
Surprise! Surprise! Learn and Adapt
Huma Samin
Exeter University

Exeter, United Kingdom
h.samin@exeter.ac.uk

Dylan Walton, Nelly Bencomo
Durham University

Durham, United Kingdom
[dylan.j.walton,nelly.bencomo]@durham.ac.uk

ABSTRACT
Self-adaptive systems (SAS) adjust their behavior at runtime in re-
sponse to environmental changes, which are often unpredictable at
design time. SAS must make decisions under uncertainty, balancing
trade-offs between quality attributes (e.g., cost minimization vs.
reliability maximization or energy consumption minimization vs.
performance maximization), based on the impact of possible adap-
tation actions. Traditionally, SAS have been designed with fixed
assumptions about these impacts, but such assumptions may not
always hold during execution. Therefore, SAS require techniques to
learn the actual impact of adaptation actions at runtime to support
informed decision-making. This paper introduces the concept of
Surprise, where an SAS detects deviations between its assumed
and observed impacts during execution, enabling it to adjust its
decisions accordingly. The approach is demonstrated through an
application in the networking domain.

KEYWORDS
Surprise, Self-Adaptive Systems, Impacts of Adaptations, Broken
Assumptions

ACM Reference Format:
Huma Samin and Dylan Walton, Nelly Bencomo. 2025. Surprise! Surprise!
Learn and Adapt. In Proc. of the 24th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May
19 – 23, 2025, IFAAMAS, 9 pages.

1 INTRODUCTION
Self-adaptive systems (SAS) adjust their behavior through adap-
tation actions in response to environmental changes that cannot
be fully predicted at design time [6, 9, 21, 23, 35]. For instance,
in an Internet-of-Things (IoT)-based SAS, dynamic factors such
as traffic fluctuations or link failures in the network can affect
energy consumption and performance. Consequently, SAS must
balance trade-offs between conflicting quality attributes, such as
cost minimization vs. reliability maximization or energy efficiency
vs. performance optimization.

Traditionally, SAS use fixed assumptions about how adaptation
actions influence quality attributes. However, unforeseen changes,
such as unexpected link failures, may invalidate these assump-
tions [4, 35, 40, 41]. We argue that when these assumptions are
broken, an SAS must relearn the actual impacts of adaptation ac-
tions and update its decision-making accordingly. This highlights

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

the need for techniques that enable SAS to learn how adaptation
actions affect quality attributes in dynamic environments.

The concept of Surprise, introduced in [4, 5], quantifies uncer-
tainty by measuring deviations between expected and observed
behavior in SAS. Surprise helps assess how new data impacts ex-
isting models or assumptions about the system’s environment. We
extend this idea by proposing that an SAS experiences a Surprise
when the assumed impact of an adaptation action differs from the
actual observed impact at runtime. Thus, Surprise serves as an indi-
cator of broken assumptions and can be leveraged to infer updated
impacts of adaptation actions, enabling more effective adaptations
in uncertain conditions.

This paper presents a novel Surprise-based learning approach that
allows SAS to dynamically update their assumed world model and
refine their decision-making according to evolving environmental
conditions. The main contribution of the paper is a novel Surprise-
based learning approach that:

i) enables SAS to learn the actual impact of adaptation actions
in unforeseen environmental conditions.

ii) enhances SAS resilience to uncertainty by updating the as-
sumed world model with newly learned adaptation impacts.

As a proof of concept, we apply our approach to a remote data
networking application [28, 33]. Our experiments demonstrate
how newly learned adaptation impacts improve SAS behavior and
decision-making.

The rest of this paper is structured as follows: Section 2 provides
background information, Section 3 introduces the Surprise-based
learning approach, and Section 4 details the experimental eval-
uations and results. Section 5 discusses threats to validity, and
Section 6 reviews related work. Finally, Section 7 concludes the
paper and outlines directions for future research.

2 BACKGROUND
To explain the proposed Surprise-based learning approach, we
first outline the concepts of Surprise and Bayesian Reinforcement
Learning using Partially Observable Markov Decision Processes
(POMDPs), which support decision-making under uncertainty.

2.1 POMDPs and Design Assumptions in SAS
Bayesian Reinforcement Learning techniques, such as Partially Ob-
servable Markov Decision Processes (POMDPs) [36, 37], have been
proposed as a framework for modeling decision-making in SAS.
They facilitate reasoning about multiple objectives and the uncer-
tainty associated with the environment’s state [3, 34]. These models
are typically designed based on assumptions made by domain ex-
perts at design time while leveraging Bayesian inference to quantify
uncertainty. POMDPs provide a decision-making framework where
an agent operates in a partially observable environment. The agent,

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Figure 1: POMDP process [10]

which represents an entity performing actions (i.e., adaptation ac-
tions in SAS), must respond to changing environmental conditions.
Due to partial observability, the agent cannot directly perceive the
actual underlying state but instead maintains a belief over the set
of possible states (expressed as a probability distribution). Based
on these beliefs and gathered observations, the agent selects an
optimal adaptation action. An outline of this process is shown in
Figure 1. The authors in [18] proposed a mapping to structure SAS
decision-making as a POMDP-based model. Accordingly, a POMDP
underpins SAS decision-making to find a policy that maps states to
actions to maximize reward [34].

A POMDP is defined as a tuple < 𝑆,𝐴, 𝑍,𝑇 ,𝑂, 𝑅,𝛾 >, where:

• 𝑆 represents the set of environment states.
• 𝐴 is the set of possible actions that the decision-making
agent can take.
• 𝑍 denotes the set of observations related to the environ-
ment’s state.
• 𝑇 is the transition function, which gives the probability of
transitioning from one state to another.
• 𝑂 is the observation function, containing the likelihood of a
specific observation given the current state.
• 𝑅 represents the reward function, which the agent seeks to
maximize.
• 𝛾 is the discounting factor.

A particularly important component is 𝑇 , which defines the im-
pacts of actions on the state of the environment and serves as the
system’s environmental model (for SAS in this case). Transition
probabilities are determined at design time by domain experts who
possess knowledge and make assumptions about the system. How-
ever, in SAS decision-making, these assumptions regarding the
impact of adaptation actions—represented by POMDP transition
probabilities—may become invalid under new environmental con-
ditions. Thus, updating the impact of adaptation actions to reflect
their current value is necessary.

The proposed approach leverages Surprise as an indicator of
broken assumptions, enabling the system to infer or learn the actual
impact corresponding to new conditions.

2.2 The Concept of Surprise
Surprise is a measure of unexpectedness that quantifies the gap
between expected and actual outcomes [5, 13]. It serves as a mech-
anism to record ‘broken assumptions,’ highlighting unexpected
events while also indicating the urgency of the identified situation.
In other words, Surprise quantifies the deviation of actual events
or data from model predictions. There are several types of Surprise,
but three specific definitions are particularly relevant to this paper,
as discussed below:

Bayesian Definition of Surprise. A Bayesian Surprise is defined
as the divergence between an observer’s prior beliefs (represented
as a probability distribution) and posterior beliefs following an
observed event [2, 5]. Surprise is measured using the Kullback-
Leibler (KL) divergence [2, 22], which quantifies the divergence
between prior and posterior distributions:

𝑆𝐵𝑎𝑦𝑒𝑠 = 𝐷𝑘𝑙 (𝑝 (𝑥) | |𝑞(𝑥)) =
∑︁
𝑥∈𝑋

𝑝 (𝑥) ln 𝑝 (𝑥)
𝑞(𝑥) (1)

where 𝑞(𝑥) and 𝑝 (𝑥) represent the prior and posterior belief
distributions, respectively, and 𝐷𝑘𝑙 represents the KL divergence
between them. POMDPs provide the prior and posterior beliefs
necessary for Surprise computation.

Awow unit has been proposed to measure and quantify Bayesian
Surprises [2, 29].

Other approaches to measuring Surprise include Confidence
Corrected Surprise [13] and Bayes Factor Surprise [25].

Confidence Corrected Surprise. Confidence Corrected Surprise
(𝑆𝐶𝐶) [11, 13] represents the difference between an observer’s ex-
pected outcome (given by the current belief 𝜋0 (𝜃)) and the actual
outcome observed in the environment. The relevance of a new data
point 𝑋 is indicated by the scaled likelihood 𝑝𝑥 (𝜃).

The scaled likelihood 𝑝𝑥 (𝜃) represents the posterior belief de-
rived under a flat prior, meaning the observer has no prior knowl-
edge of the environment. In contrast, the prior 𝜋0 (𝜃) corresponds
to the posterior belief without considering the newly acquired data
sample (i.e., the current belief). Using KL divergence, 𝑆𝐶𝐶 quantifies
the difference between these two posteriors, 𝜋0 (𝜃) and 𝑝𝑥 (𝜃), as
follows:

𝑆𝐶𝐶 = 𝐷𝑘𝑙 (𝜋0 (𝜃) | |𝑝𝑥 (𝜃)) (2)

Bayes Factor Surprise: The Bayes Factor Surprise 𝑆𝐵𝐹 [24, 25] is
somewhat similar to 𝑆𝐶𝐶 in that it serves as a comparison between
a naive prior (the flat distribution) and the distribution at any sub-
sequent timestep t. 𝑆𝐵𝐹 of observing a data sample 𝑥 ∈ 𝑋 is defined
as the ratio of the probability of observing x under the naive prior
𝜋0 to the probability of observing 𝑥 under current belief 𝜋𝑡 . It is
computed as follows:

𝑆𝐵𝐹 =
𝑝 (𝑥𝑡+1 |𝜋0)
𝑝 (𝑥𝑡+1 |𝜋𝑡)

(3)

Next, we present our Surprise-based learning approach to learn
the impacts of adaptation actions for SAS.

3 SURPRISE! LEARN-ADAPT APPROACH
This section describes the Surprise-based learning approach for
learning the new impact of adaptation actions. The presented ap-
proach makes use of the Surprise-Minimization Learning (SMiLe)
Rule [11]. It also takes inspiration from the model-based learning
approach presented in [42], which is quiet different from the case
in this paper, that was used to learn human behaviour. In this paper,
these new ideas are applied to the SAS-based domain to learn the
new impacts of adaptation actions for SAS. In the SAS domain, the
SMiLe rule seeks to minimize surprises to minimize the possibility
of unexpected behaviour. Next, the example of a Remote Mirror-
ing application [33] to support the description of the proposed
Surprise-based learning approach is presented.

3.1 Illustrative Example: Remote Data
Mirroring

Remote Data Mirroring (RDM) is a disaster recovery technique
[28, 30]. It supports data recovery by maintaining multiple copies
of the content over different servers (also known as mirrors). For
the purpose of illustration of our approach, we consider a concrete
example of an RDM network presented by a publicly available
exemplar RDMSim [33]. The RDMSim artefact presents 3 quality
attributes: minimization of operational cost (MC)1, maximization
of performance (MP)2, and maximization of reliability (MR)3. The
RDMSim system can perform the adaptation actions of switching
between the two topology configurations for the network: i) Min-
imum Spanning Tree (MST) that seeks to use the least number of
links reducing cost and performance but also reducing reliability.
ii) Redundant Topology (RT) that improves reliability at the cost of
operational cost and performance. According to the specifications
of RDMSim [33], MC is considered satisfied if the total bandwidth
consumed is less than or equal to 3600 GBps, MR is satisfied if the
total active links is greater than or equal to 105 active links and MP is
satisfied if total writing time is less than or equal to 2700 milliseconds.
The RDMSim comes up with 6 different scenarios that represent
different dynamic environmental situations [33].

Algorithm 1 Surprise-based Learning Algorithm
𝑁 ← number of states of SAS
𝐵 ← 𝜋0 ⊲ current beliefs about the impacts of adaptation actions
𝑊 ← flat distribution across the states
𝑚 ← 𝑃𝑐

1−𝑃𝑐
while SAS Execution = True do

Use𝑊 to determine next adaptation action
𝑋𝑛 ← new adaptation action-state pair
1) evaluate 𝑆𝐵𝑎𝑦𝑒𝑠 (𝑋𝑛 |𝐵𝑋𝑛)
2) 𝛾 =

𝑚∗𝑆𝐵𝑎𝑦𝑒𝑠 (𝑋𝑛 |𝐵𝑋𝑛)
1+(𝑚∗𝑆𝐵𝑎𝑦𝑒𝑠 (𝑋𝑛 |𝐵𝑋𝑛))

3) 𝐵𝑋𝑛 = (1 − 𝛾)𝐵𝑋𝑛 + 𝛾𝜋0 + Δ ⊲ SMiLE Rule
4)𝑊𝑋𝑛 (𝑡+1) =

𝑊𝑋𝑛𝑡∑𝐵𝑋𝑛
𝑖=1 𝐵𝑋𝑛𝑖

⊲ Adaptation Impacts Update

end while

Next, we present our proposed Surprise-based learning approach:

1Operational Cost is measured in terms of total bandwidth consumed.
2Performance is measured in terms of total time to write data.
3Reliability is measured in terms of total active links.

3.2 Surprise-based Learning Approach
At the core of the proposed Surprise-based learning approach lies
the concept of assumptions made by domain experts regarding
the impact of adaptation actions (e.g., MST or RT in RDM) on
the quality attributes of an SAS (e.g., MC, MP, and MR in RDM).
Due to unforeseen environmental changes, the initial assumptions
established at design time may no longer hold under newly encoun-
tered execution contexts. For instance, equipment failure during the
execution of the MST topology may alter its impact on the satisfac-
tion of quality attributes. In the Surprise-based learning approach,
these assumptions are represented as probabilities. Specifically, the
probability 𝑃𝑎𝑖𝑞 𝑗 = 𝑃 (qj is satisfied | the adaptation action ai) ex-
presses the likelihood that quality attribute 𝑞 𝑗 is satisfied given
adaptation action 𝑎𝑖 . In the case of RDM, this can be written as
𝑃 (MR is satisfied | MST adaptation action).

In the context of the POMDP, which is the decision-making en-
gine used, these probabilities are known as beliefs, which here relate
to the world being modelled. The beliefs in our context measure
whether a quality attribute qj is satisfied given the adaptation action
ai that has been chosen, which can be represented as 𝑏𝑒𝑙𝑖𝑒 𝑓𝑎𝑖𝑞 𝑗 and
corresponds with the belief 𝐵 in Algorithm 1. Moreover, the impacts
of adaptation actions are represented as the transition probabilities,
because they describe the probabilities of transition from one state
to another after an adaptation action. Further, based on the changes
in the environment of SAS, the Surprise (that suggests the exis-
tence of broken assumptions) hints at the need to update the beliefs
about the impacts of adaptation actions. This is done by the use
of SMiLe rule [13] in our proposed approach. The newly updated
beliefs are then used to update the impacts of adaptation actions
and the model of the world for SAS. The proposed Surprise-based
learning approach is outlined in Algorithm 1.

In the algorithm, 𝜋0 is the initial (flat) beliefs 𝐵 about the im-
pacts of adaptation actions,𝑊 represents the world model for SAS
(specified by the transition probabilities in POMDPs). Delta Δ is
a Kronecker function [12] which is used to indicate if the prior
state and current state of the SAS are the same. The process is
dependent on the following factors: the number of states of the
SAS, the number of possible adaptation actions for the SAS and the
type of Surprise used (i.e., 𝑆𝐶𝐶 or 𝑆𝐵𝐹). We also need information
about the adaptation rate 𝛾 which is modulated by a variable 𝑚
referring to the rate of change in the environment. The variable𝑚
is further derived from an additional variable 𝑃𝑐 , which represents
the volatility of the environment.

Next, we outline the steps to learn the impacts of adaptation
actions (POMDP transition probabilities) and update the world
model𝑊 , where "beliefs" refer to assumptions about impacts.
Step 1: Initialization of the World Model for SAS and beliefs
about the Adaptation Action Impacts:

Before SAS execution, the learner is initialized with beliefs 𝐵
about the impacts of adaptation actions and the transition probabil-
ities that form the world model𝑊 , using flat distributions. These
beliefs predict how adaptation actions affect the state of the SAS,
which is defined by the satisfaction of its quality attributes. For
example, in self-adaptive RDM, the initial beliefs and world model
for MST and RT actions on MC, MR, and MP attributes are set

uniformly. After initialization, SAS begins its loop to learn and
improve transition probabilities during execution.
Step 2: Selection of Adaptation Action:
Once the SAS starts executing, it selects the adaptation action
considering the environmental context and the initialized world
model𝑊 to achieve the satisfaction of its quality attributes. Once
the adaptation action given the current state for SAS is determined,
the selected adaptation action is applied to come up with the next
state for SAS. For example, given the environmental situation of
link failures during MST topology, the self-adaptive RDM will plan
to select the adaptation action of RT topology to satisfy reliability
(MR) for the network. The application of the RT topology will have
an impact of the state of satisfaction of all of the quality attributes
MR, MC and MP leading the self-adaptive RDM to a new state.
Based on this state-adaptation action pair, the respective transition
probability 𝑋𝑛 is selected that supports the transition of the SAS
from one state to another.
Step 3: Calculation of Surprise:
Considering the above state-adaptation action pair, the next step is
to compute the Surprise which, in this case, indicates the deviation
between the actual impacts of adaptation actions (represented as
transition probability 𝑋𝑛) and the assumed impacts i.e., the Belief
𝐵𝑋𝑛

over the impact of adaptation action.
Step 4: Computation of Adaptation Rate:
Once the Surprise is computed, the next step involves the com-
putation of the adaptation rate 𝛾 which (as previously stated) is
based on the value of Surprise and the rate of change represented
by𝑚, itself dependent on the environments volatility as specified
by a probability of change 𝑃𝑐 . The 𝑃𝑐 value is bound between 0
and 1 and is set by the domain experts. The rate of change𝑚 and
adaptation rate 𝛾 are calculated as follows:

𝑚 =
𝑃𝑐

1 − 𝑃𝑐
(4)

𝛾 =
𝑚 ∗ 𝑆𝐵𝑎𝑦𝑒𝑠

1 + (𝑚 ∗ 𝑆𝐵𝑎𝑦𝑒𝑠)
(5)

Hence, the adaptation rate for the SAS is informed by the Sur-
prise to denote a change in the assumptions about the impacts of
adaptation actions and the rate at which the environmental fluctu-
ations occur indicated by the m. This information then supports
the SAS to update the beliefs and the world model for SAS.
Step 5: Updating of the beliefs about the Impacts of Adapta-
tion Actions:
Step 5 is based on the SMiLe rule [13] that involves updating the
beliefs about the impacts of adaptation actions 𝐵𝑋𝑛

considering the
state-adaptation action pair selected in Step 2. The update in the
belief is performed based on the adaptation rate 𝛾 , the initial belief
𝜋0, and the current belief 𝐵𝑋𝑛

as follows:

𝐵𝑋𝑛
= (1 − 𝛾)𝐵𝑋𝑛

+ 𝛾𝜋0 + Δ (6)
Based on the updated Beliefs, the world model𝑊 is updated by

updating the impacts of adaptation actions done in the next step.
Step 6: Update of the Impacts of Adaptation Actions:
The final step updates the impacts of adaptation actions (transition
probabilities in POMDPs) using the learner’s updated beliefs 𝐵 and
the world model𝑊 . Steps 2 to 6 are repeated throughout the SAS

execution. At each timestep, the updated transition probabilities
guide the SAS in selecting and performing adaptation actions. Af-
ter each action, the results and new SAS state are fed back to the
Surprise-based learner to update the impacts of the adaptation ac-
tions, adapting to the new environment.

The choice of 𝑃𝑐 value: An important concept in the Surprise-
based learning approach is the 𝑃𝑐 value, which frames the volatility
of the environment. Environmental volatility changes among dif-
ferent environmental situations, as certain situations are worse
than others. Capturing these differences is important to produce
a workable solution. When 𝑃𝑐 is small and closer to 0, the envi-
ronment is thought to be less volatile, so more importance can be
set to environmental change. In contrast, when 𝑃𝑐 is closer to 1,
the environment is considered as unstable and prone to frequent
and large changes. In the Surprise-based learning approach, the 𝑃𝑐
value is used to control the adaptation rate, 𝛾 > 0, with gamma
approaching 1 as 𝑃𝑐 approaches 1. The 𝛾 value of 1 is equivalent
to discarding all new information and entirely relying on the orig-
inal distribution, 𝛾 set to 0 is the reverse, i.e., discarding all prior
information and relying on the current belief solely. This means
that in less volatile environments newer beliefs 𝐵 are prioritized as
any large changes to the beliefs mean something has unexpectedly
gone wrong and needs to be amended promptly. For example, let’s
consider the case of the RDMSim: scenario 6 represents a highly
volatile environmental situation where a significant site failure
occurs. Hence, for such a situation, the 𝑃𝑐 closer to 1 is considered.

To select a suitable 𝑃𝑐 value, we start by testing values near 0
and 1, checking if the Surprise-based learning approach produces
the desired SAS behavior under environmental fluctuations. Based
on performance, we refine by choosing values above or below 0.5.
For example, if a 𝑃𝑐 value near 1 works better than one near 0, we
test values between 0.5 and 1.0 to find the best adaptation behavior.
Once acceptable 𝑃𝑐 values are identified, one is selected as the "base"
value for achieving desired adaptation impacts and satisfaction of
quality attributes. Due to environmental variability, a single 𝑃𝑐
value may not fit all scenarios, so the value is chosen based on
quality attribute priorities for each specific scenario.

4 EXPERIMENTS
In this section, we present the experimental evaluation of the pro-
posed Surprise-based learning approach. We employ POMDPs as
the decision-making technique for selecting adaptation actions in
SAS. The SAS learns the real-time impact of adaptation actions per-
formed under dynamic runtime conditions. In the case of POMDP-
based decision-making, these impact values are represented as tran-
sition probabilities that define the SAS’s world model. For the exper-
imental evaluation, we use the public exemplar RDMSim [28, 33], as
described in Section 3. The experiments are conducted using 𝑆𝐶𝐶 ,
the Surprise measure utilized by the SMiLe rule [11]. Additionally,
we perform further evaluations using the Bayes Factor Surprise
(𝑆𝐵𝐹), which introduces the perspective of a naive observer for
comparison purposes.

For benchmarking, we compare our approach with an exist-
ing POMDP-based decision-making method presented in [17, 18],
which relies on expert-defined transition probabilities that remain

fixed during execution. In our experiments, we apply the technique
to the RDMSim network case study. The proposed Surprise-based
learning approach underpins the learning process of transition prob-
abilities, enabling the system to update the impact of adaptation
actions dynamically.

Evaluation metrics include **occurrence rates** (i.e., the number
of times a specific topology is selected), **satisfaction rates** (i.e.,
the total number of times a given quality attribute is considered
"satisfied"), and **individual performance metrics** for each quality
attribute (i.e., read/write time, bandwidth consumption, and number
of active links). Due to the nature of trade-offs, whether a given
result is favorable depends on the scenario and quality attributes. A
high MP/MC occurrence rate may be beneficial in scenarios where
these values are expected to underperform but may be undesirable
in others—especially if it comes at the expense of MR.

We conducted experiments for all seven RDMSim scenarios,
each representing different dynamic environmental conditions in
an RDM network. The results for all scenarios are available in a
GitHub repository [39]. The execution of the algorithm took, on
average, 0.016 seconds to learn the world model at a given time
step for the RDM case (or just under 8 seconds to complete a run
of 500 timesteps). All experiments were performed using an AMD
Ryzen 5 7600X processor.

4.1 Initial Setup
As the first step of our experiments, we initialized the world model
𝑊 for the self-adaptive RDM, represented by the transition prob-
abilities and the initial beliefs 𝐵 about the impacts of adaptation
actions. Both the transition probabilities and beliefs were set to a
uniform distribution. Next, we present the experimental evaluations
carried out using 𝑆𝐶𝐶 . We describe the topology selection behavior
of the Surprise-based learning approach by selecting different 𝑃𝑐
values to better match the environmental fluctuations represented
by various RDM scenarios [33].

4.2 Experiments using Confidence-Corrected
Surprise

As noted, different 𝑃𝑐 values are needed for various RDMSim sce-
narios due to their volatility. These values help the Surprise-based
learning approach gauge environmental dynamics and improve
adaptation. Initially, we tested 𝑃𝑐 = 0.333, which did not produce
the desired behavior—though it showed learning of adaptation im-
pacts. Beyond 100 timesteps, only the MST topology was selected,
establishing 0.333 as the lower bound. Additional values below 0.5
showed similar behavior, while values above 0.5 introduced more
variation. 𝑃𝑐 = 0.583 was the first to exhibit significant changes,
confirming that larger 𝑃𝑐 values are better suited for dynamic en-
vironments like RDM, which experience higher link failure rates.
Further testing showed that 𝑃𝑐 values above 0.667 did not yield
the desired topology selection across different RDM scenarios. Al-
though minor variations occurred at higher values, topology selec-
tion became inconsistent. Based on these observations, 0.667 was
chosen as the upper bound.

Experiments then progressed to iterative testing of 𝑃𝑐 values
between 0.583 (the lowest value above 0.5 that showed variation in
topology selection behavior) and 0.667. For clarity, we discuss the

Figure 2: Average topology selections for scenarios 0 to 6,
over 5 runs for the use of a 𝑃𝑐 = 0.6

Figure 3: Average topology selections for scenarios 0 to 6,
over 5 runs for the use of a 𝑃𝑐 = 0.655

results for 𝑃𝑐 = 0.6, 0.636, and 0.655 in detail. To begin, 𝑃𝑐 = 0.6
was the first value to show promise regarding topology selection
behavior. While previous values had demonstrated comparable sat-
isfaction rates (at least when considering all three quality attributes
together), they lacked judicious prioritization—often leading to
under-prioritization of MR in terms of satisfaction. The approach
exhibited the intended topology behavior for the first four scenarios
(scenarios 0 through 3), though this behavior did not persist in the
latter three. This outcome, while not ideal, was expected, as a single
𝑃𝑐 value is unlikely to be optimal across all scenarios.

The key takeaway is that the Surprise-based learning approach
successfully produced the intended behavior for some RDM scenar-
ios, aligning with RDMSim specifications [33]. Regarding transition
function quality (representing impacts), assessed by the average
satisfaction rate per scenario, results for 𝑃𝑐 = 0.6 and the expert-
defined transition function (from [18], presented in Section 4.4)
were comparable for the first four RDMSim scenarios. Figure 2
shows results for 𝑃𝑐 = 0.6, while Figure 9 illustrates the expert-
defined function’s topology selection behavior. However, in the fi-
nal three scenarios, average quality attribute satisfaction remained
similar despite differing topology behavior. Both approaches priori-
tized quality attribute satisfaction according to RDMSim specifica-
tions [33].

Therefore, we can deduce that Surprise-based learning gener-
ated transition probabilities with satisfaction rates and behavior

comparable to those of expert-defined probabilities—without re-
quiring expert effort and time. The achieved satisfaction levels for
quality attributes are presented in Figure 4. A caveat, however, is
that Surprise-based learning did not consistently produce transi-
tion probabilities as effective as those defined by experts. While
it achieved good satisfaction rates, it occasionally misallocated
resources, prioritizing variables that did not require them at the
expense of those that did. This resulted in deceptively high overall
satisfaction rates—where MR and MP were sometimes extremely
high while MR remained too low, despite the intended goal of bal-
ancing them.

The results discussed so far represent mean values across mul-
tiple runs, making them sensitive to outliers and drastic shifts. In
RDM scenario 0 and scenarios 4 to 6, values fluctuated significantly
in about half of the runs. However, this does not discredit 𝑃𝑐 = 0.6;
rather, it suggests it may be unsuitable for certain scenarios. These
variations offer insights into result changes, averaging effects, and
how Surprise-based learning should generate transition probabili-
ties for the World Model. The average topology selection results
for 𝑃𝑐 = 0.6 are shown in Figure 2, highlighting that a single run is
insufficient for accurate transition probabilities in RDMSim.

The approach behaves most erratically in this case, exhibiting
the worst failures. However, higher 𝑃𝑐 values only exacerbate the
instability and overall dissatisfaction of quality attributes in sce-
nario 6. For example, the most common behavior observed was
that RT was selected as frequently as, if not more than, MST—this
pattern was repeated in all but one of the runs. The dilemma is that
while it does not seem logical to use a lower 𝑃𝑐 value for scenario
6 than for the others, doing so appears necessary to correct the
observed behavior. Potential solutions will be presented later, but
this issue remains a challenge for the base Surprise-based learning
implementation, which we intend to explore further in future work.

The final 𝑃𝑐 value demonstrated is 𝑃𝑐 = 0.636, briefly discussed
as it exhibits a mix of 𝑃𝑐 = 0.6 and 𝑃𝑐 = 0.655, as expected given
its intermediate position. Scenarios 0 to 3 maintained reasonable
satisfaction rates, while scenarios 4 to 6 showed some improvement
over 𝑃𝑐 = 0.6 despite continued poor performance. Although other
values could have been tested, 𝑃𝑐 = 0.636 is included for comparison
with a proposed solution to address behavioral inconsistencies in
later scenarios. Satisfaction levels for 𝑃𝑐 = 0.655 and 𝑃𝑐 = 0.636 are
shown in Figures 5 and 6.

The remaining 𝑃𝑐 values not explicitly covered here generally
followed the established trend of increasing volatility for 𝑃𝑐 values
greater than 0.5. Although some anomalies were observed (e.g.,
𝑃𝑐 = 0.615 inexplicably exhibited low RT selection throughout),
most deviations were attributable to the stochastic nature of the
Surprise-based learning algorithm and "unlucky" runs that obscured
the actual behavior. Based on the experimental results, the precise
𝑃𝑐 values are not critically important as long as they remain within
the bounds of 0.583 and 0.667 and follow the general trend where
increasing 𝑃𝑐 values correspond with grouped scenarios (i.e., sce-
nario 0; scenarios 1 and 2; scenario 3; scenarios 4 and 5; scenario 6).
The results for all tested 𝑃𝑐 values are available in [39].

To further validate the topology selection behavior of the Surprise-
based learning approach, we conducted additional evaluations by

randomizing action selection during the initial iterations. The ob-
jective was to determine whether the Surprise-based learning ap-
proach inherently favors one topology over another. To this end, the
first 50 action selections were randomized. If the approach exhib-
ited a preference for a particular topology, this would significantly
influence the rest of the run. Conversely, if no inherent bias was
present, behavior should revert to the previously observed patterns
after the first 50 timesteps. Surprisingly, the results revealed that
not only did behavior change—suggesting that early topology se-
lection plays a role in how the Surprise-based learning approach
evolves—but also that this initial randomization significantly im-
proved topology selection for the last three scenarios, as shown in
Figure 7. This behavior in the final three scenarios can be attrib-
uted to the fact that they represent situations where frequent link
failures occur due to equipment issues affecting both MST and RT
topologies. Scenario 6, in particular, involves a major site failure in
the RDM network. To ensure that this behavior was not a statistical
anomaly, five additional runs were conducted for each scenario,
in addition to the initial five. The results consistently reproduced
the same behavior, confirming that the observed effects were not
merely coincidental. These findings are presented in Figure 7.

A drawback, however, was that the results exhibited some degree
of erratic behavior, particularly in scenario 4. Nevertheless, this
still marked an improvement over previous implementations. As
stated earlier, the reason for this improvement is that the increased
volatility of later scenarios was reflected in the random actions,
ultimately leading to better results. Additional 𝑃𝑐 values of 0.6,
0.636, and 0.655 were also tested. However, only 𝑃𝑐 = 0.636 showed
any improvements, as presented in Figure 7.

4.3 Confidence Corrected Surprise vs Bayes
Factor Surprise

For the experiments, both 𝑆𝐶𝐶 and 𝑆𝐵𝐹 were used to determine
appropriate 𝑃𝑐 values. However, it was quickly observed that 𝑆𝐶𝐶
produced more varied results, adapting more dynamically as envi-
ronmental volatility fluctuated. In contrast, most 𝑃𝑐 values for 𝑆𝐵𝐹
resulted in minimal change until exceeding 0.5, behaving similarly
to 𝑆𝐶𝐶 at higher thresholds.While 𝑆𝐶𝐶 introduced both benefits and
drawbacks through its variability, 𝑆𝐵𝐹 generally underperformed
in topology selection, as shown in Figure 8. Additionally, satis-
faction rates of quality attributes were inadequate, often trailing
behind those achieved with 𝑆𝐶𝐶 . Consequently, 𝑆𝐵𝐹 was ultimately
discontinued in favor of refining and improving 𝑆𝐶𝐶 results.

4.4 Comparison against Expert-Defined Impacts
We also compared our technique with the existing POMDP-based
approach [18], which relies on expert-defined transition probabil-
ities. Figure 9 illustrates the topology selection behavior of the
expert function. For the first four scenarios, topology selection
behavior closely aligns with the expert-defined technique, demon-
strating that the Surprise-based learning approach can generate
world models without requiring expert knowledge. However, in
later scenarios, behavior deviates from expectations, negatively
affecting the satisfaction rate of quality attributes. While using
different 𝑃𝑐 values for the first four scenarios can maintain these

Figure 4: Satisfaction of quality attributes under RDM Scenarios for 𝑃𝑐 value of 0.6. The red line indicates the threshold which
all values should be beneath (or above for MR) to prevent failure.

Figure 5: Satisfaction of quality attributes under RDM Scenarios for 𝑃𝑐 value of 0.655. The red line indicates the threshold
which all values should be beneath (or above for MR) to prevent failure.

Figure 6: Satisfaction of quality attributes under RDM Scenarios for 𝑃𝑐 value of 0.636. The red line indicates the threshold
which all values should be beneath (or above for MR) to prevent failure.

benefits, higher 𝑃𝑐 values in later scenarios still underperform com-
pared to expert-defined models. An interesting observation is that
introducing random actions for the first 50 timesteps appears to
mitigate these issues, though it results in increased behavioral vari-
ability. Nonetheless, later scenarios again demonstrated topology
selection behavior similar to expert-defined adaptation impacts.

These findings suggest that the Surprise-based learning approach
can replicate expert-defined functions, particularly in earlier sce-
narios, and has the potential to do so for later scenarios with further
refinement. Despite its limitations, this approach requires only a
fraction of the time needed for an expert to manually design and
analyze transition probabilities. Identifying appropriate 𝑃𝑐 values

simply necessitates basic analysis of the expected runtime environ-
ment and preliminary testing in either a real or simulated setting.

5 THREATS TO VALIDITY
The key threats to validity [14] are discussed as follows:
External Validity: We have executed experiments using the appli-
cation of RDMSim [33] focusing on decision-making in a centralized
setting while the adaptation decisions affect the whole network by
making a change in topology. The approach has not been tested in a
decentralized setup yet. More experiments are required to evaluate
the application feasibility of the Surprise-based learning approach
in both centralized and decentralized settings.

Figure 7: Average topology selections for scenarios 0 to 6 over
10 runs for the use of random action + 𝑃𝑐 value of 0.636

Figure 8: Average topology selections for scenarios 0 to 6,
using Bayes Factor Surprise

Figure 9: Average topology selections for scenarios 0 to 6,
over 5 runs for Expert-defined Adaptation Impacts

Internal Validity: The internal threat to validity refers to the ex-
tent to which the Surprise-based learning approach performs in
an actual environmental setup. In this paper, we have used a case
study based on the exemplar/simulator RDMSim. The experiments’
results are based on the environmental situations simulated by
the RDMSim, and not an actual physical network. However, the
RDMSim [33] is a well-accepted application in the research com-
munity and has been used by other resarch teams in its different

versions [15, 30]. The simulation exemplar [33] provides support
for simulations that are close enough to the real settings.

6 RELATEDWORK
Several studies have explored the concept of Surprise to learn and
model human behaviour [13, 26, 42]. In [26], Surprise modulates
learning of world model through Bayesian inference. The approach
balances the trade-off between forgetting old observations and in-
tegrating new ones to support the learning of human behaviour.
Similarly, [13] uses a Surprise-Minimization framework (SMiLe)
to model human behaviour by balancing new and old data in dy-
namic environments. In [42], Surprise is used to enhance learning
in Reinforcement Learning (RL), improving both model-based and
model-free branches. While inspired by this, our approach focuses
on learning adaptation impacts for SAS, not human behaviour.

Surprise has also been applied in intelligent agents and au-
tonomous robots for planning and learning action impacts [27, 31,
32, 38]. These methods use surprise to help robots autonomously
plan, learn, and adapt to environmental changes. [7, 8] introduced
Surprise-based learning to predict state transitions in robots using
Stochastic Distinguishing Experiments (SDE) and Surprise-based
POMDP (sPOMDP). Surprise has also been used for optimal explo-
ration in dynamic environments [1, 27, 38] , motivating exploration
by learning transition probabilities and rewards based on surprise.
In contrast to these approaches, which focus on planning, explo-
ration, or learning for robots and RL agents, our Surprise-based
learning approach is designed to learn the impacts of adaptation
actions in SAS. By focusing on the dynamic adaptation of SAS, our
work addresses a distinct and underexplored application of Surprise
in self-adaptive systems.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a Surprise-based learning approach to
help SAS learn the impacts of adaptation actions on quality at-
tribute satisfaction under changing environmental conditions. The
approach leverages Surprise as an indicator of broken assumptions
and enables the system to update these impacts accordingly. As a
proof of concept, we applied our approach to an RDMnetwork, with
promising results demonstrating that the learned impacts aligned
with the expected behavior of self-adaptive RDM [33].

A POMDP-based technique was employed for decision-making,
where we compared two different transition functions used by the
POMDP decision maker: one defined by an expert and another
generated by our Surprise-based learner. While our learner shows
significant potential, it still has room for improvement, particularly
in ensuring consistency. However, our findings suggest that it can
refine existing transition functions and assist in designing more
effective decision-making models.

For future work, we aim to explore additional domains, such as
Internet-of-Things (IoT) applications[20], and enhance the learner’s
adaptation capabilities to improve consistency and overall perfor-
mance. Additionally, we plan to investigate alternative decision-
making approaches beyond Bayesian methods [16, 19].

ACKNOWLEDGMENTS: This work was partially supported by
Durham SRF JusTN0W (1815820) and the EPSRCProject Twenty20Insight
(EP/T017627/2).

REFERENCES
[1] Joshua Achiam et al. 2017. Surprise-based intrinsic motivation for deep reinforce-

ment learning. arXiv preprint arXiv:1703.01732 (2017).
[2] Pierre Baldi and Laurent Itti. 2010. Of bits and wows: A Bayesian theory of

surprise with applications to attention. Neural Networks (2010).
[3] Bencomo et al. 2019. RaM: Causally-connected Requirements-aware Models

using Bayesian Inference. MODELS (2019).
[4] Nelly Bencomo. 2015. Quantun: Quantification of uncertainty for the reassess-

ment of requirements. In IEEE RE. IEEE, 236–240.
[5] Nelly Bencomo and Amel Belaggoun. 2014. A world full of surprises: Bayesian

theory of surprise to quantify degrees of uncertainty. In ICSE. 460–463.
[6] Betty H. Cheng and et al. 2009. Software Engineering for Self-Adaptive Sys-

tems. Springer-Verlag, Berlin, Heidelberg, Chapter Software Engineering for
Self-Adaptive Systems: A Research Roadmap, 1–26.

[7] Thomas Collins et al. 2018. Surprise-based learning of state representations.
Biologically inspired cognitive architectures 24 (2018), 1–20.

[8] Thomas Joseph Collins et al. 2017. A robust cognitive architecture for learning
from surprises. Biologically Inspired Cognitive Architectures (2017).

[9] Rogério De Lemos et al. 2013. Software engineering for self-adaptive systems:
A second research roadmap. In Software Engineering for Self-Adaptive Systems
II: International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised
Selected and Invited Papers. Springer.

[10] Koller et.al. 2009. Probabilistic graphical models: principles and techniques. MIT
press.

[11] Mohammadjavad Faraji. 2016. Learning with Surprise. Technical Report. EPFL.
[12] Mohammadjavad Faraji. 2016. Learning with Surprise Theory and Applications.
[13] Mohammadjavad Faraji et al. 2017. Balancing New Against Old Information: The

Role of Surprise in Learning. arXiv:1606.05642 [stat.ML]
[14] Robert Feldt and Ana Magazinius. 2010. Validity threats in empirical software

engineering research-an initial survey.. In Seke. 374–379.
[15] Erik M. Fredericks. 2015. Mitigating Uncertainty at Design Time and Run Time

to address Assurance for Dynamically Adaptive Systems. Michigan S.University.
PhD Thesis. (2015).

[16] Erik M Fredericks et al. 2015. Automated generation of adaptive test plans for
self-adaptive systems. In SEAMS. IEEE, 157–167.

[17] Luis Garcia et al. 2024. Decision Making for Self-adaptation based on Partially
Observable Satisfaction of Non-Functional Requirements. TAAS (2024).

[18] Luis Garcia-Paucar and Nelly Bencomo. 2018. Re-STORM: Runtime Non-
Functional Requirements trade-off supported by Partially Observable Markov
Decision Processes. SEAMS (2018).

[19] Omid et.al. Gheibi. 2021. Applying machine learning in self-adaptive systems: A
systematic literature review. TAAS 15, 3 (2021), 1–37.

[20] Muhammad Usman Iftikhar, Gowri Sankar Ramachandran, Pablo Bollansée,
Danny Weyns, and Danny Hughes. 2017. DeltaIoT: A Self-Adaptive Inter-
net of Things Exemplar. In 2017 IEEE/ACM 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). 76–82.
https://doi.org/10.1109/SEAMS.2017.21

[21] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. 2015. A survey on engineering approaches for self-adaptive
systems. Pervasive and Mobile Computing 17 (2015), 184–206.

[22] Solomon Kullback. 1997. Information theory and statistics. Courier Corporation.
[23] Emmanuel Letier, David Stefan, and Earl T. Barr. 2014. Uncertainty, risk, and

information value in software requirements and architecture. In Proceedings of
the 36th International Conference on Software Engineering - ICSE 2014. ACM Press,
Hyderabad, India, 883–894.

[24] Vasiliki Liakoni et al. 2020. An Approximate Bayesian Approach to Surprise-
Based Learning. arXiv:1907.02936 [cs, q-bio, stat] (Feb. 2020).

[25] Vasiliki Liakoni et al. 2020. Learning in Volatile Environments with the Bayes
Factor Surprise. Neural Computation (Sept. 2020).

[26] Vasiliki Liakoni et al. 2020. Learning in Volatile Environments with the Bayes
Factor Surprise. arXiv:1907.02936 [stat.ML]

[27] Daniel Y Little and Friedrich T Sommer. 2011. Learning in embodied action-
perception loops through exploration. arXiv preprint arXiv:1112.1125 (2011).

[28] Minwen et al. 2003. Seneca: remote mirroring done write.. In USENIX.
[29] Alireza Modirshanechi et al. 2022. A taxonomy of surprise definitions. Journal

of Mathematical Psychology 110 (2022), 102712.
[30] Andres Ramirez et al. 2009. Applying genetic algorithms to decision making in

autonomic computing systems. In ICAC. 97–106.
[31] Nadeesha Ranasinghe et al. 2009. Surprise-based developmental learning and

experimental results on robots. In 2009 IEEE 8th International Conference on
Development and Learning. IEEE.

[32] Nadeesha et.al. Ranasinghe. 2008. Surprise-based learning for developmental
robotics. In 2008 ECSIS LAB-RS. IEEE, 65–70.

[33] Huma Samin et al. 2021. RDMSim: an exemplar for evaluation and comparison
of decision-making techniques for self-adaptation. In SEAMS 2021.

[34] Huma Samin et al. 2022. Decision-making under uncertainty: be aware of your
priorities. SoSyM (2022), 1–30.

[35] Pete Sawyer et al. 2010. Requirements-Aware Systems: A Research Agenda for
RE for Self-adaptive Systems. In 18th IEEE RE.

[36] Adhiraj Somani et al. 2013. DESPOT: Online POMDPplanningwith regularization.
NeurIPS 26 (2013).

[37] Spaan et al. 2005. Perseus: Randomized point-based value iteration for POMDPs.
Journal of AI research 24 (2005).

[38] Yi Sun, Faustino Gomez, and Jürgen Schmidhuber. 2011. Planning to be surprised:
Optimal bayesian exploration in dynamic environments. In Artificial General
Intelligence: 4th International Conference, AGI 2011, Mountain View, CA, USA,
August 3-6, 2011. Proceedings 4. Springer, 41–51.

[39] Dylan Walton et al. 2025. Surprise-based Learning Approach Results. https:
//github.com/TheSequel02/SurprisebasedLearning.git

[40] K Welsh et al. 2011. Towards requirements aware systems: Run-time resolution
of design-time assumptions. In 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011). 560–563.

[41] KristopherWelsh and Sawyer Pete. 2009. Requirements tracing to support change
in dynamically adaptive systems. In REFSQ. Springer, 59–73.

[42] He A Xu et al. 2021. Novelty is not surprise: Human exploratory and adaptive
behavior in sequential decision-making. PLOS Computational Biology 17, 6 (2021).

https://arxiv.org/abs/1606.05642
https://doi.org/10.1109/SEAMS.2017.21
https://arxiv.org/abs/1907.02936
https://github.com/TheSequel02/SurprisebasedLearning.git
https://github.com/TheSequel02/SurprisebasedLearning.git

	Abstract
	1 Introduction
	2 Background
	2.1 POMDPs and Design Assumptions in SAS
	2.2 The Concept of Surprise

	3 Surprise! Learn-Adapt Approach
	3.1 Illustrative Example: Remote Data Mirroring
	3.2 Surprise-based Learning Approach

	4 Experiments
	4.1 Initial Setup
	4.2 Experiments using Confidence-Corrected Surprise
	4.3 Confidence Corrected Surprise vs Bayes Factor Surprise
	4.4 Comparison against Expert-Defined Impacts

	5 Threats to Validity
	6 Related Work
	7 Conclusions and Future Work
	References

