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Abstract—Trajectory prediction allows better decision-making
in applications of autonomous vehicles or surveillance by predict-
ing the short-term future movement of traffic agents. It is classified
into pedestrian or heterogeneous trajectory prediction. The former
exploits the relatively consistent behavior of pedestrians, but
is limited in real-world scenarios with heterogeneous traffic
agents such as cyclists and vehicles. The latter typically relies
on extra class label information to distinguish the heterogeneous
agents, but such labels are costly to annotate and cannot be
generalized to represent different behaviors within the same class
of agents. In this work, we introduce the behavioral pseudo-labels
that effectively capture the behavior distributions of pedestrians
and heterogeneous agents solely based on their motion features,
significantly improving the accuracy of trajectory prediction. To
implement the framework, we propose the Behavioral Pseudo-
Label Informed Sparse Graph Convolution Network (BP-SGCN)
that learns pseudo-labels and informs to a trajectory predictor. For
optimisation, we propose a cascaded training scheme, in which we
first learn the pseudo-labels in an unsupervised manner, and then
perform end-to-end fine-tuning on the labels in the direction of
increasing the trajectory prediction accuracy. Experiments show
that our pseudo-labels effectively model different behavior clusters
and improve trajectory prediction. Our proposed BP-SGCN
outperforms existing methods using both pedestrian (ETH/UCY,
pedestrian-only SDD) and heterogeneous agent datasets (SDD,
Argoverse 1).

Index Terms—Trajectory prediction, pedestrian, heterogeneous
agents, behavioral pseudo-label, graph convolutional networks

I. INTRODUCTION

PREDICTING the future movement of traffic agents, known
as trajectory prediction, is crucial for safe and efficient

decision-making in applications such as autonomous vehicles
[1]. Thanks to reliable data-driven [2] object tracking methods
[3], accurate geometric trajectories can be extracted from
videos, serving as a more representative feature set for modeling.
Graph Convolutional Networks (GCNs) [4] have shown excep-
tional performance across diverse fields due to their adeptness
at capturing spatial relationships [5]–[9]. This enables them to
excel in applications ranging from trajectory agent interaction
modeling [10]–[13] to human skeleton-based behavior modeling
[14]–[18], highlighting the superior capabilities in handling
graph-based data structures. Similarly, recognizing distinct
movement behavior patterns among agents is pivotal to model
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Fig. 1. We propose the behavioral pseudo-labels learned from observed
trajectories, effectively representing inter- and intra-type behavioral differences
to improve pedestrian and heterogeneous trajectory prediction accuracy.

the temporal dependency [19]. These patterns, when integrated
with GCN, further enhance the precision of predictions by
accounting for the inherent behavioral tendencies.

Existing trajectory prediction methods can be broadly
classified into two categories. The first focuses on predicting
pedestrian trajectories in datasets that are exclusively composed
of pedestrians [20], [21] or deliberately omit non-pedestrian
traffic agents [22]–[24]. These methods primarily employ
neural networks to account for pedestrian social interactions,
such as the pooling window mechanism [25] and social
interaction graphs [10]–[12]. The second category encompasses
heterogeneous trajectory prediction, considering a diverse range
of traffic agents (e.g. cars, cyclists, pedestrians, etc.). Recent
methods [26]–[28] exploit the annotated class labels of traffic
agents to better model agent interactions in intricate urban
scenarios. These labels facilitate the system’s understanding
on multifaceted interactions among various agent types [28].

A notable research gap can be observed between pedestrian-
only and heterogeneous trajectory prediction. Methods tailored
solely for pedestrian behavior excel due to its predictable
patterns but lack applicability in real-world scenarios like
autonomous driving, since pedestrians behave very differently
from heterogeneous agents [26], [28]. The fundamental dif-
ferences in modeling the motion patterns of different types
of agents stem from their distinct dynamics, speed ranges,
spatial needs, interaction behaviors, decision-making processes,
and ways of perceiving the environment, necessitating varied
modeling approaches to accurately predict their trajectories.
For heterogeneous trajectory prediction, ground-truth (GT)
labels for agent types have traditionally been used to guide
discriminative learning [26]–[29]. However, these labels often
fail to capture diverse within-class behaviors: for example,
‘vans’ and ‘compact cars’ are both labeled simply as ‘cars,’
while ‘pedestrians’ can range from ordinary walkers to skate-
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boarders [30]. This granularity issue can lead to mislabeling, 
especially when visually similar categories are grouped together. 
Moreover, obtaining such detailed GT labels is time-consuming 
and expensive. We argue that purely relying on manual labels 
is both insufficient a nd c ost-ineffective f or r epresenting the 
nuanced motion patterns seen in real-world traffic scenarios.

In this paper, we present a unified f ramework utilizing 
machine-learned behavioral pseudo-labels applicable to both 
heterogeneous and exclusively pedestrian domains. Our insight 
is that behavioral pseudo-labels can capture both inter-class and 
intra-class behavioral variations among agents, thereby improv-
ing the accuracy of our model. For heterogeneous scenarios, 
the use of behavioral pseudo-labels eliminates the need for 
manual label annotations, streamlining the process and reducing 
the reliance on extensive labeled datasets. In pedestrian-only 
scenarios, these pseudo-labels facilitate the differentiation and 
learning of intrinsic motion patterns among pedestrians, offering 
a more nuanced understanding of pedestrian behavior. A shared 
advantage across both contexts is the significant improvement 
in overall prediction performance, demonstrating the versatility 
and efficacy of behavioral pseudo-labels i n d iverse trajectory 
prediction tasks (Fig. 1).

We propose the Behavioral Pseudo-Label informed Sparse 
Graph Convolution Network (BP-SGCN) for pedestrian and 
heterogeneous trajectory prediction. The network includes two 
modules. First, we introduce a deep unsupervised behavior 
clustering module that assigns pseudo-labels to agents based 
on their observed trajectories. This module marks a novel 
application of deep embedded clustering [31], utilizing high-
level temporal latent features. It is supported by a Variational 
Recurrent Neural Network (VRNN) [32] that processes a set 
of customized geometric features, crucial for capturing motion 
dynamics such as speed, angle, and acceleration. Addition-
ally, a soft dynamic time warping loss addresses temporal 
variances in trajectories, uniquely tailoring our approach for 
trajectory modeling. The generated behavioral pseudo-labels 
are specifically d esigned t o e nhance t rajectory forecasting, 
highlighting our model’s focus on the nuanced demands 
of trajectory prediction in complex environments. Second, 
we propose a goal-guided pseudo-label informed trajectory 
prediction module, which adapts SGCN [10], a powerful GCN 
backbone for trajectory prediction that utilizes a sparse spatial-
temporal attention mechanism to effectively model spatial 
interactions and temporal dependencies of agents. We then 
employ a Gumbel-Softmax straight-through estimator to link 
up the clustering module, allowing the prediction module and 
clustering module to be fine-tuned i n a n e nd-to-end manner. 
Finally, we design a cascaded training scheme [33] that first 
trains pseudo-label clustering in an unsupervised manner, and 
then fine-tunes both clustering and trajectory prediction together 
with the prediction loss to maximize their compatibility.

BP-SGCN surpasses SOTAs in both heterogeneous prediction 
on the SDD [30] and Argoverse 1 [34] datasets, and in 
pedestrian prediction on the ETH/UCY [20], [21] dataset 
and the pedestrian-only setup of SDD [35]. Our source code 
is available at https://github.com/Carrotsniper/BP-SGCN to 
facilitate further research. Our contributions are:

• We propose the novel concept of behavioral pseudo-

labels to represent clusters of traffic agents with different
movement behaviors, improving trajectory prediction
without the need for any extra annotation.

• To implement the idea, we propose BP-SGCN, which
introduces a cascaded training scheme to optimize the
compatibility of its two core modules: the pseudo-label
clustering module and the trajectory prediction module.

• We propose a deep unsupervised behavior clustering
module to obtain behavioral pseudo-labels, tailoring the
geometric feature representation and the loss to best learn
the agents’ behaviors.

• We propose a pseudo-label informed goal-guided trajectory
prediction module, which facilitates end-to-end fine-tuning
with its prediction loss for better clustering and prediction,
outperforming existing pedestrian and heterogeneous
prediction methods.

II. RELATED WORK

A. Trajectory Prediction

Deep learning models have driven the latest advancement of
trajectory prediction. Social-LSTM [25] introduces RNN-based
neural networks [36] to model the trajectories of pedestrians
and a pooling window mechanism to describe the interactions
among them. Social-GAN [37] incorporates the ideas of
Generative Adversarial Networks [38] to predict multiple multi-
modal trajectories with distance-based interaction modeling.
Diffusion models [39] are adopted into trajectory prediction
[40], [41], showing significant improvement.

Graph representations are increasingly recognized for their
prowess in modeling relational features. TrafficPredict [42]
incorporates soft-attention-based interaction graphs with LSTM
to represent social interactions. STGAT [11] models the trajec-
tories using Spatial-Temporal Graph Attention Networks based
on the sequence-to-sequence architecture. Social-STGCNN [12]
introduces weighted graph edges, providing an interpretable
measurement of pedestrian interactions. STAR [43] takes
advantage of the Transformer [44] to construct a spatial-
temporal graph transformer for trajectory representation. SGCN
[10] advances this by proposing sparse directed spatial-temporal
graph representations to model spatial interactions and motion
tendencies for each pedestrian. However, these methods pri-
marily focus on modeling pedestrian interactions, overlooking
the intricate interactions among heterogeneous agents.

Future trajectory or goal information enhances the trajectory
prediction as it provides valuable insights into the long-term
intentions of individual agents [19], [22]–[24], [40], [45]–[49].
CVAE [50] based methods [45]–[47] employ the future and
past trajectory encoder during the training phase to train the
latent representation for each agent. Such latent is used to
generate future trajectories during inference. Goal retrieval
methods sample goal points and incorporate them as guides
to model the prediction diversity [22]–[24]. We employs the
goal retrieval approach proposed in [23], as it does not require
training a separate models as in the CVAE-based method.

As trajectories are influenced by their surroundings, some
studies employ image contextual features as auxiliary infor-
mation. Convolutional Neural Networks (CNN) are applied
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to extract such features to improve prediction accuracy [51],
[52]. Semantic segmentation is adapted on scene images to 
extract annotated image features [22]. While acknowledging the 
potential benefits o f t hese t echniques, w e d o n ot u tilize scene-
based features in this research. The integration of such features 
typically requires an auxiliary image processing network [52]–
[54], which complicates the model architecture and detracts 
from our primary focus on exploring the impact of behavioral 
pseudo-labels. Our approach, although not incorporating scene-
based data, is conceptually aligned with these methods in its 
attempt to capture the nuanced behaviors and interactions of 
traffic agents purely from trajectory data. The proposed method 
is orthogonal and complementary to the use of scene-based 
features. The two methods can be combined in future work.

Fig. 3. Trajectory visualization on heterogeneous SSD dataset, where red,
green and blue dots represent pedestrians, bikers and cars, respectively. (a)
and (c) represent heterogeneous scenarios with all agent types, (b) and (d)
represent the pedestrian-only scenarios commonly used by pedestrian trajectory
predictions [22], [24] by simply removing all non-pedestrian agents.

B. Heterogeneous Trajectory Prediction
Heterogeneous trajectory prediction considers traffic agents

of all types. Adopting prediction approaches [13], [22], [46] by
simply ignoring non-pedestrian agents, or considering all agents
to be of the same class, results in sub-optimal performance.
Heterogeneous methods focus on modeling different agent
behaviors. VP-LSTM [55] separately treats vehicles and
pedestrians with LSTMs. Proposal-based approaches such
as CoverNet [56] generate predefined multimodal trajectory
anchors from observations of both vehicles and pedestrians.
For better interpretability and representation of heterogeneous
agent interactions, graph-based attention mechanisms [11], [44]
are proposed. NLNI [27] presents a novel spatial-temporal
category graph and proposed graph attention to capture the
category-wise and agent-wise interactions. Multiclass-SGCN
[28] and Semantic-STGCNN [26] introduce one-hot encoding
to encode annotated class labels as part of node features.
HIMRAE [57] proposes dynamic interaction graphs among
agents to reduce accumulated error for heterogeneous trajectory
prediction. SMGCN [58] intorduces a sparse multi-relational
GCN to learn heterogeneous interactions among agents.

However, while these approaches achieve superior perfor-
mance, most methods rely heavily on ground-truth labels to
distinguish agent types. On the one hand, manual labeling
is costly and error-prone, making the model’s performance
overly dependent on label quality. On the other hand, focusing
on semantic labels can overlook subtle behavioral differences
among agents with the same semantic label. In this work, we
propose learning behavioral pseudo-labels from agent motion
dynamics, thereby reducing reliance on manual labels and
capturing a broader spectrum of behaviors.

C. Motion Behavior Clustering

The clustering of temporal trajectory patterns allows model-
ing the behavioral groups for better trajectory prediction [59],
[60]. Early works focus on the raw trajectory represented as
2D coordinates. Support vector clustering is introduced as a
closed-loop method on motion vectors for motion behavior
representations [61]. K-means on trajectory vectors or sequence
key points obtain cluster centers to enhance trajectory prediction
[60], [62]. DBSCAN is proposed to avoid manually specifying
cluster numbers, adding more flexibility and interpretability to
behavior patterns [59]. GP-Graph directly uses the absolute
distance among pedestrians to determine the division of group
[63]. The recent PCCSNet leverages BiLSTM network to
encode coordinates prior to K-means clustering, identifying
behavioral modalities [19]. In addition to modalities, FEND
further applies 1D CNN and LSTM for trajectory encoding
and employs the K-means for long-tail trajectory clustering to
distinguish trajectory patterns [64].

However, most existing methods rely on shallow trajectory
representations, limiting their ability to capture nuanced,
evolving behaviors. Additionally, distance-based clustering
approaches often struggle with complex motion patterns. To ad-
dress these issues, we propose a cascaded optimization scheme
featuring an end-to-end Deep Embedded Clustering (DEC) [31]
module, which iteratively refines cluster assignments using
a KL-divergence objective. This dynamic adaptation yields
richer latent representations, enabling a more data-driven and
expressive approach to modeling agent behaviors.

III. BEHAVIOR PSEUDO-LABEL INFORMED SPARSE GRAPH
CONVOLUTION NETWORK

A. The High-Level Network Architecture

We observe a research gap in pedestrian and heterogeneous
trajectory prediction. Existing pedestrian prediction approaches
have limited applicability to heterogeneous traffic agents due to
the diverse behaviors of agents. For instance, in Fig. 3, (a) and
(c) depict intricate heterogeneous scenarios with bikers and
cars exhibiting longer, non-linear paths, while pedestrian-only
scenarios (b) and (d) overlook interactions among pedestrians,
bikers and cars. Although introducing annotated class labels
for heterogeneous agents leads to better prediction performance
[26]–[28], such labels are only a proxy of movement behaviors,
which cannot represent intra-class behavioral differences and
inter-class behavioral similarity.

To this end, we present the concept of behavioral pseudo-
labels, which capture movement behaviors to enhance trajectory
prediction. Our pseudo-labels do not require annotations,
mitigating the risk of mislabeling and reducing labor costs.
It can be applied to both pedestrian-only and heterogeneous
datasets, resulting in superior prediction performance.

To realize pseudo-label informed trajectory prediction, we
propose the Behavioral Pseudo-Label Informed Sparse Graph
Convolution Network (BP-SGCN). As shown in Fig. 2, BP-
SGCN includes two modules: deep unsupervised clustering
and pseudo-label informed trajectory prediction. The former
learns the pseudo-labels in an unsupervised manner, while the
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Fig. 2. The overview of BP-SGCN to learn the pseudo-labels for trajectory prediction, consisting of the deep unsupervised clustering module and the
pseudo-label informed trajectory prediction module. We propose a cascaded optimization scheme to first learn pseudo-labels in an unsupervised manner, and
then fine-tune them in an end-to-end manner with trajectory prediction supervision.

latter performs end-to-end optimization to improve pseudo-label
clustering while predicting trajectories with such labels.

We propose the cascaded training scheme to obtain the
pseudo-labels and thus high-quality trajectory prediction. First,
highlighted with the orange dotted block in Fig. 2, the
unsupervised behavior representation learning module derives
behavior latent representations from observed trajectories
through a Variational Recurrent Neural Network (VRNN) [32]
module. Then, in the green dotted block, the behavior latent
representations are fed into simple clustering modules (e.g.,
K-means, GMM, etc.) for cluster center initialization. We then
perform unsupervised deep clustering to learn the distribution
of pseudo-labels by feeding the VRNN latent representations to
the Student’s t-distribution kernel [65]. This allows fine-tuning
the VRNN encoder to create a better latent space and refine the
cluster centers. Finally, indicated by the blue dotted block, we
utilize a Gumbel-Softmax straight-through estimator to sample
one-hot pseudo-labels, which are concatenated to the trajectory
features as the input of goal-guided SGCN [10] for trajectory
prediction. The whole network is optimized end-to-end, fine-
tuning the pseudo-label clustering module to maximize its
compatibility for trajectory prediction.

B. Deep Unsupervised Behavior Clustering

Here, we explain how we obtain behavior clusters, which
serve as powerful features for effective trajectory prediction.

1) Geometric Representation of Trajectories

Given a series of observed video frames of N agents over time
t ∈ [1, Tobs], and the corresponding 2-D trajectory coordinates
(xi

t, y
i
t), i ∈ [1, N ], our objective is to predict the future

trajectory coordinates pit = (xi
t, y

i
t) of each traffic agent i

within a time horizon t ∈ [Tobs+1, Tpred].
We introduce relative angle and acceleration magnitude to

learn behavior latents. While global velocity is an effective fea-
ture for trajectory prediction [10], [28], it is less representative
of behaviors, as it depends on global movement directions, and
is less sensitive to velocity changes. Relative angles provide a
representation that is invariant to the initial facing direction,

which is complemented with the magnitude of acceleration
that has been shown to be effective for modeling behaviors.

For each traffic agent i, we calculate its velocity vector at
time t. For simplicity, we remove the notation i in the following
equation:

vt =

(
xt − xt−1

t− (t− 1)
,
yt − yt−1

t− (t− 1)

)
, (1)

where ∀t ∈ [1, Tobs], we compute the cosine of the angle,
cos (θt) between velocity vectors, vt and vt−1:

cos(θt) =
vt · vt−1

|vt| · |vt−1|
, (2)

and the magnitude of corresponding acceleration at time t:

|at| =
∣∣∣∣ vt − vt−1

t− (t− 1)

∣∣∣∣ (3)

The geometric feature is constructed as gt = (cos(θt), |at|).

2) Behavior Representation Learning

We adapt VRNN to learn latent representations for behavior
clustering [31], [66]. VRNN learns the temporal dependencies
of a sequence by modeling the distribution over its hidden
states with an encoder-decoder architecture. Compared to
LSTM-based autoencoders [66], it effectively models the highly
nonlinear dynamics and captures the uncertainties of latent
space. Its probabilistic nature of variational inference improves
the learning of implicit sequential data distributions.

In particular, the encoder network φenc(·, ·) receives the
embedded geometric data φg(gt) and recurrent hidden state
ht−1 to approximate the posterior distribution qϕ(·):

qϕ(zt|g≤t, z<t) = N (zt|(µz,t, σ
2
z,t)),

[µz,t, σz,t] = φenc(φ
g(gt), ht−1),

(4)

where zt is sampled using a reparameterization trick [67]. The
decoder network φdec(·, ·) takes the embedded latent φz(zt)
and ht−1 to approximate the reconstruction distribution pδ(·):

pδ(gt|z≤t, g<t) = N (gt|(µg,t, σ
2
g,t)),

[µg,t, σg,t] = φdec(φ
z(zt), ht−1).

(5)
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To enhance the temporal dependencies in sequences, the 
prior distribution in VRNN relies on ht−1 with φprior(·):

pδ(zt|z<t, g<t) = N (zt|(µ0,t, σ
2
0,t)),

[µ0,t, σ0,t] = φprior(ht−1).
(6)

We employ the Gated Recurrent Unit (GRU) [68] to update
the RNN hidden state, which outperforms LSTM [36] when
the sequence length is relatively short:

ht = GRU(φg(gt), φ
z(zt), ht−1). (7)

The VRNN is optimized with a customized loss:

LVRNN = LSoft-DTW + LELBO, (8)

where LSoft-DTW is a differentiable soft Dynamic Time Warping
(DTW) loss [69]:

LSoft-DTW = min
µg,t

N∑
i=1

1

Tobs
DTWγ(µg,t, gt), (9)

DTWγ refers to the original DTW [70] discrepancy that
measures and aligns the similarity between two time series, γ is
a parameter indicating the acceptable distortion for aligning two
sequences, µg,t is the decoded mean of the VRNN decoder. The
loss allows capturing non-linear temporal alignment [71], which
cannot be achieved with MSE. LELBO is the variational evidence
lower-bound with the Kullback–Leibler (KL) divergence [32],
[67]:

LELBO = Eqϕ(z≤Tobs
|g≤Tobs

)

[
Tobs∑
t=1

(log pδ(gt|z≤t, g<t)

−KL(qϕ(zt|g≤t, z<t) || pδ(zt|z<t, g<t))

]
.

(10)

By optimizing LVRNN, the model aligns predicted and ob-
served sequences while maintaining a theoretically grounded
variational framework. This alignment enhances flexibility in
handling non-linear temporal dynamics, and the KL regular-
ization constrains the latent structure, thus ensuring stable
training. Consequently, the VRNN encoder provides richer
latent representations for subsequent unsupervised deep cluster-
ing, effectively leveraging spatio-temporal structures to capture
nuanced agent behaviors.

3) Deep Embedded Clustering

We present a new application of Deep Embedded Clustering
(DEC) [31] to cluster the agent behaviors latents from the
VRNN encoder, thereby generating a distribution of pseudo-
labels. DEC allows jointly optimizing the cluster centers and
the VRNN encoder, enhancing the latent representation via
back-propagation. This significantly outperforms traditional
methods like k-means [72] and Gaussian mixture models [73],
which lack the capability to refine input feature representations.

The initial phase of DEC involves setting cluster centers
using VRNN behavior latents. We input all training data into the
VRNN encoder to obtain the set of behavior latent features Z,
and then apply k-means to determine initial centers, cj ∈ [1, k].

Given the variance in agent behaviors across datasets, k is an
empirically tuned hyperparameter.

We then apply Student’s T-Distribution [65], that is, Q
distribution to compute the soft assignment between each
initialized cluster center and latent vector [31]. Its kernel
measures the probability of each encoded vector zi ∈ Z
belonging to the cluster j:

qij =

(
1 +

d(zi,cj)
α

)−α+1
2

∑
j′

(
1 +

d(zi,cj′ )

α

)−α+1
2

, (11)

where d is a similarity metric that refers to the distance between
the encoded vector zi and center cj , and α is the number of
degrees of freedom of the Q distribution. We denote d as the
Euclidean distance and set α to 1.

Meanwhile, we optimize the clustering network with a KL
divergence loss to minimize the discrepancy between the two
distributions:

Lcluster = KL(P ||Q) =
∑

i

∑
j

(
pij log

pij
qij

)
, (12)

where P is the auxiliary distribution:

pij =
q2ij/fj∑
j′ q

2
ij′/fj′

, (13)

and fj =
∑

i qij are soft cluster frequencies. Here, P is re-
weighted from Q distribution in a way that sharpens high-
confidence assignments and de-emphasizes low-confidence ones
[31], thereby systematically increasing the separation between
clusters in the latent space. Finally, we derive soft assignments
from the Student’s t-distribution, reflecting the probability of the
latent zit in each cluster cj . This approach not only offers greater
flexibility in representing complex behaviors but also sharpens
cluster boundaries by reinforcing high-confidence assignments
and reducing ambiguity in low-confidence ones. Consequently,
it yields more coherent clusters and better captures the inherent
diversity in agent dynamics, ultimately enhancing the overall
clustering quality.

C. Pseudo-label Informed Trajectory Prediction

Here, we introduce the concept of behavioral pseudo-labels
for more accurate trajectory prediction.

1) Gumbel-Softmax Straight-Through Estimator

While the soft assignment represents good behavior clusters,
such clusters are unsupervised and trained only on feature
representations, meaning that they are still sub-optimal for any
given task. This explains the sub-optimal prediction accuracy
in existing methods [19], [64]. Here, we present a framework
to improve the compatibility between the clusters and the task
via fine-tuning the behavior latent.

To enable end-to-end fine-tuning of the behavior latent with
a task objective, an operator is needed to connect the clustering
and the prediction modules. We employ the Gumbel-Softmax
straight-through estimator [74], which facilitates the gradient
propagation and computes one-hot vectors representing the
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pseudo-labels. The estimator uses a differentiable Softmax, as 
opposed to the non-differentiable Argmax, allowing end-to-end 
optimization. An agent’s class label is lj , where j ∈ 1, . . . k is 
the cluster center.

Apart from performance gains, as one-hot labels fit the 
human understanding of a class concept, they allow better in-
terpretability via visualization tools. They are also immediately 
compatible with existing network architectures trained with 
ground-truth labels [26], [28], allowing effective adaptations.

2) Behavioral Pseudo-Label Informed SGCN

We adopt a Sparse Graph Convolution Network (SGCN) [10] 
as our backbone and introduce the pseudo-labels and a new 
loss function. SGCN has shown outstanding performance and 
is computationally efficient o n p edestrian t rajectory predic-
tion [10]. It introduces sparsified s patial-temporal attention 
mechanism [11], [44], [75], which effectively models spatial 
interactions and temporal dependencies among agents. The 
sparse graph learning component removes spatial superfluous 
interactions and temporal motion tendencies, improving both 
computational speed and accuracy. In reality, our pseudo-
label framework is compatible with a wide range of trajectory 
prediction networks.

We introduce the usage of semantic-goal features into 
SGCN, which enhances the prediction accuracy [22], [23]. 
To this end, we integrate the goal-retrieval operation [23] 
into the SGCN, we first subtract each observation s tep v t in 
t ∈ [1, Tobs] by the corresponding trajectory endpoint vTpred{as vt = vt − vTpred . We then construct the spatial} graph Gs =

(Vs, As)|Vs ∈ RTobs×N×Ds , As ∈ RTobs×N×N , where Vs 
represents the spatial interactions among all agents at time 
step t, As is the spatial adjacency matrix and Ds refers to the 
spatial feature dimension.

To add heterogeneity to the graph, we concatenate the 
pseudo-labels l to the trajectory feature vector for each agent 
at each time step as Vt

i = concat(vt
i, li), ∀t ∈ [1, Tobs]

and ∀i ∈ [1, N ]. Similarly, we establish the temporal graph
Gt =

{
(Vt,At)|Vt ∈ RN×Tobs×Dt ,At ∈ RN×Tobs×Tobs

}
to

represent the temporal correlations of each individual agent
during Tobs steps, where At is the temporal adjacency matrix
and Dt is the temporal feature dimension. Finally, these spatial
and temporal goal-guided heterogeneous graphs are passed into
SGCN for final trajectory prediction.

We propose a joint training strategy with a novel loss
function to jointly optimize trajectory prediction and pseudo-
label clustering. Thanks to our Gumbel-Softmax estimator,
back-propagation is performed from the prediction all the way
back to the VRNN encoder, resulting in better compatibility
between the clustering and prediction modules. We present a
combined loss:

Lfinal = Lcluster + Lprediction, (14)

where Lcluster is defined in Eq. 12, and Lprediction as:

Lprediction = −
∑Tpred

t=Tobs+1 logP (pt|µ̂, σ̂, ρ̂), (15)

where µ̂ and σ̂ are the mean and variance of the bi-variate
Gaussian distribution of trajectory prediction, and ρ̂ represents
the correlation coefficient.

IV. EXPERIMENTS

A. Datasets

We evaluate BP-SGCN on multiple benchmark datasets,
including the Stanford Drone Dataset (SDD) [30], Argoverse
1 [34], ETH [20] and UCY [21], and the pedestrian-only version
of SDD [35]. For pedestrian trajectory prediction, ETH/UCY
consists of five pedestrian-only datasets (ETH, HOTEL, UNIV,
ZARA1, ZARA2) with 1,536 pedestrians. Pedestrian-only
SDD is the simplified version where non-pedestrian agents are
removed. For heterogeneous trajectory prediction, we follow
[28], [54], [76] that consider all trajectories, consisting of
8 scenes, 60 videos and 6 categories of traffic agents (i.e.,
pedestrians, bicyclists, skateboarders, carts, cars, and buses).
Argoverse 1 consists of over 30K urban traffic scenarios that
include 3 types of agents (i.e. AVs, agents, and others).

B. Experimental Setup

By default, we follow the experimental setup of [10], [13],
using 3.2 seconds (8 frames) of observation trajectories to
predict the next 4.8 seconds (12 frames). For pedestrian-
only prediction, we employ the data augmentation approach
introduced in [13] and the official leave-one-out strategy
[37] during the training and validation. For heterogeneous
trajectory prediction on Argoverse 1 dataset, our experimental
setup and dataset split strategy follow [27], [53]. Specifically,
we utilize 2 seconds (20 frames) of observation trajectories
to predict the trajectories of all tracked objects over the
subsequent 3 seconds (30 frames) within each scene. In
particular, our experimental setup on the Argoverse 1 dataset
for heterogeneous trajectory prediction predicts trajectories
for all agents [27], [77], unlike methods focusing on a single
agent [78] or two specific agents [49], our approach captures
multi-agent interactions, reflecting real-world traffic complexity
and improving predictive robustness, situational awareness, and
adaptability to diverse urban environments.

During testing, we adhere to the standard protocol by
generating 20 predictions for both heterogeneous [26], [28],
[53] and pedestrian-only trajectory predictions [10], [37], [79].
This approach ensures our results are comparable to those
established in the field. The sample with the lowest error is
then used to compute the evaluation metrics. We employ the
Average Displacement Error (ADE) and Final Displacement
Error (FDE) [10], [12], [25], [37] as our evaluation metrics:

ADE =
1

(Tpred − Tobs)×N

N∑
i=1

Tpred∑
t=Tobs+1

||p̂it − pit||2,

FDE =
1

N

N∑
i=1

||p̂it − pit||2, t = Tpred,

(16)

where p̂it represents the ground-truth trajectory coordinates.
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TABLE I
RESULTS ON SDD FOR HETEROGENEOUS PREDICTION.

Methods Venue Year GT Labels
SDD

ADE(↓) FDE(↓)

Social-LSTM [25] CVPR 2016 No 31.19 56.97
DESIRE [51] CVPR 2017 No 19.25 34.05
MATF [80] CVPR 2019 No 22.59 33.53
STGAT [11] ICCV 2019 No 18.80 31.30

Multiverse [76] CVPR 2020 No 14.78 27.09
SimAug [81] ECCV 2020 No 10.27 19.71
NLNI [27] ICCV 2021 Yes 15.90 26.30

STSF-Net [82] TMM 2021 No 14.81 28.03
Semantic-STGCNN [26] SMC 2021 Yes 18.12 29.70

V 2-Net [52] ECCV 2022 No 7.12 11.39
Multiclass-SGCN [28] ICIP 2022 Yes 14.36 25.99

TDOR [54] CVPR 2022 No 8.60 13.90
CAPHA [83] TVT 2023 No 9.13 14.34
VNAGT [84] TVT 2023 Yes 9.67 17.22

SFEM-GCN [29] TIV 2024 Yes 15.31 25.72
SMGCN [58] IJCAI 2024 Yes 20.89 36.84

BP-SGCN (Ours) No 6.94 9.57

TABLE II
RESULTS ON ARGOVERSE 1 FOR HETEROGENEOUS PREDICTION.

Methods Venue Year GT Labels
Argoverse 1

ADE(↓) FDE(↓)

Social-LSTM [25] CVPR 2016 No 1.39 2.57
DESIRE [51] CVPR 2017 No 0.90 1.45

R2P2-MA [85] ECCV 2018 No 1.11 1.77
MATFG [80] CVPR 2019 No 1.26 2.31

CAM [86] ECCV 2020 No 1.13 2.50
MFP [87] NeurIPs 2020 No 1.40 2.68

Social-STGCNN [12] CVPR 2020 No 1.31 2.34
NLNI [27] ICCV 2021 Yes 0.79 1.26
DD [88] Inf. Sci. 2022 No 0.74 1.28

HRG+HSG [53] TITS 2023 No 0.85 1.12
BIP-Tree [77] TITS 2023 No 0.78 1.35

BP-SGCN (Ours) No 0.69 1.15

C. Quantitative Evaluation

1) Heterogeneous Prediction

TABLE I compares our BP-SGCN with previous state-of-the-
art methods on heterogeneous SDD. These methods can be
categorized into three groups based on the input features,
including trajectory-only [11], [25], [29], [63], [82], trajectory
with ground-truth labels [26]–[29], [58], [84], and trajectory
with extra scene features such as scene semantics [51],
[52], [54], [76], [81], [83]. BP-SGCN outperforms all the
methods that utilize ground-truth agent class labels [26]–[29],
[58], [84]. Compared to the best method VNAGT [84], BP-
SGCN demonstrates the superiority by reducing ADE/FDE
by 28.23%/44.43%. Crucially, for SOTA approaches that
incorporate scene semantic features such as V 2-Net [52] and
TDOR [54], our BP-SGCN improves the performance by
reducing ADE/FDE by 2.5%/15.9% compared to V 2-Net and
19.3%/31.2% compared to TDOR. The results indicate that
without the need for additional inputs, our BP-SGCN can
still achieve SOTA performance in heterogeneous trajectory
prediction.

TABLE II compares the BP-SGCN with those state-of-the-art
methods in heterogeneous trajectory prediction on Argoverse
1, following the setup in [27], [53], [77]. Results show that our

BP-SGCN outperforms all the methods by a significant margin,
especially in the ADE metric. BP-SGCN surpasses NLNI [27],
which integrates ground-truth labels, by reducing 12.7% in
ADE and 8.7% in FDE, further showcasing the effectiveness
of our proposed pseudo-label module. Notably, although NLNI
utilizes label-based category features, its performance is limited
by the simplistic nature of the “GT Labels” in the Argoverse 1
dataset, which are broadly classified as “1 AV” (1 Autonomous
Vehicle), “1 Focal” (the primary vehicle whose trajectory
is predicted), and “N other” (other tracked objects, which
can include vehicles, pedestrians, or bicycles). This coarse
categorization restricts the algorithm’s ability to accurately
capture and analyze the nuanced interactions among diverse
traffic agents. In contrast, BP-SGCN effectively overcomes
these constraints by conducting a comprehensive analysis of
the behavior dynamics of all agents within the scene. By
employing our advanced pseudo-label module, we significantly
enhance the representational capabilities of our system, leading
to markedly improved prediction accuracy across diverse traffic
scenarios. This improvement is achieved without the need for
direct matching with ground-truth labels, demonstrating the
robustness and adaptability of our approach in interpreting
complex interactive behaviors. Importantly, DD [88] and
HRG+HSG [53] achieve comparable performance on ADE and
FDE mainly due to the use of scene images that better capture
the interactions between traffic agents and environments, our
BP-SGCN still shows the best ADE performance compared to
these methods.

2) Pedestrian Prediction

For ETH/UCY, we conduct quantitative comparisons with a
wide range of methods with various techniques, as shown in
TABLE III. Following [41], [92], we compare with methods
utilizing trajectory data only.

For distribution-based methods, Social-LSTM [25] intro-
duces bi-variate Gaussian distribution to sample predictions
from the trained mean and variance, which is widely used
in recently published methods [10], [12], [23], [63], [97],
[106]. Following this, our BP-SGCN also uses the bi-variate
Gaussian distribution to represent the distribution parameters
of the predicted trajectories. It outperforms almost all methods
under this setting by a significant margin. In addition, both
ExpertTraj [23] and our BP-SGCN utilize the goal-retrieve
mechanism but we have a significant improvement of 10.5%
in ADE and 33.3% in FDE.

For generative-based methods, Social-GAN [37] is the
pioneer method that introduces GANs [38] to generate tra-
jectories with special pooling modules. PECNet [24] utilizes
the CVAEs [50] to generate trajectories conditioned on the
pre-sampled goal points, which add an extra constraint to
the predicted trajectories for better accuracy. Methods like
[45]–[47], [91], [93], [101] follow the CVAEs basis to train
the encoder with ground-truth trajectories for better latent
representations. MID [40] and LED [41] further introduce
the diffusion models [39] to enhance training and reduce
mode collapses. Results reveal that our BP-SGCN outperforms
generative-based methods.



8

TABLE III
RESULTS ON ETH/UCY ON PEDESTRIAN-ONLY PREDICTION;

- DENOTES MISSING RESULT DUE TO UNAVAILABILITY FROM ORIGINAL AUTHORS.

Method Venue Year
ETH HOTEL UNIV ZARA1 ZARA2 AVG

ADE(↓)/FDE(↓) ADE(↓)/FDE(↓) ADE(↓)/FDE(↓) ADE(↓)/FDE(↓) ADE(↓)/FDE(↓) ADE(↓)/FDE(↓)

Social LSTM [25] CVPR 2016 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Social GAN [37] CVPR 2018 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21

Social-STGCNN [12] CVPR 2020 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
PECNet [24] ECCV 2020 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
SGCN [10] CVPR 2021 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

AgentFormer [45] ICCV 2021 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39
PCCSNet [19] ICCV 2021 0.28/0.54 0.11/0.19 0.29/0.60 0.21/0.44 0.15/0.34 0.21/0.42

ExpertTraj 1[23] ICCV 2021 0.37/0.65 0.11/0.15 0.20/0.44 0.15/0.31 0.12/0.25 0.19/0.36
STSF-Net [82] TMM 2021 0.63/1.13 0.24/0.43 0.28/0.52 0.23/0.45 0.21/0.41 0.32/0.59

Social-Implicit [13] ECCV 2022 0.66/1.44 0.20/0.36 0.31/0.60 0.25/0.50 0.22/0.43 0.33/0.67
GP-Graph [63] ECCV 2022 0.43/0.63 0.18/0.30 0.24/0.42 0.17/0.31 0.15/0.29 0.23/0.39

Social-VAE [47] ECCV 2022 0.41/0.58 0.13/0.19 0.21/0.36 0.17/0.29 0.13/0.22 0.21/0.33
MemoNet [48] CVPR 2022 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24 0.21/0.35
GroupNet [46] CVPR 2022 0.46/0.73 0.15/0.25 0.26/0.49 0.21/0.39 0.17/0.33 0.25/0.44

MID [40] CVPR 2022 0.39/0.66 0.13/0.22 0.22/0.45 0.17/0.30 0.13/0.27 0.21/0.38
GTPPO [89] TNNLS 2022 0.63/0.98 0.19/0.30 0.35/0.60 0.20/0.32 0.18/0.31 0.31/0.50

Graph-TERN [90] AAAI 2023 0.42/0.58 0.14/0.23 0.26/0.45 0.21/0.37 0.17/0.29 0.24/0.88
MSRL [91] AAAI 2023 0.28/0.47 0.14/0.22 0.24/0.43 0.17/0.30 0.14/0.23 0.19/0.33
LED [41] CVPR 2023 0.39/0.58 0.11/0.17 0.26/0.43 0.18/0.26 0.13/0.22 0.21/0.33

EqMotion [92] CVPR 2023 0.40/0.61 0.12/0.18 0.23/0.43 0.18/0.32 0.13/0.23 0.21/0.35
FEND [64] CVPR 2023 - - - - - 0.17/0.32

EigenTrajectory [93] ICCV 2023 0.36/0.53 0.12/0.19 0.24/0.43 0.19/0.33 0.14/0.24 0.21/0.34
TUTR [94] ICCV 2023 0.40/0.61 0.11/0.18 0.23/0.42 0.18/0.34 0.13/0.25 0.21/0.36
SICNet [95] ICCV 2023 0.27/0.45 0.11/0.16 0.26/0.46 0.19/0.33 0.13/0.26 0.19/0.33
TP-EGT [96] TITS 2023 0.41/0.68 0.13/0.21 0.29/0.50 0.18/0.30 0.16/0.27 0.23/0.39

DynGroupNet [97] NN 2023 0.42/0.66 0.13/0.20 0.24/0.44 0.19/0.34 0.15/0.28 0.23/0.38
SMEMO [98] TPAMI 2024 0.39/0.59 0.14/0.20 0.23/0.41 0.19/0.32 0.15/0.26 0.22/0.35
STGlow [99] TNNLS 2024 0.31/0.49 0.09/0.14 0.16/0.33 0.12/0.24 0.09/0.19 0.15/0.28

MRGTraj [100] TCSVT 2024 0.28/0.47 0.21/0.39 0.33/0.60 0.24/0.44 0.22/0.41 0.26/0.46
HighGraph [101] CVPR 2024 0.40/0.55 0.13/0.17 0.20/0.33 0.17/0.27 0.11/0.21 0.20/0.30

PPT [102] ECCV 2024 0.36/0.51 0.11/0.15 0.22/0.40 0.17/0.30 0.12/0.21 0.20/0.31
BP-SGCN (Ours) 0.33/0.47 0.10/0.14 0.17/0.26 0.13/0.19 0.10/0.16 0.17/0.24

1 For ExpertTraj [23], the discrepancy from the original paper arises due to an error highlighted by the authors: https://github.com/JoeHEZHAO/expert traj

TABLE IV
RESULTS ON THE PEDESTRIAN-ONLY VERSION OF SDD.

Methods Venue Year
SDD-human

ADE(↓) FDE(↓)

STGAT [11] ICCV 2019 0.58 1.11
Social-Ways [103] CVPRW 2019 0.62 1.16

DAG-Net [79] ICPR 2020 0.53 1.04
Social-implicit [13] ECCV 2022 0.47 0.89

WTGCN [104] IJMLC 2024 0.43 0.72
IGGCN [105] DSP 2024 0.44 0.71

BP-SGCN (Ours) 0.28 0.41

For transformer-based methods, TUTR [94] proposes a novel
global prediction system incorporated with a motion-level
transformer encoder and a social-level transformer decoder for
accurate trajectory representation. MRGTraj [100] introduces a
non-autoregressive enhanced transformer decoder for trajectory
prediction. PPT [102] proposes multi-stage transformer progres-
sively modeling trajectories. STGlow [99] further introduces
the flow-based generative framework with dual-graphormer to
precisely model motion distributions. Compared to STGlow,
our BP-SGCN achieves comparable ADE with STGlow, while
reducing FDE by 14%.

Besides these categories, LSTM decoder-based methods [19],
[82], [89], [96] and [64] directly predict trajectories using
LSTM decoder, which also show comparable results to the

transformer-based methods. Social-implicit [13] introduces the
concept of implicit maximum likelihood estimation mechanism.
Memonet [48], SICNet [95] and SMEMO [98] incorporate
memory bank/module concepts into the system, demonstrating
considerable performance. Notably, SICNet presents the best
results on ETH subset in both ADE and FDE metrics compared
with all other methods. Graph-TERN [90] shows a novel
trajectory refinement module that first samples the endpoint
and then linearly interpolates the predictions. EqMotion [92]
further introduces the concepts of invariance and equivariance
into trajectory prediction to learn motion patterns. Nevertheless,
results in TABLE III illustrate that our BP-SGCN outperforms
all of these methods.

For pedestrian-only SDD, TABLE IV highlights the compar-
ative performance of our BP-SGCN, which secures substantial
improvements over all listed models, including the latest STOA
models, WTGCN [104] and IGGCN [105]. Specifically, BP-
SGCN achieves a 35% reduction in ADE compared to WTGCN
and a 42% reduction in FDE compared to IGGCN. The results
in both heterogeneous SDD and pedestrian-only SDD show
the superiority of our BP-SGCN in multiple scenarios.

D. Qualitative Evaluation

Fig. 4 shows the t-SNE [65] visualization of the pseudo-
labels in the latent space during unsupervised deep clustering

https://github.com/JoeHEZHAO/expert_traj
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Fig. 4. The t-SNE visualization of pseudo-class clustering on SDD (k=6)
during unsupervised deep clustering. (a) 0 epochs (initialized by k-means), (b)
200 epochs, (c) 800 epochs.

training. At epoch 0, k-means initializes the cluster centers. As
the latent is not optimized, class boundaries are unclear. After
the training, the VRNN encoder generates a more representative
latent for better clustering of the agents’ behaviors.

Fig. 5 and Fig. 6 visualize the trajectory predictions for
the SDD and ETH/UCY datasets, respectively. Blue and red
dots represent observed and ground-truth future trajectories,
respectively. For the SDD dataset, we visualize the predictions
in Fig. 5, where light blue indicates the predicted distributions
and yellow dots represent the predicted single trajectory. The
visualizations demonstrate that our BP-SGCN exhibits superior
performance compared to methods integrating ground-truth
labels [26], [28] in three challenging scenarios characterized
by complex social interactions among agents.

In Fig. 6, we visualize the predicted distribution in the
ETH/UCY datasets across various scenarios, encompassing
both simple and complex interactions, and compare our
method with SGCN [10] and GP-Graph [63]. We visualize the
parameterized distribution of future trajectories, as they are the
learning objective of these methods. Qualitative comparisons
reveal that our predicted distributions closely align with the
ground truth and adeptly capture the non-linear trajectories.
Specifically, scenario (a) illustrates a scene with numerous
pedestrians on the street engaging in complex interactions,
such as meeting, colliding, and standing still. While all
the predicted distributions can accurately represent linear
trajectories, both SGCN and GP-Graph falter in predicting the
movements of pedestrians exhibiting non-linear behaviors. In
contrast, BP-SGCN consistently generates plausible predictions.
Scenario (b) displays four stationary pedestrians; however, both
SGCN and GP-Graph yield wrong predictions, whereas BP-
SGCN accurately captures the static behaviors. In scenario
(c), the predicted distributions from both SGCN and GP-
Graph demonstrate significant overlaps, leading to a heightened
risk of predicted collisions. On the other hand, BP-SGCN’s
predictions show reduced overlaps. In scenario (d), while GP-
Graph continues to display overlap issues, SGCN exhibits
overconfidence in its predictions, resulting in a lack of diversity
and a propensity to deviate from the ground truth. BP-SGCN
effectively addresses both of these challenges, striking a balance
between prediction accuracy and diversity.

Fig. 5. Visualization of trajectory prediction on SDD of Semantic-STGCNN
[26], Multiclass-SGCN [28], and BP-SGCN (ours). Blue and red represent
observed and ground-truth trajectories respectively, yellow represents the
predicted trajectory and light-blue shade represents the predicted distribution.

E. Ablation Study and Parameter Analysis

1) Cluster Number Analysis

The effects of cluster number on heterogeneous datasets are
shown in TABLE V (Heterogeneous SDD) and TABLE VI
(Argoverse 1). The results on pedestrian-only datasets are
shown in TABLE VII (ETH/UCY) and TABLE VIII (Pedestrian-
only SDD). In general, the cluster number depends on the
diversity of behaviors, which is strongly correlated with
the location. For instance, choosing six clusters for SDD
is reasonable given the presence of six types of agents,
and this choice yields good performance. Tuning the cluster
number for a scene provides extra improvements, and this
only has to be done once. These results further reflect that
the heterogeneous dataset is more sensitive to the cluster
numbers and the pedestrian dataset results exhibit diminished
sensitivity, attributable to the inherent behavioral homogeneity
and comparatively lower variance observed in human actions.
Note that due to its large data size, for Argoverse 1, we run
ablation studies and parameter analysis using a partial dataset
in a simplified setup.

Notably, in our experiments on cluster numbers, a cluster’s
number equal to 1 denotes that there is no pseudo-label
applied on each agent because all the agents are considered
to belong to the same class, and consequently the model
performance relies solely on the trajectories themselves. In
particular, results in TABLE VII and TABLE VIII demonstrate
that, within datasets exclusively comprising pedestrian agents,
our BP-SGCN model is adept at discerning the nuanced
variances in their movement patterns. Despite the apparent
homogeneity of the agents as pedestrians, our analysis reveals
intrinsic behavioral differentiations that our model capitalizes
on to significantly improve prediction accuracy. This not only
underscores the importance of individualized learning even
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Fig. 6. Visualization of the trajectory prediction on ETH/UCY in the scenario of pedestrian walking behaviors. Past trajectories are shown in blue, and
ground-truth trajectories are in red. (a) shows the pedestrians in a crowded scenario with complex interactions. (b) shows the scene where four pedestrians are
almost static. (c) and (d) show scenes including multiple pedestrian behaviors, such as walking, meeting, and standing.

TABLE V
CLUSTER NUMBER ANALYSIS ON HETEROGENEOUS SDD.

Clusters ADE(↓) FDE(↓)

1 7.26 10.03
3 7.11 9.81
6 6.94 9.57
9 7.03 9.74
12 7.58 10.92

TABLE VI
CLUSTER NUMBER ANALYSIS ON ARGOVERSE 1.

Clusters ADE(↓) FDE(↓)

1 0.86 1.63
3 0.80 1.45
6 0.69 1.15
9 0.79 1.47

among seemingly similar entities, but also showcases the
efficacy of our model in enhancing predictive outcomes by
leveraging these subtle distinctions.

2) Network Components Analysis

TABLE IX shows ablation studies to evidence the effectiveness
of network components used in BP-SGCN on heterogeneous
and pedestrian-only SDD. The “No Deep Clustering” setup
uses k-means cluster centers directly for trajectory prediction,
and therefore does not implement unsupervised deep learning
and end-to-end fine-tuning. The “No Gumbel-Softmax” setup
directly concatenates the soft assignment to the trajectory
features for trajectory prediction. The “No End-to-End Training”
setup uses only Lprediction to optimize the trajectory prediction

TABLE VII
CLUSTER NUMBER ANALYSIS ON ETH/UCY.

Clusters
ADE(↓) / FDE(↓)

ETH HOTEL UNIV ZARA1 ZARA2

1 0.37/0.51 0.14/0.19 0.27/0.37 0.15/0.21 0.24/0.34
2 0.37/0.52 0.15/0.21 0.18/0.27 0.20/0.37 0.25/0.35
3 0.45/0.61 0.10/0.14 0.27/0.36 0.24/0.33 0.17/0.34
4 0.33/0.47 0.12/0.16 0.27/0.37 0.14/0.20 0.10/0.16
5 0.36/0.50 0.17/0.22 0.18/0.27 0.13/0.19 0.12/0.18
6 0.39/0.53 0.15/0.21 0.18/0.27 0.15/0.21 0.11/0.17
7 0.37/0.51 0.11/0.15 0.17/0.26 0.26/0.37 0.13/0.19

TABLE VIII
CLUSTER NUMBER ANALYSIS ON PEDESTRIAN-ONLY SDD.

Clusters ADE(↓) FDE(↓)

1 0.33 0.49
3 0.28 0.41
6 0.47 0.72
9 0.31 0.47

module but not the deep clustering module; here, the Gumbel-
Softmax estimator is substituted with the non-differentiable
Argmax function. Results from both the heterogeneous and
pedestrian datasets emphasize the significance of all the
proposed components in BP-SGCN.

In addition, our proposed Goal-Guided SGCN module uti-
lizes the spatial attention and temporal attention mechanism to
enhance the final prediction accuracy. We conduct experiments
on ETH/UCY datasets to validate the effectiveness of these two
modules. The results shown in TABLE X indicate that both
spatial attention and temporal attention modules are important
for the best performance.
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TABLE IX
NETWORK COMPONENTS ANALYSIS ON HETEROGENEOUS SDD (UPPER)

AND PEDESTRIAN-ONLY SDD (LOWER).

Method ADE(↓) FDE(↓)

BP-SGCN (No Deep Clustering) 7.52 10.50
BP-SGCN (No Gumbel-Softmax) 7.65 10.85
BP-SGCN (No End-to-End Training) 10.82 15.32
BP-SGCN (Ours) 6.94 9.57

Method ADE(↓) FDE(↓)

BP-SGCN (No Deep Clustering) 0.30 0.44
BP-SGCN (No Gumbel-Softmax) 0.40 0.60
BP-SGCN (No End-to-End Training) 0.30 0.46
BP-SGCN (Ours) 0.28 0.41

TABLE X
PREDICTION MODULE ANALYSIS ON ETH/UCY DATASETS.

Method ADE(↓) FDE(↓)

BP-SGCN (No Spatial Attention) 0.25 0.30
BP-SGCN (No Temporal Attention) 0.28 0.35
BP-SGCN (Ours) 0.17 0.24

3) Trajectory Prediction Loss Analysis

As discussed above, we propose a cascaded training strategy
with a novel loss function to jointly optimize trajectory
prediction and pseudo-label clustering, defined as:

Lfinal = Lprediction + Lcluster. (17)

In the proposed loss function, Lprediction and Lcluster

contribute equally to the final loss Lfinal. We conduct an
ablation study by introducing a weighted sum of losses with a
new hyperparameter λ to explore the effect and contribution of
the two losses on trajectory prediction on both heterogeneous
and pedestrian-only SDD datasets:

Lfinal = λLprediction + (1− λ)Lcluster. (18)

Here, we analyze the effect of λ. For the proposed BP-
SGCN, the default value of λ can be considered as 0.5, as
both losses contribute equally to the final loss. We further
adjust the value of λ as 0.25, and 0.75, respectively. The
experimental results presented in TABLE XI show that the
performance of BP-SGCN reaches its peak when the ratio of
Lprediction and Lcluster is equal, as presented in the main
paper, which further indicates that the trajectory prediction and
pseudo-label clustering modules are equally important for the
overall trajectory prediction performance.

4) Clustering Features Analysis

Finally, TABLE XII shows ablation studies on heterogeneous
and pedestrian-only SDD datasets with regard to the geometric
features used for behavior clustering. These features play a
pivotal role, enabling our unsupervised deep clustering module
to differentiate agent behaviors effectively. The outcomes
highlight the outstanding performance of our proposed features,
which integrate relative angle and acceleration magnitude.

TABLE XI
LOSS WEIGHT ANALYSIS BETWEEN Lprediction AND Lcluster ON

HETEROGENEOUS SDD (UPPER) AND PEDESTRIAN-ONLY SDD (LOWER).

Method ADE(↓) FDE(↓)

BP-SGCN (λ = 0.25) 19.33 24.26
BP-SGCN (λ = 0.75) 7.08 9.84
BP-SGCN (Ours) 6.94 9.57

Method ADE(↓) FDE(↓)

BP-SGCN (λ = 0.25) 0.46 0.70
BP-SGCN (λ = 0.75) 0.31 0.46
BP-SGCN (Ours) 0.28 0.41

F. Model Complexity and Inference Time Analysis

To verify the efficiency of our proposed method, we conduct
experiments on inference time and model parameters with
existing mainstream trajectory prediction frameworks. As
demonstrated in TABLE XIII, our method is inferior to
EigenTrajectory [93] and better than all other methods in terms
of inference time and model parameters. We leave it as future
work to improve the efficiency of our BP-SGCN with more
advanced sequential modeling methods such as Transformers
[44] and State Space Models (SSMs) [107], [108].

TABLE XII
CLUSTERING FEATURES ANALYSIS ON HETEROGENEOUS SDD (UPPER)

AND PEDESTRIAN-ONLY SDD (LOWER).

Method ADE(↓) FDE(↓)

BP-SGCN (Relative Angle) 19.52 34.05
BP-SGCN (Acceleration Magnitude) 9.07 13.02
BP-SGCN (Ours) 6.94 9.57

Method ADE(↓) FDE(↓)

BP-SGCN (Relative Angle) 0.45 0.68
BP-SGCN (Acceleration Magnitude) 0.42 0.63
BP-SGCN (Ours) 0.28 0.41

TABLE XIII
COMPARISON OF THE PROPOSED APPROACHES IN TERMS OF

NUMBER OF PARAMETER AND INFERENCE TIME.

Methods Venue Year Param ×106 Infer. Time/Iter.

ExpertTraj [23] ICCV 2021 0.32 130 ms
Social-VAE [47] ECCV 2022 5.69 1110 ms
GroupNet [46] CVPR 2022 3.14 -

MSRL [91] AAAI 2023 11.32 970 ms
EqMotion [92] CVPR 2023 2.08 800 ms

TUTR [94] ICCV 2023 0.44 360 ms
EigenTrajectory [93] ICCV 2023 0.02 72 ms

BP-SGCN (Ours) 0.13 110 ms

Moreover, we validate the stability and reliability of our
BP-SGCN on heterogeneous trajectory prediction by 10 exper-
iments. Results shown in TABLE XIV showcase the stability
of our method.

G. Discussion

In our experiments, we observed that methods [47], [91], [93],
[94] tailored exclusively for pedestrians exhibit a sensitivity to
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Fig. 7. Visualization of the trajectory prediction of BP-SGCN in different social scenarios including positive predictions and negative predictions (we highlight
erroneous predictions inside the white boxes). Past trajectories are shown in blue, ground-truth trajectories are in red, predicted trajectories are shown in yellow,
and distributions are shown in light blue.

TABLE XIV
STABILITY TESTS ON ARGOVERSE 1 AND HETEROGENEOUS

VERSION OF SDD

Methods Argoverse 1 SDD
ADE(↓) FDE(↓) ADE(↓) FDE(↓)

BP-SGCN (ours) 0.68± 0.031 1.16± 0.034 6.97± 0.069 9.59± 0.043

the threshold settings that dictate the count of nearby agents.
These methods, while ensuring state-of-the-art performance in
pedestrian-only trajectory prediction, perform sub-optimally in
heterogeneous scenarios due to the challenge of predefining
neighbors. The result is shown in TABLE XV. Unlike these
pedestrian-specific approaches, which require manual neighbor
selection based on metrics like relative distances, our BP-
SGCN model automatically considers all proximate agents as
initial neighbors, adaptively filtering out the less relevant ones.
Thus, our proposed BP-SGCN is better than these methods in
heterogeneous trajectory prediction.

TABLE XV
RESULTS BY PEDESTRIAN-ONLY METHODS ON THE

HETEROGENEOUS VERSION OF SDD.

Methods Venue Year
SDD

ADE(↓) FDE(↓)

Social-VAE + FPC [47] ECCV 2022 9.41 13.49
MSRL [91] AAAI 2023 10.72 16.15

EigenTrajectory [93] ICCV 2023 8.85 15.15
TUTR [94] ECCV 2023 8.93 15.66

BP-SGCN (Ours) 6.94 9.57

Next, we showcase inaccurate predictions made by our BP-
SGCN and delve into the method’s limitations. As depicted in
Fig. 7, the first row illustrates the BP-SGCN’s proficiency in
accurately predicting trajectories across various social contexts.
Nonetheless, the second row highlights instances where our BP-
SGCN falls short, particularly in scenarios where: 1) trajectories
undergo abrupt changes; 2) paths are highly erratic and
frequently alter; and 3) social dynamics become exceedingly
intricate with numerous agents involved. Looking ahead, our

objective is to rectify these inaccuracies by enhancing BP-
SGCN’s capabilities through the incorporation of cutting-edge
deep learning methodologies, including Transformers [44] and
Diffusion models [41], among others.

The quantity of behavior clusters is an adjustable hyperpa-
rameter. We manually select the number of clusters for the
unsupervised deep clustering module. This approach brings
several challenges, including subjectivity and potential bias,
scalability issues, and potential impacts on model performance
due to overfitting or underfitting. Moreover, the optimal number
of clusters is sensitive to the datasets, which further complicates
the selection process. Especially in heterogeneous scenarios,
the high variance between different types of agents’ motions
makes it challenging to identify the best number of clusters
to represent behavior features accurately than pedestrian-only
scenarios. In the future, we aim to scrutinize the behavior
distributions of traffic agents more closely and dynamically
estimate the optimal number of clusters [109], [110].

Despite BP-SGCN’s effectiveness in both heterogeneous and
pedestrian-only trajectory prediction, another notable limitation
of our model is its current omission of scene semantic features.
Although only using trajectories as inputs brings the benefit
of computation efficiency and emphasizes the importance of
behavior motions, the integration of agent interactions with their
surrounding environment can benefit in developing effective
trajectory prediction models for use in real-world scenarios [22],
[52], [54], [111]. Recognizing this, a significant direction for
our future is to explore how to effectively combine trajectory
data with scene semantic features to capture the interactions
between static barriers and dynamic agents. We hypothesize
that this will not only enhance the model’s prediction accuracy,
but also improve the refinement of pseudo-label identification
by leveraging the rich context provided by environmental cues.

V. CONCLUSION

In this work, we introduce BP-SGCN for heterogeneous
and pedestrian trajectory prediction, showcasing its superior
performance compared to existing models. In particular, we
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introduce the concept of behavioral pseudo-labels, which 
effectively represent the different behavior clusters of agents 
and do not require extra ground-truth information. BP-SGCN 
includes a deep unsupervised clustering module that learns the 
pseudo-label, as well as a pseudo-label informed sparse graph 
convolution network for trajectory prediction. It implements 
a cascaded training scheme that first l earns t he pseudo-labels 
in an unsupervised manner, and then fine-tunes t he l abels by 
optimizing the network end-to-end for better compatibility.

Beyond pedestrian scenarios, BP-SGCN also shows promis-
ing potential in broader domains. In robotic path planning 
[1], [99], BP-SGCN can enhance collision avoidance systems 
through behavioral pattern analysis [60], [89] of surrounding 
agents, facilitating more effective navigation in intricate settings. 
Additionally, in video monitoring and surveillance systems as 
suggested in [10], [99], BP-SGCN can enhance anomaly detec-
tion through behavioral pattern analysis of system dynamics, 
enabling early detection of potential operational irregularities. 
These applications demonstrate the applicability of BP-SGCN 
in modeling interactive behaviors across different domains, 
highlighting its potential for various real-world trajectory 
prediction tasks.
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