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1. Introduction

Harmonic weak Maass forms are real-analytic generalizations of classical modular 
forms with applications in combinatorics, number theory, as well as representation theory 
and physics (see for instance [6] and the references therein). They were first introduced by 
Bruinier and the second author [5] in the context of theta lifts. A harmonic weak Maass 
form of weight k ∈ 1

2Z for a congruence subgroup Γ of SL2(Z) is a smooth function 
F : H → C on the complex upper half-plane H = {τ ∈ C : Im(τ) > 0} that transforms 
like a classical modular form under Γ, but which is harmonic rather than holomorphic 
(see Section 2.1 for a precise definition). If F has poles in H it is called polar harmonic 
weak Maass form.

Harmonic weak Maass forms are inherently connected to deep number-theoretic ques-
tions. A beautiful example is Zwegers’ work [34] who showed that Ramanujan’s mock 
theta functions are holomorphic parts of harmonic weak Maass forms. Such functions are 
also called mock modular forms [33]. Harmonic weak Maass forms also appear promi-
nently in the Kudla program and numerous other places in mathematics.

The ξ-operator

ξk = −2ivk ∂

∂τ
, τ = u + iv,

plays a crucial role in relating the theory of classical modular forms to harmonic weak 
Maass forms. It defines a surjective map from the space Hk of harmonic weak Maass 
forms of weight k to the space S2−k of cusp forms of weight 2 − k. The image under 
the ξ-operator is called the shadow of the corresponding harmonic weak Maass form. In 
particular, there are infinitely many preimages in the space Hk for any given cusp form in 
S2−k, yet they are surprisingly difficult to construct. The quest for distinguished preim-
ages under the ξ-operator is a fundamental question, and as cusp forms are omnipresent 
in number theory, the construction of distinguished preimages offers new routes to tackle 
related problems. For instance, [11, Theorem 1.4] provides an equivalent formulation of 
Lehmer’s famous conjecture on the non-vanishing of Ramanujan’s τ -function, defined by

Δ(τ) =
∞ ∑

n=1
τ(n)qn = q

∞ ∏
k=1

(1 − qk)24,

in terms of the transcendence of the Fourier coefficients of a suitable preimage of Δ
under ξ.

A further remarkable application of finding distinguished preimages is to the theory 
of special values of L-functions. Bruinier and Ono [10] gave a vanishing criterion for both 
the special values of the L-functions L(Ed, 1) of quadratic twists of rational elliptic curves 
Ed, as well as their derivatives L′(Ed, 1). The criterion for the vanishing of the central 
value is based on results of Kohnen and Zagier [22] and Waldspurger [31]. The vanishing 
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of the central derivative is related to the rationality of the Fourier coefficient of a half-
integral weight harmonic weak Maass form. In joint work with Griffin, Ono, and Rolen 
[1] the first author constructed these half-integral weight forms explicitly by defining a 
distinguished preimage under the ξ-operator of the weight 2 cusp form associated to the 
elliptic curve Ed via the modularity theorem. To obtain a half-integral weight form they 
consider a theta lifting of this preimage. This approach has the advantage that all forms 
can be computed explicitly.

Such a non-vanishing criterion is expected to hold in the much more difficult setting 
of modular forms of weight k > 2 as well. Geometrically this case is far more involved 
as one leaves the world of algebraic varieties when replacing elliptic curves by Kuga-
Sato varieties. Our result can be seen as a first step towards an explicit construction of 
the half-integral weight harmonic weak Maass forms in this case complementing recent 
results of Bruinier, Schwagenscheidt, and the first author [2] who partly generalized the 
original approach of Bruinier and Ono.

There are various approaches to the problem of finding good ξ preimages: Bruinier 
[14] and Bringmann and Ono [9] showed that certain real-analytic Poincaré series, orig-
inally introduced by Niebur [26], map to the classical exponential type Poincaré series 
of dual weight under the ξ-operator, provided that they converge, e.g. when the weight 
is negative. The coefficients of cuspidal Poincaré series are however not easy to handle, 
both practically and theoretically.

Another approach to the problem uses the non-holomorphic Eichler integral

g∗(τ) =
∞ ∫

−τ

f(−z)
(−i(z − τ))k dz

for a cusp form g of weight 2 − k, as proposed and used first in work by Andrews, 
Rhoades, and Zwegers [3] as well as Dabholkar, Murthy, and Zagier [17]. Using a suit-
able auxiliary holomorphic cusp form h and holomorphic projection, they construct a 
harmonic weak Maass form F (τ) of weight k such that ξkF = cg for some constant c. 
This approach is particularly well-suited when g is a unary theta function, since then the 
Fourier coefficients of the holomorphic projection can be evaluated explicitly (see also 
[25,24]).

Recently, Ehlen, Li, and Schwagenscheidt [19] gave an explicit procedure to find a good
preimage of a CM modular form, i.e. a newform which is invariant under twisting by a 
quadratic character (see e.g. [16, Definition 13.3.24]), using a certain theta lift. It is known 
from previous work by Bruinier, Ono, and Rhoades [11] that such good preimages always 
exist and in particular that their holomorphic parts have algebraic Fourier coefficients 
at ∞. Using their explicit construction, Ehlen, Li, and Schwagenscheidt could pinpoint 
the exact algebraic number field containing these Fourier coefficients.

In this work we focus on the geometric approach and generalize the above mentioned 
work of Griffin, Ono, Rolen, and the first author [1]. They construct harmonic weak 
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Maass forms whose shadows are given by newforms of weight 2 with rational coefficients, 
generalizing previous work by Guerzhoy [20].

Let E be an elliptic curve defined over Q and let GE be the corresponding newform of 
weight 2 for a congruence subgroup Γ0(N) of SL2(Z) via the modularity theorem. Over 
C, E is isomorphic to a torus C/ΛE , with the isomorphism given by

℘′(z)2 = 4℘(z)3 − g2℘(z) + g3,

where ℘ is the Weierstrass ℘-function for the lattice ΛE, and g2, g3 are the normalized 
Eisenstein series for the lattice ΛE .

The Weierstrass ζ-function

ζΛE
(z) = 1 

z
+

∑
ω∈ΛE\{0}

(
1 

z − ω
+ 1 

ω
+ z

ω2

)
, (1.1)

is not itself invariant under shifts by lattice points, but has a well-known non-analytic 
completion ζ∗ΛE

(z) which is indeed invariant under ΛE. This completion allows one to 
construct a canonical preimage ZE of the modular form GE under the operator ξ0 by 
taking

ZE(τ) = ζ∗ΛE
(EE(τ)),

where EE(τ) =
∫∞
τ

GE(t)dt is the holomorphic Eichler integral. The error to modularity
of the Eichler integral is determined by the lattice, i.e. EE(γτ) = EE(τ)+ω, for γ ∈ Γ0(N)
and for some ω ∈ ΛE , giving the Γ0(N)-invariance of ZE(τ). We recall the details of this 
construction in Section 3.

These preimages ZE can be computed very efficiently and are also of theoretical 
interest. In [1], they were used to obtain a criterion for the vanishing of critical L-
derivatives of quadratic twists of E. Another application in the context of vertex operator 
algebras can be found in [8].

In the current work we generalize the above construction to newforms f with ratio-
nal Fourier coefficients of weight k ≥ 2, for a congruence subgroup Γ ⊂ SL2(Z), with 
Γ1(N) ⊂ Γ for some integer N . Our construction involves vector-valued forms. For sim-
plicity we restrict to the easiest case in the introduction and focus on describing the 
central ideas of our work.

We start by noting that a modular form f of weight k ≥ 2 gives a vector-valued 
modular form G : H → Symk−2(C2) of weight 2 by taking

G(τ) = cf(τ)(τe1 + e2)k−2, (1.2)

where (e1, e2) is a fixed basis of C2 and Symk−2(C2) is the (k−2)-th symmetric power of 
C2, which can be realized as the space of homogeneous polynomials in e1 and e2 of degree 
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k − 2, and c is a constant. Note that this construction of vector-valued modular forms 
goes back to classic work of Kuga and Shimura [21]. For further details, see Section 2.3.

The construction involves two central elements: a vector-valued generalization of the 
Weierstrass ζ-function ζ̂ and the polynomial Eichler integral Ef .

In the simplest case (see Section 6), we define the multivariable function ζ : H ×
Ck−1 → Symk−2(C2) by

ζ(τ, z) =
k−2∑
j=0 

ζΛτ
(zj)cjej1e

k−2−j
2 , cj =

(
k − 2
j

)
, Λτ = Z + Zτ, (1.3)

where τ ∈ H and z = (z0, . . . , zk−2) ∈ Ck−1. It has a natural completion

ζ̂(τ, z) =
k−2∑
j=0 

ζ∗Λτ
(zj)cjej1e

k−2−j
2 , (1.4)

where ζ∗Λτ
is the completion of the classical Weierstrass ζ-function. Our first main result 

is the general construction of Jacobi–Weierstrass ζ-functions ζ̂.

Theorem 1.1. The function ζ̂ is a (non-holomorphic) Jacobi form of weight 1 and index 
0, invariant under the lattice Λk−1

τ .

To construct the higher degree generalization ζ̂ of the completed Weierstrass ζ-
function we follow Rolen [29]. The key point is to write the ζ-function as the logarithmic 
derivative of the Weierstrass σ-function which in turn is essentially given by a multiple 
of Jacobi’s theta function. This definition of the σ-function can be generalized to higher 
degree by giving an analogous construction using a Jacobi theta function of lattice index. 
Replacing the logarithmic derivative by a suitable weight raising operator we obtain the 
Jacobi–Weierstrass ζ-function.

We then use the Jacobi–Weierstrass ζ-function to construct the natural preimages of 
a cusp form f of weight k, by evaluating the Weierstrass ζ-function at the polynomial 
Eichler integral Ef : H× SL2(Z) → Symk−2(C2),

Ef (τ, (X1, X2)) =
∞ ∫
τ

f(t)(tX1 + X2)k−2dt, (1.5)

for τ ∈ H and M =
(
a b
c d

)
∈ SL2(Z), where (X1, X2) = (e1, e2)M is the change of basis 

of C2.
To realize this, we first extend the Jacobi–Weierstrass ζ-function to include a possible 

change of basis for the space C2, given by M =
(
a b
c d

)
∈ SL2(Z), as follows

ζ̂M (τ, z) =
k−2∑
j=0 

ζ∗Λτ
(zj)Xj

1X
k−2−j
2 , (X1, X2) = (e1, e2)M. (1.6)
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This gives the vector-valued Jacobi form ζ̂ : H×Ck−1×SL2(Z) → Symk−2(C2) where we 
write ζ̂(τ, z,M) = ζ̂M (τ, z). Fixing further the standard basis of C2, we take the natural 
isomorphism Symk−2(C2) � Ck−1, which gives us the most general Jacobi–Weierstrass 
function ζ̂ : H× Symk−2(C2)× SL2(Z) → Symk−2(C2). This form was carefully defined 
to account for the various actions of the subgroup Γ on the upper-half plane H and 
Symk−2(C2) (compare Section 5).

Finally, we define the vector-valued form F : H× SL2(Z) → Symk−2(C2) by taking

F (τ,M) = ζ̂M (Λf , Ef (τ, (e1, e2)M−1)), (1.7)

where Λf is the lattice corresponding to f (see Section 2.4, in particular Remark 2.3).
We note that F can also be written as a vector-valued form F : H → V , valued in the 

infinite-dimensional vector space V = Functions
{

SL2(Z) → Symk−2(C2)
}

, by sending 

F (τ) to the function M → F (τ,M) in V .
The main result of the paper is the following:

Theorem 1.2. The function F : H → V is a vector-valued polar harmonic weak Maass 
form of weight 0 for Γ, whose image under ξ0 is given by

G(τ) = 2πi 
Vol(Λf )f(τ)(τe1 + e2)k−2.

Note that in the case of k = 2 the functions we obtain through our construction are 
in fact constant in the SL2(Z)-variable, therefore we recover the results from [1]. The 
poles of F are explicitly computed in Proposition 6.3.

Remark 1.3. The naive approach of fixing a basis (e1, e2) of C2 and plugging in the 
Eichler integral directly ζ̂(Λf , Ef (τ, (e1, e2))) loses the Γ-invariance. In general we do not 
have a compatibility between the action of Symk−2(C2) on the outside and on the inside, 
meaning that

ζ̂ (Λf , Ef (τ, (e1, e2))) �= γ · ζ̂ (Λf , Ef (γτ, (e1, e2))) .

By controlling the change of basis with the extra variable M ∈ SL2(Z) we insure the 
Γ-invariance of the vector-valued form F .

The paper is organized as follows. In Section 2 we introduce the notion of harmonic 
weak Maass forms, give the necessary background on representation theory, and in-
troduce the vector-valued Eichler integral. In Section 3 we review the construction of 
Weierstrass harmonic weak Maass forms in the case of weight 2. The generalization to 
higher degree of the completed Weierstrass ζ-function is given in Section 4. Section 5 con-
tains our main result, namely the construction of the vector-valued Jacobi–Weierstrass 
harmonic weak Maass form F : H → V . In Section 6 we compute the Laurent expansion 
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of the Jacobi–Weierstrass ζ-function and the poles of the polar harmonic weak Maass 
form F . In Section 7 we provide two examples of our construction.

Acknowledgements

We thank Jan Bruinier, Charlotte Dombrowsky and the referees for comments on the 
manuscript.

2. Preliminaries

Throughout this paper we let Γ be a congruence subgroup of SL2(Z) such that 
Γ1(N) ⊂ Γ for some positive integer N , and Γ1(N) = {γ ∈ SL2(Z) : γ ≡

( 1 ∗
0 1

)
mod N}. 

We call f a newform for Γ if it is a newform (see below) for Γ1(N).

2.1. Harmonic weak Maass forms

By Mp2(R) we denote the metaplectic group consisting of pairs (γ, φ), where γ =(
a b
c d

)
∈ SL2(R) and φ : H → C is a holomorphic function with φ(τ)2 = cτ + d. We let 

Mp2(Z) be the inverse image of SL2(Z) under the covering map Mp2(R) → SL2(R).
A twice continuously differentiable function F : H → C is called a harmonic weak 

Maass form of weight k ∈ 1
2Z for Mp2(Z) if it satisfies

1. ΔkF = 0, where Δk = −v2
(

∂2

∂u2 + ∂2

∂v2

)
+ ikv

(
∂
∂u + i ∂

∂v

)
is the hyperbolic weight k

Laplace operator and we write τ = u + iv ∈ H.
2. F (τ)|k(γ, φ) := φ(τ)−2kF (γτ) = F (τ) for (γ, φ) ∈ Mp2(Z).
3. There is a Fourier polynomial PF (τ) =

∑
n≤0 a

+(n)qn, called the principal part of 
F , such that

F (τ) − PF (τ) = O(e−εv)

as v → ∞, uniformly in u, for some ε > 0. A similar conditions holds at all cusps.

We define harmonic weak Maass forms of integral weight k ∈ Z transforming with 
respect to the group Γ accordingly. The space of harmonic weak Maass forms of weight 
k with respect to Γ is denoted by Hk(Γ). If F has poles on H it is called polar harmonic 
weak Maass form. A harmonic Maass form which is holomorphic on H is called a weakly 
holomorphic modular form, the space of such forms is denoted by M !

k(Γ). Among these 
functions, (holomorphic) modular forms are those which remain bounded approaching 
the cusps of Γ and if they even vanish at all cusps, we refer to them as cusp forms. 
The spaces of these forms are denoted by Mk(Γ) and Sk(Γ). Finally, a newform of 
level N is a cusp form f ∈ Sk(Γ1(N)) which is an eigenform under all Hecke operators
(essentially this means that their Fourier coefficients are multiplicative) and orthogonal 



8 C. Alfes et al. / Advances in Mathematics 465 (2025) 110147 

to all oldforms, i.e. the space generated by all forms f(dτ) with f ∈ Sk(Γ1(M)), M | N
and d | (N/M).

For further background on harmonic Maass forms, we refer the reader to [6,27,33] 
and the references therein. For background on (classical) modular forms, the reader may 
consult for instance [16,18,23] or a vast number of further textbooks on the subject.

2.2. The Jacobi theta function

Let L � Zg be an even lattice with positive definite inner product defined through 
(v, w) := vtGLw, where GL is the Gram matrix of L, a symmetric matrix with integer 
entries and even entries on the diagonal, and let V = L⊗ C � Cg with quadratic form 
Q(v) = (v, v) /2.

Definition 2.1. Let τ ∈ H and z ∈ Cg. We define the Jacobi theta function by

θ(τ, z) =
∑
�∈L 

eπi(�,�)τe2πi(�,z).

The following two transformation properties of θ(τ, z) are well-known

θ(τ, z + mτ + n) = e−πiτ(m,m)e−2πi(z,m)θ(τ, z), m,n ∈ Zg, (2.1)

θ (τ + 1, z) = θ(τ, z). (2.2)

Under the additional assumption that L is unimodular, see e.g. [12], it follows from 
Poisson summation that

θ

(
−1 
τ
,
z

τ

)
= (τ/i)g/2e2πiQ(z)

τ θ(τ, z). (2.3)

These functional equations imply that θ(τ, z) is a Jacobi form of weight g/2 and index 
1
2GL in the sense of [7] for the full Jacobi group SL2(Z)⋉ (Zg)2. If L is not unimodular, 
θ(τ, z) is a Jacobi form for some suitable congruence subgroup JL = ΓL ⋉ (Zg)2 of the 
full Jacobi group (compare [12, Corollary 3.34, 3.35]).

We follow Böcherer–Kohnen [7] and define the slash operator by

(φ|k,mLA)(τ, z) := φ

(
aτ + b

cτ + d 
,
z + mτ + n

cτ + d 

)
(
√
cτ + d)−2k

e
2πim

(
−c 2Q(z+mτ+n)

(cτ+d) +(m,m)τ+2(m,z)
)
,

where A =
[((

a b
c d

)
,
√
cτ + d

)
, (m,n)

]
∈ Mp2(Z) ⋉ (Zg)2 and k,m ∈ 1

2Z. Then the 
condition that θ is a Jacobi form for the Jacobi subgroup JL is equivalent to

θ|g/2,1/2A = θ, for A ∈ JL. (2.4)
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As in [13] we now define a weight raising operator for Jacobi forms by

Y
g/2,1/2L
+,zj = ∂

∂zj
+ 2πi Im((GLz)j)

Im(τ) , (2.5)

where z = (z1, . . . , zg) ∈ Cg. As we will show in Proposition 4.6, we have

Y
g/2,1/2L
+,zj θ = (Y g/2,1/2L

+,zj θ)|g/2+1,1/2A (2.6)

for A =
[((

a b
c d

)
,
√
cτ + d

)
, (m,n)

]
∈ JL and k ∈ 1

2Z.

2.3. A little bit of representation theory

We let W (= C2) be the standard complex representation of SL2(Z) and let 〈 , 〉 be the 
usual symplectic form on W with standard basis e1, e2. This defines an integral structure 
on W . We let Wm = Symm W be the irreducible representation of dimension m + 1 of 
highest weight m. Weight vectors are (multiples of) ej1e

m−j
2 with corresponding weight j

with respect to the standard rationally split torus S = {
(
t 0
0 t−1

)
: t ∈ R}. Here we write 

vk for the symmetric tensor v • v • · · · • v.
Note that Wm is self-dual, i.e. Wm � W ∗

m, where the isomorphism is induced by the 
symplectic form on W . We will not distinguish between Wm and W ∗

m.
The action of SL2(Z) on Wk−2 = Symk−2(C2) is given by acting on the basis on C2, 

i.e.

M ◦ (e1, e2) := (e1 e2 )M = (ae1 + ce2 be1 + de2 ) , for M =
(
a b
c d

)
∈ SL2(Z).

We recall the usual action of SL2(Z) of the upper-half plane H by fractional linear 
transformations Mτ = aτ+b

cτ+d for M =
(
a b
c d

)
∈ SL2(Z). Moreover, we denote by j(M, τ) =

cτ + d the factor of automorphy.
We then have

M−1 ◦ ((Mτ)e1 + e2)k−2 = j(M, τ)2−k(τe1 + e2)k−2 (2.7)

for M ∈ SL2(Z).
For a modular form f of weight k for the congruence subgroup Γ, this directly implies 

that the holomorphic 1-form on H given by

ηf := f(τ)dτ ⊗ (τe1 + e2)k−2

satisfies γ−1 ◦ ηf (γτ) = ηf (τ) for γ ∈ Γ.
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2.4. Eichler integrals

Throughout this section let f be a cusp form of weight k for some finite index subgroup 
Γ of SL2(Z) and let (X1, X2) be a basis for W . We define the Eichler integral of f by

Ef (τ, (X1, X2)) =
∞ ∫
τ

f(t)(tX1 + X2)k−2dt. (2.8)

It defines a function Ef : H × SL2(Z) → Symk−2(C2), where the basis (X1, X2) above 
corresponds to a matrix M ∈ SL2(Z) such that (X1, X2) = M ◦ (e1, e2). Note that we 
recover the usual (scalar-valued) Eichler integral by identifying Wm with the space of 
homogeneous polynomials of degree m in two variables X,Y and by replacing X1 by 1
and X2 by τ .

For γ ∈ Γ we consider

Ef (γτ, γ−1 ◦ (X1, X2)) =
∞ ∫

γτ

f(t)
[
γ−1 ◦ (tX1 + X2)k−2] dt, γ ∈ Γ.

Lemma 2.2. Let f be a cusp form of weight k for Γ, we have

Ef (γτ, γ−1 ◦ (X1, X2)) = Ef (τ, (X1, X2)) −
k−2∑
�=0 

(
k − 2
� 

)
X�

1X
k−2−�
2

∞ ∫
γ−1∞

f(t)t�dt,

for γ ∈ Γ and (X1, X2) a basis of C2.

Proof. Identity (2.7) implies

Ef (γτ, γ−1 ◦ (X1, X2)) =
∞ ∫

γτ

f(t) ·
[
γ−1 ◦ (tX1 + X2)k−2] dt

=
γ−1∞∫
τ

f(t)(tX1 + X2)k−2dt.

We split the integral

γ−1∞∫
τ

f(t)(tX1 + X2)k−2dt =
∞ ∫
τ

f(t)(tX1 + X2)k−2dt−
∞ ∫

γ−1∞

f(t)(tX1 + X2)k−2dt

and use the binomial expansion to obtain the result. �
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We now recall some facts about modular symbols. Further details and background may 
be found for instance in Chapters 8 and 10 in [30]. Let Mk denote the module of modular 
symbols, i.e. the Z-module generated by symbols P{α, β}, where P ∈ Z[X,Y ]k−2 is a 
homogeneous polynomial of degree k − 2 with integer coefficients and α, β ∈ P 1(Q) are 
cusps, modulo the relations obtained from

{α, β} + {β, γ} + {γ, α} = 0

and all torsion. The group Γ acts from the left on modular symbols by combining the 
usual action on P 1(Q) via Möbius transformations and on homogeneous polynomials 
defined by

(
(
a b
c d

)
, P ) �→ P (dX − bY,−cX + aY ).

We denote by Mk(Γ) the module of modular symbols modulo all torsion and all relations 
obtained from x − γ.x where x ∈ Mk and γ ∈ Γ. Every cusp form f ∈ Sk(Γ) defines a 
pairing

Φf : Mk(Γ) → C, (f, P{α, β}) �→
β∫

α 

f(t)P (t, 1)dt, (2.9)

which is consistent with the action of Hecke operators. If f is a normalized newform with 
integral coefficients, then the image Φf (Mk(Γ)) is a lattice Λf in C.

Remark 2.3. We write

Ef (τ, (X1, X2)) =
k−2∑
�=0 

E�,f (τ)c�X�
1X

k−2−�
2 , (2.10)

with c� =
(
k−2
� 
)

and E�,f (τ) =
∫∞
τ

f(t)t�dt. If f has integral coefficients, the considera-
tions above imply that

E�,f (γτ) − E�,f (τ) ∈ Λf . (2.11)

For k = 2 and Γ = Γ0(N), the lattice Λf coincides with the period lattice of the rational 
elliptic curve associated to f .

We now choose the basis {c�X�
1X

k−2−�
2 }0≤�≤k−2 of Symk−2(C2). In these coordinates 

the Eichler integral is given as

Ef (τ, (X1, X2)) = (E0,f (τ), . . . , Ek−2,f (τ))(X1,X2). (2.12)

For later convenience, we reformulate Lemma 2.2 in a slightly different fashion.
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Lemma 2.4. The Eichler integral Ef (τ, (X1, X2)) is Λk−1
f -invariant under the Γ-action, 

meaning that for γ ∈ Γ we have

(E0,f (γτ), . . . , Ek−2,f (γτ))γ−1◦(X1,X2) = (E0,f (τ), . . . , Ek−2,f (τ))(X1,X2) + ω,

with ω = (λ0, . . . , λk−1)(X1,X2) and each λi ∈ Λf .

A straightforward computation gives the Fourier expansion of the coefficients Ef,�(τ).

Lemma 2.5. For a cusp form f ∈ Sk(Γ) with a Fourier expansion f(τ) =
∑
n≥1

anq
n we 

have

Ef,�(τ) =
∞ ∫
τ

f(t)t�dt =
∑
n≥1

an
2πn

⎛⎝ � ∑
j=0 

�! 
(�− j)!

(
i 

2πn

)j

τ �−j

⎞⎠ qn.

As is also apparent directly from the definition, Ef,� is not 1-periodic except when 
� = 0. In general the Fourier coefficients of Ef,� are polynomials in τ .

2.5. Change of basis

We note that each basis (X1, X2) of C2 gives rise to a basis
{c�X�

1X
k−2−�
2 }0≤�≤k−2 of Symk−2(C2). Let z = (z0, . . . ,zk−2) ∈ Ck−1. We write

(z)t(X1,X2) = (z0, . . . , zk−1)t(X1,X2) =
k−2∑
�=0 

z�c�X
�
1X

k−2−�
2 (2.13)

for the corresponding element in Symk−2(C2). Then the action of SL2(Z) is given by

M ◦ (z)t(e1,e2) := (z)tM◦(e1,e2).

This gives a change of basis from the standard basis {c�e�1ek−2−�
2 }0≤�≤k−2 of Symk−2(C2)

to the basis {c�X�
1X

k−2−�
2 }0≤�≤k−2, where (X1, X2) = M ◦ (e1, e2). We describe this 

change of basis explicitly.

Lemma 2.6. Let M =
(
a b
c d

)
∈ SL2(Z). Then

(z)tM◦(e1,e2) = N(M)(z)t(e1,e2)

for a matrix N(M) ∈ GLk−1(Z), whose entries (N�t)0≤�,t≤k−2 are given by

N�t =
∑

0≤i≤t
0≤�−i≤k−2−t

(
�

i 

)(
k − 2 − �

t− i 

)
aict−ib�−idk−2−t−�+i.
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Proof. We note that

(z)tM◦(e1,e2) =
k−2∑
t=0 

ztct(ae1 + ce2)t(be1 + de2)k−2−t.

By using the binomial theorem twice and rearranging the sums we obtain the stated 
formula.

The claim that N(M) ∈ GLk−1(Z) follows easily from the properties mentioned in 
Remark 2.7 below: for each M ∈ SL2(Z), N(M) has all integer entries and it is a group 
homomorphism, which implies that N(M)−1 = N(M−1) has integer entries as well, 
proving the claim. �

We note that this formula is already contained in classical work by Kuga-Shimura 
from the late 1950’s [21].

Remark 2.7. For M,M1,M2 ∈ SL2(Z) and the notation as in Lemma 2.6, we note the 
following properties

N(M1M2) = N(M2)N(M1),

N(M)t = N(M t),

N(M)−1 = N(M−1).

Since N(M) ∈ GLk−1(Z) by Lemma 2.6 we immediately obtain the following obser-
vation.

Lemma 2.8. Let M ∈ SL2(Z) and the notation be as in Lemma 2.6. Then we have

N(M)Λk−1
f = Λk−1

f .

Here, we view an element of Λk−1
f as a column vector.

3. Weierstrass mock modular forms

We recall the classical construction of Weierstrass mock modular forms of Guerzhoy 
[20] and Alfes–Griffin–Ono–Rolen [1].

3.1. The completed Weierstrass ζ-function

In this section we review Rolen’s [29] construction of Eisenstein’s completion of the 
Weierstrass ζ-function.
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We let Λτ = Z+Zτ for τ ∈ H and define for z ∈ C the classical Weierstrass σ-function

σΛτ
(z) = z

∏
w∈Λτ\{0}

(
1 − z

w

)
exp

(
z

w
+ z2

2w2

)
.

Its logarithmic derivative is the Weierstrass ζ-function

ζΛτ
(z) =

∂
∂zσΛτ

(z)
σΛτ

(z) .

Moreover, we need the following classical identity (cf. Theorem 3.9 of [28]) relating the 
Weierstrass σ-function to the standard Jacobi theta function

ϑ(τ, z) = −2πη(τ)3 exp
(
−η1z

2

2 

)
σΛτ

(z). (3.1)

Here, ϑ(τ, z) is a Jacobi form of weight 1/2 and index 1/2 given by

ϑ(τ, z) =
∑

n∈ 1
2+Z

eπin
2τ+2πin

(
z+ 1

2
)
,

η1 is the quasi-period defined by

η1 = η1(τ) := ζΛτ
(z + 1) − ζΛτ

(z),

and η(τ) = q1/24 ∏∞
n=1(1 − qn) is the Dedekind η-function.

Then we find that

∂
∂zϑ(τ, z)
ϑ(τ, z) = ζΛτ

(z) − η1z.

As ϑ(τ, z) is a holomorphic function in z, one may consider its derivative. However, this 
is no longer a Jacobi form. We therefore replace the derivative ∂

∂z by the canonical raising 

operator Y
1
2 ,

1
2

+ on Jacobi forms and apply it to the Jacobi theta function

Y
1
2 ,

1
2

+ (ϑ(τ, z)) = ∂

∂z
ϑ(τ, z) + 2πi Im(z) 

Im(τ)ϑ(τ, z),

which then is a Jacobi form of weight 3/2 and index 1/2 (compare Section 2.2). Consid-
ering the corresponding analogue of the logarithmic derivative we obtain

Y
1
2 ,

1
2

+ (ϑ(τ, z))
ϑ(τ, z) = ζΛτ

(z) − η1z + 2πi Im(z)
Im(τ) , (3.2)
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which is a real-analytic Jacobi form of weight 1 and index 0. In particular, it is an elliptic 
function in z. Using the relation G2 = η1 for the weight 2 Eisenstein series, normalized 
to have constant term 2ζ(2), one can show that the function

ζ∗Λτ
(z) = ζΛτ

(z) − zG∗
2(τ) − π

z

Im(τ)

is a doubly-periodic function with respect to the lattice Λτ . Here, G∗
2(τ) = G2(τ) −

π/ Im(τ) is the non-holomorphic completion of the weight 2 Eisenstein series.
We note that

Im(τ) = Vol(Λτ ).

3.2. Weierstrass mock modular forms

The completed Weierstrass ζ-function can be used to produce harmonic weak Maass 
forms of weight 0. We let f be a newform of weight 2 for Γ0(N) with rational Fourier 
coefficients. In the notation of Section 2.4, Λf is the associated lattice and Ef (τ) =∑∞

n=1
af (n)

n qn is the Eichler integral of f(τ) =
∑∞

n=1 af (n)qn. In particular, we have

Ef (γτ) = Ef (τ) + ω, ω ∈ Λf ,

for γ ∈ Γ0(N). We then define the Weierstrass form by

Zf (τ) = ζ∗Λf
(Ef (τ)).

The following theorem was proven in [20] and [1].

Theorem 3.1. Assume the notation and hypotheses above. The following are true:

1. The poles of the holomorphic part Z+
f (τ) of Zf (τ) are precisely those points for which 

Ef (τ) ∈ Λf .
2. If Z+

f (τ) has poles in H, then there is a canonical modular function Mf (τ) with 
algebraic coefficients on Γ0(N) for which Z+

f (τ) −Mf (τ) is holomorphic on H.
3. The function Zf (τ)−Mf (τ) is a harmonic weak Maass form of weight 0 on Γ0(N).
4. We have that

ξ0(Zf (τ)) = − 2πi 
vol(Λf )f(τ).

4. Vector-valued Jacobi–Weierstrass forms

We first construct the Jacobi–Weierstrass ζ-function in Section 4.1, which is a higher 
degree analogue of the Weierstrass ζ-function. In Section 4.2 we construct its completion 
based on Rolen’s approach and in Section 4.3 we define a vector-valued analogue.
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4.1. Elliptic functions of higher degree

Generalizing (3.1) we define a higher degree analogue of the Weierstrass σ-function. 
We let Λτ = Z + Zτ for τ ∈ H.

Definition 4.1. Let z ∈ Cg. We define the Jacobi–Weierstrass σ-function by

σΛτ
(z) = e−u(τ)Q(z)θ(τ, z), (4.1)

where u(τ) is a function in τ . The function u(τ) will define the quasi-periods with respect 
to the j-th coordinate (see (4.7) below).

Note that for g = 1 the above definition differs from the classical definition of the 
Weierstrass σ-function by a (non-zero) constant factor depending on the lattice. This is 
however of no further importance here.

Let m,n ∈ Zg. Using the properties of the Jacobi theta function from (2.1), we 
directly see that

σΛτ
(z + mτ + n) = e−u(τ)(Q(z+mτ+n)−Q(z))e−πiτ(m,m)e−2πi(z,m)σΛτ

(z), (4.2)

for m,n ∈ Zg. We now define higher degree analogues of the ℘- and ζ-function.

Definition 4.2. Let z ∈ Cg. We define the Jacobi–Weierstrass ζ-function by

ζΛτ ,j(z) = ∂

∂zj
log σΛτ ,(z), 1 ≤ j ≤ g, (4.3)

and the Jacobi–Weierstrass ℘-function by

℘ji(z) = ℘Λτ ,ji(z) = ∂

∂zi
ζΛτ ,j(z), 1 ≤ i, j ≤ g. (4.4)

We first show that ℘ji is invariant under the lattice Λg
τ .

Lemma 4.3. For 1 ≤ i, j ≤ g, the Jacobi–Weierstrass ℘-function ℘ji is Λg
τ -invariant, i.e. 

it holds that

℘ji(τ, z + mτ + n) = ℘ji(τ, z), (4.5)

for m,n ∈ Zg.

Proof. Let m = (m1, . . . ,mg), n = (n1, . . . , ng) ∈ Zg. Using the transformation proper-
ties of the higher degree σ-function (compare (4.2)) we see that
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∂

∂zj
σΛτ

)
(z + mτ + n)

σΛτ
(z + mτ + n) =

(
∂

∂zj
σΛτ

)
(z)

σΛτ
(z) + (−u(τ)(GL(mτ + n))j − 2πi(GLm)j),

where, as earlier (see Section 2.2), GL denotes the Gram matrix of the lattice L used to 
define the theta series. This implies that

ζΛτ ,j(z + mτ + n) − ζΛτ ,j(z) = −u(τ)(GL(mτ + n))j − 2πi(GLm)j . (4.6)

The right hand side of the equation above is independent of z and depends only on the 
lattice, thus

∂

∂zi
ζΛτ ,j(z + mτ + n) − ∂

∂zi
ζΛτ ,j(z) = 0.

This implies the desired invariance of ℘ji. �
The independence of z of the difference in (4.6) justifies the following definition.

Definition 4.4. For 1 ≤ l, j ≤ g, we define the quasi-periods to be

ηjl,1(τ) = ζΛτ ,j(z + el) − ζΛτ ,j(z) = 0, if j �= l,

ηjj,1(τ) = ζΛτ ,j(z + ej) − ζΛτ ,j(z) =: −u(τ). (4.7)

Here, ei ∈ Zg denotes the i-th unit vector.

Remark 4.5. This generalizes the definition of the quasi-periods in the classical setting, 
where we have

η1(τ) = ζΛτ
(z + 1) − ζΛτ

(z).

4.2. The completion of the Jacobi–Weierstrass ζ-function

In this section we complete the Jacobi–Weierstrass ζ-function such that it is lattice 
invariant. This generalizes the construction in (3.2). Let Λτ = Z + Zτ for τ ∈ H. We 
define

ζ∗zj (z) = ζ∗Λτ ,j(z) =
(Y g/2,1/2L

+,zj θ)(τ, z)
θ(τ, z) , z ∈ Cg. (4.8)

Proposition 4.6. The function ζ∗zj (z) is a (non-holomorphic) Jacobi form of weight 1 and 
index 0 for the Jacobi subgroup JL (see Section 2.2). In particular, ζ∗zj (z) is invariant 
under the lattice Λg

τ .
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Proof. We first note that to show that ζ∗zj (z) is a Jacobi form of weight 1, it is enough 
to show the identity (2.6). To check that ζ∗zj (z) is elliptic, we first compute the partial 
derivative ∂

∂zj
of (2.1), namely

(
∂

∂zj
θ

)
(τ, z + mτ + n) = e−πiτ(m,m)e−2πi(z,m)

(
∂

∂zj
θ

)
(τ, z)

− 2πi(GLm)je−πiτ(m,m)e−2πi(z,m)θ(τ, z).

Adding 2πi (Im(GL(z+mτ+n)))j
Im(τ) e−πiτ(m,m)e−2πi(z,m)θ(τ, z) and using that Im(GL(mτ+n))

Im(τ) =
GLm, we get

(Y g/2,1/2L
+,zj θ)(τ, z + mτ + n) = e−πiτ(m,m)e−2πi(z,m)(Y g/2,1/2L

+,zj θ)(τ, z). (4.9)

Dividing by θ(τ, z + mτ + n) = e−πiτ(m,m)e−2πi(z,m)θ(τ, z), we obtain

(Y g/2,1/2L
+,zj θ)(τ, z + mτ + n)

θ(τ, z + mτ + n) =
(Y g/2,1/2L

+,zj θ)(τ, z)
θ(τ, z) ,

which finishes the proof that ζ∗zj (z) is elliptic.
Now we compute the action under the matrix B = [

(
a b
c d

)
,
√
cτ + d] ∈ JL. It is enough 

to show identity (2.6), which is equivalent to showing

(cτ + d)−g/2−1e−πic (z,z) 
cτ+d (Y g/2,1/2L

+,zj θ)
(
aτ + b

cτ + d 
,

z

cτ + d

)
= Y

g/2,1/2L
+,zj θ,

We compute the two components of the action of Y g/2,1/2L
+,zj = ∂

∂zj
+ 2πi Im(GLz)j

Im τ . The 
transformation property (2.4) implies that

θ

(
aτ + b

cτ + d 
,

z

cτ + d

)
= (cτ + d)g/2eπic

(z,z) 
cτ+d θ(τ, z).

We differentiate and obtain(
∂

∂zj
θ

)(
aτ + b

cτ + d 
,

z

cτ + d

)
= (cτ + d)g/22πic(GLz)jeπic

(z,z) 
cτ+d θ(τ, z)

+ (cτ + d)g/2+1eπic
(z,z) 
cτ+d

(
∂

∂zj
θ

)
(τ, z).

Multiplying by (cτ + d)−g/2−1e−πic (z,z) 
cτ+d yields

2πic(GLz)j(cτ + d)−1θ(τ, z) +
(

∂

∂zj
θ

)
(τ, z). (4.10)
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For the second part, we have to multiply the term

(cτ + d)−g/2−1e−πic (z,z) 
cτ+d θ

(
aτ + b

cτ + d 
,

z

cτ + d

)
= (cτ + d)−1θ(τ, z)

by 2πi(Im (GLz)j
cτ+d )/(Im aτ+b

cτ+d ) = (cτ + d) Im(GLz)j
Im τ − c(GLz)j , resulting in

2πi Im(GLz)j
Im τ

θ(τ, z) − 2πic(GLz)j(cτ + d)−1θ(τ, z). (4.11)

Adding (4.10) and (4.11) we get Y g/2,1/2L
+,zj θ, as desired. This finishes the proof. �

We obtain a similar description of the completed Jacobi–Weierstrass ζ-function as in 
the degree 1 case.

Lemma 4.7. The completed Jacobi–Weierstrass ζ-function can be written as

ζ∗zj (τ, z) = ζΛτ ,j(z) − u(τ)zj + 2πi Im((GLz)j)
Vol(Λτ ) 

.

Proof. Using the definition of the weight raising operator Y g/2,1/2L
+,zj we find

(Y g/2,1/2L
+,zj θ)(τ, z)

θ(τ, z) =
( ∂
∂zj

θ)(τ, z)
θ(τ, z) + 2πi Im((GLz)j)

Im(τj) 
.

In order to compute the logarithmic derivative of the Jacobi theta-function, we note that

∂

∂zj
σΛτ

(z) = c(τ)e−u(τ)Q(z)
(

∂

∂zj
θ

)
(τ, z) − zju(τ)c(τ)e−u(τ)Q(z)θ(τ, z),

which implies

∂
∂zj

σΛτ
(z)

σΛτ
(z) = e−u(τ)Q(z)

( ∂
∂zj

θ)(τ, z)
σ(τ, z) − zju(τ)e−u(τ)Q(z) θ(τ, z) 

σ(τ, z) .

Thus, using the definition (4.1) of the Jacobi-Weierstrass σ-function, we find

∂
∂zj

θ(τ, z)
θ(τ, z) = ζΛτ ,j(z) + zju(τ). � (4.12)

4.3. Vector-valued Jacobi–Weierstrass forms

We now fix g = k − 2 and introduce vector-valued Jacobi–Weierstrass forms. Let 
z ∈ Ck−1 and M ∈ SL2(Z). Let (e1, e2) denote the standard basis of C2. We recall 
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the notation from Section 2.5 and write (z)(e1,e2) for the element in Symk−2(C2) corre-
sponding to z.

Definition 4.8. Let the notation be as above. We define the vector-valued Jacobi–
Weierstrass form by

(ζ̂z(z))(X1,X2) =
k−2∑
j=0 

ζ∗zj (z)cjXj
1X

k−2−j
2

with cj =
(
k−2
j

)
as before, and (X1, X2) = M ◦ (e1, e2).

Under the isomorphism Ck−1 � Symk−1(C2) coming from the standard basis, we 
can write ζ̂z as ζ̂z((z)(e1,e2))(X1,X2). It defines a function ζ̂ : Symk−2(C2) × SL2(Z) →
Symk−2(C2), where ζ̂((z)(e1,e2),M) = ζ̂z((z)(e1,e2))M◦(e1,e2). In the definition we sup-
pressed the dependence on the lattice Λτ = Z + Zτ , τ ∈ H. Fixing a basis (X1, X2), we 
have the following result that is an immediate consequence of Proposition 4.6

Theorem 4.9. The function (ζ̂z)(X1,X2) is a (non-holomorphic) Jacobi form of weight 1
and index 0, invariant under the lattice Λk−1

τ .

Remark 4.10. Note that there are two sets of coordinates involved in the definition of 
the Jacobi–Weierstrass form. First we have the element in Symk−2(C2) corresponding to 
z ∈ Ck−2 in terms of the standard basis. Second, the Jacobi–Weierstrass function itself 
is an element of Symk−2(C2) in terms of the basis (X1, X2).

We now consider directional derivatives of the Jacobi–Weierstrass form. Recall that

(z)t(e1,e2) =
k−2∑
�=0 

z�c�e
�
1e

k−2−�
2 .

We then define the directional derivative in the direction N(M)(z)t(e1,e2) by

ζ(N(M)z)i(z) =
∂

∂(N(M)z)i θ(τ, z)
θ(τ, z) .

Here, N(M) is the matrix defined in Lemma 2.6 and we write (N(M)z)i for the ith term 
in the vector N(M)z. We consider the global Jacobi–Weierstrass ζ-function

(ζM−1(z))(e1,e2) =
k−2∑
�=0 

ζ(N(M)z)�(z)c�e�1ek−2−�
2 , (4.13)

as well as the global completed Jacobi–Weierstrass ζ-function
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(
ζ̂M−1(z)

)
(e1,e2)

=
k−2∑
�=0 

ζ∗(N(M)z)�(z)c�e�1ek−2−�
2 . (4.14)

We occasionally use the notation ζN(M)z and ζ̂N(M)z when we want to emphasize the 

indices. To shorten notation we will also write ζ̂M−1(z) for 
(
ζ̂M−1(z)

)
(e1,e2)

in some 

places.
We note that in this notation ζ̂z(z) = ζ̂Id(z) and we show that the global directional 

derivative corresponds to a change of coordinates of ζ̂z.

Lemma 4.11. For M ∈ SL2(Z), z ∈ Ck−1 and (X1, X2) a basis of C2, we have(
ζ̂M (z)

)
(X1,X2)

=
(
ζ̂z(z)

)
M◦(X1,X2)

.

Proof. We first consider the non-completed version of Definition 4.8, i.e.

(ζM (z))(X1,X2) =
k−2∑
�=0 

ζ(N(M−1)z)�(z)c�X�
1X

k−2−�
2 .

By definition this equals (in vector notation)

1 
θ(τ, z)

(
∂

∂(N(M−1)z)0
θ(τ, z), . . . , ∂

∂(N(M−1)z)k−2
θ(τ, z)

)t

(X1,X2)
.

A short calculation using multivariable calculus yields

(
∂

∂(N(M−1)z)0
θ(τ, z), . . . , ∂

∂(N(M−1)z)k−2
θ(τ, z)

)t

(X1,X2)

= N(M)
(

∂

∂z0
θ(τ, z), . . . , ∂

∂zk−2
θ(τ, z)

)t

(X1,X2)
.

Therefore, we have

(ζM (z))(X1,X2) = N(M) (ζz(z))(X1,X2) .

Plugging this into the completion of the Jacobi–Weierstrass function yields the desired 
result. �
5. Vector-valued Jacobi–Weierstrass as polar harmonic weak Maass forms

In this section we define the higher weight analogue of Weierstrass harmonic weak 
Maass forms. Throughout, we let f be a newform of weight k for Γ with rational 
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Fourier coefficients, with Γ1(N) ⊂ Γ for some integer N . We will use the Eichler in-
tegral Ef (τ, (X1, X2)) and the lattice Λf associated to f from Section 2.4.

By V we denote the infinite-dimensional vector space

V = Functions{SL2(Z) → Symk−2(C2)}.

The action of Γ on V is given by

ρ(γ)F (M) = γ ◦ F (γ−1M), (5.1)

where γ ∈ Γ. Here Γ acts on SL2(Z) by matrix multiplication and on Symk−2(C2) by 
acting on the basis as described in Section 2.5.

Definition 5.1. Let τ ∈ H and M ∈ SL2(Z). We define the vector-valued Jacobi–
Weierstrass form by

F (τ) :=
[
M �→

(
ζ̂M (Ef (τ,M−1 ◦ (e1, e2)))(e1,e2)

)]
. (5.2)

We write

F (τ,M) = ζ̂M (Λf , Ef (τ,M−1 ◦ (e1, e2)))(e1,e2),

for the image of F in Symk−2(C2) and drop the dependence on Λf in the definition of ζ̂.

Remark 5.2. The function F depends on the chosen basis of Symk−2(C2) in two places. 
We note two important changes of coordinates. By Lemma 4.11 we see

F (τ,M) =
(
ζ̂z

(
Ef

(
τ,M−1 ◦ (e1, e2)

)))
M◦(e1,e2)

. (5.3)

This can also be taken as the definition of the function F (τ,M).
Moreover, we have a second change of coordinates inside the function given by chang-

ing the basis for the Eichler integral. As by definition we have Ef
(
τ,M−1 ◦ (e1, e2)

)
=

N(M−1)Ef (τ, (e1, e2)) it follows that

F (τ,M) =
(
ζ̂M

(
N(M−1)Ef (τ, (e1, e2))

))
(e1,e2)

. (5.4)

We now prove that F defines a vector-valued polar harmonic weak Maass form of 
weight 0 that maps to f with values in a coefficient system under ξ0.

Theorem 5.3. The function F (τ) is a vector-valued polar harmonic weak Maass form of 
weight 0 for Γ with respect to the representation ρ and its image under ξ0 is given by

G(τ) = 2πi 
Vol(Λf )f(τ) GL · (τe1 + e2)k−2.
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Here GL is the Gram matrix corresponding to the lattice L which is implicitly used in 
the construction of the Jacobi–Weierstrass ζ-function ζ̂. For z = (z0, . . . , zk−2)t written 
in the basis (X1, X2) of C2, the action of GL = (gij)0≤i,j≤k−2 is given by

GL · (z)(X1,X2) =
k−2∑
�=0 

(
k−2∑
i=0 

g�izi

)
c�X

�
1X

k−2−�
2 =

k−2∑
i=0 

zi

(
k−2∑
�=0 

g�ic�X
�
1X

k−2−�
2

)
. (5.5)

We note that for the lattice Zk−1 with the standard inner product, the theorem 
simplifies to

G(τ) = 2πi 
Vol(Λf )f(τ)(τe1 + e2)k−2.

Remark 5.4. 

1. The function G : H → Symk−2(C2) is a holomorphic vector-valued modular form of 
weight 2.

2. For the special case of weight k = 2 it is possible to construct a modular function 
M with algebraic Fourier coefficients which eliminates all poles of F on the upper 
half-plane (see [1] and Theorem 3.1, respectively). Then, F +M is a harmonic weak 
Maass forms whose shadow is the newform f . The proof given in [1] uses the proof 
for the well-known fact that j(τ) and j(Nτ) generate the field of modular functions 
for the group Γ0(N) (see e g. [15, Theorem 11.9]). To the authors’ knowledge, there 
is, however, no systematic theory of modular functions with respect to the (infinite-
dimensional) representation ρ from (5.1) which would allow to prove an analogous 
result in general.

We prove Theorem 5.3 in several steps. We first show the Γ-invariance of each one of 
the terms ζ̂M

(
Ef

(
τ,M−1 ◦ (e1, e2)

))
.

Lemma 5.5. Let the notation be as above. For γ ∈ Γ, we have

ζ̂M
(
Ef

(
τ, (γ−1M)−1 ◦ (e1, e2)

))
= ζ̂M

(
Ef

(
γτ,M−1 ◦ (e1, e2)

))
.

Proof. We write (X1, X2) = M−1 ◦ (e1, e2) and note that

(γ−1M)−1 ◦ (e1, e2) = (e1, e2)M−1γ = (X1, X2) γ.

By definition of the change of basis matrix N(·), for the Eichler integral we have

Ef (τ, γ ◦ (X1, X2))= N(γ)Ef (τ, (X1, X2)) and Ef (τ, (X1, X2)) = N(M−1)Ef (τ, (e1, e2)).

Moreover, from Lemma 2.4 we have
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Ef (γτ, (X1, X2)) = Ef (τ, γ ◦ (X1, X2)) − ω, (5.6)

where ω ∈ Λk−1
f with Λk−1

f written in the basis γ ◦ (X1, X2) = (e1, e2)M−1γ, thus it 
is an element of N(M−1γ)Λk−1

f . By Lemma 2.8 we know that N(M−1γ)Λk−1
f = Λk−1

f . 
Therefore we obtain

Ef (γτ,M−1 ◦ (e1, e2)) − Ef (τ, (γ−1M)−1 ◦ (e1, e2)) ∈ Λk−1
f .

Since ζ̂M is Λk−1
f -invariant from Proposition 4.6, this gives the result. �

Proof of Theorem 5.3. We first prove that F is invariant under the action of Γ. The 
harmonicity (away from possible poles) will follow from the fact that ξ0(F ) is a holo-
morphic cusp form (with values in a coefficient system), since the Laplacian equals 
Δk = −ξ2−k ◦ ξk.

Let γ ∈ Γ. For M ∈ SL2(Z) and τ ∈ H, we need to show that

F (γτ,M) = ρ(γ)F (τ,M),

where the action ρ : Γ → End(V ) was defined in (5.1), thus

ρ(γ)F (τ,M) = γ ◦
(
ζ̂(γ−1M)

(
Ef

(
τ,
(
(γ−1M)−1) ◦ (e1, e2)

)))
(e1,e2)

.

By Lemma 4.11 this equals

γ ◦ ζ̂z
(
Ef (τ,

(
γ−1M

)−1 ◦ (e1, e2))
)

(e1,e2)γ−1M
,

and this expression simplifies to

ζ̂z

(
Ef (τ,

(
γ−1M

)−1 ◦ (e1, e2))
)

(e1,e2)γγ−1M
= ζ̂M

(
Ef (τ,

(
γ−1M

)−1 ◦ (e1, e2))
)

(e1,e2)
.

Finally, we use Lemma 5.5 and obtain that

ρ(γ)F (τ,M) = ζ̂M
(
Ef

(
γτ,M−1 ◦ (e1, e2)

))
(e1,e2)

= F (γτ,M).

Now we will compute the image of F (τ,M) under ξ0 = −2i ∂
∂τ . This gives a function

g(τ,M) = ξ0F (τ,M),

with g : H → V . We will compute g explicitly and show that it is indeed constant on 
SL2(Z). We write

F (τ,M) =
(
ζ̂z

(
Ef (τ,M−1 ◦ (e1, e2)

))
(Y1,Y2)

, (5.7)
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with (Y1, Y2) = M ◦ (e1, e2) and consider each of the coordinates ζ∗z� in the basis (Y1, Y2). 
By Lemma 4.7 we obtain

ζ∗z�(z) = ζz�(z) − u(τf )z� + 2πi Im((GLz)�)
Im(τf ) .

Writing Im(z) = (z − z)/2i and plugging in z = Ef (τ,M−1 ◦ (e1, e2))) we see that

∂

∂τ
ζ∗z� (Ef (τ,M−1 ◦ (e1, e2))) = − π

Im(τf )

(
GL

∂

∂τ
Ef (τ,M−1 ◦ (e1, e2))

)
�

.

As GL accounts for changing the basis from (5.5)

GL · (z)(Y1,Y2) =
k−2∑
i=0 

zi

(
k−2∑
�=0 

g�ic�Y
�
1 Y

k−2−�
2

)
,

it is enough to compute each component ∂
∂τ

(
Ef (τ,M−1 ◦ (e1, e2))

)
�
, where

(
Ef

(
τ,M−1 ◦ (e1, e2)

))
�
=

∞ ∫
τ

f(t)(dt− b)�(−ct + a)k−2−�dt,

with M =
(
a b
c d

)
∈ SL2(Z). This gives us

∂

∂τ
(Ef (τ,M−1 ◦ (e1, e2)))� = f(τ)(dτ − b)�(−cτ + a)k−2−�

and with the action of GL we get

ξ0F (τ,M) = 2πi 
Im(τf )GL ·

k−2∑
�=0 

f(τ)(dτ − b)�(−cτ + a)k−2−�c�Y
�
1 Y

k−2−�
2

= 2πi 
Im(τf )f(τ) GL ·

(
(dY1 − cY2)τ + (−bY1 + aY2)k−2)

= 2πi 
Im(τf )f(τ) GL ·

(
M−1 ◦ (Y1τ + Y2)k−2)

= 2πi 
Im(τf )f(τ) 

(
GL · (e1τ + e2)k−2) .

The last expression is independent of M . The holomorphicity is obvious and the modu-
larity follows from (2.7). Moreover, we see that F (τ) is harmonic.

It remains to show that F grows at most linear exponentially when τ approaches a 
cusp of Γ. For this let σ ∈ SL2(Z) be arbitrary. The same computation as in the proof 
of Lemma 2.2 shows that
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Ef (στ,M−1 ◦ (e1, e2)) = Ef |σ(τ,M−1σ ◦ (e1, e2)) + C

for a certain constant vector C. Since f is a cusp form and f |σ yields the Fourier 
expansion of f at the cusp σ∞ by definition, it vanishes exponentially as τ → ∞. Since θ
is holomorphic in all elliptic variables, it follows that the partial logarithmic derivatives 
of θ all have at most a finite order pole at the divisor of θ. But this implies that, as 
τ → ∞, the analytic part of F (σ.τ,M) grows at most linear exponentially if C lies in the 
divisor of θ and is bounded otherwise. This shows the claim, as the non-analytic part is 
clearly bounded. �
6. Laurent expansion and poles

In the definition of the Jacobi theta function we allowed an arbitrary positive defi-
nite integral bilinear form on Zg. Especially when computing examples (see Section 7), 
it is most convenient to take the standard bilinear form, but allow for a non-trivial 
characteristic. In what follows we define

θ(τ, z) =
∑

n∈
( 1
2+Z

) eπi
(∑

i n
2
i

)
τ+2πi

∑
i nizi =

g∏
i=1

ϑ(τ, zi). (6.1)

In this setting we immediately find from (4.8) that

ζ∗zj (τ, z) =
Y

g/2,1/2
+,zj θ(τ, z)

θ(τ, z) =
Y

1/2,1/2
+,zj ϑ(τ, zj)

ϑ(τ, zj) 
= ζ∗Λτ

(zj),

where ζ∗ here denotes the completion of the usual g = 1 Weierstrass ζ-function.
Similarly, the directional derivatives occurring in the definition of the function F in 

(5.2) can be expressed explicitly as

ζ̂(N(M−1)z)j (τ, z) =
∑
i 

N(M)ijζ∗Λτ
(zi),

which follows directly from the definition of the directional derivative, where N(M) =
{N(M)ij}0≤i,j≤k−2.

We recall the Laurent expansion of the completed Weierstrass ζ-function

ζ∗Λτ
(z) = 1 

z
−

∑
n≥1

G2n+2(Λτ )z2n+1 − S(Λτ )z −
π

Im(τ)z,

where G2n(Λ) =
∑

ω∈Λ\{0} ω
−2n is the classical Eisenstein series of weight 2n and 

S(Λτ ) = lim
s→0+

∑
ω∈Λτ\{0}

1 
ω2|ω|2 .



C. Alfes et al. / Advances in Mathematics 465 (2025) 110147 27

For the Laurent expansion of the Jacobi–Weierstrass ζ-function

ζ̂z(τ, z) =
k−2∑
�=0 

ζ∗Λτ
(z�)e�1ek−2−�

2 c�

we then obtain the following result

Lemma 6.1. With the standard choice of lattice, the Laurent expansion of the Jacobi–
Weierstrass ζ-function ζz is given by

ζz(τ, z) =
k−2∑
�=0 

1 
z�
e�1e

k−2−�
2 c� +

∑
n≥1

G2n+2(Λτ )
k−2∑
�=0 

z2n+1
� e�1e

k−2−�
2 c�.

Moreover, the Laurent expansion of its completion is given by

ζ̂z(τ, z) = ζz(τ, z) − S(Λτ )
k−2∑
�=0 

z�e
�
1e

k−2−�
2 c� −

π

Im(τ)z�e
�
1e

k−2−�
2 c�.

We note that when plugging in Ef (τ, (e1, e2)), we get the poles of the vector-valued 
function F (τ, Id) : H → Symk−2(C2), for τ ∈ H such that

E�(τ, (e1, e2)) ∈ Λf .

The theory easily extends to general M ∈ SL2(Z) for

ζM−1(Λτ , N(M−1)z) =
k−2∑
�=0 

ζΛτ
((N(M−1)z)�)X�

1X
k−2−�
2 c�,

where (X1, X2) = M ◦ (e1, e2), and its completed version.

Lemma 6.2. The Laurent expansion of the Jacobi–Weierstrass ζ-function ζM−1(Λ, 
(z)M−1) is given by

ζM−1(Λ, (z)M−1) =
k−2∑
�=0 

1 
(z)M−1,�

X�
1X

k−2−�
2 c� +

∑
k≥0

Gk−2(Λ)
k−2∑
�=0 

(z)k−1
M−1,�X

�
1X

k−2−�
2 c�,

where (X1, X2) = M ◦ (e1, e2), and (z)M−1,� = (N(M−1)(z))l is the �th component of 
the vector N(M−1)(z). We get a similar expansion for the completion

ζ̂M−1(Λ, (z)M−1) = ζM−1(Λ, (z)M−1)+S(Λτ )
k−2∑
�=0 

z�X
�
1X

k−2−�
2 c�−

π

Im(τ)z�X
�
1X

k−2−�
2 c�.
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We recall that F (τ,M) = ζ̂M−1
(
Λf , N(M−1)Ef (τ, (e1, e2))

)
. Therefore, we can com-

pute the poles of the Jacobi–Weierstrass ζ-function for the standard choice of symmetric 
form on Zk−1 explicitly.

Proposition 6.3. Under the conditions above, the polar harmonic weak Maass form F :
H → V has poles of order 1 at the values τ ∈ H for which there exists M ∈ SL2(Z) and 
0 ≤ � ≤ k − 1 such that

(N(M−1)Ef (τ, (e1, e2)))� ∈ Λf .

7. Examples

We consider the setting of the previous section. In particular we fix the choice of the 
lattice L in the definition of the Jacobi–Weierstrass ζ-function to be the standard lattice 
Zk−1 with the standard bilinear form. We also just evaluate the image of the function 
F , plugging in the identity matrix.

7.1. A Weierstrass form for Δ

Consider the Ramanujan Δ-function,

Δ(τ) := q
∞ ∏

n=1
(1 − qn)24 =

∑
n≥1

τ(n)qn.

Using the built-in functions for modular symbols in Pari/Gp [4], we can compute the 
period lattice of Δ. Since SL2(Z) is generated by T =

( 1 1
0 1

)
and S =

( 0 −1
1 0

)
, the period 

lattice is generated by the coefficients of the period polynomial 
∫∞
0 Δ(t)(e1 + te2)10dt, 

which equals

α

(
e10
1 − 691 

1620

(
10
8 

)
e8
1e

2
2 + 691 

2520

(
10
6 

)
e6
1e

4
2 −

691 
2520

(
10
4 

)
e4
1e

6
2 + 691 

1620

(
10
2 

)
e2
1e

8
2 − e10

2

)
+ β

((
10
9 

)
e9
1e2 −

25
48

(
10
7 

)
e7
1e

3
2 + 5 

12

(
10
5 

)
e5
1e

5
2 −

25
48

(
10
3 

)
e3
1e

7
2 +

(
10
1 

)
e1e

9
2

)
,

with

α = 0.00595896 . . . i and β = 0.00370771 . . . .

Therefore we see that the period lattice for Δ is given by

ΛΔ = ω1Z⊕ ω2Z

with ω1 = 1 
48β = 7.7243968... · 10−7 and ω2 = 2.6274096... · 10−7i.



C. Alfes et al. / Advances in Mathematics 465 (2025) 110147 29

With this data we can compute the Laurent expansion of the completed function 
ζ̂ΛΔ(z) to be approximately

ζ̂ΛΔ(z) = z−1 + 0.0016910 . . . z − 454230029641788589613076734.309657 . . . z3 + O(z5)

− 154795208574.9957812 . . . z.

For illustration purposes, we only consider the Eichler integral

EΔ,0(τ) = 1 
2π (q − 12q2 + 84q3 − 368q4 + 966q5 − 1008q6) + O(q7)

since it has a proper Fourier expansion. Plugging this into the holomorphic part of the 
Laurent expansion above yields the 0-th component of the vector-valued harmonic weak 
Maass form F for the Δ-function (or rather its holomorphic part),

π
(
q−1 + 12 + 60.0000428 . . . q + 79.999485 . . . q2

−291444838990458826940712.635494 . . . q3 + O(q4)
)
.

We note that the Fourier coefficients grow very quickly. For instance, the coefficient of 
q10 is approximately 1.33163 · 1061.

Since the Eichler integrals EΔ,�(τ) can be evaluated quite efficiently, we can illustrate 
the modularity of the function F we constructed by giving numerical evaluations of it 
and acting with elements of SL2(Z) on them.

For example let τ = 2i and γ =
( 2 5

1 3

)
. In the standard basis {

(10
� 
)
e�1e

10−�
2 } the 

coefficients of EΔ(τ, (e1, e2)) are given by

v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−17511.494570...i
7431.817430...
3204.517440...i
−1400.899032...
−619.775633...i
277.055319...
124.975219...i
−56.821709...
−26.014701...i
11.983426...
5.550045...i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
· 10−7.

On the other hand we compute that EΔ(γτ) in the standard basis yields⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−68.879683...+42.252473...i
36.852496...−27.426477...i
−19.386784...+17.474359...i
9.977402...−10.932230...i
−4.995272...+6.715450...i
2.416272...−4.051512...i
−1.118039...+2.402667...i
0.4863669...−1.402420...i
−0.191789...+0.806993...i
0.062025...−0.458557...i
−0.009620...+0.257699...i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= N(γ−1)v +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−23814000ω1
11895660ω1+12960ω2
−5251302ω1−12912ω2
1943634ω1+9159ω2
−503319ω1−5456ω2
−14030ω1+2860ω2
136923ω1−1336ω2
−123396ω1+551ω2
81046ω1−192ω2
−45360ω1+48ω2

22680ω1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Indeed, applying ζ∗ΛΔ
(z) to each component of these vectors yields approximately

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−11432504.181072...−6.201719...·10−12i
6701461.733071...
−6966824.048050
2360012.1697371...

6631363.825398
10786753.122386...+8.786101...·10−33i

−8634302.260257...
−92484.930082...

9744076.055919...+5.980872...·10−68i

−11495943.166401−2.586110...·10−9i
1267421.546264...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The difference between the results for the vectors after applying ζ∗ is less than 10−96, 
where the computations were carried out to 115 significant digits.

7.2. A Weierstrass form for a CM form

We consider the newform

f(τ) = η(3τ)8 = q − 8q4 + 20q7 − 70q13 + 64q16 + 56q19 + O(q21) ∈ S4(Γ0(9)).

Note that this form has complex multiplication by the field Q(
√
−3). Note that there is 

a rigid Calabi–Yau threefold X, i.e. a 3-dimensional compact Kähler manifold admitting 
a non-vanishing, globally defined holomorphic (3, 0)-form, over Q such that L(X, s) =
L(f, s) (compare [32]). Note that Calabi-Yau manifolds may be thought of as natural 
generalizations of elliptic curves to higher-dimensional complex manifolds in the sense 
that one-dimensional Calabi-Yau manifolds are elliptic curves.

The group Γ0(9) is generated by the parabolic elements T and −I2, as well as the 

matrices σ1 =
(

4 −1
9 −2

)
and σ2 =

(
7 −4
9 −5

)
. Therefore the period lattice of f is generated 

by the coefficients in the polynomials

p1 =
∞ ∫

σ1.∞

f(t)(te1 + e2)2dt

= −0.693005...
(

2
2

)
e2
1 + (0.288752... + 0.033342...i)

(
2
1

)
e1e2

+ (−0.115500...− 0.022228...i)
(

2
0

)
e2
2

and

p2 =
∞ ∫

σ2.∞

f(t)(te1 + e2)2dt
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= (0.346502...− 0.600160...i)
(

2
2

)
e2
1 + (−0.288752... + 0.433449...i)

(
2
1

)
e1e2

+ (0.231001...− 0.311194...i)
(

2
0

)
e2
2.

A basis for the lattice in C generated by these coefficients is given by Λf = ω1Z⊕ ω2Z

with

ω1 = 0.057750... and ω2 = 0.011114...i.

With this we can compute the Laurent expansion of ζ̂Λf
(z) as

z−1 + 21739.040942...z − 141870582.946988...z3 + 1079581634085.963275...z5 + O(z7)

+ 4894.639140z. 

Since the coefficient Ef,0(τ) has a Fourier expansion, we can plug it into this expansion, 
yielding the following expression for the 0-th component of the holomorphic part of our 
harmonic weak Maass form,

π
(
q−1 + 21739.040942...q + 8q2 − 141870582.946988...q3 − 173912.327537...q4 + O(q5)

)
.

We now pick some point in the upper half-plane, say τ = 1+i
√

7
2 . In the standard basis 

{e2
1, 2e1e2, e

2
2} we obtain the value

Ef (τ, (e1, e2)) =
(

5.792643...+7.706733...i
−5.792643...+1.954292...i

−3.908585...i

)
· 10−5.

On the other hand we compute

Ef (σ1τ, (e1, e2)) =
(−0.115037...− 0.020877...i

0.287651... + 0.030313...i
−0.690398... + 0.006789...i

)
= v1 +

( −2
5

−12

)
ω1 +

(
−2
3
0

)
ω2

and

Ef (σ2τ, (e1, e2)) =
(

0.230596−0.306949i
−0.288288+0.427988i
0.345981−0.593136i

)
= v2 +

(
4
−5
6

)
ω1 +

(−28
39
−54

)
ω2

within computational accuracy. Plugging either one of the vectors above into ζ̂Λf
(z)

yields (
235.526014...−626.338523...i
−129.035666...+208.728000...i
165.268142...+59.208840...i

)
and

(
−33.090396...−108.245540...i

32.306903...+7.539680...i
−44.064442...+121.275441...i

)
. 
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