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A B S T R A C T

Glass network polymerization critically influences rheological behavior and with it the kinetics and dynamics of 
nuclear waste immobilization. Molybdenum-bearing borosilicate melts may undergo unmixing and rheological 
changes, which is dominantly controlled by the associated chemical modifications of the melt network. Here, we 
obtain in-situ (500–940 ◦C) Raman spectra to probe structural changes of a sodium-molybdenum borosilicate 
melt undergoing unmixing. The extraction of alkali and molybdenum to form droplets induces polymerization of 
the residual borosilicate network. Conversely, the opposite phenomenon is observed during droplet re- 
dissolution. This work provides new insights into the polymerization of a molybdenum-bearing borosilicate 
composed of two composition sets due to a miscibility gap and has direct contributions for the immobilization of 
nuclear wastes.

1. Introduction

Glass-ceramics are being actively studied as matrices for nuclear 
waste immobilization due to their potential for higher waste loading 
capacity [1]. Glass-ceramic materials are formed by controlled crystal-
lization, in contrast with uncontrolled devitrification processes. Certain 
Mo-bearing borosilicate melts can have Na-Mo rich crystals such as 
Na2MoO4 and Na2Mo2O7 when quenched to the glassy state [2–4]. At 
high temperatures, due to the way molybdenum is connected to the 
network [5,6], these crystalline phases have precursors in the form of 
unmixed liquid droplets [2,3]. In sodium molybdenum borosilicate glass 
undergoing unmixing, the viscosity, important physical property con-
trolling bubble dynamics [7] for example, rises more than predicted for 
a homogeneous melt, reflecting the impact of Na2O and MoO3 extraction 
during immiscible liquid droplets formation [2].

Here, we focus on the polymerization behavior of a simplified melt 
composition serving as an analog for candidate materials for nuclear 
waste vitrification. Residing in the SiO2 − B2O3 − Na2O − Cs2O − MoO3 
system, it undergoes unmixing at high temperatures yielding droplets of 

an alkali-molybdate rich immiscible liquid [8]. We perform in-situ 
Raman spectroscopy at high-temperatures to observe the structural 
changes induced during unmixing.

2. Materials and methods

2.1. Glass synthesis and chemical composition

The glasses were synthesized using a mixture of homogenized pow-
der loaded into a Pt-Au crucible and melted at 1300 ◦C in a muffle 
furnace in equilibrium with air. The melt was then quenched by casting 
onto a copper plate. We synthesized a Mo-free glass (named Mo0) and a 
glass containing 1.0 mol% of MoO3 (named Mo1). The chemical com-
positions (Table 1) of the resultant glasses were measured using X-ray 
fluorescence spectroscopy (XRF) and the amorphous nature was checked 
via X-ray diffraction (more details are available in Kroeker et al. [8]).
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2.2. In-situ high-temperature Raman spectroscopy

In situ Raman spectra were acquired using a LabRam Aramis spec-
trometer (HORIBA). A 325 nm laser was used to prevent black body 
radiation from interfering with the Raman signal. In situ measurements 
were performed using a Linkam apparatus with 20 ◦C steps. A second 
order polynomial baseline was fitted using the spectrometer software. 
Fityk software was used to decompose the spectra [9] and all peaks were 
modeled by gaussians except the peak at 890 cm− 1 which was modeled 
by a Lorentzian function.

2.3. Textural analyses via electronic microscopy

Scanning electron microscopy (SEM) analyses were carried out using 
a Zeiss Supra 55 operating under 10 kV and equipped with a Bruker 
Xflash 4010 detector for energy-dispersive X-ray spectroscopy (EDS). 
Transmission electron microscopy (TEM) analyses were carried out 
using a JEOL JEM 2010F UPR22. The probe diameter is in the nano-
meter range and the beam operating voltage is 200 kV. Images were 
obtained by both microscopy techniques on the Mo1 quenched glass 
from different heat treatment.

3. Results

Fig. 1 illustrates the Raman spectra obtained at different tempera-
tures. The most prominent spectral features of this family of glass are at 
(i) 630 cm− 1, (ii) 890 cm− 1, (iii) in the range between 1000 and 1250 
cm− 1, and (iv) at 1450 cm− 1. The 630 cm− 1 feature corresponds to 
danburite-like rings composed of 4 tetrahedra (2 SiO4 and 2 [BO4]

− ), 
which are linked to a charge compensating atom [10]. Here, we display 
[BO4]

− in Fig. 2 as B4. The feature at 890 cm− 1 and its left shoulder are 
related to symmetric stretching vibration of Mo − O bonds of molybdate 
tetrahedra linked to an alkali ion as a charge compensator of the nega-
tive charges of the [MoO4]

2− , which is similar to the corresponding 
crystalline Raman spectra of Na2MoO4. In this current case, Mo is not 
linked to terminal oxygens (e.g., Mo = O), due to the absence of 
vibrational bands at 940–960 cm− 1 [11,12]. The feature in the range of 
1000–1250 cm− 1 is related to symmetric and antisymmetric stretching 
vibrations of silicon tetrahedra and the decomposition of this region 
allows for the evaluation of the glass structure and polymerization, i.e., 
Q3/Q4 ratios [6,10]. The feature at around 1450 cm− 1 is related to the 
stretching vibration of trigonal boron BO3, here displayed as B3, linked 
to a [BO4]

− group [10]. The ratio B3/B4 reported in Fig. 2c is the in-
tensities ratio at 1450 cm− 1 and 630 cm− 1. Table s1 displays the eval-
uated peak features for both studied glasses.

4. Discussion

At temperatures above 630 ◦C, the peak intensity of the Mo − O vi-
bration at 890 cm− 1 increases, reaching its maximum value at 740 ◦C 
(Fig. 2a). This behavior is related liquid–liquid unmixing to form liquid 
droplets containing a relatively high concentration of Mo − O bonds, 
whereby higher peak intensity reflects a higher abundance of the bonds 
and therefore higher fractions of unmixed liquid droplets. Note that the 

peak position of this band closely resembles that of the crystalline phase 
Na2MoO4 [13]. At temperatures higher still (>740 ◦C), there is an in-
flection and the peak intensity decreases due to dissolution of the 
droplets, as Mo solubility goes up. This continues until the system re- 
homogenizes to a single liquid phase (above 880 ◦C). Upon complete 
re-homogenization of these droplets, the intensity of the Mo − O sym-
metric vibration band further decreases with temperature increase. We 
observe a minor frequency shift related to this peak (Fig. 1).

The intensity ratio of the Q3/Q4 species ratio (Fig. 2b) was obtained 
after deconvolution of the bands located at about 1000–1250 cm− 1. The 
Mo0 sample (no phase separation) demonstrates a slightly increase in 
the Q3/Q4 ratio with increasing temperature. In contrast, the sample 
containing molybdenum (Mo1) exhibits different behavior. At temper-
atures above 630 ◦C, the Q3/Q4 remains constant, reflecting a relatively 
polymerization of the silicate network due to departure of sodium and 
molybdenum during unmixing counterbalancing the depolymerization 
observed in Mo0 sample. At temperatures above ca. 740 ◦C, the Q3/Q4 

ratio increases (depolymerization) more for the Mo1 sample than for the 
Mo0 composition. This behavior is mainly linked to re-homogenization 
of the droplets and the corresponding return of alkali and molybdenum 
to the matrix. After complete re-mixing of the droplets, the Mo1 system 
continues to depolymerize as temperature increases, while the Mo0 
presents a nearly constant ratio. The initial homogeneous glass and final 
homogeneous melt (i.e., below 630 ◦C and above 880 ◦C respectively) 
differences in Q3/Q4 ratios, suggesting that the Mo addition polymerizes 
the silicon network due to the need of charge compensation by the 
[MoO4]

2− units [4,5]. The inset images of Fig. 2b, obtained by TEM (570 
and 900 ◦C) and SEM (700 and 800 ◦C), illustrate the microstructures of 
the molybdenum-bearing sample.

The borate network of the Mo0 sample (Fig. 2c) demonstrates an 
expected increase of the B3/B4 ratio (depolymerization) as temperature 

Table 1 
XRF-derived compositions of the studied glasses. The Mo0 sample is MoO3-free 
and the Mo1 sample contains 1.0 mol% of MoO3.

Oxides Mo0 sample (mol%) Mo1 sample (mol%)

SiO2 63.56 62.90
B2O3 16.88 16.70
Na2O 16.57 16.40
Cs2O 3.00 3.00
MoO3 0.00 1.00
Total 100.0 100.0

Fig. 1. Raman spectra of the Mo 1 at high temperature region (500 – 940 ◦C) in 
which unmixing and droplet dissolution occur. Spectra shifted vertically for 
visual inspection.
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increases [10,14], whereas the behavior of the Mo1 sample is different. 
At temperatures above 630 ◦C, its B3/B4 ratio is constant, reflecting a 
relative polymerization of the borate network during alkali- and 
molybdenum-rich droplet formation compared with the Mo0 sample. At 
temperatures above ca. 740 ◦C, the B3/B4 ratio increases again reflecting 
the depolymerization caused by the return of alkali and molybdenum to 
the network during droplet re-mixing and phase homogenization of the 
sample. Comparing the initial homogeneous glass with the final homo-
geneous melt for the Mo0 and Mo1 samples, the borate network exhibits 
a lower B3/B4 ratio in Mo1 compared to Mo0, agreeing with the charge 
compensation required by the [MoO4]

2− entities. Moreover, the borate 
network demonstrates greater sensitivity to the formation and re- 
dissolution of Mo-bearing droplets when compared to the silicate 
network (cf. Fig. 2b, 2c).

5. Conclusion

We studied the structure of borosilicate glass containing molybde-
num using in-situ Raman spectroscopy at high-temperatures. We 
observed that this system undergoes polymerization upon formation of 
droplets enriched in alkali and molybdenum. At higher temperature, 
these droplets remix and the network matrix undergoes 
depolymerization.
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