
IEEE JOURNAL OF SELECTED AREAS IN SENSORS 1

Scalable and Reliable Data Framework for
Sensor-enabled Virtual Power Plant Digital Twin

Amritpal Singh, Member, IEEE , Umit Demirbaga, Gagangeet Singh Aujla, Senior Member, IEEE ,
Anish Jindal, Member, IEEE , Hongjian Sun, Senior Member, IEEE , and Jing Jiang, Senior Member, IEEE

Abstract— Sensor-enabled distributed energy resources
(DERs) provide various advantages, including a lower car-
bon footprint, yet effective management of millions of DERs
is still an issue. Virtual power plants (VPP) can integrate
several DERs into a unified operational digital twin to en-
able real-time monitoring, analysis, and control. VPP may
utilize advanced solutions to improve operational efficiency
by combining substantial measurement data from DERs.
However, effectively managing the quantity and complexity
of data flows, whether streaming data or high-impact low-
frequency data, is essential in maintaining the performance
of DERs at sustained levels. The vast amounts of diverse
data generated from various DERs pose significant chal-
lenges for storage, processing, and resource management.
This paper proposes a comprehensive framework that em-
ploys a distributed big data cluster to ensure scalable and
reliable data storage and utilizes a robust message broker
system for efficient data queuing. Additionally, we present
innovative load-balancing strategies within the VPP Digital
Twin system. A decision tree algorithm is implemented to
calculate the forthcoming workload collected by various
deployed sensors at various DERs. The required resources
are identified per workload, and the numbers are forwarded
to the Orchestrator. The Orchestrator scales up and down
resources based on resource utilization suggested by the
decision tree algorithm when the resources or nodes are
insufficient to handle the sensor data, optimizing the utiliza-
tion of computing resources. The framework also features a
failure detection component that performs root cause anal-
ysis to provide actionable insights for system optimization.
Experimental results show that this framework ensures
high efficiency, reliability, and real-time operational capabil-
ity in VPP digital twin by addressing critical challenges in
data storage, streaming data analysis, and load balancing.

Index Terms— Digital Twin, Sensors, Streaming Data

This work was supported by the Engineering and Physical Sci-
ences Research Council [grant number EP/Y005376/1] – VPP-WARD
Project, https://www.vppward.com. This work was also supported by the
CHEDDAR: Communications Hub for Empowering Distributed ClouD
Computing Applications and Research funded by the UK EPSRC under
grant numbers EP/Y037421/1 and EP/X040518/1.

A. Singh is with the Department of Computer and Information Sci-
ences, Northumbria University, Newcastle Upon Tyne, United Kingdom
(e-mail: amritpal2.singh@northumbria.ac.uk ).

U. Demirbaga is with the Department of Computer Engineering, Bartin
University, Bartin, Türkiye (e-mail: udemirbaga@bartin.edu.tr).

G.S. Aujla and A. Jindal are with the Department of Com-
puter Science, Durham University, Durham, United Kingdom (e-mail:
gagangeet.s.aujla@durham.ac.uk and anish.jindal@durham.ac.uk).

H. Sun are with the Department of Engineering, Durham University,
Durham, United Kingdom (e-mail: hongjian.sun@durham.ac.uk ).

J. Jiang is with the Department of Mathematics, Physics & Elec-
trical Engineering, Northumbria University, Newcastle, UK (e-mail:
Jing.Jiang@Northumbria.ac.uk).

Processing, Load Balancing, Real-Time Analytics, Virtual
Power Plant.

I. INTRODUCTION

Distributed energy resources (DERs), such as dwellings
equipped with solar and battery systems, are essential for
attaining Net Zero emissions [1], [2]. Despite the numerous
advantages of DERs, including a reduced carbon footprint, the
optimal management of millions of DERs remains an unre-
solved issue, particularly concerning enhancing grid resilience
against extreme phenomena (e.g., storms and heat waves)
[3]. The latest “Holistic Transition” Future Energy Scenario1

anticipates that annual energy generation from onshore wind
will rise from 36 TWh in 2023 to 104 TWh by 2050, while
solar energy is projected to expand from 16 TWh to 116
TWh. This transition may present considerable hurdles to
power grid operations since managing millions of sensor-
enabled DERs with the existing, predominantly centralized
architecture will be exceedingly challenging, if not unfeasible
[4], [5]. In this context, enabling Virtual Power Plants (VPP),
which can consolidate several DERs into a singular operational
“virtual” power plant digital twin, can effectively manage
multiple DERs in a resilient and scalable manner [6], [7].
VPP digital twins, coupled with sensor-enabled applications,
have the potential to reinvent the energy sector by enabling
the creation of virtual replicas for physical DERs to facilitate
real-time monitoring, analysis, and control [8], [9].

According to Ofgem facts2, there are more than 1 million
homes equipped with solar panels in the UK. By 2050,
if each of the approximately 29 million households and
businesses in the UK own one DER, it might result in
tens of millions of DERs integrated into the UK power
grid, generating substantial data volumes. These DERs may
witness increased irregularities within the energy network
if not properly controlled [10]. Furthermore, DERs can use
advanced reactivity, efficiency, and intelligence made possible
by sensor-driven digital twins [11]. For this, power grids rely
on sophisticated Artificial Intelligence (AI) solutions to exhibit
resilience against extreme events and uncertainties that require
a substantial quantity of high-quality training data. They
should ideally be supplied with data from millions of DERs

1https://www.neso.energy/document/321041/download
2https://www.ofgem.gov.uk/sites/default/files/docs/2018/12/ofg1050 rii

o fast facts web.pdf

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

along with their corresponding distribution networks as well
as climatic and environmental data. While digital solutions
may enhance operational efficiency by aggregating extensive
measurement data from DERs, the processing and storing
these vast data volumes provide an escalating challenge.
Nonetheless, this task is more challenging than anticipated,
as it is costly to execute and because extreme events are
infrequent and sudden—commonly referred to as high-impact,
low-frequency occurrences, requiring processing systems to
adapt quickly within a short turnaround time. Most of the
time, traditional data management approaches are inefficient
in managing the scale and complexity of data flows and hence
become a bottleneck in data management [12].

The massive volume and variety of data generated by DERs
require holistic solutions for efficiently handling and storing
the data to keep the performance of the DERs at acceptable
levels [13], [14]. Moreover, the requirement for real-time data
processing worsens matters because any delay or inaccuracy in
data analysis can severely impact the decision-making process
and operational efficiency of VPP digital twin [15]. It also
requires the system to be dynamic in resource management
because static resource allocation may cause a dip in per-
formance and escalate expenses. Advanced machine learning
and AI techniques have shown good potential in predicting
resource demands and optimising task scheduling.For instance,
Rosenberger et al. [16] demonstrated the effectiveness of AI-
based predictive algorithms in managing distributed resource
allocation for real-time systems, showcasing their utility in
improving decision-making processes. However, their inte-
gration into real-time, scalable solutions remains a challenge
[17]. All these necessitate a holistic framework that should
support scalable and reliable data storage and include effective
data queuing, real-time processing, and dynamic auto-scaling
mechanisms to make the overall performance and reliability
of VPP digital twin environments more effective.

A. Research Problem and Contributions

Consider an example in Fig. 1, where DER data is for-
warded to the queuing system with a consistent input and
output data rate of X kbps. The DERs act as ‘producers’,
while the processing system is the ‘consumer’ ingesting the
incoming data for storage or processing.

In a normal case (as depicted in Fig. 1(a)), the queuing sys-
tem handles an input rate of X kbps, which is further efficiently
ingested by the processing system, ensuring synchronisation
between the input and output data rates. However, this scenario
can witness two basic abnormal cases, i.e., a) bottleneck at the
queuing level and/or b) bottleneck at the processing level. In
the first case, with an increase in the DER data (maybe due
to additional DERs or a change in data generation patterns),
let’s say the input data rate increases from X kbps to X + Y
kbps (as shown in Fig. 1(b)). Now, it may be possible that
the queuing channel may be sufficient to handle this sudden
change in data rate, however, if the queuing system with one
channel has resources to handle an input rate of X kbps, then
this will lead to a mismatch between the IN rate (X + Y kbps)
and the OUT rate (X kbps). Thus, the queuing system becomes

Fig. 1: Problem description; (a) normal scenario, (b) bottle-
neck at queuing level, and (c) bottleneck at processing level

overwhelmed, leading to delays or possible data loss. In the
second case, as depicted in Fig. 1(c), let’s say an increase in
DER data results in the input data rate rising to Z kbps, which
matches the queuing system’s capacity due to the activation
of one more channel. In this case, the queuing system’s IN
and OUT rates are synchronised. However, the issue arises
at the processing end, which cannot ingest the Z kbps rate.
This causes a bottleneck within the processing system, where
incoming data accumulates faster than it can be processed or
stored. Over time, if the processing system does not scale up
or the data flow is not regulated, the queue will eventually
saturate, causing a secondary bottleneck in the queuing system.
Addressing the above bottlenecks is critical for enhancing VPP
digital twin’s overall performance and scalability. Therefore,
this paper investigates the following research questions (RQs):

RQ1: What methodologies can be employed to effectively
store and manage the vast amounts and diverse types of
data generated by DERs and their corresponding distribu-
tion networks, as well as climatic and environmental data?
The enormous DER data streams greatly impact the VPP
digital twin performance. If high-frequency data is stored and
processed inefficiently, this leads to inefficiencies or system
failures. The challenge has two different parts. One is to
architect solutions that can scale up and out while maintaining
high availability for storing and processing various datasets in
real-time so that decisions taken within the VPP ecosystem
happen promptly.

RQ2: What techniques and frameworks are most ef-
fective for analysing the forthcoming workload collected
from DER sensors deployed within VPP digital twin?
Understanding the accurate forecast of data load is necessary
for optimal resource management. While DER sensors gener-
ate a continuous data stream, optimising energy consumption
and resource allocation is essential. AI models that review
historical and real-time data can be deployed to predict future

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: TITLE 3

demand behaviour, making VPP operations smooth.
RQ3: Which load balancing strategies can optimally

utilise computing resources in a distributed sensor-enabled
VPP Digital Twin system, ensuring efficiency and relia-
bility? Effective load balancing is essential in a distributed
system such as the VPP to prevent bottlenecks and maximise
resource utilisation. Dynamic workloads and poor resource
allocation may lead to performance degradation and energy
waste. Dynamic workload management strategies, informed
by real-time feedback, are crucial to resource scaling and the
robustness of the system as a whole.

To address the above-discussed RQs, the key contributions
of this paper are outlined below:
• This paper proposes a comprehensive methodology for

effectively storing and managing the vast amounts and
diverse types of data generated by sensor-enabled DERs
within a VPP digital twin. The framework ensures scal-
able and reliable data storage by deploying a cloud-
based big data cluster. Additionally, the system utilises
RabbitMQ for efficient data queuing and continuous mon-
itoring to enable dynamic data management and storage
optimisation.

• This paper introduces a machine learning approach to
analysing the forthcoming workload collected by sensors
from various DERs for optimal selection of the required
resources. This approach analyses the historical and real-
time workload of the various deployed sensors to collect
data from various DERs and use the data to identify the
futuristic requirements of the resources.

• The paper presents innovative load-balancing strategies
within the distributed VPP digital twin system to utilise
computing resources fully. The Orchestrator scales re-
sources up and down based on the feedback when nodes
cannot handle the sensor-generated data, optimising re-
source utilisation in the VPP digital twin.

B. Organisation
The rest of the paper is organised as follows. Section

II describes the problem formulations, followed by system
framework in Section III. Section IV discussed the proposed
approach in detail, while the results are illustrated in Section
V. The paper is finally concluded in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

Mathematically, the proposed scheme is represented with a
graph G = (C,Q,S); where C is a cluster comprised of storage
and processing nodes, Q is a set of queues to manage the flow
of the data, and S is a set of sensors configured to collect the
data from various DERs. Each cluster C = (Ravl,Ral) in
the network is characterised by available (Ravl) and allocated
(Ral) resources including memory capacity, CPU processing
power, and bandwidth, which collectively influence its ability
to handle data traffic, process requests, and manage queues.

The objective function (OF) of the proposed work is segre-
gated into two sub-problems, i.e., OF ∈ {SP1,SP2}. In sub-
problem I (SP1), we aim to minimize two problem indicators
(PI1.1,PI1.2), i.e., queuing delay (T queue) and data loss

(Dloss) with an overall goal to have a dynamic queuing system.
In sub-problem II, we consider one problem indicator (PI2)
that focuses on improving the performance and reliability
of the processing system. The combined objective function
(OF(ℵ)) is provided below:

OF(ℵ) =


F1 ⇔ SP1 :

{
PI1.1 = min F1.1(ℵ)
PI1.2 = min F1.2(ℵ)

F2 ⇔ SP2 :
{
PI2.1 = max F2(ℵ)

(1)

A. Sub-problem 1 (F1(ℵ)): Queuing Model
The queuing system adopted in the VPP digital twin aims to

enhance the network’s resource management and performance.
The queuing system dynamically monitors the usage of the
network resources, guarantees optimal resource allocation, and
helps avoid any bottleneck in the network. The two objective
functions at the queuing level, including minimal queuing
delay and data loss, are described below.

F1(ℵ) = {F1.1(ℵ), F1.2(ℵ)} (2)

The formal description of these functions is provided below.
a) Queuing Delay (F1.1(ℵ)): Let us consider that kth DER

sensor collect ith data packet. The generated data is forwarded
to the designated queues. Later, the queue data at t time is
forwarded to the jth processing cluster. The queues dynamics
at time (t + 1) focusing ith data packet forwarded to jth

processing cluster is given below [18]:

Qj
i (t+ 1) = max[Qj

i (t)−Qj(t), 0] + ζji (t) (3)

where, ζi at time t is the number of ith packets/data forwarded
to the jth processing cluster.

Queuing delay occurs when the rate of incoming data (IN
rate) surpasses the rate at which data is transmitted (OUT rate).
If the IN data rate is synchronised with the OUT data rate (as
highlighted in Fig. 1(a)), i.e. X kbps, there is no queuing delay
in the underlying network. However, when the arrival rate (IN
rate) and transmission rate (OUT rate) are not synchronised
(as shown in Fig. 1(b)), a queuing delay occurs in the network.
This delay can be formulated as below.

T queu =
Lqueu

χOUT
(4)

where, Lqueu is the length of the queue, and χOUT is the data
output rate from the queue. Here, Lqueu is calculated using
the following formulation.

Lqueu = (χIN − χOUT )× t (5)

where, χOUT is the data output rate, and χIN is the data input
rate at time t.

Now, in this sub-problem, the objective function (F1.1(ℵ))
and constraints (C1.1− C1.4) are provided below.

F1.1(ℵ) = min (T queu) (6)
such that:

C1.1 :Lqueu ≥ 0

C1.2 :χOUT > 0

C1.3 :Lqueu ≤ Lmax

C1.4 :T queu ≥ 0

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

where, Lmax is the maximum allowable queue length.
b) Data loss (F1.2(ℵ)): As shown in Fig. 1(b), a mismatch

in the data IN and OUT rates leads to data accumulation in
the queue. Due to resource limitations, the queue/channel can
only store a finite amount of data packets (Lmax). Let us say
that Dprod is the input data rate from DERs, and Dcons is the
data rate consumed at the processing layer. The total traffic
load (Tld) in the channel at time t is calculated as below.

Tld(t) =

∫ t

0

Dprod(t)dt−
∫ t

0

Dcons(t)dt (7)

The data loss (Dloss) is the amount of data at time t, that
is not transmitted to the consumer layer, i.e., that data is lost.
The Dloss at time t is calculated below.

Dloss(t) = Tld(t)− Lmax (8)

The overall data loss (Dtot) in time interval [0, T ] is given
as below.

Dtot =

∫ T

0

Dloss(t)dt (9)

Accordingly, in this sub-problem, the objective function
(F1.2(ℵ)) and constraints (C1.5−C1.9) are defined as below.

F1.2(ℵ) = min (Dtot) (10)
such that:

C1.5 :Dloss ≥ 0

C1.6 :t > 0

C1.7 :Dprod ≥ 0

C1.8 :Dcons ≥ 0

C1.9 :Dloss ≤ Dmax

where, Dmax is maximum allowable data loss in the network.

B. Sub-problem 2 (F2(ℵ)): Processing Model

Limited computational power can cause the system to be
unable to handle and analyse real-time data streams, causing
delays in processing and updations in digital twins. The
proposed multi-tiered framework aims to solve the problem
of scarce processing resources in a VPP digital twin. With
this method, computing resources are dynamically allocated in
response to real-time demands, ensuring scaling up when re-
sources are limited concerning incoming data from the queues.
Additionally, it scales down the resources when the data
stream is low, utilizing optimal resources and ensuring reliable
and robust data management. The formal description of the
objective function (F2(ℵ)) to achieve the above elaborated
dynamic resource management is provided below.

a) Objective Function 2.1: Reliability Indicator: A reliability
indicator (RI) is designed to measure the proposed scheme’s
performance regarding resource availability for the end users.
In the VPP scenario, ith request is generated for processing
data generated from DERs at n processing resources. The
resources required to process ith request (Rreq

i ) are presented

below.

Rreq
i =


Rreq

1,1 Rreq
1,2 · · · Rreq

1,i

Rreq
2,1 Rreq

2,2 · · · Rreq
2,i

...
...

. . .
...

Rreq
n,1 Rreq

n,2 · · · Rreq
n,i

 (11)

Now, the total required resources Rreq
tot for all generated

requests are calculated by using:

Rreq
tot =



∑I
i=1 R

req
i,1∑I

i=1 R
req
i,2

...∑I
i=1 R

req
i,j

 (12)

In an active resource cluster, the available resources Ravl

can be mapped as below.

Ravl =


Ravl

1

Ravl
2

...
Ravl

j

 (13)

In the above context, if (Rreq
tot ) exceeds (Ravl

j ) at jth

processing cluster, there is a degradation in the RI . Con-
sidering the factors, the main objective is to maximise RI ,
thereby improving the robustness and reliability of the overall
processing framework. There are two cases to realise this goal,
depicted below.

RI =

{
if Ravl < Rreq

tot Identify Stragglers or Scale UP
if Ravl ≥ Rreq

tot Check Possible Scale DOWN
(14)

In this sub-problem, the objective F2(ℵ) and constraints
(C2.1− C2.2) are mentioned below:

F2(ℵ) = max (RI) (15)
such that:

C2.1 :
∑
i

Rreq
i > o

C2.2 :
∑
j

Ravl
j > o

C2.3 :
∑
i,j

Rreq
i ≤ Ravl

j ;∀(j)

C2.4 :
∑
i

Rreq
i ≤ Ravl

j ;∀(j)

Combined Objective Function: The objective function
OF(ℵ) is achieved if and only if both F1(ℵ)/SP1 and
F2(ℵ)/SP2 are achieved. The combined objective function
is formulated as below.

minOF(ℵ) = f(F1.1(ℵ), F1.2(ℵ),−F2(ℵ)) (16)

III. SYSTEM FRAMEWORK

The VPP digital twin framework comprises of various
layers. These layers are shown in Figure 2.

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: TITLE 5

Fig. 2: VPP digital twin framework

The input layer consists of various DERs (rooftop pho-
tovoltaic, battery systems, small hydro systems, electric ve-
hicles) deployed at several locations. These sensor-enabled
DERs are connected to a virtual layer within the VPP digital
twin. This virtual layer includes an aggregator that collects
and aggregates the data generated from DERs, stores and
processes it as and when required to accomplish various DER
targets. Now, the collected data is forwarded to the processing
system through an intermediary queuing. This system provides
a reliable and efficient data flow between the source and
destination systems. The queuing layer helps to control data
loss caused by the limited bandwidth of the transmission
medium. The managed/queued data is forwarded to the pro-
cessing layer for analysis and decision-making. The data
storage component amalgamates the functionality of Hadoop
distributed storage and Spark’s in-memory data processing
capabilities [19]. The data stored on the configured HDFS
framework [20] is further used for processing and making the
necessary decisions at the virtual layer. The monitoring system
(SmartMonit) is deployed to collect the resource utilization
logs of the deployed resources in the processing and queuing
layers. The collected resource utilisation logs are analysed,
and accordingly, stragglers in the processing resources are
identified by a diagnosis system. Based on the diagnosis,
the scale-up and scale-down policies are configured at the
processing and queuing layers. The proposed scheme works
in different phases depicted in Figure 3.

Fig. 3: Various phases of the proposed approach

A. Streaming Sensor Data Collection
In our proposed framework, the collection of streaming

data begins at the input layer, where various sensors are
deployed to collect data from multiple sources, such as DERs
of hydro-power, solar energy, and wind energy deployed
in various locations. These data are transmitted through a
message broker system, RabbitMQ3, an intermediary between

3https://www.rabbitmq.com/

the input and queuing layers. RabbitMQ employs a producer-
consumer model: sensors function as producers, sending data
encapsulated in messages to RabbitMQ’s message queues and
temporarily storing the data. Consumers, comprising comput-
ing devices and other processing units in the queuing layer,
retrieve and process these messages. This queuing mechanism
guarantees reliable, scalable, and fault-tolerant streaming data
collection for sensor-enabled digital twins. It succeeds in
dealing with low-idleness and lightweight jobs and offers
progressed steering abilities for exact and effective message
dispersion.

B. Message queuing model

The message queuing model, depicted in Fig. 4, ensures
efficient and reliable data transmission by using RabbitMQ
servers deployed on multiple nodes within the Spark cluster.
The workflow of the configured components of the queuing
model is highlighted in the figure, considering the spark cluster
and the management node. These RabbitMQ servers utilise a
producer-consumer paradigm to manage the data flow between
the cluster and queuing layers. Sensors, acting as producers,
collect data encapsulated in messages, which are then sent
to RabbitMQ’s message queues on the nodes for temporary
storage and systematic data flow management.

Spark Cluster

Master Node

PublisherFilter

Collector Agent

Resource
Information

Task
Information

…

Message 
Broker

Feedback

Management Node

Storage

Consumer

Consumer

Worker Node 1

Publisher

CollectorA
ge

n
t

Resource
Information

…Task 1 Task N

Worker Node N

Publisher

CollectorA
ge

n
t

Resource
Information

…Task 1 Task N

Fig. 4: Message queuing in the monitoring framework

The key components of the RabbitMQ server are defined
below:

• Producer (Agent/Publisher): The producer, sometimes
called an agent or publisher, creates and distributes mes-
sages. As producers would do, messages are sent to an
exchange that determines how to route them rather than
directly to a queue. Therefore, additional delay must be
added to the total delay incurred in the network.

• Filter: The filter performs real-time preprocessing on all
the collected logs to optimise the data flow and reduce
data redundancy before sending them to the message
broker system.

• Message Broker: RabbitMQ, as a message broker, re-
ceives, stores, and forwards messages between producers

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.rabbitmq.com/


6 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

and consumers. It also controls message routing, ex-
changes, and queues.

• Exchange: Messages from producers must be routed
through an exchange according to the specified rout-
ing criteria to the relevant queue or queues. RabbitMQ
supports different types of exchanges: direct exchange,
fanout exchange, topic exchange, and header exchange.

• Diagnosis System: The term “auto-diagnosis” (inspired
from AutoDiagn [21]) in RabbitMQ refers to built-in
tools and capabilities that assist with identifying and
reporting problems with the RabbitMQ system [21].
Numerous techniques have been incorporated into Rab-
bitMQ to automatically manage, monitor, and trou-
bleshoot potential issues in real time.

• Consumer: The messages routed from the message ex-
change are forwarded to the consumer for further process-
ing. The consumer subscribes to the relevant exchange by
binding to the correct queue to ensure the specific data
type.

C. Data Processing
The DERs relay real-time operating data by constantly

monitoring parameters, including voltage, temperature, and
energy output. A RabbitMQ queuing system receives these
sensor data and is the middleman message broker. RabbitMQ
effectively controls the flow of the data stream, guaranteeing
dependable communication between DERs and the processing
framework. The data from RabbitMQ queues is consumed by
the Hadoop-Spark cluster. The cluster processes the incoming
data in real time, performing the required transformations and
analysis using Apache Spark Streaming. After that, these data
are sent to the DERs’ digital twin, which operates inside the
Spark environment. The behaviour and state of the real DERs
are replicated in the digital twin, allowing for monitoring and
simulation.

IV. PROPOSED APPROACH

The proposed approach comprises several fundamental com-
ponents, elaborated in the subsequent sections.

A. Resource Log Collection and Analysis
SmartMonit [22] monitors processing cluster and queuing

system to track infrastructure metrics such as CPU utilisation,
memory utilisation, and network statistics. The RabbitMQ
messaging platform captures the logs generated by the Smart-
Monit. RabbitMQ, acting as the intermediary message broker,
makes it easier to collect and route these logs. After being
enqueued, the logs are sent to a specific InfluxDB4 instance
after being methodically analysed. The logs are stored in
InfluxDB, a time-series database for high-performance data
intake and querying. This combination provides effective log
management and analysis by utilising InfluxDB’s specialised
storage and retrieval mechanisms to efficiently retain and
query the historical log data and RabbitMQ’s strong queuing
capabilities to handle large volumes of log data. As seen in the

4https://www.influxdata.com/

accompanying Fig. 5, the structure demonstrates how log data
flows from the RabbitMQ system to the InfluxDB database,
emphasising how simple it is to monitor and analyse resource
utilisation and system performance.

Fig. 5: Framework for storing Real-Time Resource Utilisation

In Alg. 1, the Hadoop/Spark cluster and Queuing system
logs are stored in the Influx database until the Cluster Fed-
eration (group of clusters) is active. Each activated Hadoop
cluster CLi and Queuing Cluster CCi are designated with
active Agent A to forward the logs to the connected channel
RQ. Later, the logs are stored in the designated TB. The
Table I is used to store the logs of CL and Table II to store
the logs of CC for futuristic analysis. The considered metrics
to analyse the utilisation of the resources are highlighted in
the Table I, II. The individual resource metrics are stored in
the labelled table to monitor the performance of both activated
clusters for data storage, processing and queuing.

Algorithm 1: Real-time Resource Utilisation Logger
Input: CF: Cluster Federation,

CL: Cluster of Hadoop/Spark,
NN: Node Name,
RQ: RabbitMQ Queue,
CC: Cluster of Channels (RabbitMQ),
ST: Sleep Time to re-collect logs

Output: DB: Influx Database;
TB ∋ (Table I, Table II): Influx Database Tables

1 // Collect logs until the clusters are not OFF
2 while {CL ̸= OFF} do
3 for each CLi & CCi in CF do
4 for each NNj in CLi & CCi do

5 Forward Logs: Aj
forward−−−−−−−→ RQ ▷ A : Agent of NNj

//Forward the logs to the respective table
6 if (NNj∈ CL) then

7 RQ
Forward−−−−−−−→ TableI;

8 end
9 else

10 RQ
Forward−−−−−−−→ TableII;

11 end
12 end
13 end
14 Reset(ST) ▷ Reset (i, j)=0 after ST
15 end

The analysis of the health status of the entire system is
shown in Fig. 6. This layer adopts AutoDiagn [21], de-
signed to perform root cause analysis by examining the logs
collected by SmartMonit [22], which utilises advanced pre-
defined functions to analyse the information of big data

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.influxdata.com/


AUTHOR et al.: TITLE 7

TABLE I: Processing utilisation metrics

Time Measurement Tag
(role)

Field
(CPU)

Field
(memory)

Field
(disk)

xxxx Processing cluster Master 15.2% 60% 45%
xxxx Processing cluster Worker 1 25.2% 56% 40%
xxxx Processing cluster Worker 2 27.6% 58.5% 46.4%

TABLE II: Queuing utilisation metrics

Time Measurement Tag
(role)

Field
(CPU)

Field
(memory)

Field
(disk)

xxxx Queuing cluster Master 21.4% 68% 49.5%
xxxx Queuing cluster Worker 1 29.6% 51.9% 47.5%
xxxx Queuing cluster Worker 2 31.6% 64.3% 54.7%

tasks (i.e., status, progress, execution time and data locality
of mapper tasks) and infrastructure metrics such as CPU
utilisation, memory utilisation, and network statistics of each
node to identify potential issues and their underlying causes.
By conducting detailed log analysis via Diagnosers, this layer
can pinpoint anomalies, detect patterns indicative of failures,
and provide actionable insights for troubleshooting and system
optimisation to minimise downtime and maintain the overall
reliability and performance of the digital twin environment
and the explanation of the proposed scheme is elaborated
in the defined algorithm. All this information is combined
by Diagnosis of the symptoms, and then is forwarded to the
Diagnoser Manager to update the Feedback for the system
manager to take an action accordingly.

Feedback

Diagnoser Plugins

…

Diagnoser N

Task

Input

Output

M
o
n
it
o
ri
n
g

Straggler
Detection

Detected Symptoms

Diagnoser 1

Task

Input

Output

Diagnosis of the symptoms 

Diagnoser 
Manager

Diagnoser 2

Task

Input

Output

Collected logs Feedback

Fig. 6: Decision making for the feedback

In the Real-time Resource Utilisation Analyser approach
defined in Alg. 2, the Influx Database tables TB are fetched
from the output of Alg. 1. The maximum and minimum
CPU utilisation threshold values CPUth

max and CPUth
min are

defined as per the clock speed of the CPU. Similarly, the
maximum and minimum Memory utilisation threshold value
Memth

max and Memth
min are defined as per the capability of

the resources. The data entries D from the TB are fetched
to find any occurrence of the abnormality in the underlying
network and resources. The D is forwarded to the Symptom
Detection Engine (SDE) to analyse the pattern of the record of

the resources. The connected Diagnoser Manager (DM) anal-
yse the current CPU Utilisation (CPUutl) and Memory Util-
isation (Memutl) of the active configured resources. Along
with the current utilisation of the resources, it also stores a
flag (id) to identify whether CPUutl and Memutl belongs
to CL or CC. The evaluated value CPUutl, Memutl, and
id is stored in the BMfdbk. Later, the defined CPUth

max,
Memth

max, and id is matched with the values stored in the
BMfdbk. In case, the id belongs to CL and the CPUutl,
Memutl is equals and greater than the CPUth

max, Memth
max,

Root-cause Analysis (RCA) buffer is updated with decision
to scale-up the resources (RCL

up ) in the Hadoop cluster and
relevant objective functions are activated. In case, the id
belongs to CC and the CPUutl, Memutl is equals and
greater than the CPUth

max and Memth
max, the Root-cause

Analysis (RCA) buffer is updated with decision to scale-
up the resources (RCC

up ) in the RabbitMQ cluster and the
corresponding objective function is activated. In another case,
if again id belongs to CL and the CPUutl, Memutl is
equals and less than the CPUth

min, Memth
min, Root-cause

Analysis (RCA) buffer is updated with decision to scale-down
the resources (RCL

down) in the Hadoop cluster.

Algorithm 2: Real-time Resource Utilisation Analyser
Input: DB: Influx Database, ▷ Alg. 1

TB ∈ (TBCL,TBCC): Influx Database Tables ▷ Alg. 1
CPUth

max : Maximum CPU threshold value
Memth

max : Maximum Memory threshold value
CPUth

min : Minimum CPU threshold value
Memth

min : Minimum Memory threshold value
Output:
RCA = {F1, F2,R

CL
down,R

CC
down, 0} : Root Cause Analyser

1 // Read entries from TB
2 while {TB ̸= NULL} do

3 Fetch data: D
fetch←−−−− TB ▷ D : Data

4 D
fwd−−−→ SDE ▷ SDE :System Detection Engine

5 SDE
data−−−→ DM ▷ DM :Diagnoser Manager

6 //Diagnoser Manager (DM) analyse the data as per policy

7 Store feedback: BMfdbk feedback←−−−−−−− DM ▷ BM : Buffer Memory
8 BMfdbk ∋ {CPUutl,Memutl, id} ▷ id ∋ {CL,CC}
9 if (id == CL&CPUutl ≥ CPUth

max&Memutl ≥Memth
max

) then
10 Set objective function: F21(ℵ) = F21(1);
11 Set objective function: F22(ℵ) = F22(1);
12 Store result: RCA = F2 ▷ Use Eq. 14 ;
13 end
14 else if

(id == CC&CPUutl ≥ CPUth
max&Memutl ≥Memth

max
) then

15 Set objective function: F11(ℵ) = F21(1);
16 Set objective function: F12(ℵ) = F22(1);
17 Store result: RCA = F1 ▷ Use Eq. 2;
18 end
19 else if

(id == CL&CPUutl ≤ CPUth
min&Memutl ≤Memth

min )
then

20 Store result: RCA = RCL
down;

21 end
22 else if

(id == CC&CPUutl ≤ CPUth
min&Memutl ≤Memth

min
) then

23 Store result: RCA = RCC
down;

24 end
25 else
26 Store result: RCA = 0;
27 ▷ 0: No Action
28 end
29 end

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

In case, the id belongs to CC and the CPUutl, Memutl

is equals and less than the CPUth
min and Memth

min, the Root-
cause Analysis (RCA) buffer is updated with decision to
scale-down the activated resources (RCC

up ) in the RabbitMQ
cluster. By default, the value of the ℵ is set to 0. If a need
is to target any objective function, the value of ℵ is set to 1.
Further, the RCA is set to F1 or F2 as per the decision made
by the algorithm. In standard scenarios, the label RCA is
updated with 0, and no further action is required. In this case,
all the objective functions ℵ index is set to 0, which means
all the objective functions are already satisfied.

B. Intelligent Orchestrator: Auto-scaler

An innovative load-balancing approach strategy in the dis-
tributed digital twin system is mentioned in Alg. 3. An
orchestrator is designed to achieve the activated objective
functions by scaling up or scaling down the resources as per
the decision made by the deployed ML model by analysing
the workload generated by deployed sensors.

The resource prediction model is developed to dynamically
forecast resource scaling decisions to ensure efficient system
resource management under varying workloads. It is trained
by utilising the log data collected via SmartMonit, including
CPU and memory utilisation, the details of the tasks hosted
by the machine, queuing delay, data input/output rates, and
timestamps in the big data environment. This model deploys
the Decision Tree algorithm, alerting possible future resource
constraints. CPU utilisation thresholds are usually 70% to
80%, considered moderately loaded on a system [23]. The
system acts quickly and scales out when CPU utilisation
crosses 85%; if we wait for it to shore past the critical point,
performance will go down, and bottlenecks will occur. With
memory, autoscaling is usually implemented when utilisation
hits 70%-75%, and over the top of that (from about 85%)
[24], it implies a potential new memory bottleneck scenario
where latency rises, and many disk swapping use cases start
to affect performance. Using these thresholds, the model
forecasts resource crunch and advises Orchestrator to spin up
more Spark clusters as demands go high.

Algorithm 3: Orchestrator: Auto-scaling approach
Input: RCA = {RCL

up ,RCC
up ,RCL

down,R
CC
down, 0} ▷ Alg. 2

δpool ∋ {CLsleep,CCsleep}: Dormant cluster
Output: Achieve objective functions: RS↔ F1, F2

1 // Fetch label from RCA
2 if (RCA ∋ {F2 ∨ F1}) then
3 Calculate: Rreq

tot using ML model
4 Activate optimal cluster← δpool
5 end
6 else if (RCA ∋ {RCL

down ∨RCC
down}) then

7 Calculate: Rreq
tot using ML model

8 Put extra cluster on sleep mode from CF
9 Shift the data on the active clusters

10 end
11 Update Influx Database Table: TB using Alg. 1
12 Update Root Cause Analyser: RCA using Alg. 2
13 if RCA == 0 then
14 Declare System: → RS ▷ Reliable Stage
15 end
16 else
17 Repeat steps 1
18 end

The label RCA is fetched from Alg. 2 to target the specified
objective functions by auto-scale the resources to make a
reliable system in a digital twin environment. If the fetched
labels are Rup, then the orchestrator targets the objective
functions (F1∨F2). The trained machine learning (ML) model
is used to dynamically predict the optimal resource allocation
required to achieve specified objectives. By leveraging predic-
tive insights from the ML model, resource selection becomes
significantly more efficient, ensuring that computational and
storage resources are provisioned to minimise overhead while
meeting performance and scalability requirements. Further,
activate the optimal cluster as per Rreq

tot from the list of
Dormant Cluster (δpool) to normalise the requirement of the
resources for processing or storage. In another way, if the
fetched labels are Rdown, the activated resources are more
than the requirement. Therefore, there is a need to put a few
of the resources into sleep mode. To normalise the under-
utilisation of resources, an optimal cluster is deactivated with
the output provided by the Decision Tree algorithm, and the
cluster index is updated in the δpool for futuristic use. Further,
the Alg. 1 is called to collect the logs of the activated clusters.
The resource utilisation is analysed using Alg. 2, and resultant
labels are forwarded to the Orchestrator for further decision-
making. If the updated label is 0, it depicts the current system
is at Reliable Stage (RS); otherwise, step 1 is called again for
further actions.

The primary objective of the orchestrator is to achieve the
combined objective function for better decision-making on the
digital twin running on the Spark cluster. Accordingly, the
system’s decision or feedback is forwarded to the physical
system (i.e., DERs) to enhance its performance.

V. SIMULATION AND RESULT ANALYSIS

This section provides a comprehensive evaluation of the
proposed scheme using varied scenarios and metrics. We
also performed the power model validation for the proposed
framework.

A. Real-time Set Up
The real-time setup comprises a range of powerful systems

and software tools designed for high-performance computing
and monitoring. At its core is the 3XS Development Box Pro
G1-32C, which features an AMD Ryzen Threadripper PRO
processor with 32 cores, 64 GB of RAM, and an NVIDIA
GeForce RTX 4090 graphics card with 24 GB of VRAM, all
running on Linux. This machine is ideal for cluster formation
due to its processing power. Another machine, MacBook M1
pro, embedded with an M1 chip with an 8-core CPU and 16
GB of RAM. This machine is embedded with an internal 8-
core GPU, providing exceptional performance while forming
another cluster for storage and processing the allocated tasks.
Additionally, the Sony i3 system with Intel I3 processor, and
8 GB of RAM is used for deploying DERs as a data source
in the digital twin environment. A queuing system known as
RabbitMQ, a messroker, is also configured to the environment
supporting the AMQP protocol in the environment. This
tool provides features such as high availability, clustering, a

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: TITLE 9

management UI, and a plugin system operating on Linux.
Lastly, SmartMonit is configured to monitor the deployed
resources in the environment. The real-time setup details are
also highlighted in Table III.

TABLE III: Real-Time Setup Specifications

Component Specifications

3XS Devel-
opment Box
Pro G1-32C

Processor: AMD Ryzen Threadripper PRO (32-core)
RAM: 64 GB
Graphics: NVIDIA GeForce RTX 4090 (24 GB VRAM)
Operating System: Linux

MacBook
Pro M1

Processor: Apple M1 Chip (8-core)
RAM: 16 GB
Graphics: Integrated 8-core GPU
Operating System: macOS

Sony i3 Sys-
tem

Processor: Intel Core i3
RAM: 8 GB
Graphics: Integrated Intel HD Graphics
Operating System: Windows

RabbitMQ

Type: Message Broker
Protocol: AMQP
Features: High availability,
Clustering, Management UI, Plugin system
Operating System: Linux

SmartMonit

Type: Monitoring Tool
Features: Real-time performance metrics,
Alerting, Historical data analysis
Operating System: Linux

B. System Overheads

We evaluate the system overhead introduced by the de-
ployed monitoring and root cause analysis tool by measuring
the CPU and memory usage of the Monitoring and Root cause
analyser. Table IV shows that Monitoring uses approximately
2.74% memory and 4.84% CPU, while Root cause analyser
consumes 2.62% memory and 3.71% CPU.

TABLE IV: Resource overhead caused by components

Components Mem (%) CPU (%)
Monitoring 2.74 4.84

Root cause analyser 2.62 3.71

C. Evaluation of the Prediction Model

Fig. 7 shows the model evaluation for F1 Score, Precision,
Recall and Accuracy. The F1 score is 0.912, balanced between
Precision and Recall, and is best suited for both high false
positives and high false negatives. Precision is slightly off
with 0.874, meaning the model performs well generally, but it
could potentially give a few false positives. The recall is 0.913,
indicating that the model effectively finds positive cases and
has performed well in preventing false negatives. The model
finally had an accuracy of 0.927, which means the share of
right predictions over all the predictions made.

D. Validation of the Auto-scaler approach

Fig. 8 shows the impact of increasing the number of nodes
on energy consumption, straggler frequency, and execution
time. Using more resources as the number of nodes grows

Evaluation metrics
0.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge

0.912 0.874
0.913 0.927

F1 Score
Precision
Recall
Accuracy

Fig. 7: Performance evaluation values of the ML model

leads to energy consumption. Nevertheless, straggler frequency
drops since the workload is shared across more nodes, yielding
higher efficiency. Also, total execution time decreases with in-
creased nodes, indicating better task completion performance.

2 3 4 5
Number of Nodes

20000

25000

30000

35000

40000

45000

To
ta

l E
ne

rg
y 

Co
ns

um
pt

io
n 

(J)

Total Energy Consumption
Straggler Frequency
Execution Time

0

2

4

6

8

10

12

St
ra

gg
le

r F
re

qu
en

cy

95s 80s 70s 60s
Execution Time (s)

Fig. 8: Impact of node count on energy, stragglers, and time

Fig. 9 illustrates the relationship between the number of
sensors transmitting data and the corresponding message rates
and data size. As the number of sensors increases, message
rates and data size grow linearly. This indicates that as more
sensors send data simultaneously, the overall load on the
system rises proportionally regarding the number of messages
per second and the volume of data transmitted. This is a
linear relationship since each sensor sends a fixed amount
of information per transmitted message at constant intervals.
Hence, the message rate scales up proportionately with the
number of sensors, leading to a proportional increase in the
total data size. Such issues underline the inherent challenges
of scaling the management of large sensor networks, where
the data burden may hinder system performance and resource
needs.

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

20 40 60 80 100
Number of sensors sending data simultaneously

20

40

60

80

100

M
es

sa
ge

s p
er

 S
ec

on
d

Message rates (messages/sec)
Data size (KB/s)

25

50

75

100

125

150

175

Da
ta

 si
ze

 (K
B/

s)

Sensor Data Transmission Metrics

Fig. 9: Data size and Message rates vs. Number of sensors

Fig. 10 demonstrates the data rate against delay and packet
drop under fixed-cluster configuration without dynamic scaling
mechanisms. The result of increasing the data rate from
10 MB/s to 100 MB/s is that both the delay and packet
drop increase sharply, illustrating that the fixed cluster cannot
handle such heavy work for this configuration. As the data rate
increases, this leads to much longer processing time and higher
packet drop rates. These results emphasize the constraints of
a fixed resource allocation strategy and justify that an auto-
scaling mechanism is required. Scaling up the cluster adds
more capacity in these cases, which helps reduce those delays,
request processing and keep packets intact since resources can
be adjusted in real time.

20 40 60 80 100
Date Rate (MB/s)

20

25

30

35

40

45

50

55

De
la

y 
(m

s)

Delay (ms)
Packet Drop (%)

2

4

6

8

10

12

14

Pa
ck

et
 D

ro
p 

(%
)

Date Rate vs Delay vs Packet Drop

Fig. 10: Effect of Increasing Data Rate on Delay and Packet
Drop

Fig. 11 shows occurrences of stragglers in a big data
cluster during high CPU and memory utilisation. Stragglers
appear under heavy CPU load in Fig. 11a and during high
memory usage in Fig. 11b. The appearance of stragglers in
both scenarios underscores the performance challenges faced
during periods of high resource demand. The findings show
that if proper dynamic resource allocation strategies are not
in place, the stragglers can cause a significant loss of system
performance. A powerful scale-up and scale-down approach is
proposed to resolve these issue, which uses adaptive resource
management to reduce delays due to overloaded nodes.

0 20 40 60 80 100 120 140
Timeline (sec)

0

20

40

60

80

100

Us
ag

e 
(%

)

CPU utilisation Stragglers

(a) Stragglers during high CPU utilisation

0 20 40 60 80 100 120 140
Timeline (sec)

0

20

40

60

80

100

Us
ag

e 
(%

)

Memory utilisation Stragglers

(b) Stragglers during high memory utilisation

Fig. 11: Occurrences of Stragglers under High Utilisation

E. Case Study

A system comprising a 3-node cluster and another with a
4-node cluster is configured for a case study. To validate the
proposed scheme, Orchestrator: Auto Scaler, the system under-
goes testing at two levels: a) Queuing Level and b) Processing
Level. In the first level, a single channel is configured on a
Linux system equipped with 2GB of memory and a dual-core
processor to handle the data collected from deployed sensors.
An additional channel with identical specifications is created
for back-up purposes but remains in sleep mode. The valida-
tion of this scenario is illustrated in Fig. 12. As depicted in Fig.
12a, variable data rates are generated from various DERs and
collected through the deployed sensors across different levels.
With five active DERs, the operational channel manages the
forwarded data without any loss. However, as two additional
DERs are activated, the change in data rate becomes apparent,
as shown in Fig. 12b. The configured channel can accommo-
date the data rate to a certain extent; beyond this threshold,
data loss occurs, as highlighted by the red circles in Fig. 12b.
Additional resources are required within the framework to
manage the increased data rate effectively. Consequently, the
Orchestrator activates the necessary resources recommended

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: TITLE 11

by the ML model. The channel initially in sleep mode is
subsequently activated, redirecting the data collected by the
deployed sensors to this newly created channel to mitigate
data loss, as depicted in Fig. 12c. This transition restores the
system to a reliable state.

(a) Data Rate

(b) Data Loss

(c) Reliable stage (Auto-scaler)

Fig. 12: Orchestrator: Queuing Auto-scaler

In another scenario; Processing Level, Fig. 13 illustrates the
overall performance of the Orchestrator: Processing Auto-
scaler.

Fig. 13a displays the data rates from various deployed
DERs. Initially, the framework activates two DERs for real-
time data streaming. After a few seconds, three additional
DERs are activated, and the resulting impact on the data
flow rate is evident in the figure. Subsequently, two DERs
are deactivated to demonstrate the variations in the streaming
data flow and its influence on the proposed system. With the
change in the data rate, the execution time of the data is also
changed subject to the capacity of the underlying system, as
highlighted in Fig. 13b. In the case of sensitive applications,
a delay in the execution of the data is not tolerable, can
create a bottleneck situation for the system and directly impact

(a) Data Rate

(b) Performance Indicator: Execution Time

(c) Resource straggler stage

(d) Scale-up/down approach

Fig. 13: Orchestrator: Processing Auto-scaler

the performance indicator set for the configured system as
highlighted in Fig. 13b. Therefore, the Orchestrator follows
the root cause analysis and finds the stragglers in the running
system and comes up with the results shown in Fig. 13c. The
Figure highlights resource utilisation in CPU and Memory
performance within a three-node cluster. The workload is
minimal at the outset, and the deployed resources are not
over-utilised. When all DERs are activated, the streaming data
rate increases significantly, as indicated by the red circles in

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

Figure 13c. After some time, the two DERs are deactivated,
normalising resource utilisation as shown in the figure. At
this point, there is a risk of losing streaming data due to
over-utilisation of the deployed resources. To address this,
the Orchestrator runs the decision tree algorithm to calculate
the resources required to manage the streaming data, and
an optimised cluster is activated accordingly, as illustrated
in Figure 13d. At the 42nd second mark of the streaming
data, the Orchestrator activates the optimal cluster, resulting
in normalised resource utilisation.

F. Evaluation of the Power Model
In distributed systems, the resource utilisation of computing

nodes, such as processors, memory, storage, and network
components, significantly affects their energy consumption.
Among these resources, the processor is the largest energy
consumer. Furthermore, processor utilisation typically repre-
sents the overall load on the machine [25]. Therefore, this
model focuses on tracking processor energy usage.
• Resource Utilisation Assessment: Efficient resource

utilisation in distributed systems substantially impacts
overall performance and cost-effectiveness. High resource
utilisation ensures the effective use of computational
resources, thereby increasing profits and reducing energy
consumption by minimising idle resources. Consequently,
a resource management technique should be evaluated
based on resource utilisation using the following equation
[26]:

Um(H, τ) =

W∑
i=1

hii ×
RCPUi(τ)

CPUm
(17)

Equation 17 shows the utilisation Um(H, τ) of a server
Nm at a specific time τ . H represents the allocation of
virtual machines (VMs), while hii denotes whether a VM
Vi is hosted on the server Nm. If Vi is hosted on Nm, the
value of hii is one; otherwise, it is zero. CPUm signifies
the total computational capacity of Nm, and RCPUi(τ) is
the CPU capacity required by Vi at a given time.

• Energy Consumption Calculation: As outlined in the
previous section, resource utilisation directly influences
energy efficiency. Higher resource utilisation improves
energy efficiency by ensuring servers actively process
tasks instead of idling. To compute the power consump-
tion of a specific server at a given time τ with an
allocation H , the following equation is used [25]:

Qm(H, τ) = 0.7Qmax
m + 0.3Qmax

m × Um(H, τ) (18)

where Qmax
m is the maximum power consumed by a server

when it is fully utilised, and Um(H, τ) is the utilisation
of the server at time τ .
To calculate the total power consumption of all servers
between time τ1 and τ2, the following equation is used:

Power(H, τ1, τ2) =

N∑
n=1

∫ τ2

τ1

Qm(H, τ) dτ (19)

where N is the total number of servers, H is the
allocation of the servers, and Qm(H, τ) is the power
consumption of the m-th server at time τ .

As discussed above, we consider energy consumption based
on CPU, memory, and network utilisation. The evaluation
of our energy model involves analysing dynamic power and
total energy consumption concerning the makespan (total task
execution time). Power consumption multiplied by the time of
execution provides the total energy. Table V summarises the
key findings. Dynamic power consumption ranges from 50 to
70 watts, clustering around 55-65 and 65-70 watts, indicating
variability due to task complexity and resource allocation.
Power consumption becomes more consistent as the makespan
increases from 60 to 95 units. Total energy consumption
ranges from 8500 to 9900 joules, clustering between 8900
and 9500 joules. Energy consumption generally increases with
makespan, reflecting the direct relationship between execution
time and total energy usage.

The effect of increasing the number of nodes on energy
consumption, straggler frequency, and execution time is shown
in Figure 8. We derive these trends through a power model,
which relates energy consumption to resource utilisation and
workload distribution. With more processors in the system, the
energy consumption (due to the additional active resources)
increases with the number of nodes, while the straggler
frequency and execution time decrease due to better workload
distribution.

TABLE V: Summary of dynamic power and energy consump-
tion per machine

Metric Observation
Dynamic Power (W) Node: 55-70 W
Makespan (units) 60-95 sec.
Total Energy (J) Node: 8900-9500 J
Energy vs. Makespan More time, more energy

VI. CONCLUSION

This work introduces a comprehensive data framework to
tackle the substantial challenges of data storage, processing,
and resource management in VPP digital twins integrated with
sensor-enabled DERs. By deploying a cloud-based big data
cluster, the framework ensures scalable and reliable storage,
complemented by RabbitMQ for efficient data queuing and
continuous monitoring to support dynamic data management.
Furthermore, our innovative load-balancing strategies dynami-
cally manage network traffic using the queuing system. At the
same time, the Orchestrator optimises resource utilisation by
scaling resources using the decision tree algorithm. Including a
failure detection component that performs root cause analysis
ensures actionable insights for continuous system optimisation.
Experimental results validate the framework’s effectiveness in
achieving high efficiency, reliability, and real-time operational
capability, addressing critical issues in data storage, streaming
data analysis, and load balancing. In future, coordinating
edge technology with the proposed framework fundamentally
upgrade the framework by empowering restricted information

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: TITLE 13

handling near DERs, resultant into reduce latency, improve
real-time decision-making, and alleviate the burden on central
cloud systems.

REFERENCES

[1] J. Han, Q. Hong, M. H. Syed, M. A. U. Khan, G. Yang, G. Burt, and
C. Booth, “Cloud-edge hosted digital twins for coordinated control of
distributed energy resources,” IEEE Transactions on Cloud Computing,
vol. 11, no. 2, pp. 1242–1256, 2023.

[2] T. Wang, D. O’Neill, and H. Kamath, “Dynamic control and optimization
of distributed energy resources in a microgrid,” IEEE Transactions on
Smart Grid, vol. 6, 09 2014.

[3] M. A. Shuvra and B. Chowdhury, “Load management system and control
strategies of distributed energy resources in an islanded microgrid,” in
2019 IEEE 16th International Conference on Smart Cities: Improving
Quality of Life Using ICT & IoT and AI (HONET-ICT), 2019, pp. 100–
104.

[4] C. B. K. Yadav and D. Dash, “An efficient partial charging and data
gathering strategy using multiple mobile vehicles in wireless recharge-
able sensor networks,” Cluster Computing, pp. 1–22, 2024.

[5] N. Murugan, G. Devarajan, S. M, R. V, A. Bashir, and A. Ali, “Artificial
intelligence based zero trust security approach for consumer industry,”
IEEE Transactions on Consumer Electronics, vol. PP, pp. 1–1, 01 2024.

[6] D. Ochoa, F. Galarza-Jimenez, F. Wilches-Bernal, D. Schoenwald, and
J. Poveda, “Control systems for low-inertia power grids: A survey on
virtual power plants,” IEEE Access, vol. 11, pp. 20 560–20 581, 01 2023.

[7] A. Eggebeen, M. Vygoder, G. Oriti, J. Gudex, A. L. Julian, and R. M.
Cuzner, “The use of digital twins in inverter-based ders to improve
nanogrid fault recovery,” in 2023 IEEE Energy Conversion Congress
and Exposition (ECCE), 2023, pp. 734–741.

[8] Y. Tao, J. Wu, Q. Pan, A. K. Bashir, and M. Omar, “O-ran-based
digital twin function virtualization for sustainable iov service response:
An asynchronous hierarchical reinforcement learning approach,” IEEE
Transactions on Green Communications and Networking, 2024.

[9] K. Sun, J. Wu, A. K. Bashir, J. Li, H. Xu, Q. Pan, and Y. D. Al-Otaibi,
“Personalized privacy-preserving distributed artificial intelligence for
digital-twin-driven vehicle road cooperation,” IEEE Internet of Things
Journal, 2024.

[10] A. Garg, G. S. Aujla, and H. Sun, “Analyzing impact of data uncertainty
in distributed energy resources using bayesian networks,” in 2023 IEEE
International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm). IEEE, 2023, pp. 1–6.

[11] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos,
“Fog computing for sustainable smart cities: A survey,” ACM Computing
Surveys (CSUR), vol. 50, no. 3, pp. 1–43, 2017.

[12] S. Y. Teng, M. Touš, W. D. Leong, B. S. How, H. L. Lam, and V. Máša,
“Recent advances on industrial data-driven energy savings: Digital twins
and infrastructures,” Renewable and Sustainable Energy Reviews, vol.
135, p. 110208, 2021.

[13] A. Gharaibeh, M. A. Salahuddin, S. J. Hussini, A. Khreishah, I. Khalil,
M. Guizani, and A. Al-Fuqaha, “Smart cities: A survey on data man-
agement, security, and enabling technologies,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 4, pp. 2456–2501, 2017.

[14] A. Jindal, N. Kumar, and M. Singh, “A unified framework for big data
acquisition, storage, and analytics for demand response management in
smart cities,” Future Generation Computer Systems, vol. 108, pp. 921–
934, 2020.

[15] Y. Pan, T. Qu, N. Wu, M. Khalgui, and G. Huang, “Digital twin based
real-time production logistics synchronization system in a multi-level
computing architecture,” Journal of Manufacturing Systems, vol. 58, pp.
246–260, 2021.

[16] J. Rosenberger, M. Urlaub, F. Rauterberg, T. Lutz, A. Selig, M. Bühren,
and D. Schramm, “Deep reinforcement learning multi-agent system for
resource allocation in industrial internet of things,” Sensors, vol. 22,
no. 11, p. 4099, 2022.

[17] W. Chen, Z. Milosevic, F. A. Rabhi, and A. Berry, “Real-time analytics:
Concepts, architectures and ml/ai considerations,” IEEE Access, 2023.

[18] G. S. Aujla and N. Kumar, “Mensus: An efficient scheme for energy
management with sustainability of cloud data centers in edge–cloud
environment,” Future Generation Computer Systems, vol. 86, pp. 1279–
1300, 2018.

[19] J. C. Perafan-Villota, O. H. Mondragon, and W. M. Mayor-Toro, “Fast
and precise: Parallel processing of vehicle traffic videos using big data
analytics,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 12 064–12 073, 2022.

[20] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A
survey on big data for network traffic monitoring and analysis,” IEEE
Transactions on Network and Service Management, vol. 16, no. 3, pp.
800–813, 2019.

[21] U. Demirbaga, Z. Wen, A. Noor, K. Mitra, K. Alwasel, S. Garg, A. Y.
Zomaya, and R. Ranjan, “Autodiagn: An automated real-time diagnosis
framework for big data systems,” IEEE Transactions on Computers,
vol. 71, no. 5, pp. 1035–1048, 2021.

[22] U. Demirbaga, A. Noor, Z. Wen, P. James, K. Mitra, and R. Ranjan,
“Smartmonit: Real-time big data monitoring system,” in 2019 38th
symposium on reliable distributed systems (SRDS). IEEE, 2019, pp.
357–3572.

[23] E. Casalicchio, “A study on performance measures for auto-scaling cpu-
intensive containerized applications,” Cluster Computing, vol. 22, no. 3,
pp. 995–1006, 2019.

[24] C. Li, J. Zheng, H. Okamura, and T. Dohi, “Performance evaluation of a
cloud datacenter using cpu utilization data,” Mathematics, vol. 11, no. 3,
p. 513, 2023.

[25] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future generation computer systems, vol. 28, no. 5, pp.
755–768, 2012.

[26] S. Mustafa, B. Nazir, A. Hayat, A. u. R. Khan, and S. A. Madani,
“Resource management in cloud computing: Taxonomy, prospects, and
challenges,” Computers & Electrical Engineering, vol. 47, pp. 186–203,
2015.

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2025.3540956

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	Research Problem and Contributions
	Organisation

	Preliminaries and Problem Formulation
	Sub-problem 1 (F1()): Queuing Model
	Sub-problem 2 (F2()): Processing Model

	System Framework
	Streaming Sensor Data Collection
	Message queuing model
	Data Processing

	Proposed Approach
	Resource Log Collection and Analysis
	Intelligent Orchestrator: Auto-scaler

	Simulation and Result analysis
	Real-time Set Up
	System Overheads
	Evaluation of the Prediction Model
	Validation of the Auto-scaler approach
	Case Study
	Evaluation of the Power Model

	conclusion

