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Abstract—An Entanglement Generation Switch (EGS) is a
quantum network hub that provides entangled states to a set of
connected nodes by enabling them to share a limited number
of hub resources. As entanglement requests arrive, they join
dedicated queues corresponding to the nodes from which they
originate. We propose a load-balancing policy wherein the EGS
queries nodes for entanglement requests by randomly sampling d
of all available request queues and choosing the longest of these
to service. This policy is an instance of the well-known power-of-
d-choices paradigm previously introduced for classical systems
such as data-centers. In contrast to previous models, however,
we place queues at nodes instead of directly at the EGS, which
offers some practical advantages. Additionally, we incorporate a
tunable back-off mechanism into our load-balancing scheme to
reduce the classical communication load in the network. To study
the policy, we consider a homogeneous star network topology that
has the EGS at its center, and model it as a queueing system
with requests that arrive according to a Poisson process and
whose service times are exponentially distributed. We provide an
asymptotic analysis of the system by deriving a set of differential
equations that describe the dynamics of the mean-field limit and
provide expressions for the corresponding unique equilibrium
state. Consistent with analogous results from randomized load-
balancing for classical systems, we observe a significant decrease
in the average request processing time when the number of
choices d increases from one to two during the sampling process,
with diminishing returns for a higher number of choices. We also
observe that our mean-field model provides a good approximation
to study even moderately-sized systems.

Index Terms—entanglement generation switch, mean-field
analysis, load-balancing

I. INTRODUCTION

Quantum networks connect quantum-equipped devices to
enable distributed applications that are not attainable via
classical means alone. Examples include quantum computing
in the cloud [1]–[3]; quantum-enhanced sensing [4], [5];
and quantum key distribution and conference key agreement
[6]–[8]. While some of these applications are inherently
entanglement-based, others can also consume entangled states
for tasks such as remote state preparation [9] and quantum
state and gate teleportation [10], [11]. Entanglement is thus an
essential resource whose generation and distribution constitute
much of the efforts undertaken within a quantum network.
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In fiber optic-based quantum networks, photonic losses
increase exponentially with distance [12], [13], rendering
communication between quantum nodes infeasible without
error correcting codes [14], [15] and assistive devices such
as quantum repeaters or switches [16]–[20]. In this work,
we study one such device – an Entanglement Generation
Switch (EGS) [20], [21] – that can accommodate a number of
connected nodes with bipartite entanglement generation. The
EGS assists with this process by facilitating nodes’ access
to a limited number of shared hardware components (e.g.,
Bell state analyzers (BSAs), as depicted in [21, Figure 2],
capable of performing optical Bell state measurements on
incoming photons), which we refer to as switch “resources”.
Figure 1 illustrates an EGS serving N nodes with m resources
(the architecture is discussed in detail in Section II-A). The
EGS resources in principle do not necessitate sophisticated
technology such as quantum memories, easing requirements
both on cost and fabrication in comparison to memory-
equipped counterparts. These properties make the EGS highly
relevant to near-term metropolitan-area quantum networks,
thus motivating the architecture choice for this study.

Thus far, the EGS has been analyzed in settings where
connected nodes are responsible for requesting service. Here,
we propose a novel service mode wherein the onus of request
solicitation falls on the switch: the EGS thus queries a fixed
number of nodes and assigns a resource module to the node
with the largest outstanding number of entanglement requests.
This operation mode of the EGS is an instance of the so-called
power-of-d-random-choices paradigm which has seen a wide
variety of applications ranging from hashing to virtual circuit
routing [22]. For brevity, we refer to the act of querying d sys-
tem components (e.g., queues) and selecting one for service as
a "d-choices policy". Such policies have proven advantageous
as load-balancing techniques in settings like data-centers or
computer clusters. Here, an arriving request would ideally be
assigned to the least loaded server/compute node, but access
to full and up-to-date information about workloads might be
unavailable or costly to obtain. Assigning the new task to the
least loaded of d ≥ 2 randomly chosen servers achieves a
lower communication cost (relative to querying all servers)
while considerably reducing the maximum server load (and
therefore the average request response time) even with d = 2.

A factor contributing to incomplete information at the EGS
during decision-making is node status, namely their readiness



Fig. 1. Architecture of an EGS with m resources – here, BSAs (Sj ). N
nodes (Di) are connected to the EGS via classical and quantum channels.

to commence entanglement generation. Each entanglement
generation attempt requires nodes’ communication qubits to
be available for the coordinated emission of photons whose
synchronized arrival is expected at an EGS resource. If queues
are maintained by the EGS, then a possibility arises that a
chosen request cannot be immediately serviced due to the
respective nodes’ unpreparedness to engage in entanglement
generation: e.g., a node may already be using its communica-
tion qubits to generate entanglement with other nodes, or these
qubits may be involved in processing tasks that require their
participation (e.g., two-qubit gates for hardware platforms such
as color centers in diamond [23]). To learn this information,
the EGS must communicate with the node-pair that issued the
request, and multiple communication messages/rounds may be
necessary until the EGS finds a serviceable request. We thus
have a practical reason to situate request queues at nodes:
when the EGS queries d node-pairs for queue sizes, it receives
most up-to-date information, including knowledge of which
pairs are primed for entanglement generation. This strategy has
the potential to amortize some of the communication delays
associated with node status querying.

Yet another motivation for placing queues at nodes is that
of fairness: the data-center model permits any node to flood
the network with its entanglement requests, over time causing
the bulk share of the resources to be dedicated to servicing its
own demands. Making the network responsible for offering its
services to the nodes removes the latter’s ability to directly in-
fluence resource allocation within it. We envision that an EGS
deploying a d-choices policy will provide the aforementioned
benefits while at the same time adequately supporting a variety
of applications such as distributed quantum computation or
entanglement distribution in a high traffic regime – such an
environment ensures that with a high probability, there exists
a request within the set of queues sampled by the EGS.

We use mean-field analysis to obtain tight approximations
of the average response time – the time gap between the entry
and exit time of an entanglement request. Such analysis has
been widely used to develop efficient algorithms for various
computer and communication networks [24]. Due to our
design choice of placing queues at nodes, the mean-field limit
of the data-center model studied in [25], which has queues at

servers, differs from our mean-field limit. Our task in this work
is therefore to carry out a performance analysis of the proposed
system, which we refer to as the d-choices EGS model. Since
this study is the first to consider this operation setting of the
EGS, we restrict its scope to a single, isolated instance of
the device serving nodes in a star topology as depicted in
Figure 1. Each node connected to the EGS is assumed to
have a number of communication qubits equal to the number
of switch resources, enabling it to concurrently participate in
entanglement generation with all of them. Because of this
assumption, we are able to analyze the model using mean-field
techniques. Scenarios where nodes have memory restrictions
are reserved for follow-up study. However, we cannot use
mean-field techniques for such models; we elaborate more on
this in Section III. Our contributions include the following:
• We derive a set of differential equations that, in the limit of

a large number of request queues, accurately describe the
system state evolution of an EGS deploying the d-choices
policy. This modelling approach enables an asymptotic
analysis of the system in the mean-field limit;

• We prove the existence and uniqueness of the equilibrium
state that satisfies the mean-field equations;

• We provide analytical expressions for request queue size
distributions as well as the average response time for an
entanglement request. These performance measures are gen-
erally challenging to obtain for scenarios where multiple
entities (e.g., EGS resources) concurrently process requests.

Our numerical results support our findings. Namely, they
provide supporting evidence that the equilibrium state of the
mean-field approximates well the stationary distribution of the
system state when the number of request queues is large.
Further, we find that the average request response time sees
a substantial decrease when d increases from one to two; a
further increase in d provides diminishing advantages. We ob-
serve approximation errors of less than 5% for d = 2 even for a
small system with ten resources and 200 entanglement request
queues. We also observe that the approximation error of our
model increases as d increases. These results demonstrate the
potential of mean-field techniques to study near-term quantum
systems where a small number of quantum devices serve a
large number of applications.

The remainder of this manuscript is structured as follows. In
Section II, we provide relevant background. In Section III, we
construct the system model and use it to conduct a mean-field
analysis of the system. In Section IV, we present numerical
results. We conclude our findings and discuss future directions
in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we describe the EGS architecture and the
d-choices policy in detail. We then provide an overview of
relevant literature.

A. Entanglement Generation Switch (EGS)

An EGS is a type of quantum entanglement switch (QES)
that facilitates entanglement generation between multiple par-



ties. It consists of a central processor tasked with resource
scheduling and classical communication with neighboring
nodes; resources for entanglement generation – henceforth we
assume for concreteness that these are BSAs although our
model is applicable to other types of switch resources; and
an optical switching fabric that serves as a bridge between
switch interfaces and BSAs (see Figure 1). When two nodes
wish to share a bipartite entangled state (i.e., a Bell state/EPR
pair [26]), they submit a request to the EGS. In this work,
we consider the following request handling procedure: when
a BSA is available to process a new request, the central
processor first informs the nodes that a BSA has been allocated
for entanglement generation. Meanwhile, the processor notifies
the optical switch that the BSA should only be accessible
to said node pair. The optical switch then configures the
quantum channel accordingly, and the nodes can proceed with
entanglement generation attempts. The result of each attempt
is communicated to the nodes classically.

In near-term quantum networks, BSAs in the EGS are
likely to be few in number due to device fabrication cost and
complexity; hence we assume that they comprise a shared pool
of resources as in [20] and [21]. A key challenge for the EGS is
thus resource management. While the authors of [20] and [21]
managed these resources via request rate control and blocking
mechanisms, respectively, our contribution is to study the EGS
using the d-choices load-balancing policy and to understand
queue behavior and the average request processing time. For
more details on prior work for the EGS see Section II-C.

B. The Traditional d-Choices Policy

The d-choices policy is a load-balancing scheme commonly
seen in classical data-center models [25]. It offers both the
benefits of the Join-a-Random-Queue (JRQ) and the Join-the-
Shortest-Queue (JSQ) policies; JSQ often has better perfor-
mance in terms of average request waiting time, whereas JRQ
incurs a lower classical communication cost. In a classical
data-center with m servers, the d-choices policy is referred
to as the JSQ(d) policy and is implemented as follows: every
server has a queue to store assigned jobs while a job dispatcher
assigns an incoming job to the shortest queue size of d
randomly chosen servers. One can easily see that JSQ(1) and
JSQ(m) correspond to the JRQ and JSQ, respectively. One
way to analyse JSQ(d) is through a mean-field analysis which
we introduce in Section III-B. For a more comprehensive
summary of techniques developed to study the d-choices
policy in the data-center setting, we refer the reader to [22].

C. Related Work

Quantum memory-equipped QESes, sometimes referred to
as entanglement distribution switches (EDSes) in the literature,
have been studied extensively, e.g., as in [19], [27]–[32].
Architectural differences between EDSes and EGSes give rise
to different modes of operation. For instance, the presence
of quantum memories in an EDS enables more powerful
functionality than that of an EGS, e.g., deterministic entan-
glement swapping [33]–[35], entanglement distillation [36]–

[38], and overall more opportunities for dynamic or adaptive
decision-making by virtue of being able to store entanglement
at the link level (i.e., switch-to-node entanglement). These
operational differences result in EDS models that are not
directly applicable to our proposed EGS scheme.

Since the limiting resource for an EGS is the BSA, a re-
source management algorithm is required to facilitate its shar-
ing. Gauthier et al. proposed and analyzed a rate-modulation
mechanism in [20], as well as a request-blocking mechanism
in [21]. Specifically, the scheme in [20] allows node-pairs
to submit target entanglement generation rates to the EGS,
which are then updated using a rate control protocol to achieve
optimal performance according to a metric such as throughput.
Our proposed scheme contrasts from this setup in that we
assume no control over entanglement demand rates: these are
fixed and predetermined in our model. In [21], each node-pair
wishing to communicate submits an entanglement request to
the EGS. This request is blocked if all BSAs are busy servicing
other requests, and the devices will need to resubmit their
requests at a later time. This model contrasts from ours in
that the former does not allow request queueing.

In this work, we introduce the d-choices load-balancing
policy as a novel alternative for resource management within
an EGS. We use a mean-field limit approach to analyze the
system’s asymptotic behaviour as the number of queues grows
while the server-to-queue ratio stays constant. Previously, a
Service-the-Longest-Queue among d-choices policy was stud-
ied in the context of wireless networks [39]. Their model
involves one transceiver and k mobile stations, each with a
dedicated wireless transmission channel that is available for
data transmission only probabilistically due to fluctuations in
channel conditions. Each mobile station has a queue to store
its packets that are awaiting transmission. The transceiver
transmits a packet from one mobile station at a time; the
latter must have access to an available wireless channel.
Whenever the transceiver becomes idle, it samples d stations
at random from the set of all mobile stations with available
wireless channels, and chooses the longest of these d queues
for processing. The performance of this system was analyzed
through mean-field techniques. Our model is different from
that of [39] as we have multiple servers. In addition, the job
service rate and the rate with which an idle server re-samples
queues can be different in our model, while they were assumed
to be the same in [39]. In [39], the authors also studied
the policy where the server always processes a job from the
longest of all queues with available wireless channels, when
the number of queues becomes large. We do not study such a
policy as it has a high communication cost.

III. MODEL AND MEAN-FIELD ANALYSIS

In this section, we introduce our d-choices EGS model and
state our assumptions. We then perform a mean-field analysis
by deriving the system’s mean-field equations and expressions
describing the corresponding equilibrium state.



A. Model and Assumptions

Since we model the EGS as a queueing system, in the
following discussion we introduce terminology that will make
our subsequent comparison to the data-center model (described
in Section II-B) straightforward. Recall that m denotes the
number of BSAs within the EGS and that N is the number
of nodes connected to the EGS, each with m communication
qubits. The BSAs effectively function as servers, and we refer
to them as such throughout the analysis. We define a flow
f to be a node-pair, f = (i, j), 1 ≤ i < j ≤ N , that
desires entanglement. We denote the set of all flows with
F , i.e., F ⊆ {(i, j) : 1 ≤ i < j ≤ N}, and n = |F| the
total number of flows. Clearly 1 ≤ n ≤

(
N
2

)
. A job is an

entanglement request from a flow f ∈ F . Each job represents
the creation of exactly one entanglement between the two
nodes of f . We assume all jobs of a flow have identical service
time distributions – a reasonable assumption in settings where
parameters that drive the entanglement generation process are
constant and involuntary parameter drift is insignificant.

We assume that flow f ’s jobs arrive according to a Poisson
process with parameter λf and that jobs from different flows
arrive independently from each other. Each flow has a queue
where jobs await service on a First-Come-First-Served (FCFS)
basis. The term queue size refers to the number of existing jobs
in a queue. We assume successful entanglement generation
for flow f has an exponential service time distribution with
rate µf , which reflects the more realistic view of entangle-
ment generation as a succession of Bernoulli trials with low
success probability. Since BSAs can operate in parallel and
do not affect each other, we assume servers process jobs
independently. Finally, we consider a homogeneous system
that satisfies λf = λ and µf = µ, ∀f ∈ F .

Upon job completion, a (newly idle) server immediately
samples d queues at random to acquire a new job to process.
Since in our model queues are situated at flows (i.e., both
nodes of a flow’s node-pair keep track of enqueued jobs,
but the EGS does not do any active tracking), all d selected
queues may be empty. In this event, the server is said to have
carried out a failed sampling, and remains idle for a period
that is exponentially distributed with parameter γ, before re-
sampling d (potentially different) queues. This mechanism
exerts a lighter classical communication strain within the
system compared to immediate re-sampling. We thus refer to
γ as the back-off rate. In a near-term EGS system, we expect
that entanglement requests will experience a large service time
due to photon losses in fiber and failed optical entanglement
swaps at BSAs; the latter has a 0.5 success probability without
ancilla qubits [40]. It is thus desirable to have γ > µ so that
BSAs have shorter idle periods.

Since the EGS serves the longest among d randomly se-
lected queues, we say it follows the SLQ(d) policy. Then
SLQ(1) and SLQ(n) are the Service-a-Random-Queue (SRQ)
and the Service-the-Longest-Queue (SLQ) policies, respec-
tively. We study the effects of queue placement by comparing
the performance of JSQ(d) and SLQ(d) in Section IV.

B. Derivation of Mean-field Equations

In the analysis that follows, N0 represents the non-negative
integers and E[·] is the expectation operator. With our homo-
geneity assumption, we denote all arrival rates with λ and all
service rates as µ. We define r ≡ m

n as the server-to-queue
ratio. We next define the following random variables:
• X̃i(t), i ∈ N0, is the number of flows with at least i jobs

at time t;
• X(t) = (Xi(t))i∈N0 where Xi(t) =

1
nX̃i(t) is the fraction

of flows with at least i jobs at time t;
• Ỹ (t) is the number of servers servicing a job at time t;
• Y (t) = 1

m Ỹ (t) is the fraction of servers servicing a job at
time t.

By convention, we write α = 1 − α and αd = (1 − α)d for
α ∈ [0, 1]. For example, Xd

i (t) = (Xi(t))
d, Y (t) = 1− Y (t),

and X
d

i (t) = (1−Xi(t))
d. We note that the empirical process

{(X(t), Y (t))}t≥0 is a Markov process.

Remark 1. Since each node has m communication qubits,
it may participate in entanglement generation at all BSAs
simultaneously. Hence, a Markovian representation need not
track the identity of each flow currently in service. In the sce-
nario where nodes have fewer than m communication qubits,
a Markovian representation must include identities of flows
currently being serviced, since in this case {(X(t), Y (t))}t≥0

is not a Markov process. As a result, mean-field analysis
that requires the empirical process to be a Markov process
is not applicable. The average response time of models with
nodes having less than m communication qubits will be lower
bounded by our model (nodes have m communication qubits).

Next we derive mean-field equations without giving a for-
mal proof of the existence of the mean-field limit due to space
constraints. This proof follows easily from the theory of the
convergence of Markov processes as in [25], [41].

Theorem 1. The mean-field equations (MFEs) of the SLQ(d)
policy applied to the EGS are given by

d

dt
xi(t) = λ(xi−1(t)− xi(t))

− r(γy(t) + µy(t))(xd
i+1(t)− xd

i (t)), (1)
d

dt
y(t) = γy(t)(1− xd

1(t))− µy(t)xd
1(t), (2)

where i ≥ 1 and x0(t) = 1 for all t ∈ [0,∞). We refer to
(1) as the flow equations and to (2) as the server equation.
The process (x(t), y(t))t≥0 is called the mean-field limit that
represents the limit of {(X(t), Y (t))}t≥0 as n → ∞, where
x(t) = (xi(t), i ≥ 0).

An intuitive explanation for the MFEs is as follows: con-
sider first the flow equations (1). Fix an arbitrary i ∈ N0, a
sufficiently small ∆t > 0, and let t ∈ [0,∞). The following
three random variables contribute to change in X̃i(t):
• Ui is the change in X̃i(t) due to job arrivals during the

period [t, t+∆t];
• Vi is the change in X̃i(t) due to a successful re-sampling

by an idle server during the period [t, t+∆t];



• Wi is the change in X̃i(t) due to a successful sampling by
a server upon job completion during [t, t+∆t].

The expected number of new job arrivals during [t, t+∆t] is
nλ∆t. Moreover, the probability that a new job arrives at a
queue with i− 1 jobs is Xi−1(t)−Xi(t). Thus,

E[Ui] = nλ∆t(Xi−1(t)−Xi(t)). (3)

Next, consider Vi and Wi. When a server selects d queues
at random, (X

d

i+1(t)−X
d

i (t)) is the probability that they all
have at most i jobs, with at least one queue having exactly i
jobs. We assume that queues are sampled with replacement
which is a valid assumption when n is large. Further, the
expected number of re-sampling and sampling operations in a
∆t-sized time interval is given by mY (t)γ∆t and mY (t)µ∆t,
respectively. We thus obtain

E[Vi] = mY (t)γ∆t(X
d

i+1(t)−X
d

i (t)), (4)

E[Wi] = mY (t)µ∆t(X
d

i+1(t)−X
d

i (t)). (5)

The expected change in X̃i(t) during [t, t+∆t] is therefore

E[Ui − Vi −Wi] = ∆t
[
nλ(Xi−1(t)−Xi(t))

−m(γY (t) + µY (t))(X
d

i+1(t)−X
d

i (t))
]
. (6)

Dividing by n and ∆t, we obtain

1

∆t
E[Xi(t+∆t)−Xi(t)| (X(t), Y (t))] =

λ(Xi−1(t)−Xi(t))− r(γY (t) + µY (t))(X
d

i+1(t)−X
d

i (t)).
(7)

To derive (2), we observe that a change occurs in Y (t) in
the interval [t, t+∆t] when a busy server completes a job and
fails to obtain a new job via d-choices sampling, or when an
idle server becomes busy via successful d-choices sampling.
The probability of a failed sampling is given by the probability
that all sampled d queues are empty (again assuming sampling
with replacement), i.e., X

d

1(t). Finally, to obtain MFEs we
replace (X(t), Y (t)) with the mean-field (x(t), y(t)) (which is
a deterministic process) in the flow and server drift equations,
and let ∆t → 0.

As a comparison, the MFEs for the JSQ(d) model of [25],
which assumes r = 1,

d

dt
xi(t) =

λ

r
(xd

i−1(t)− xd
i (t))− µ(xi(t)− xi+1(t)). (8)

Due to the queue placement in this model, the set of equations
above captures the dynamics of the server queues, with the
equilibrium point given by πi = ( λ

rµ )
di−1
d−1 for d ≥ 2.

C. Equilibrium State of the Mean-Field

Given the MFEs, we can characterize the system’s perfor-
mance using the equilibrium state, or the fixed point of the
mean-field limit. An equilibrium state of the mean-field limit
is the solution satisfying dy(t)

dt = 0 and dxi(t)
dt = 0 for all i ≥ 1.

Let us denote by (π, ε) the fixed point satisfying the MFEs,
where π = (πi)i≥0 is an infinite sequence with πi ∈ [0, 1]

for all i ≥ 0 satisfying the flow equations (1) and ε ∈ [0, 1]
satisfying the server equation (2).

Next, we characterize the equilibrium state of the mean-
field. In the following theorem (Theorem 2), the equilibrium
state of the mean-field exists as long as ε = λ

rµ < 1, which
leads to λ

r(γε+µε) < 1. Note that λ
rµ < 1 is the necessary

condition for the stability of the system. Here, the probability
with which a server is busy equals λ

rµ and r(γε+ µε) is the
rate at which a queue is selected for processing when d = 1.
It is of interest to find equilibrium states (π, ε) that satisfy∑

i≥1 πi < ∞ (indicating finite average queue size under π)
as we want to approximate the stationary distribution of a
stable system with a finite average queue size.

Theorem 2. Among the class of equilibrium states (π, ε) with∑
i≥1 πi < ∞, if λ

rµ < 1 there exists a unique equilibrium
state of the mean-field. Furthermore, this equilibrium state
satisfies the following recursive equations

πi+1 = 1−
(
1− λ

r(γε+ µε)
πi

) 1
d

, (9)

where i ≥ 1, ε = λ
rµ , π0 = 1, and π1 = 1−

(
1− λ

r(γε+µε)

) 1
d

.

Proof. Since (π, ε) is the equilibrium state of the MFEs, it
follows that d

dtπi = 0 for all i ∈ N0 and d
dtε = 0. This

property, along with (1) and (2), means that (π, ε) satisfies

λ(πi−1 − πi)− r(γε+ µε)(πd
i+1 − πd

i ) = 0, (10)

γε(1− πd
1)− µεπd

1 = 0. (11)

Next, for i ∈ N0, let qi := πi − πi+1; then using (10),
j∑

i=0

qi =

j∑
i=0

r(γε+ µε)

λ
(πd

i+2 − πd
i+1)

=
r(γε+ µε)

λ
(πd

j+2 − πd
1). (12)

On the other hand,
∑j

i=0 qi = π0 − πj+1 = 1− πj+1. Using
this with (12) yields

1− πj+1 =
r(γε+ µε)

λ
(πd

j+2 − πd
1). (13)

Since we are interested in equilibrium states that satisfy∑
j≥1 πj < ∞, we use the condition that limj→∞ πj = 0

and limj→∞ πj = 1. Applying the limit to both sides of (13)
results in

1 = lim
j→∞

r(γε+ µε)

λ
(πd

j+2 − πd
1) =

r(γε+ µε)

λ
(1− πd

1).

(14)

Rearranging the above equation, we get

π1 = 1−
(
1− λ

r(γε+ µε)

) 1
d

. (15)

By substituting (15) into (11), we obtain ε = λ
rµ . Next, we

show that (9) is valid. By rearranging (10), we obtain

πi+1 = 1−
(
πd
i +

λ

r(γε+ µε)
(πi−1 − πi)

) 1
d

. (16)



In (16), by choosing i = 1, we obtain

π2 = 1−
(
πd
1 +

λ

r(γε+ µε)
(1− π1)

) 1
d

. (17)

By substituting (15) into πd
1 of (17) we get

π2 = 1−
(
1− λ

r(γε+ µε)
π1

) 1
d

. (18)

Similarly, for i ≥ 2, by expanding the expression for πd
i in

(16) we obtain (9).
Next, we show that the equilibrium state that we found

satisfies
∑

i≥1 πi < ∞. It suffices to show that πi ≤ π∗
i

by induction on i ≥ 1, where (π∗, ε∗) is the equilibrium
state of the mean-field when d = 1, and π∗ = (π∗

i , i ≥ 0).
Furthermore, it can be checked that

∑
i≥1 π

∗
i = ρ

1−ρ where
ρ = λ

r(γε+µε) . Observe that 1− p
1
d ≤ 1− p for any p ∈ [0, 1]

and d ∈ N. For the base case, we get

π1 = 1−
(
1− λ

r(γε+ µε)

) 1
d

(19)

≤ 1−
(
1− λ

r(γε+ µε)

)
(20)

=
λ

r(γε+ µε)
= π∗

1 . (21)

For the inductive step, we can rewrite (9) and get

πi+1 = 1−
(
1− λ

r(γε+ µε)
πi

) 1
d

(22)

≤ 1−
(
1− λ

r(γε+ µε)
πi

)
(23)

≤ λ

r(γε+ µε)
π∗
i = π∗

i+1. (24)

Thus, πi+1 ≤ π∗
i+1 whenever πi ≤ π∗

i as desired.

It is important to note that we still need to prove that
the equilibrium state of the mean-field yields the stationary
probability distribution of a queue as π and the stationary
probability that a server is busy as ε when n → ∞. A
sufficient condition to establish this result is to show the
global stability of the mean-field, which we leave for follow-
up work. However, as we show in Section IV, our numerical
results provide supporting evidence that the equilibrium state
of the mean-field approximates the stationary distribution of
the system when n is large.

IV. NUMERICAL RESULTS

In this section, we simulate an EGS deploying the d-
choices policy and make comparisons to analytical results. The
simulation parameters are configured with Narrivals = 109 job
arrivals per simulation run, service rate µ = 1, back-off rate
γ = 1, N = 21, m = 10, n = 200 <

(
N
2

)
flows/queues for a

server-to-queue ratio of r = m
n = 0.05, λ

rµ = 0.90, and time
units are given in seconds, unless otherwise specified. For our
simulations, we choose m ≪ n as near-term EGSes will have
a limited number of resources.

Fig. 2. Average response time of an EGS deploying the d-choices policy, as
a function of the number of choices d.

Fig. 3. Average response time of an EGS implementing d-choices policy as
a function of back-off rate γ.

First, we explain how we compute the average response time
using simulations. We denote by ti and ui > ti the arrival and
departure time of job i, respectively. The response time of
job i is w(ti) := ui − ti. The number of jobs departed by
time t > 0 is denoted by Ndepartures(t). The average response
time at time t > 0 is given by w(t) = 1

Ndepartures(t)

∑
ti<t w(ti).

The average response time over an entire simulation run is
w = w(tNarrivals), where tNarrivals is the arrival time of the last job
in the simulation. Let us denote by w̃π the analytically derived
average waiting time at equilibrium. By Little’s Law [42,
Section 13.7], we have q̃(π) = λw̃π , where q̃(π) =

∑
i≥1 πi

is the average queue size at equilibrium, and λ is the request
arrival rate. Thus, w̃π = q̃(π)

λ . Given the simulation-based
average response time w and its analytical approximation
w̃π + 1/µ, the percentage error between the two values is
computed as 100×

∣∣∣1− w̃π+
1
µ

w

∣∣∣%.
From Figure 2 we observe that for a fixed λ/rµ, increasing

the number of choices d reduces the average response time.
The effect is most prominent when increasing d from one
to two; a further increment in d exhibits a diminishing gain



Fig. 4. Average response time as a function of server-to-queue ratio r = m
n

,
with varying m and fixed n = 200.

Fig. 5. Average response time of JSQ(d) and SLQ(d) as a function of the
number of choices d.

in performance. The decrease in w for higher values of d
is expected since the EGS is more likely to select a non-
empty queue with large queue sizes and perform a successful
sampling. In Figure 3, we observe that the average response
time decreases as the back-off rate γ increases. A higher back-
off rate allows an idle server to re-sample more frequently
after a failed sampling, thus decreasing the server’s overall
idle time. In Figure 4, we compare the average response time
of SLQ(d) as a function of server-to-queue ratio r = m

n with
a fixed number of flows (i.e., n = 200). As servers process
the jobs independently, increasing the number of servers m
increases the overall service capacity of the EGS. Hence, the
overall average response time decreases.

We now compare the performance of SLQ(d) with that
of JSQ(d). From Figure 5 we observe that JSQ(d) has a
lower average response time for a fixed λ

rµ ratio. The reason
for this is that in the SLQ(d) model, BSAs may experience
additional idle time due to failed (re-)sampling. In contrast,
in the JSQ(d) model new jobs immediately join the least
loaded amongst d randomly chosen queues, and there is

Fig. 6. Percentage error of the average response time of JSQ(d) and SLQ(d)
as a function of the number of choices d.

Fig. 7. Comparison of analytical and simulated queue state density functions
for an EGS deploying the SLQ(2) policy.

never a need to re-sample. Figure 6 illustrates that SLQ(d)
has a lower percentage error for the same λ

rµ ratio. Mean-
field analysis necessitates SLQ(d) (resp. JSQ(d)) to have a
large n (resp. m); our system parameters do not meet the
large m requirement. Figure 7 portrays queue state probability
density functions, obtained via simulation as well as using
the equilibrium state of the mean-field. While the mean-field
approximation becomes less accurate for larger λ

rµ values (e.g.,
at λ

rµ = 0.99), overall we observe that our model exhibits close
correspondence to the simulation.

V. CONCLUSION

Motivated by the importance of algorithm design and per-
formance analysis of quantum switches with multiple entan-
glement swapping devices, we proposed the d-choices policy
for an EGS and used mean-field techniques to study its perfor-
mance. To this end, we developed a model for a homogeneous
star network topology to study the role of this device in
near-term quantum networks. For practical reasons, we placed
queues at service-requesting nodes, instead of directly at the



EGS. In this way, our model contrasts from traditional d-
choices policies applied within classical data-center models,
necessitating new analysis. We then derived a set of differential
equations describing the system’s evolution in the mean-
field limit, and proved the existence and uniqueness of the
equilibrium state. Our numerical results show that the mean-
field limit is useful to study an EGS even when it has a small
number of resources (e.g., 10) provided there is a large number
of request queues. Particularly, for SLQ(d) with d = 2, mean-
field approximations are tight except when λ

rµ is very close to
one. Our analysis also applies to classical systems in which
servers sample queues of flows to obtain a job for processing.

Our work serves as a preliminary study of an EGS deploying
the d-choices policy. A valuable follow-up contribution would
be to show global stability of the mean-field, and prove that
its equilibrium state approximates the system’s stationary dis-
tribution as the number of queues increases. The homogeneity
assumption can be relaxed by introducing different classes
of flows with identical arrival and service rates. Mean-field
analysis requires each class to be adequately populated, thus
the EGS service model may require alterations to ensure
stability. Our study concentrated on a single, isolated EGS
within a star topology. A valuable extension would be to
explore multiple EGSes within more complex topologies.
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