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A two-level multivariate response model for data with
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Abstract: A novel approach is proposed for analysing multilevel multivariate response data. The
approach is based on identifying a one-dimensional latent variable spanning the space of responses,
which then induces correlation between upper-level units. The latent variable, which can be thought of
as a random effect, is estimated along with the other model parameters using an EM algorithm, which
can be seen in the tradition of the ‘nonparametric maximum likelihood’ estimator for two-level linear
(univariate response) models. Simulations and real data examples from different fields are provided to
illustrate the proposed methods in the context of regression and clustering applications.
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1 Introduction

When data possess a repeated measures structure, such as pupils nested within schools, or
longitudinal measurements of individuals over time, the use of random effects to account for
the ensuing correlations is now a commonplace technique. Specifically, the idea is to equip each
upper-level unit with a random intercept which is shared by all lower-level units pertaining to it,
and which induces the required correlations.

While these methods are well-developed and well-understood, and well supported by statistical
software, they are typically restricted to univariate response scenarios. When the space of responses
is multivariate, it is however not very clear how to actually adopt the idea mentioned above: Should
there be a single or multiple random effects per upper-level unit, or in other words, shall the random
effect distribution also be multivariate, and in either case, what is the shape of this distribution and
how to estimate its parameters?

Before we begin with presenting our answer to these questions, we will briefly outline three
examples for such problems which will serve as case studies later in this exposition. First in research
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Abstract: A newly emerging field in statistics is distributional regression, where not only the mean
but each parameter of a parametric response distribution can be modelled using a set of predictors. As
an extension of generalized additive models, distributional regression utilizes the known link functions
(log, logit, etc.), model terms (fixed, random, spatial, smooth, etc.) and available types of distributions
but allows us to go well beyond the exponential family and to model potentially all distributional
parameters. Due to this increase in model flexibility, the interpretation of covariate effects on the shape
of the conditional response distribution, its moments and other features derived from this distribution
is more challenging than with traditional mean-based methods. In particular, such quantities of interest
often do not directly equate the modelled parameters but are rather a (potentially complex) combination
of them. To ease the post-estimation model analysis, we propose a framework and subsequently feature
an implementation in R for the visualization of Bayesian and frequentist distributional regression
models fitted using the bamlss, gamlss and betareg R packages.
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1 Introduction

For modelling parameters beyond the mean of a target distribution, generalized
additive models for location, scale and shape (GAMLSS) as introduced by Rigby and
Stasinopoulos (2005) provide the ability to link all parameters characterizing the
response distribution to a set of explanatory variables via an additive predictor,
similar in spirit to generalized additive models but without its distributional
limitations. Overcoming some of GAMLSS’ earlier restrictions, distributional
regression as coined by Klein et al. (2015c) presents a highly flexible modelling
framework with a variety of possible target distributions and a wide range of
effects including parametric penalized splines, random and spatial effects as well
as nonparametric effects such as regression trees.
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Figure 1 Left: Fetal twins’ touch movements data, coloured by mothers. Right: Import and export data,
coloured by countries.

on the effects of maternal mental health on prenatal movements in fetuses (Reissland et al., 2021),
two touchmovement types of twin fetuses were recorded during 4D ultrasound scans: self touch (the
fetus touching itself) and other touch (the fetus touching the other twin). Figure 1 (left) shows the
scatter plot of the two response variables symbolized by values of the upper-level variable ‘mother’.
The objective is to investigate the effect of maternal mental health (depression, stress and anxiety)
onto the movement profile of twins, taking the correlation of the measurements of fetuses belonging
to the same mother into account.

Second we consider data from the OECD (Organisation for Economic Co-operation and
Development, 2023b) concerning trade in goods and services, providing country-wise percentages of
imports and exports in relation to the overall GDP in 44 countries, for the time period between 2018
and 2022, during which between 3 and 5 observations are available for each country. Figure 1 (right)
visualizes the data where the observations from the same country have the same colour. This can be
considered as a multivariate repeated measures scenario, with unbalanced measurement occasions,
and without covariates. We are particularly interested in clustering the countries with respect to
their overall export/import activity relative to GDP size, taking within-country correlations across
the repeated measurements into account. In recent related work, albeit employing a different
methodology involving hidden Markov models, Pennoni et al. (2024) propose an algorithm
for selecting the most important variables to cluster and classify countries by socio-economic
development.

Third we consider the Programme for the International Assessment of Adult Competencies
(PIAAC) survey of adult skills, carried out in 2011 and 2012 by the OECD. The PIAAC survey
was designed to assess the proficiency of adults in the key information-processing skills of literacy,
numeracy and problem solving (in technology-rich environments). All three skill types are provided
on a continuous scale ranging from 0 to 500. For our analysis, we extracted from the PIAAC
explorer (https://piaacdataexplorer.oecd.org/ide/idepiaac/) data from 28 countries and two
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Figure 2 Pairs plot of PIAAC data, coloured by countries.

sub-national regions on all three criteria with two covariates: gender and current work status
(employee or self employed). Figure 2 shows the correlation between the three response variables,
each plotted against the others and coloured by the upper-levels (countries). As in the previous
example, we are interested in the clustering of countries in the presence of country-level correlations,
with the focus shifting here towards the creation of a league table of countries. A secondary interest
lies in the study of the effect of the covariates on the outcomes. A somewhat similar analysis
(using Stata) was carried out by Grilli et al. (2016) using data from the TIMSS&PIRLS database.
Their multivariate approach jointly considers educational achievement in reading, mathematics and
science, where the coefficients for each response were estimated separately and combined using
multiple imputation formulas. However, they did not consider the ranking problem, and their
approach cannot be used for clustering purposes.

We provide a modelling approach which will allow us to tackle the problems above, taking into
account both the multivariate and the multilevel character of the outcome data. The approach
is based on Zhang and Einbeck (2024a)’s latent variable model for dimension reduction and
simultaneous clustering of highly correlated data, requiring only a single, one-dimensional random
effect term. This paper develops the upheaval of that approach to two-level scenarios which is
required to be able to deal with repeated measures data. We will give equal importance to the
applications of clustering (of upper-level units) and multivariate regression for two-level data.

Some related model classes have been developed in the wider context of item response theory,
most notably latent class models (Goodman, 1974). These models are commonly used for the
clustering of observed multivariate categorical data (such as questionnaire outcomes on Likert
scales) into latent classes. An obvious difference to our methodology is that in latent class models
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the response variables are categorical rather than continuous. A multilevel version of latent class
models was developed by Vermunt (2003). A model selection procedure for deciding the number of
latent classes at both levels is proposed by Lukočienė et al. (2010). Gnaldi et al. (2016) introduced
a multilevel version latent class-item response theory model applied for educational data in which
the collected response variables are dependent of each other. The latent class analysis also allows
the inclusion of covariates; Di Mari et al. (2023) proposed a two-step estimator for the multilevel
latent class model in which two categorical random effects are used to account for both the upper
and lower-levels, allowing for clustering of the latent classes on both levels. It remains the case
that due to the restriction on categorical outcomes, latent class models cannot be applied or
compared with the situations dealt with in this work. However, it should not be left unstated
that continuous-outcome versions of multilevel latent class models have also been developed, and
are available in specialized commercial software such as Latent GOLD (Vermunt, 2008). Further
related work includes Masci et al. (2022) who proposed a semiparametric mixed-effects model for
multinomial data with hierarchical structure, in which a discrete random effect distribution is used
to obtain the marginal density, and Bartolucci et al. (2011) who proposed a multilevel extension of
latentMarkovRaschmodel and applied this on educational data with three-level structures. Verbeke
et al. (2014) gave a general overview over longitudinal models for multivariate outcome data.

The structure of this paper is as follows. In Section 2 we introduce the proposed two-level model
for multivariate response data. In Section 3, we present an EM algorithm for the proposed model,
resembling the nonparametric maximum likelihood method. Section 4 shows simulation results that
demonstrate the performance and accuracy of this algorithm for the estimation ofmodel parameters.
Section 5 provides real data examples that illustrate the main applications of our model, including
the fitting of a multivariate response model resulting in reduced standard errors, the construction of
league tables and the clustering of upper-level units based on the fitted model.

Some additional simulation results and complementary information have been relegated to the
supplementary material. R Codes of the implemented methods, as well as of several of the presented
examples, are available in R package mult.latent.reg, which is available on CRAN (Zhang and
Einbeck, 2024b).

2 A two-level model for multivariate response data

We consider a scenario where multivariate data xij ∈ Rm have a two-level structure, with the
upper-level indexed by i = 1, 2, ..., r and the lower-level by j = 1, 2, ..., ni. The proposed two-level
model takes the form

xij = α+ βzi + Γvij + εij, (2.1)

where α, β ∈ Rm, zi ∈ R, vij ∈ Rp is the vector of covariates (which may include upper-level variates
not depending on j), Γ ∈ Rm×p is a matrix of the covariate coefficients, and εij ∼ N(0,Σ(zi)) are
independent Gaussian errors. Under such a model, equivalently represented as

xij|zi,α, β,Γ ∼ N(α+ βzi + Γvij,Σ(zi)), (2.2)

the data grouping process is carried out on the upper-level, while the lower-level units within the
same upper-level unit share a common random effect term zi. Thus, the random effect induces a line
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cutting across the multivariate space of responses, along which the latent values zi are positioned.
Again equivalently, and for later reference, we can write the conditional probability density function
of the xij as

f(xij|zi,α, β,Γ) = (2.3)

(2π)−m/2|Σ(zi)|−1/2 exp
{
−1

2
(xij − α− βzi − Γvij)TΣ−1(zi)(xij − α− βzi − Γvij)

}
.

For the distribution of random effects zi, denoted here by Z, several choices are possible,
including a Gaussian distribution. In this work, we consider to use Aitkin’s nonparametric
maximum likelihood approach (Aitkin, 1999), in which their distribution is approximated by a
discrete mixture. However, as will be detailed in the following section, this is not so much a
distributional ‘assumption’, but rather a technical device to approximate the marginal likelihood,
allowing for estimation of the model parameters. De facto this approach leads to the estimation of a
constrainedmultivariatemixturemodel, withmixtures centres spanned along a straight line through
the space of responses. When there is only one covariate vij ∈ R, we write Γ = γ ∈ Rm. Figure S1
in part A of the supplementary material gives a graphical illustration of how the model operates in
this case.

3 Methods and estimation

3.1 Likelihood and estimators

Let xi = (xi1, . . . , xini)
T ∈ Rni×m denote the collection of the m-variate lower-level observations

relating to the ith upper-level unit. Since these lower-level units are conditionally independent given
zi, we have

f(xi|zi,α, β,Γ) =
ni∏
j=1

f(xij|zi,α, β,Γ).

According to model (2.1), the marginal distribution of xi, which is required for the construction of
the likelihood function, can be obtained by integrating over the distribution of zi, as follows:

f(xi|α, β,Γ) =
∫  ni∏

j=1

f(xij|zi,α, β,Γ)

 g(zi)dzi, (3.1)

where g(zi) is the density function for the unobserved random effects zi. Under the nonparametric
maximum likelihood approach (Aitkin, 1999), we replace the integral over zi by a finite sum over
Kmass points z1, . . . , zk with associated masses π1, . . . , πk, for k = 1, . . . ,K. Here we treat the mass
points and masses as unknown parameters to be estimated. The value of K will be treated as known
in the parameter estimation process and the best choice ofK in a fittedmodel will be selected through
the use of model selection criteria, specifically based on the AIC criterion.
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The marginal distribution can then be approximated as

f(xi|α, β,Γ) ≈
K∑
k=1

 ni∏
j=1

f(xij|zk,α, β,Γ)

 πk, (3.2)

in which, by virtue of (2.2),

xij|zk,α, β,Γ ∼ N(α+ βzk + Γvij,Σ(zk)), (3.3)

with the component-specific densities f(xij|zk,α, β,Γ) as in equation (2.3), but with zi replaced by zk.
Now, the α+ βzk can be interpreted as the locations, in m-dimensional space, of the mixture

centres spanned along the one-dimensional latent space, with cluster-wise variances Σk ≡ Σ(zk)
replacing the previous observation-specific variances Σ(zi). The number of parameters to be
estimated is effectively reduced by constraining to K distinct variance matrices.

Building on equation (3.2), the approximated marginal log-likelihood can be obtained as

l(α, β,Γ, z1, . . . , zK|x1, . . . xr) ≈
r∑

i=1

log


K∑
k=1

 ni∏
j=1

f(xij|zk,α, β,Γ)

 πk

 . (3.4)

In preparation of the EM algorithm (e.g., Dempster et al., 1977) to be used for the parameter
estimation, we define by Gik an indicator variable taking the value 1 if the upper-level unit i belongs
to component k, and 0 otherwise (which is, of course, unknown—this is the ‘missing information’
for the EM machinery). We also denote by Gi = (Gi1, . . . ,GiK)

T the set of indicators for that unit.
This yields ‘complete data’ {xi,Gi}, with probability

P(xi,Gi) =

K∏
k=1

(fikπk)Gik ,

where for simplicity of notation we here used fik ≡
∏ni

j=1 f(xij|zk,α, β,Γ). The complete likelihood
can now be written as follows:

Lc =
r∏

i=1

K∏
k=1

(πkfik)Gik . (3.5)

Hence, we obtain the complete log-likelihood,

lc = logLc =
r∑

i=1

K∑
k=1

Gik log(πkfik) (3.6)

which may take values in (−∞,∞). The expectation wik = E[Gik|xi] = P(Gik = 1|xi) =
πkfik/

∑
ℓ πℓfiℓ is just the ‘posterior’ probability of each upper-level unit i belonging to component
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k. Therefore, the expected complete log-likelihood is written as

l∗c =

r∑
i=1

K∑
k=1

E [Gik|xi] log (πkfik)

=

r∑
i=1

K∑
k=1

wik log πk +
r∑

i=1

ni∑
j=1

K∑
k=1

wik log f(xij|zk,α, β,Γ).
(3.7)

Plugging the expression for f(xij|zk,α, β,Γ) into equation (3.7), we obtain the expected complete
log-likelihood as follows:

lc
∗ =

r∑
i=1

K∑
k=1

wik log(πk)−
1
2

r∑
i=1

ni∑
j=1

K∑
k=1

wik log(|Σk|)−
m
2

log(2π)
r∑

i=1

ni

−1
2

r∑
i=1

ni∑
j=1

K∑
k=1

wik(xij − α− βzk − Γvij)TΣ
−1
k (xij − α− βzk − Γvij).

(3.8)

By taking partial derivatives of l∗c with respect to each parameter and letting the score equations to
be 0 and solving them, we find that

α̂ =

 r∑
i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k

−1  r∑
i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k (xij − β̂ẑk − Γ̂vij)

 , (3.9)

β̂ =

 r∑
i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k ẑ2k

−1  r∑
i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k (xij − α̂− Γ̂vij)ẑk

 , (3.10)

ẑk =

∑r
i=1 wik

∑ni
j=1 β̂

TΣ̂−1
k (xij − α̂− Γ̂vij)

β̂TΣ̂−1
k β̂

∑r
i=1 niwik

, k = 1, . . . ,K. (3.11)

The solution for Γ̂ can only be given implicitly in the form of estimating equation

r∑
i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k (xij − α̂− β̂zk)vijT =

r∑
i=1

ni∑
j=1

K∑
k=1

wikΣ̂
−1
k Γ̂vijvijT. (3.12)

We furthermore find the general solution for Σk as

Σ̂k =

∑r
i=1

∑ni
j=1 wik(xij − α̂− β̂ẑk − Γ̂vij)(xij − α̂− β̂ẑk − Γ̂vij)T∑r

i=1 niwik
, (3.13)

for k = 1, . . . ,K. Finally, since for the mixture probabilities
∑K

k=1 πk = 1, we apply a Lagrange

multiplier by letting ∂
(
l∗c − λ(

∑K
k=1 πk − 1)

)
/∂πk = 0, with Lagrangian parameter λ ∈ R. Hence,
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we find

π̂k =

∑r
i=1 wik
r

. (3.14)

We note that this set of equations (3.9) to (3.14) is rather impractical to use directly, because
the equations depend on each other in a complex manner, they involve multiple inversions of
the estimated matrices Σ̂k, and the solution for Γ does not have an explicit form. However, it
is also not necessary to apply these equations in full generality. An immediate simplification is
suggested by considering the matricesΣk. While these variance matrices, under a full unconstrained
parameterization, could deal with clusters that differ by shape and size, when fitting a multi-level
model, the focus is unlikely to be on estimating the shape of the clusters. Hence, we will restrict to
diagonal variance matrices

Σk = diag(σ2
lk){1≤l≤m}, k = 1, ...,K.

To avoid potential identifiability issues, certain restrictions are imposed on the model. First, we
enforce β1 ≥ 0 to identify the direction of the latent variable. Thenwe standardize zk by

∑K
k=1 πkzk =

0, and
∑K

k=1 πkz
2
k − (πkzk)2 = 1, where Var[zk] =

∑K
k=1 πkz

2
k − (πkzk)2 (Marques da Silva Júnior

et al., 2018).
The resulting EM algorithm, which makes some further simplifications which are however of

computational rather than model-related character, is presented in the next subsection.

3.2 EM algorithm

We have the following expectation (E) and maximization (M) steps resulting from the previous
considerations.
E-step: The E-step is obtained from the straightforward application of Bayes’ theorem as illustrated
in the previous subsection,

wik =
πkfik∑
l πlfil

. (3.15)

M-step: In order to implement the M-step computationally, we adopt the strategy employed in
Zhang and Einbeck (2024a). For this, we detach the updates of α̂, β̂, ẑk and Γ̂ from those of Σ̂k,
by invoking, only for the use within expressions (3.9) to (3.12), a further simplification where the
variance matrices are assumed to be constant and diagonal, i.e. σ2

lk ≡ σ2 for all l and k. This leads
to simpler equations for (3.9) to (3.12) as follows:

ẑk =

∑r
i=1 wik

∑ni
j=1 β̂

T(xij − α̂− Γ̂vij)

β̂Tβ̂
∑r

i=1 niwik
, (3.16)

β̂ =

∑r
i=1

∑ni
j=1

∑K
k=1 wikẑkxij −

1
n (
∑r

i=1

∑ni
j=1 xij)(

∑r
i=1 ni

∑K
k=1 wikẑk)∑r

i=1 ni
∑K

k=1 wikẑ
2
k −

1
n (
∑r

i=1 ni
∑K

k=1 wikẑk)
2

−
Γ̂
∑r

i=1

∑ni
j=1

∑K
k=1 wikẑkvij −

1
n (
∑r

i=1 ni
∑K

k=1 wikẑk)(Γ̂
∑r

i=1

∑ni
j=1 vij)∑r

i=1 ni
∑K

k=1 wikẑ
2
k −

1
n (
∑r

i=1 ni
∑K

k=1 wikẑk)
2

,
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α̂ =
1
n

 r∑
i=1

ni∑
j=1

xij − β̂
r∑

i=1

ni
K∑
k=1

wikẑk − Γ̂

r∑
i=1

ni∑
j=1

vij

 ,

with the estimator for Γ now being available in explicit form,

Γ̂ =

 r∑
i=1

ni∑
j=1

vijvTij

−1  r∑
i=1

ni∑
j=1

K∑
k=1

wik(xij − α̂− β̂ẑk)vTij

 .

These four equations are then iterated for a small number of times between each other, where
the ẑk, k = 1, . . . ,K, are immediately re-standardized to mean 0 and variance 1 after the execution
of (3.16) . This routine is then followed by the estimation of the πk via (3.14), and the update of the
variance matrices via Σ̂k = diag(σ̂2

lk){1≤l≤m}, k = 1, ...,K. Write ϕij = Γ̂vij ∈ Rm and let ϕijℓ be its ℓth
component, ℓ = 1, . . . ,m. Then

σ̂2
lk =

∑r
i=1

∑ni
j=1 wik(xijl − α̂l − β̂lẑk − ϕijl)2∑r

i=1 niwik
.

This completes the M-step, and the procedure continues with the E-step (3.15).
Several options for selecting starting values have been implemented in the R package

mult.latent.reg, which we described in Zhang and Einbeck (2024c). The required number of
iterations is usually small, so that automated assessment of convergence is not necessary. The
implementation in mult.latent.reg uses by default 20 iterations, which is generally sufficient. It is
worth noting that due to the sequential nature of the updates within the M-step, this algorithm
can be considered an ECM algorithm, for which convergence is, however, still guaranteed (Meng
and Rubin, 1993). Choosing the number of mixture components K is a model selection process.
Here, we use the AIC = −2l+ 2q, where l is the log-likelihood, defined using equation (3.4), and
q = 2(K− 1) +m(2 + K+ p) is the total number of parameters.

4 Simulation studies

4.1 Evaluate the accuracy of parameter estimation

We first conduct a simulation study to examine the accuracy of our parameter estimation using the
simplified update expressions for the EM algorithm as described in Section 3.2. Another objective
of this simulation is to investigate whether an increase in the number of upper- or lower-level units
will effectively reduce the variance of the parameter estimates. We simulate data from bivariate
two-level scenarios with a single covariate, where the number of mixture components is K = 2. We
first consider a scenario with r = 50 upper-level units and ni = 5 lower-level units, for i = 1, 2, . . . , r.
This will be the baseline experiment. Then we keep r = 50 unchanged and increase the number of
lower-level units to be ni = 10, for i = 1, 2, . . . , r. We consider another sample size with lower-level
units ni = 5 for i = 1, 2, . . . , r unchanged but increase the upper-level units to be r = 100. We
also further increase the upper-level units to be r = 200 and keep the lower-level units ni = 5 for
i = 1, 2, . . . , r. We generate 200 replicated data sets (each with two mixture components, π1 = 0.4,

Statistical Modelling 2024; 1–21
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Table 1 Estimates of key parameters γ, zk and α with different numbers of upper-level and
lower-level units.

Average estimates

True r = 50,ni = 5 r = 50,ni = 10 r = 100,ni = 5 r = 200,ni = 5

γ1 1.000 1.033 0.981 0.990 0.997
γ2 3.000 3.031 3.034 2.993 3.004
z1 −0.816 −0.804 −0.815 −0.818 −0.814
z2 1.225 1.279 1.256 1.236 1.235
α1 2.000 1.986 2.041 2.022 1.990
α2 10.000 9.995 10.021 10.007 10.001

Table 2 RMSE for key parameters γ, zk and α with different numbers of upper-level and
lower-level units.

RMSE

r = 50,ni = 5 r = 50,ni = 10 r = 100,ni = 5 r = 200,ni = 5

γ1 0.278 0.157 0.166 0.111
γ2 0.441 0.284 0.263 0.201
z1 0.130 0.125 0.082 0.057
z2 0.233 0.200 0.129 0.087
α1 0.455 0.429 0.310 0.213
α2 0.179 0.157 0.116 0.077

π2 = 0.6 and true values of zk’s as shown in the first column of Table 1) from the model (3.3). In
all four scenarios a lower-level covariate is generated from a normal distribution with mean 0.3 and
standard deviation 0.2, and with true γ = (1, 3)T.

For the estimation from the simulated data, we also use K = 2. The effect of misspecifying K is
considered in the supplementary materials. The simulation results, which are presented in Tables 1
and 2 and Figure 3, indicate that the true parameters are well estimated, and when we increase the
number of upper-level units, the parameters’ RMSE decreases stronger than when increasing the
number of lower-level units. Note that, for a univariate parameter θ, the root mean squared error is

defined as RMSE =
√∑s

i=1(θ0−θ̂i)
2

s , where θ0 is the true value, θ̂i is the ith estimated value, and s is
the number of simulation runs (so, here s = 200).

We also compare the γ estimates from ourmodel to those obtained by fitting individual two-level
models. Each of these models uses one of the simulated two-dimensional variables as response
variable and treats the covariate as predictor. We used the lmer() function in R package lme4 and
the allvc() function from the npmlreg package for this comparison. The results, displayed in Tables 3
and 4, show that ourmethod produces sensible results when compared to those obtainedwith allvc()
and even superior estimates when compared to those obtained with lmer().

4.2 Further simulation studies

Further analyses concerning the impact of misspecification of the number of mixture components
and the random effect distribution are relegated to the supplementary material B and C. In brief,
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Figure 3 Estimates of key parameter γ with different number of upper-level and lower-level units.

Table 3 Averaged estimates of γ obtained by fitting individual models to each response variable.

Average estimates

True r = 50,ni = 5 r = 50,ni = 10 r = 100,ni = 5 r = 200,ni = 5

lmer()
γ1 1.000 0.999 0.987 0.989 0.996
γ2 3.000 2.972 3.037 3.002 2.999

allvc()
γ1 1.000 0.993 0.992 0.989 0.995
γ2 3.000 2.998 3.037 3.005 2.995

Table 4 RMSE for γ obtained by fitting individual models to each response variable.

RMSE

r = 50,ni = 5 r = 50,ni = 10 r = 100,ni = 5 r = 200,ni = 5

lmer()
γ1 0.286 0.182 0.175 0.123
γ2 0.470 0.325 0.278 0.209

allvc()
γ1 0.259 0.167 0.166 0.115
γ2 0.396 0.284 0.263 0.191

these simulation results confirm that the regression parameter γ is unaffected by the number of
components, but that it is slightly affected by the random effect distribution, particularly if that
distribution is continuous and skewed.
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Table 5 The values of AIC=−2ℓ + 2q for the twins data fitted with different number of mixture components.
The best solution is highlighted in bold.

K 1 2 3 4 5 6

ℓ −203.772 −197.313 −194.307 −193.179 −193.202 −192.425
q 13 17 21 25 29 33
AIC 433.545 428.627 430.615 436.359 444.403 450.851

5 Analyses of case studies

In this section we analyse the real data sets from our case studies briefly introduced in Section 1.
We focus on regression in the first case study and on clustering in the second case study, while in the
third case study both regression and clustering are of interest.

5.1 Fetal twins’ touch movements

The data set considered here was originally collected for research on the effects of maternal mental
health on prenatal movements in twins and singletons (see Reissland et al., 2021). Since we are
interested in a joint modelling of the two touch dimensions ‘self touch’ and ‘other touch’, we work
here with slightly reduced data where the singletons are omitted (because singletons can’t touch
the ‘other’ twin). In the remaining twins’ data, from 14 mothers who were pregnant with twins, 11
mothers were available for one scan and 3 were available for two scans, that is, in total there are
34 observations. Besides the two touch movement types, at the ultrasound scan appointment, the
mothers’ mental health status was collected on three variables: depression, perceived stress scale
and anxiety. The data set as used in this case study is available as twins_data from R package
mult.latent.reg.

For our analysis of the twins data set, we consider the two types of touches, self touch and
other touch, as a bivariate response, and include the three mental health variables as covariates into
model (2.1). Under this model, the observations within upper-levels (we consider each mother as an
upper-level unit) share a common, mother-specific, random effect zi, which accounts for correlated
touch behaviour of fetuses from the same mother. Notably there is only one such random effect
variable, which applies to both response variables.

An examination of the AIC values across different values ofK (Table 5) yields that the minimum
AIC is attained for K = 2, with AIC value 428.627, and hence we use this choice of K for our
analysis. The traditional method of dealing with such data would be fitting separate two-level
models, each using one of the touch movements as the response variable and the three mental health
measurements as covariates. Table 6 shows the estimates of the coefficients and their standard errors
obtained through using the lmer() function inR package lme4 (Bates et al., 2015), and Table 7 shows
the estimates from our model and the bootstrapped standard errors. Note that the bootstrap applied
here is a straightforward extension of the bootstrap technique developed by Zhang and Einbeck
(2024a), adjusted to the context of the two-level models, ensuring that all units on the upper-level
get associated with the same random effect. Our approach gives reduced standard errors compared
to the linear mixed model, with similar parameter estimates (in the sense of, being comfortably
within one standard error of the respective other model).
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Table 6 For the twins data, estimations of γ obtained using individual
two-level models (lmer()) for self touch and other touch as response and
depression, perceived stress scale (PSS) and anxiety as predictors, with
standard errors given in brackets.

Indiv. two-level models

Depression Stress Anxiety

Self touch −27.34 (39.18) 11.31 (13.81) −11.46 (24.89)
Other touch −92.70 (49.86) 55.62 (25.55) −60.30 (38.76)

Table 7 For the twins data, estimations of γ obtained using the proposed
multivariate response model with random effect. Standard errors (in brackets)
are obtained via the bootstrap (1000 replicates).

Multivariate response model

Depression Stress Anxiety

Self touch −26.82 (36.30) 12.10 (13.15) −7.12 (23.81)
Other touch −83.43 (47.50) 46.82 (16.00) −73.72 (29.35)

5.2 Import and export data

The considered data set provides country-wise percentages of imports and exports, measured in
millionUSD, in relation to overall GDP, for 44 countries, between 2018 and 2022. A varying number
of observations has been available for different countries during this time. Specifically, Australia,
Japan, Korea, Mexico, New Zealand, Turkey, the United States, China and Colombia have four
observations each, while India, Russia and Brazil have three observations each. The remaining
countries have five observations each. The data are extracted from the OECD website (Organisation
for Economic Co-operation and Development, 2023b) and are available as trading_data in R
package mult.latent.reg. In our analysis, the logs of imports and exports constitute a bivarate
response variable, with r = 44 countries defining the upper-level, and ni ∈ {3, 4, 5}, i = 1, . . . , r,
repeated measurements on the lower-level.

Fitting a bivariate response model of type (2.1), but without covariate, the minimum AIC is
attained for K = 4 mass points (Table 8). For each country, we obtain the posterior probabilities wik
according to (3.15), an excerpt of the full matrix (wik)1≤i≤r,1≤k≤K is given in Table 9. The countries

are ordered in this table by their posterior intercepts z∗i =
∑K

k=1 wikẑk (Aitkin, 1996), with smaller
values corresponding to smaller import/export volume relative to GDP. We can think of this column
as representing predicted values of a latent variable which we could describe as ‘international trade
volume per GDP’. So, according to this linearized view on the problem, Luxembourg shows the
largest trade volume per GDP, and the United State the smallest.

A sensible way of clustering the observations is to follow the MAP rule, that is, each upper-level
unit (country) i is assigned to the cluster k to which it belongs with the largest probability wik. We
can see from the last column in Table 9 that, according to this rule, Luxembourg is the only country
assigned to its high-volume mass point. The second-largest mass point encompasses a wide range of
countries ranging from Ireland to Germany, followed by the second smallest mass point featuring
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Table 8 The values of AIC=−2ℓ + 2q for the trading data fitted with different
number of mixture components. The best solution is highlighted in bold.

K 2 3 4 5 6

ℓ −63.397 −52.227 −39.935 −42.939 −42.256
q 11 15 19 23 27
AIC 148.795 134.455 117.870 131.879 138.512

countries from Iceland to Israel. The mass point corresponding to the smallest trading volume per
GDP comprises of 10 countries, most of which very large countries includingAustralia and all BRIC
countries. Figure 4 top left provides a graphical representation of this clustering approach, with
observations coloured by MAP classifications.

The second mass point (k = 2) has smaller variance compared to the first and third mass points
(see Table 10), and all countries allocated to this cluster according to the MAP rule share some
probability mass with the third cluster (but not all countries in the third cluster share probability
mass with the second). There is no obvious characteristic distinguishing these clusters, even though
countries in the third cluster tend to be smaller in size, especially those that have no or little
probability mass shared with the second cluster.

We note that neither the ranking (by posterior intercepts) nor the clustering (by the MAP rule)
gives clear evidence on how well two countries, or two clusters, can actually be distinguished.
However, the posterior probabilities available in the inner part of Table 9 help us to provide a
principled way of doing so. If the largest posterior probability of the observation exceeds a certain
level of confidence, say 0.95, it is clustered into that specific cluster with 95% confidence. That is, it
can be robustly distinguished from observations (countries) that are allocated to other mass points
at this level of confidence. This enables us to produce a ‘robust’ clustering of countries, as illustrated
in Figure 4 top right. For example, Luxembourg is classified to the highest mass point 4 with a
probability of 1, and it can be reliably distinguished from countries such as Ireland, SlovakRepublic,
…, Austria that all have a posterior probability > 0.95 of belonging to mass point 3. Conversely,
all countries for which the largest posterior probability is less than 0.95 are considered an uncertain
observation that does not belong to any specific mass point, coloured as grey points in Figure 4
top right. This specifically concerns the countries of France, Turkey and the United Kingdom with
their largest probabilities being below 0.95. At this level of confidence, the second mass point is
eradicated entirely. However, changing the confidence level to 90% allows a robust clustering of
these countries to mass point 2, as shown in Figure 4 bottom. Further conclusions could be drawn
with careful reasoning: for instance, even under a 95% level of confidence, all countries from Greece
to the United Kingdom can be robustly distinguished from both mass points 1 and 4, as they feature
> 95% probability mass between them. They just cannot be robustly distinguished between mass
points 2 and 3 at that level.

We have seen that different levels of confidence lead to different ‘confidence-adaptive’ allocations
of observations to clusters. While the most appealing choices of the confidence level for this purpose
appear to be 1 (certain allocation), 0.95 and 0.90 (as illustrated), values down to even 0.5 could be of
interest in certain situations as they would ensure a more certain allocation than the MAP estimate.
It is also noteworthy that, as we have seen by the example of cluster 4, which, according to Table 9,
only consists of one element, the size of a subpopulation is not of relevance for it being robustly
clustered.
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Table 9 Classification and ranking for the trade and service data with K = 4. Posterior probabilities:
0.10 < p < 0.90, 0.90 ≤ p < 0.95, 0.95 ≤ p < 1.

Country posterior intercept Mass points MAP
k 1 2 3 4

π̂k 0.236 0.310 0.431 0.023
z∗i ẑk −1.402 −0.321 0.846 2.933

United States −1.402 1.000 0.000 0.000 0.000 1

Brazil −1.401 1.000 0.000 0.000 0.000 1

Japan −1.401 0.999 0.001 0.000 0.000 1

China −1.401 0.999 0.001 0.000 0.000 1

India −1.401 0.999 0.001 0.000 0.000 1

Colombia −1.399 0.999 0.001 0.000 0.000 1

Indonesia −1.378 0.979 0.021 0.000 0.000 1

Australia −1.378 0.979 0.021 0.000 0.000 1

Russia −1.373 0.974 0.025 0.001 0.000 1

New Zealand −1.321 0.928 0.070 0.002 0.000 1

Israel −0.574 0.260 0.715 0.025 0.000 2

South Africa −0.383 0.099 0.862 0.039 0.000 2

Canada −0.325 0.056 0.896 0.048 0.000 2

United Kingdom −0.292 0.035 0.907 0.058 0.000 2

Turkey −0.272 0.025 0.909 0.066 0.000 2

France −0.251 0.018 0.906 0.076 0.000 2

Chile −0.218 0.010 0.893 0.097 0.000 2

Italy −0.211 0.009 0.889 0.102 0.000 2

Costa Rica −0.156 0.004 0.850 0.146 0.000 2

Republic of Korea −0.149 0.004 0.844 0.152 0.000 2

Spain −0.127 0.003 0.828 0.169 0.000 2

Mexico −0.080 0.002 0.790 0.208 0.000 2

Norway −0.040 0.021 0.719 0.260 0.000 2

Finland 0.156 0.000 0.591 0.409 0.000 2

Iceland 0.180 0.000 0.570 0.430 0.000 2

Germany 0.357 0.000 0.418 0.582 0.000 3

Sweden 0.490 0.000 0.304 0.696 0.000 3

Portugal 0.492 0.000 0.303 0.697 0.000 3

Greece 0.614 0.000 0.198 0.802 0.000 3

Austria 0.790 0.000 0.047 0.953 0.000 3

Poland 0.806 0.000 0.034 0.966 0.000 3

Denmark 0.824 0.000 0.018 0.982 0.000 3

Switzerland 0.839 0.000 0.005 0.995 0.000 3

Latvia 0.843 0.000 0.002 0.998 0.000 3

Czech Republic 0.844 0.000 0.001 0.999 0.000 3

Estonia 0.845 0.000 0.000 1.000 0.000 3

Netherlands 0.845 0.000 0.000 1.000 0.000 3
...

...
...

...
...

...
...

Slovak Republic 0.846 0.000 0.000 1.000 0.000 3

Ireland 0.846 0.000 0.000 1.000 0.000 3

Luxembourg 2.933 0.000 0.000 0.000 1.000 4
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Table 10 Estimated σlk, where l = 1, 2 and k = 1, . . . , 4 for the fitted
model in section 5.2.

Mass points

k 1 2 3 4

σ̂1k 0.204 0.177 0.329 0.039
σ̂2k 0.285 0.172 0.347 0.03626 Yingjuan Zhang et al.

Figure 4: Clustering of the imports and exports data; top left using the MAP rule;

top right with 95% confidence; bottom with 90% confidence. Note that three to five

observations correspond to each country.

5.3 PIAAC survey of adult skills

We now analyse the PIAAC data set, where Literacy, Numeracy, and Problem solving

constitute a three-variate response, and gender and employment status serve as two

covariates. Again this is a two-level model, with 30 countries defining the upper

level. The lower level is defined through the different combinations of the covariate

Figure 4 Clustering of the imports and exports data; top left using the MAP rule; top right with 95%
confidence; bottom with 90% confidence. Note that three to five observations correspond to each country.
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Table 11 The values of AIC= −2ℓ + 2q for the PIAAC data fitted with different number
of mixture components. The best solution is highlighted in bold.

K 2 3 4 5 6

ℓ −342.243 −330.358 −324.851 −325.125 −325.330
q 21 26 31 36 41
AIC 726.485 712.716 711.702 722.251 732.660

Table 12 The estimates of covariate coefficients (matrix Γ) for the PIAAC data.
Standard errors (in brackets) are obtained via the bootstrap.

Gender Employment status

Literacy −0.417 (1.336) 2.683 (1.336)
Numeracy 8.817 (1.458) −0.517 (1.427)
Problem solving 1.833 (1.163) 6.056 (1.218)

5.3 PIAAC survey of adult skills

We now analyse the PIAAC data set, where literacy, numeracy and problem solving constitute
a three-variate response, and gender and employment status serve as two covariates. Again
this is a two-level model, with 30 countries defining the upper-level. The lower-level is defined
through the different combinations of the covariate factor levels within each country; that is, there
are four lower-level ‘observations’ for each country corresponding to the average score for this
combination of covariates. More details about the survey and its design are provided in part D of
the supplementary material and on the OECD website (Organisation for Economic Co-operation
and Development, 2023a). It important to point out at this point that, in the analysis provided
in here, no adjustment for country-wise variations in sampling design was undertaken, unlike for
instance in the work by Hämäläinen et al. (2017) who fitted survey-weighted logistic models to
PIAAC problem-solving scores.

Using the methodology devised in this article, an examination of AIC values across different
values of K (Table 11) shows that a minimum AIC value of 711.702 is attained for K = 4; hence we
use this choice of K to fit model (2.1). Posterior intercepts can again be obtained through the use
of z∗i =

∑K
k=1 wikẑk, with posterior probabilities wik according to (3.15). These posterior intercepts

can be seen as the summary information for each country, providing the residual performance
after the covariates have been taken into account. The role of the covariates is to ‘take out’ the
effects of such variables in the clustering process. The estimates of the covariate coefficients are
shown in Table 12. The results show how gender (male = 1, female = 0) and employment status
(employee = 1, self-employed = 0) relate to literacy, numeracy, and problem-solving skills. For
example, it indicates that employees have expected problem-solving scores that are 6.056 higher
than for self-employed. For literacy, the advantage of the employees reduces to 2.683 units, while
for numeracy, the self-employed tend to fare better by 0.517 units. Providing the z∗i in rank order
results in a league table, shown in Table 13. The posterior probabilities obtained at the convergence
of the EM algorithm are also given in this table, and can be used for classification of countries
according to their skill levels.

We can distinguish two countries in terms of their cluster membership if they fall with 95%
confidence into two different mass points. In Table 13, all countries from New Zealand to Hungary
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Table 13 Classification and ranking for the PIAAC data using model xij = α+ βzi + Γvij + εij with K = 4.
Posterior probabilities: 0.05 < p < 0.10, 0.10 < p < 0.90, 0.90 ≤ p < 0.95, 0.95 ≤ p < 1.

Mass points

0.100 0.115 0.275 0.510
Country Posterior intercept −2.650 −0.634 −0.069 0.700

Chile −2.650 1.000 0.000 0.000 0.000
Mexico −2.650 1.000 0.000 0.000 0.000
Turkey −2.650 1.000 0.000 0.000 0.000
Greece −0.632 0.000 0.997 0.003 0.000
Spain −0.603 0.000 0.945 0.055 0.000
Republic of Korea −0.592 0.000 0.926 0.074 0.000
Italy −0.296 0.000 0.403 0.597 0.000
United States −0.100 0.000 0.066 0.927 0.007
Poland −0.092 0.000 0.058 0.930 0.012
Slovenia −0.065 0.000 0.018 0.963 0.019
Ireland −0.010 0.000 0.013 0.902 0.085
France −0.006 0.000 0.007 0.905 0.088
Israel 0.012 0.000 0.005 0.885 0.110
England (UK) 0.023 0.000 0.022 0.843 0.135
Denmark 0.398 0.000 0.000 0.392 0.608
Germany 0.451 0.000 0.000 0.323 0.667
Flanders (Belgium) 0.567 0.000 0.000 0.173 0.827
Norway 0.654 0.000 0.000 0.060 0.940
Czech Republic 0.659 0.000 0.000 0.054 0.946
Hungary 0.667 0.000 0.000 0.043 0.957
Austria 0.676 0.000 0.000 0.031 0.969
Australia 0.683 0.000 0.000 0.021 0.979
Estonia 0.686 0.000 0.000 0.018 0.982
Finland 0.689 0.000 0.000 0.014 0.986
Canada 0.692 0.000 0.000 0.010 0.990
Japan 0.696 0.000 0.000 0.005 0.995
Slovak Republic 0.696 0.000 0.000 0.005 0.995
Netherlands 0.699 0.000 0.000 0.002 0.998
Sweden 0.699 0.000 0.000 0.001 0.999
New Zealand 0.700 0.000 0.000 0.000 1.000

are assigned with > 95% confidence to the best-performing mass point 4. As such, they can be
robustly distinguished from Slovenia and all countries with lower posterior intercepts, which all have
posterior probabilities of at least 95% of pertaining to any of the first three mass points. Slovenia
is the only country which is allocated with at least 95% confidence to mass point 3; hence, it can
be robustly concluded to have performed better than Greece, Turkey, Mexico and Chile. Greece,
in turn, is the only country which is clustered to mass point 2 with more than 95% confidence and,
as such, can be robustly distinguished from the three countries belonging to the worst-performing
mass point 1.
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Note that it is not possible to determine a comparative ranking among countries belonging to
the same mass point, for example, we cannot say that Japan has performed better than Canada.
We also cannot robustly conclude that England (UK) or even Flanders (Belgium) have performed
better than the United States, since they all share at least 5% probability mass with mass point 3.

6 Concluding remarks

We have provided a novel methodological approach for the inclusion of a random effect into
multivariate response models, based on the NPML method for mixture models. The proposed
approach enables us to accurately estimate covariate effects under the presence of correlations
between response variables. Crucially, such correlations impact the standard errors of parameter
estimates, as observed in our simulation studies and real data applications. It should however be
noted that under this methodology, no analytic calculation of the standard errors is possible, hence
requiring us to resort to bootstrap techniques.

Another advantage of the proposed methodology is in providing the matrix of posterior
probabilities produced alongside the estimation process, as well as in calculating posterior random
effects, based on the fitted model. We have demonstrated how these can be used for model-based
clustering along the direction of the latent subspace and conditional on covariate values. The
clustering can be performed either directly based on the maximum a posteriori (MAP) rule or can
be driven by a user-specified degree of confidence in the cluster allocation, allowing for fine-grained
insights into the separability of upper-level units on the scale of their posterior random effect. As
suggested by a referee, entropy measures could potentially be used to assess the uncertainty of
posterior probabilities, which in our context would correspond to values −

∑K
k=1 wik logwik, with

high values indicating high uncertainty. Some care is needed with this approach, as many of the
posterior probabilities in our context are zero.

Computationally, the proposedmethod can be regarded as themultivariate extension of the allvc
function available in R package npmlreg (Einbeck et al., 2018). We here focused on the Gaussian
errors assumption for the response model and used the nonparametric maximum likelihood
approach to handle the marginal density of xij. In contrast, the allvc function is based on the
glm framework, hence allowing any arbitrary exponential family distribution for the response. The
extension of the proposed work to an exponential family framework is not straightforward and
requires further research. A possible starting point for such research is to consider methods from
the ‘homogeneity pursuit’ literature such as the pairwise composite likelihood in Hui et al. (2018).
Furthermore, the allvc function supports Gaussian quadrature besides a nonparametric maximum
likelihood variant, which would also appear to be feasible for our scenario even though we have
not been able to identify a strong incentive to do so. As a further limitation of the current state of
development, one could mention that we are not yet able to accommodate weights, which would
have been useful for the PIAAC data to adjust for country-wise differences in sampling design.
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