantially higher agreement with expert manual classification. Allowing
for a more robust classification pipeline, which does not rely on the more subjective manual
classifications.

When assessing the performance of the two models on synthetic datasets, the Bayesian
model outperformed the frequentist linear model, showing better agreement with the ground-
truth OXPHOS status of single-myofibres and not-like-control myofibre proportions. We also
found that the Bayesian model performed well when the synthetic data was split into training
and validation subsets, showing no evidence of different myofibre classifications compared to
fitting the model to the whole dataset.

We use a prior construction pipeline which allows for a prior to be informed by previous
experiments, or, as used here, control subject data. Prior sensitivity was explored by inflating
and deflating their prior uncertainty, without including unrealistic areas of the support. These
findings suggest that the results obtained are relatively insensitive to the prior specification.
The prior specification was also implemented on the synthetic datasets, showing different
OXPHOS profiles and scales, where the model was able to retrieve ground-truth parameter
values and single-myofibre classifications.

The model can be fitted by our R package, analysis2Dmito, available on GitHub
(https://github.com/jordanbchilds/analysis2Dmito). The package allows the user to fit the
model, executing the Bayesian inference via STAN [31], and automatically constructs prior
distributions based upon the pipeline shown here. If desired, the user can specify prior
parameters; however, the choice of prior distributions cannot be changed. Given the extensive
range of prior beliefs that can be constructed using the distributions implemented, we believe
this is not impactful.

The model has limitations; it requires healthy patient myofibres to show a linear relation-
ship in log OXPHOS protein abundance and log mitochondrial mass, similar to the con-
trols, and be distinct from OXPHOS abundances from not-like-control myofibres. Due to the
large and fixed precision of the second component in the Bayesian model, the model can suc-
cessfully work on a range of not-like-control proportions and mutations. However, an over-
whelming number of not-like-control myofibres would increase the likelihood of the linear
regression fitting to the not-like-control population, resulting in misclassification. As such,
this classification approach is unreliable for patients with more than 50% not-like-control
myofibres. In a diagnostic context, the proportion of affected myofibres cannot be known
a priori. Nevertheless, for patients with fewer than 50% of not-like-control myofibres, our
approach greatly outperforms the current frequentist approach.

Here, we developed a Bayesian hierarchical approach to classify myofibres as like-control
or not-like-control with respect to their OXPHOS protein abundance and demonstrated that
it is comparable to expert manual classification. The Bayesian hierarchical model allows for
the natural variation between subjects and significantly improves previous methods.

Supporting information
S1 Appendix. Text A. Description of synthetic data generation. Fig A. Directed acyclic graph
of the Bayesian hierarchical linear regression model. Inferred parameters are shown in cir-
cles, and known parameters are shown within boxes. Boxes highlighted in blue are informed
by the control data, and the boxes highlighted in yellow are chosen by us. The functions m(⋅)
and v(⋅) indicate the mode and variance for a parameter. The dotted boxes enclosing param-
eters indicate which parameters occur for every sample (the outer box) and which occur for
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every myofibre in a sample (the inner box). For simplicity, a new variable is introduced, ̂𝜏ij,
the precision used to model the jth myofibre in the ith sample. It is defined as 𝜏, if i is a con-
trol or Zj = 0, and 𝛾 otherwise. Fig B–D. Posterior myofibre classifications and posterior 95%
predictive interval for all OXPHOS proteins and patients. Protein abundances from all control
subjects are shown in black. The patient myofibres are coloured on a scale from red to blue,
red being not-like-control and blue being healthy, based on their posterior expected marginal
probability of being not-like-control. The posterior expected value and 95% predictive inter-
val for the linear model fit to the healthy patient cells are shown as solid and dashed green
lines. Fig E. Posterior beliefs of the proportion of myofibres with are not-like-controls for all
patients and OXPHOS proteins. Twenty thousand draws from their posterior distributions
represent the beliefs. Fig F. Wide and narrow prior distributions used to inspect the impact of
parameter uncertainty. The two sets of prior distributions for all patients and OXPHOS pro-
tein NDUFB8, used in Sect 3.2 to assess hyperparameter uncertainty, which we chose and not
informed from the control data. Fig G. No difference in the not-like-control proportion from
models with varying amounts of prior uncertainty. The difference in the 𝜋 posterior between
the original priors and the narrow/wider ones. The prior variance for the precisions, 𝜏m, 𝜏c
and 𝜏, were increased or decreased by a factor of 5.0 for the wide and narrow priors, respec-
tively. The prior variance for the expected slope and intercept, 𝜇m and 𝜇c, were increased and
decreased by a factor of 5.0. Fig H. Synthetic data generated for patient P12, D01. OXPHOS
protein abundances for control data are shown by black points and synthetic patient data is
shown in coloured points. Synthetic patient myofibres are coloured blue if their ground-truth
state is like-control and red with a yellow dot if their ground-truth state is not-like-control.
Fig I. The Bayesian hierarchical model able to find ground-truth parameter values in syn-
thetic dataset D01. Posterior beliefs and model fit for OXPHOS protein in patient P09, of the
synthetic dataset D01. Ground-truth parameter values, used to generate the data, are shown
with vertical dotted lines. Prior and posterior beliefs are shown in pink and green respec-
tively for all parameters except the slope and intercept for control subjects. Each subject was
given a different colour to distinguish between ground-truth values for each control subject.
The 2Dmito plot shows the 95% posterior predictive interval and expected value for the lin-
ear model fitted to the patient subject. Fig J. The Bayesian hierarchical model more accurately
estimates the not-like-control proportion compared to the frequentist model in synthetic data
D01. The posterior difference between the ground-truth not-like-control proportion and the
Bayesian hierarchy’s beliefs. Also shown are the differences between the frequentist estimates
and the ground-truth. Stars indicate the probability of observing the frequentist linear model’s
estimate, given the Bayesian posterior, is greater than 1%. Fig K. Misclassifications of syn-
thetic data D01 are due to data overlap. Synthetic OXPHOS data and the posterior predic-
tive of the Bayesian hierarchical model. Posterior Bayesian classifications are simplified to be
whether the expected marginal posterior probability of being not-like-control is above 0.5.
Misclassifications are highlighted with a yellow square or diamond, depending on the mis-
classification type, see legend. Fig L. Synthetic data generate for patient P12, D01. OXPHOS
protein abundances for control data are shown by black points and synthetic patient data is
shown in coloured points. Synthetic patient myofibres are coloured blue if their ground-truth
state is like-control and red with a yellow dot if their ground-truth state is not-like-control.
Fig M. The Bayesian hierarchical model able to find ground-truth parameter values in syn-
thetic dataset D02. Posterior beliefs and model fit for OXPHOS protein in patient P12, of the
synthetic dataset D02. Ground-truth parameter values, used to generate the data, are shown
with vertical dotted lines. Prior and posterior beliefs are shown in pink and green respectively
for all parameters except the slope and intercept for control subjects. Each subject was given
a different colour to distinguish between ground-truth values for each control subject. The
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2Dmito plot shows the 95% posterior predictive interval and expected value for the linear
model fitted to the patient subject. Fig N. The Bayesian hierarchical model more accurately
estimates the not-like-control proportion compared to the frequentist model with synthetic
data D02. The posterior difference between the ground-truth not-like-control proportion and
the Bayesian hierarchy’s beliefs. Also shown are the differences between the frequentist esti-
mates and the ground-truth. Stars indicate the probability of observing the frequentist lin-
ear model’s estimate, given the Bayesian posterior, is greater than 1%, showing a lack of sig-
nificance between the two methods. Fig O. Misclassifications of synthetic data D02 are due
to data overlap. Synthetic OXPHOS data and the posterior predictive of the Bayesian hier-
archical model. Posterior Bayesian classifications are simplified to be whether the posterior
expected marginal probability of being not-like-control is above 0.5. Misclassifications are
highlighted with a yellow square or diamond, depending on the misclassification type, see
legend.
(PDF)
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