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Abstract

Measuring the accuracy of diagnostic tests is crucial in many application areas, including medicine,

machine learning, and credit scoring. In practice, multiple diagnostic tests or biomarkers are combined

to improve diagnostic accuracy. The area under the receiver operating characteristic curve (AUC) is a

common measure of diagnostic test performance and can be used as an objective function to maximise

when combining multiple biomarkers. Another useful measure is the overlap coefficient, which quantifies

the similarity between two independent distributions by their overlapping area. The smaller the overlap-

ping area, the better the biomarker is at discrimination. The aim of this paper is to combine biomarkers

to improve diagnostic accuracy by minimising the overlap coefficient. We approach this parametrically

and non-parametrically using Kernel-based methods. We also present a probabilistic interpretation of

the overlap coefficient, which gives more insight into this measure. The proposed methods are evaluated

through a simulation study and illustrated via examples.
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1 Introduction

Measuring the accuracy of diagnostic tests is essential in various fields, such as medicine, machine learning,

and credit scoring. In practical situations, a single diagnostic test may not be sufficient to make a useful

decision. Hence, multiple diagnostic tests or biomarkers are often combined to improve diagnostic accuracy

[1]. The area under the receiver operating characteristic curve (AUC) is a common measure of diagnostic

test performance. It can be used as an objective function to maximise when combining multiple biomarkers.
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Another useful measure, yet less popular, is the overlap coefficient, denoted by OVL hereafter. It quan-

tifies the similarity between two independent distributions by their overlapping area. The smaller the over-

lapping area, the better the biomarker is at discrimination. The OVL coefficient is highly intuitive and has

an easy visual representation. Inferential methods, both parametric and non-parametric, have been devel-

oped in the literature, see e.g. [2, 3, 4]. Unlike the AUC, the OVL is able to capture shape differences For

more details about OVL versus AUC, we refer the reader to Wang and Tian [5]. The aim of this paper is

to combine biomarkers to improve diagnostic accuracy by minimising the overlap coefficient. We approach

this problem both parametrically and non-parametrically using Kernel-based methods. We also present a

probabilistic interpretation of the overlap coefficient, which provides more insight into this measure. We will

compare the combination of biomarkers using both measures, AUC and OVL, through simulation studies

and examples.

The rest of the paper is organised as follows: Section 2 introduces the overlap coefficient (OVL) for one

biomarker, with the new probabilistic interpretation given in Section 2.1. The main results are given in

Section 3, where multiple biomarkers are combined to improve the diagnostic accuracy by minimising the

overlap coefficient. The proposed methods are assessed through a simulation study in Section 4. An example

is provided to illustrate the proposed method in Section 5. The paper ends with some concluding remarks

in Section 6. The R code used for implementation is available from the author on request.

2 OVL for one biomarker

Suppose that X is a continuous random quantity of a diagnostic test result and that larger values of X

are considered more indicative of disease. Here, X0 and X1 are used to denote test results for the non-

disease (control) and disease (cases) groups, respectively. A useful summary is the area under the ROC

curve, AUC =
∫ 1

0
ROC(t) dt. The AUC measures the overall performance of the diagnostic test. Higher

AUC values indicate more accurate tests, with AUC = 1 for perfect or ideal tests and AUC = 0.5 for

uninformative tests. The AUC is equal to the probability that the test results from a randomly selected

pair of diseased and non-diseased subjects are correctly ordered, i.e., AUC = P (X1 > X0) [6]. Thus, the

AUC measures the test’s ability to correctly classify a randomly selected individual as being from either

the disease group or the non-disease group. The Gini coefficient is a simple conversion from AUC using

the formula Gini = 2AUC− 1. Both measures are mathematically equivalent and interchangeable. In some

contexts, such as clinical settings, AUC is often preferred due to its direct interpretability, where AUC = 0.5

indicates random performance. On the other hand, the Gini coefficient has a more intuitive scale, ranging

from 0 to 1, compared to the AUC scale of 0.5 to 1. However, all the properties and limitations of AUC
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Figure 1: Low OVL (left) and high OVL (right)

apply to the Gini coefficient as well [7].

Another useful but less popular measure is the Overlap Coefficient (OVL), which measures the overlapping

area of the densities of two distributions when plotted on the same axes, e.g., the two plots in Figure 1 are

examples of low and high overlapping probability densities. The OVL takes a value between 0 and 1, where

OVL = 0 if the two probability densities are disjoint and OVL = 1 if the two densities are the same. There

are no clear cutoff values to describe the discrimination ability of this measure, but a rule of thumb has been

suggested by Franco-Pereira et al. [3] as follows:



OVL = 1 no differentiation;

0.75 < OVL < 1 poor differentiation;

0.55 < OVL < 0.75 good differentiation;

0.35 < OVL < 0.55 very good differentiation;

OVL < 0.35 excellent differentiation.

Formally, let fX0
and fX1

be the corresponding probability densities, for the non-disease (control) and

disease (cases) groups, respectively. The overlap coefficient is the overlap area between the two densities,

which is defined as

OVL =

∫
min[fX0

(x), fX1
(x)]dx (1)

One can estimate the OVL coefficient parametrically by relying on the normality assumption of both

densities as follows: Let X0,1, X0,2, . . . , X0,n0
and X1,1, X1,2, . . . , X1,n1

denote two random samples of sizes

n0 and n1 taken from two independent normal distributions with means µ0 and µ1 and standard deviations

σ0 and σ1, respectively, thus OVL is defined as [3]
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where Φ is the cumulative distribution function of the standard normal distribution, and the maximum

likelihood estimates of the unknown parameters, µi and σi, i = 0, 1, can be used. We are also interested in

the following special cases: when µ0 = 0 and σ0 = 1, we have

OVL = Φ(d0)− Φ

(
d0 − µ1

σ1

)
+Φ

(
d1 − µ1

σ1

)
− Φ (d1) + 1

where, for σ1 > 1, the intersection points d0 and d1 are given by

d0 =
−µ1 − σ1

√
µ2
1 + (σ2

D − 1) log(σ2
1)

(σ2
1 − 1)

, d1 =
−µ1 + σ1

√
µ2
1 + (σ2

D − 1) log(σ2
1)

(σ2
1 − 1)

and when σ0 = σ1 = σ, this reduces to OVL = 2Φ (−|µ1 − µ0|/2σ).

The normality assumption can be quite restrictive, which may lead to inaccurate results when this

assumption is violated, so a common way to extend the applicability of the binormal model is to apply a

monotone transformation through the use of the Box-Cox transformation [3]. Alternatively, several Kernel-

based approaches through the use of the Gaussian kernel using different bandwidths have been introduced

and studied in the literature [4]. In this case, the densities in Equation (1) are replaced by appropriate kernel

density estimators, e.g. the density estimator for fX0
(x) is given by

f̂X0
(x) =

1

n0

n0∑
i=1

1

h0
K

(
x−X0,i

h0

)
(3)

where K is a kernel function, and the bandwidth is given by

h0 = (4/3)1/5(n0)
−1/5s0, where s0 =

√√√√√ 1

n0 − 1

n0∑
i=1

X0,i −
n0∑
j=1

X0,j

n0

2

We can define f̂X1
(x) similarly, and we denote the resulting estimator by ÔVL [3].
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For the purpose of comparison, we define the empirical estimate for the overlap coefficient (OVL) as

follows:

ÔVLe = 1−max
x

|F̂0(x)− F̂1(x)|

which is equivalent to the two-sample Kolmogorov-Smirnov test statistic [8], where F̂0 and F̂1 are the

empirical distribution functions (edf) for the non-disease (control) and disease (cases) groups, respectively.

2.1 Interpretation for OVL

Suppose we have two groups or classes, A and B, and let us consider the natural (e.g. likelihood-based)

classification rule, such that we assign an individual with observation x to A if fa(x) > fb(x) and to B if

fb(x) > fa(x). Then we can divide the OVL into two areas (neglecting any x values for which fa(x) = fb(x);

if the set of such x values is not just one or a finite number of singletons, one may e.g. just assign randomly

to A or B): OVLA and OVLB , where OVLA is the area under fa(·) for {x|fa(x) < fb(x)} and OVLB is

the area under fb(·) for {x|fb(x) < fa(x)}. So, OVLA is the probability that an individual from group A is

wrongly classified as belonging to group B, and OVLB is the probability that an individual from group B

is wrongly classified as belonging to group A. Now, let us consider a person on whom the diagnostic test is

performed. It is unknown to which group this person belongs; assume he belongs to group A and to group

B each with probability 0.5. Let WC be the event that this person is wrongly classified, then using, e.g. A

to denote that the person belongs to group A,

P (WC) = P (WC|A)P (A) + P (WC|B)P (B)

=
1

2

[∫
1{fa(x) < fb(x)}fa(x)dx+

∫
1{fb(x) < fa(x)}fb(x)dx

]
=

1

2
(OVLA +OVLB)

So, OVL = OVLA + OVLB = 2P (WC), so minimising OVL simply means minimising the probability that

a person is wrongly classified, assuming he is equally likely to actually belong to groups A and B, and using

the basic classification rule outlined above.

An extreme case is if fa(x) = fb(x) for all x, so they have the same probability distribution; this would

not work with the above classification rule but for any rule to classify as belonging to A if x is in some

subset of the possible values, and to B otherwise, we would have OVL = OVLA + OVLB = 1 and hence

P (WC) = 1/2, which is correct in that case. If the probability distributions of the two groups are completely

separated, so no overlap, then we have P (WC) = 0, and hence OVL = 0.
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3 Combining multiple biomarkers to minimise OVL

A practical question that often arises is how to effectively combine information from multiple diagnostic tests

or biomarkers to accurately differentiate between diseased and non-diseased groups. In this section, our focus

is on constructing linear combinations of diagnostic results, denoted as Y = α1X1 + α2X2 + . . . + αpXp,

where the objective is to determine the optimal values of the vector α = (α1, α2, . . . , αp)
T that minimise the

overlap coefficient and, consequently, maximise the diagnostic accuracy.

The concept of linearly combining biomarkers to improve diagnostic accuracy by maximising the area

under the ROC curve (AUC) has been explored by Lu [9] under the assumption of normality, while others

proposed distribution-free approaches to relax this assumption, see, e.g. [1, 10, 11]. In this paper, we compare

the proposed method with those based on AUC, with a slight difference in the approach of finding the optimal

coefficients for the linear combination. Therefore, our objective is to find the optimal unit p-simplex vector

α = (α1, . . . , αp)
T , such that the AUC is maximised or the OVL is minimised. A unit simplex vector is

defined as a vector with non-negative values, where the entries sum up to one. The goal is to improve

diagnostic accuracy by combining multiple diagnostic tests or biomarkers instead of relying on individual

biomarkers alone, resulting in higher AUC or lower OVL values.

We start by introducing key notations, followed by an exploration of determining the optimal linear

combination of biomarkers. Let us consider a set of p biomarkers, denoted as X1, X2, . . . , Xp or simply as

X = (X1, X2, . . . , Xp)
T . We can define the linear combinations of the diagnostic results for the diseased and

non-diseased groups as

Y1 = α1X1,1 + α2X1,2 + . . .+ αpX1,p = αTX1

Y0 = α1X0,1 + α2X0,2 + . . .+ αpX0,p = αTX0

where X1 = (X1,1, X1,2, . . . , X1,p)
T and X0 = (X0,1, X0,2 . . . , X0,p)

T .

Now let fY0
and fY1

be the corresponding probability densities, and the overlap area between these two

densities is given by

OVLY =

∫
min[fY0

(y), fY1
(y)]dy

The main questions that need to be addressed are how to estimate the densities fY0
and fY1

, and how

to obtain the optimal values of α = (α1, α2, . . . , αp)
T that minimise the overlap coefficient (OVL) for the

combined test. We estimate the two densities, first parametrically, by assuming that the test results are

generated from multivariate normal distributions and non-parametrically using Kernel-based methods.

Let X = (X1, X2, . . . , Xp)
T be generated from multivariate normal distributions for n1 cases and n0
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controls with means µ1 and µ0 and variances Σ1 and Σ0, respectively. Hence, the linear combinations of

the diagnostic results for the diseased (cases) and non-diseased (control) groups are also normal, i.e. we have

Y1 = α1X1,1 + α2X1,2 + . . .+ αpX1,p = αTX1 ∼ N(µY1
= αTµ1, σ

2
Y1

= αTΣ1α)

Y0 = α1X0,1 + α2X0,2 + . . .+ αpX0,p = αTX0 ∼ N(µY0
= αTµ0, σ

2
Y0

= αTΣ0α)

Now Equation (2) can be applied to the combined scores, Y1 and Y0, by substituting the means and variances

with µ1, µ0, Σ1, and Σ0. By utilising the maximum likelihood (ML) estimates of these means and variances,

we can compute the corresponding intersection points, and hence find the parametric estimate of OVLY .

Again, the normality assumption can be quite restrictive, even more so in the multivariate case. To this

end, one can use kernel-based approaches to estimate these probability densities. That is, the kernel-based

estimates of the probability densities of the combined scores, Y1 and Y0, are given by

f̂Y1
(t) =

p∑
i=1

αif̂X1,i
(x)

f̂Y0
(t) =

p∑
i=1

αif̂X0,i
(x)

where f̂X1,i
(x) and f̂X0,i

(x), i = 1, . . . , p, are the kernel density estimates calculated for each biomarker using

Equation (3). These estimated densities are then substituted into Equation (1) to compute the kernel-based

OVLY estimate.

To determine the optimal α = (α1, α2, . . . , αp)
T , we propose to find the values that minimise the OVL,

where αj ∈ [0, 1], j = 1, 2, . . . , p and
∑

j αj = 1. We will search for the optimal values of α1, . . . , αp, where

the OVL corresponding to the combined test
∑

j αjXj is evaluated for 101 equally spaced values for each

αj ∈ [0, 1], j = 1, . . . , p such that
∑

j αj = 1. We will use a similar approach for AUC, but instead of

minimising the OVL, we will maximise it.

4 Simulation study

In this section, a simulation study is conducted to illustrate the proposed method for different scenarios.

We have simulated two diagnostic test results (X1, X2) from the bivariate normal distribution for n1 cases

(disease) and n0 controls (non-disease), with mean and variance-covariance matrix for the cases (disease)
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and for the controls (non-disease), respectively,

m1 =

µ1

µ2

 ,Σ1 =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,m0 =

0
0

 ,Σ0 =

1 ρ

ρ 1

 .

without loss of generality we assume that µ1 > µ2 > 0, σ2
1 ≥ 1 and σ2

2 ≥ 1, and we considered ρ ≥ 0,

the correlation between X1 and X2, to be of most practical interest [1]. The area under the ROC curve

for biomarker X1 alone is equal to AUC1 = Φ(µ1/
√
1 + σ2

1), while the corresponding OVL measure for

this biomarker can be obtained using the special cases formulas in Section 2. The same can be defined for

biomarker X2. The empirical estimate, ÂUCe, and the kernel-based estimate ÂUCk are given by [12]

ÂUCe =
1

n1n0

n0∑
j=1

n1∑
i=1

[
1
{
x1
i > x0

j

}
+

1

2
1
{
x1
i = x0

j

}]

ÂUCk =
1

n0n1

n0∑
j=1

n1∑
i=1

Φ

(
x1
i − x0

j√
h2
0 + h2

1

)

with the bandwidths h0 = 0.9 × min(s0, IQR0/1.34) × n
−1/5
0 and h1 = 0.9 × min(s1, IQR1/1.34) × n

−1/5
1 ,

where s0 and s1 are the sample variances and where IQR0 and IQR1 are the sample interquartile ranges.

The results of the simulation study are based on 1000 simulations for n0 = n1 = 50, 100, ρ = 0, 0.5, 0.75,

and for different values of µ1, µ2, σ1, and σ2. To facilitate comparison, we report the values of the Gini

index, G = 2AUC − 1, instead of AUC, and V = 1 − OVL instead of OVL. This allows the values to

range from 0 to 1, where 0 represents no separation, and 1 represents complete separation of the disease

and non-disease groups. The goal is to determine the best values for α1 and α2 that maximise both G

and V . Here, Ĝb and V̂b are the parametric estimates, Ĝe and V̂e are the empirical estimates, and Ĝk and

V̂k are the nonparametric estimates. We consider the means of biomarker measurements corresponding to

AUC = 0.6, 0.7, 0.8, 0.9 (G = 0.2, 0.4, 0.6, 0.8) as 0.358, 0.742, 1.190, 1.812, respectively. The corresponding

values of OVL are 0.8578, 0.7108, 0.5518, 0.3648, respectively (V = 0.1422, 0.2892, 0.4482, 0.6352).

We will distinguish between three scenarios depending on whether the disease and non-disease groups

have equal variances. In the first scenario, we consider the case of equal variances, where σ2
1 = σ2

2 = 1,

indicating that all variances are equal for both biomarkers and for the disease and non-disease groups. The

second scenario is when σ2
1 > 1 and σ2

2 = 1 (i.e., the disease and non-disease groups have equal variances for

biomarker 2 and different variances for biomarker 1). In the final scenario, we consider the case where the

variances are unequal, that is, when σ2
1 > σ2

2 > 1 (i.e., the variance of the disease group of biomarker 1 is

greater than the variance of the disease group in biomarker 2).
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The simulation results, now detailed in Tables 4-9 in the Appendix, demonstrate an overall improvement

in diagnostic accuracy when two biomarkers are combined. When the individual accuracy of the biomarkers

is equal, they are assigned equal weights in the combined scores. However, if one biomarker exhibits higher

diagnostic accuracy, it is given more weight, as expected. In cases where biomarkers are highly correlated,

the weights tend to be heavily skewed towards the biomarker with the higher accuracy. Generally, the most

significant improvements in diagnostic accuracy are observed when combining two independent biomarkers

of equal accuracy.

5 Examples

In this section, we are providing two examples to demonstrate the proposed methods. In these examples,

we have combined biomarkers using three different approaches: parametric, empirical, and nonparametric.

The aim is to minimise the overlapping coefficient and improve the accuracy of the results. We have also

compared the OVL results obtained from these methods with the AUC results.

Example 1 (Pancreatic cancer data set). The data set used in this example is from a study that included

90 pancreatic cancer patients and 51 control patients with pancreatitis [13]. Two serum markers, the cancer

antigen CA125 and the carbohydrate antigen CA19-9, were measured. To make the results comparable,

the marker values were transformed to a natural logarithmic scale and standardised; these are displayed in

Figure 2. For simplicity, we will refer to log(CA19-9) as biomarker X1 and log(CA125) as biomarker X2,

and the correlation between these two biomarkers is 0.252. The aim of this study is to identify the best

linear combination of X1 and X2 that results in a lower OVL value or a higher AUC value compared to using

either biomarker alone. Similar to the simulation study, we will be reporting the values of V = 1−OVL and

G = 2AUC− 1 for ease of comparison.

Biomarkers α̂b Ĝb α̂k Ĝk α̂e Ĝe

X1 0.764 0.704 0.723
X2 0.366 0.389 0.411

(X1, X2) (0.789, 0.211) 0.788 (+3%) (0.694, 0.306) 0.769 (+10%) (0.719, 0.281) 0.788 (+9%)

Biomarkers α̂b V̂b α̂k V̂k α̂e V̂e

X1 0.704 0.645 0.658
X2 0.280 0.305 0.383

(X1, X2) (0.847, 0.153) 0.724 (+3%) (0.840, 0.160) 0.667 (+3%) (0.613, 0.387) 0.710 (+8%)

Table 1: Pancreatic cancer data set results (Example 1)

Table 1 shows the optimal values of α1 and α2 that maximise the values of V and G (minimise the

OVL value or maximise the AUC value) using three different approaches: parametric, nonparametric, and
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Figure 2: Pancreatic cancer data set (Example 1)

empirical. These approaches are denoted by (Ĝb, V̂b), (Ĝk, V̂k), and (Ĝe, V̂e), respectively. From this table,

biomarker X1 shows better discrimination power in comparison to biomarker X2. However, combining these

biomarkers by giving more weight to biomarker X1 than biomarker X2 improves the overall discrimination

power. In particular, the combination of biomarker X1 with a weight of about 70-72% using kernel-based

or empirical estimates for G results in the highest improvement of 9% to 10% when compared to using

biomarker X1 alone. On the other hand, the highest improvement of 8% is obtained by combining biomarker

X1 with a weight of about 61% using the empirical estimate for V .

Example 2 (DMD data set). In this example, we use a dataset that was first discussed by Cox et al.

[14]. The dataset was created to develop screening methods to identify carriers of a rare genetic disorder.

The dataset comprises four measurements, M1, M2, M3, and M4, made on blood samples. We use a subset

of this dataset which consists of 120 observations, 82 of which are normals and 38 are carriers. The four

measurements were transformed to a natural logarithmic scale and standardized; these are displayed in

Figure 3. From the correlation matrix given below, we can observe that M1 is highly correlated with M3

and M4. Similarly, M3 is also highly correlated with M4. However, M2 is only weakly correlated with the

other measurements.

Corr =

M1 M2 M3 M4


M1 1.000 0.115 0.644 0.642

M2 0.115 1.000 0.221 0.284

M3 0.644 0.221 1.000 0.561

M4 0.642 0.284 0.561 1.000

.

As we can see from Tables 2 and 3, measurement M1 has the highest discrimination power (largest G and

V values), followed by M4, then M3, while M2 shows the worst discrimination power across considering all
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the different estimate values of G and V . Tables 2 and 3 also show the optimal values of α that maximise the

values of V and G (minimise the OVL value or maximise the AUC value) using three different approaches:

parametric, nonparametric, and empirical. We consider all possible combinations of measurements, that is,

combining all possible ways of combining two, three and four measurements.

It’s interesting to note that when combining two measurements, the best and worst measurements, M1

and M2, (with a correlation coefficient of 0.115), lead to the highest improvement in accuracy, regardless of

whether we aim to maximise G or V and regardless of which estimations methods are used. The second best

combination is M1 and M4, according to estimates of G values. However, there is no agreement between the

different estimates of V on which combination should take the second position. Vk agrees with the decision

made by G values, but Vb and Ve did not place M1 and M4 as their second candidate. Nevertheless, the

corresponding values are not too far off. There is an agreement among all methods that combining M2

and M3 leads to worse accuracy compared to other combinations. Although the correlation between M2

and M3 is not very strong (0.221), this may be because we are combining initially weak measurements, and

combining them still provides more discrimination power than considering one of them alone.

Similarly, when considering all possible combinations of three measurements, all methods suggest that

combining M1, M2, and M4 will give the best performance, closely followed by combining M1, M2, and M3.

Finally, when combining all four measurements, it seems that Gb and Gk gave more weight to M1, followed

by M2 and M4, almost neglecting M3. On the other hand, Ge gave more weight to M1 and M2 and almost

neglected M3 and M4. Vb gave more weight to M1 and M2, and smaller weight to M3 and M4. Vk and Ve

gave more weight to M1, M2, and M4, and almost neglected M3. As we can see, the improvement gained
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by combining all measurements is at least 14% for G values and 12% for V values.

Measurements α̂b Ĝb α̂k Ĝk α̂e Ĝe

M1 0.779 0.764 0.807
M2 0.478 0.484 0.505
M3 0.644 0.606 0.646
M4 0.752 0.737 0.758

(M1,M2) (0.62, 0.38) 0.861 [11%] (0.58, 0.42) 0.887 [16%] (0.61, 0.39) 0.906 [12%]
(M1,M3) (0.76, 0.24) 0.792 (0.70, 0.30) 0.780 (0.75, 0.25) 0.836
(M1,M4) (0.52, 0.48) 0.837 (0.53, 0.47) 0.830 (0.55, 0.45) 0.863
(M2,M3) (0.42, 0.58) 0.741 (0.47, 0.53) 0.737 (0.50, 0.50) 0.756
(M2,M4) (0.32, 0.68) 0.804 (0.35, 0.65) 0.800 (0.31, 0.69) 0.818
(M3,M4) (0.34, 0.66) 0.793 (0.35, 0.65) 0.803 (0.27, 0.73) 0.831

(M1,M2,M3) (0.53, 0.36, 0.11) 0.865 (0.53, 0.38, 0.09) 0.891 (0.52, 0.34, 0.14) 0.918
(M1,M2,M4) (0.42, 0.30, 0.28) 0.886 [14%] (0.47, 0.34, 0.19) 0.902 [18%] (0.54, 0.32, 0.14) 0.918 [14%]
(M1,M3,M4) (0.45, 0.11, 0.44) 0.840 (0.50, 0.14, 0.36) 0.839 (0.55, 0.09, 0.36) 0.867
(M2,M3,M4) (0.28, 0.26, 0.46) 0.837 (0.30, 0.27, 0.43) 0.840 (0.27, 0.28, 0.45) 0.854

(M1,M2,M3,M4) (0.39, 0.30, 0.05, 0.260) 0.887 [14%] (0.42, 0.32, 0.08, 0.180) 0.905 [18%] (0.52, 0.31, 0.08, 0.09) 0.924 [15%]

Table 2: DMD data set, measurements are combined, G = 2AUC − 1

Measurements α̂b V̂b α̂k V̂k α̂e V̂e

M1 0.690 0.615 0.696
M2 0.408 0.359 0.420
M3 0.513 0.443 0.534
M4 0.586 0.552 0.633

(M1,M2) (0.74, 0.26) 0.753 [10%] (0.68, 0.32) 0.706 [15%] (0.64, 0.36) 0.846[22%]
(M1,M3) (0.74, 0.26) 0.719 (0.74, 0.26) 0.644 (0.84, 0.16) 0.725
(M1,M4) (0.71, 0.29) 0.718 (0.61, 0.39) 0.654 (0.54, 0.46) 0.748
(M2,M3) (0.42, 0.58) 0.575 (0.46, 0.54) 0.537 (0.52, 0.48) 0.704
(M2,M4) (0.36, 0.64) 0.646 (0.34, 0.66) 0.604 (0.62, 0.38) 0.730
(M3,M4) (0.39, 0.61) 0.635 (0.34, 0.66) 0.600 (0.35, 0.65) 0.757

(M1,M2,M3) (0.64, 0.22, 0.14) 0.765 (0.65, 0.27, 0.08) 0.710 (0.64, 0.36, 0.00) 0.846
(M1,M2,M4) (0.60, 0.23, 0.17) 0.765 [11%] (0.48, 0.30, 0.22) 0.722 [17%] (0.48, 0.40, 0.12) 0.860 [24%]
(M1,M3,M4) (0.61, 0.19, 0.20) 0.732 (0.54, 0.15, 0.31) 0.658 (0.09, 0.26, 0.65) 0.781
(M2,M3,M4) (0.29, 0.25, 0.46) 0.677 (0.28, 0.25, 0.47) 0.655 (0.32, 0.28, 0.40) 0.787

(M1,M2,M3,M4) (0.56, 0.21, 0.11, 0.12) 0.771 [12%] (0.44, 0.30, 0.06, 0.20) 0.724 [18%] (0.48, 0.40, 0.00, 0.12) 0.860 [24%]

Table 3: DMD data set, measurements are combined, V = 1−OV L

6 Concluding remarks

In this paper, we explored how combining two or more biomarkers can improve diagnostic accuracy by

reducing the overlap coefficient. We introduced the overlap coefficient as an objective function to minimise

and compared its results with those based on the more commonly used AUC measure. Both parametric and

non-parametric approaches were employed to estimate the density functions, and we provided a probabilistic

interpretation of the overlap measure, offering additional insight into its application. The simulation study

demonstrated that combining biomarkers leads to an overall improvement in diagnostic accuracy compared

to using a single biomarker. This holds true regardless of whether parametric or non-parametric estimation

methods are used.

Our results show that when the individual accuracies of biomarkers are equal, they are assigned equal

weights in the combined score. However, when one biomarker has a higher diagnostic accuracy, it is given
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more weight. In cases where biomarkers are highly correlated, the weights tend to be skewed towards the

biomarker with the higher accuracy. The most significant improvements in diagnostic accuracy are generally

observed when two independent biomarkers of equal accuracy are combined. These findings highlight the

potential of combining biomarkers for enhanced diagnostic performance. The simulation results presented

in this study could also serve as the foundation for a more formal decision-making framework for combining

biomarkers, which could help guide the selection of optimal combinations in practice. Future research could

further explore this framework, considering additional factors such as the cost of diagnostic tests and practical

constraints in clinical settings.

The proposed method for determining the optimal set of weights for combining biomarkers involves

evaluating the overlap coefficient (OVL) for various weight combinations. This process can become compu-

tationally intensive, especially as the number of biomarkers increases. To mitigate this, future work could

focus on developing more efficient optimisation techniques to reduce the computational burden, particularly

when working with large datasets or a high number of biomarkers. Exploring alternative search methods or

approximations could enhance scalability while maintaining accuracy.

While the overlap measure is effective for comparing biomarkers in the case of normal distributions, its

application to non-normal, skewed, or multimodal distributions could present challenges. Future research

could explore alternative methods, such as the use of weighted AUC, which offers a more robust evaluation

of biomarker accuracy, particularly in complex data structures like those encountered in genetic data [15].

Additionally, the Weitzman overlapping coefficient, as described by Montoya et al. [16], could offer a valuable

tool for comparing distributions with varying shapes, providing further insights into biomarker comparison

in non-normal data.

Finally, an important avenue for future work is benchmarking the proposed methodology against logistic

regression, a widely used method for evaluating biomarker combinations. Such a comparison would offer

valuable insights into the relative strengths of our approach, further enhancing its practical relevance in

biomarker research.
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Appendix: Simulation study results

G1 G2 α̂b Ĝb α̂k Ĝk α̂e Ĝe α̂b V̂b α̂k V̂k α̂e V̂e

n0 = n1 = 50, ρ = 0, σ1 = 1, σ2 = 1

0.2 0.2 0.52 0.48 0.286 0.44 0.56 0.259 0.40 0.60 0.274 0.45 0.55 0.215 0.69 0.31 0.225 0.74 0.26 0.320

0.4 0.2 0.70 0.30 0.453 0.80 0.20 0.424 0.84 0.16 0.439 0.69 0.31 0.330 0.69 0.31 0.310 0.98 0.02 0.400

0.4 0.4 0.53 0.47 0.548 0.54 0.46 0.511 0.53 0.47 0.535 0.51 0.49 0.410 0.60 0.40 0.359 0.59 0.41 0.440

0.6 0.2 0.80 0.20 0.641 0.81 0.19 0.625 0.83 0.17 0.667 0.81 0.19 0.484 0.93 0.07 0.446 0.87 0.13 0.560

0.6 0.4 0.65 0.35 0.692 0.70 0.30 0.670 0.79 0.21 0.703 0.64 0.36 0.530 0.68 0.32 0.472 0.86 0.14 0.580

0.6 0.6 0.54 0.46 0.771 0.59 0.41 0.746 0.65 0.35 0.776 0.53 0.47 0.608 0.58 0.42 0.540 0.66 0.34 0.640

0.8 0.2 0.86 0.14 0.830 0.80 0.20 0.818 0.75 0.25 0.850 0.88 0.12 0.669 0.89 0.11 0.635 0.77 0.23 0.780

0.8 0.4 0.75 0.25 0.851 0.73 0.27 0.843 0.76 0.24 0.867 0.75 0.25 0.692 0.80 0.20 0.653 0.78 0.22 0.800

0.8 0.6 0.65 0.35 0.885 0.66 0.34 0.879 0.66 0.34 0.897 0.64 0.36 0.735 0.70 0.30 0.690 0.80 0.20 0.800

0.8 0.8 0.54 0.46 0.933 0.56 0.44 0.928 0.53 0.47 0.944 0.53 0.47 0.806 0.61 0.39 0.756 0.75 0.25 0.860

n0 = n1 = 50, ρ = 0.5, σ1 = 1, σ2 = 1

0.2 0.2 0.44 0.56 0.239 0.42 0.58 0.239 0.46 0.54 0.258 0.66 0.34 0.179 0.30 0.70 0.206 0.33 0.67 0.300

0.4 0.2 1.00 0.00 0.402 0.82 0.18 0.365 0.98 0.02 0.392 1.00 0.00 0.301 0.97 0.03 0.268 0.99 0.01 0.340

0.4 0.4 0.46 0.54 0.456 0.41 0.59 0.439 0.37 0.63 0.463 0.52 0.48 0.336 0.40 0.60 0.329 0.44 0.56 0.420

0.6 0.2 1.00 0.00 0.598 1.00 0.00 0.547 0.98 0.02 0.577 1.00 0.00 0.454 0.89 0.11 0.388 0.93 0.07 0.460

0.6 0.4 0.88 0.12 0.600 0.78 0.22 0.560 0.71 0.29 0.585 0.89 0.11 0.456 0.73 0.27 0.404 0.71 0.29 0.500

0.6 0.6 0.47 0.53 0.663 0.41 0.59 0.636 0.36 0.64 0.661 0.50 0.50 0.506 0.42 0.58 0.471 0.59 0.41 0.560

0.8 0.2 1.00 0.00 0.796 1.00 0.00 0.748 0.99 0.01 0.784 1.00 0.00 0.636 1.00 0.00 0.562 1.00 0.00 0.660

0.8 0.4 1.00 0.00 0.796 1.00 0.00 0.748 0.99 0.01 0.784 1.00 0.00 0.636 1.00 0.00 0.562 0.86 0.14 0.700

0.8 0.6 0.84 0.16 0.800 0.78 0.22 0.762 0.87 0.13 0.800 0.85 0.15 0.640 0.70 0.30 0.582 0.86 0.14 0.720

0.8 0.8 0.47 0.53 0.854 0.42 0.58 0.823 0.34 0.66 0.853 0.49 0.51 0.697 0.44 0.56 0.659 0.28 0.72 0.800

n0 = n1 = 50, ρ = 0.75, σ1 = 1, σ2 = 1

0.2 0.2 0.41 0.59 0.223 0.39 0.61 0.223 0.43 0.57 0.245 0.79 0.21 0.169 0.20 0.80 0.198 0.38 0.62 0.280

0.4 0.2 1.00 0.00 0.400 1.00 0.00 0.370 1.00 0.00 0.384 1.00 0.00 0.300 1.00 0.00 0.267 0.51 0.49 0.320

0.4 0.4 0.44 0.56 0.426 0.36 0.64 0.411 0.31 0.69 0.434 0.55 0.45 0.314 0.34 0.66 0.313 0.38 0.62 0.400

0.6 0.2 1.00 0.00 0.595 1.00 0.00 0.552 1.00 0.00 0.573 1.00 0.00 0.451 1.00 0.00 0.399 1.00 0.00 0.480

0.6 0.4 1.00 0.00 0.595 1.00 0.00 0.552 0.92 0.08 0.577 1.00 0.00 0.451 1.00 0.00 0.399 1.00 0.00 0.480

0.6 0.6 0.45 0.55 0.627 0.36 0.64 0.600 0.42 0.58 0.629 0.50 0.50 0.474 0.37 0.63 0.442 0.44 0.56 0.520

0.8 0.2 1.00 0.00 0.792 1.00 0.00 0.750 1.00 0.00 0.786 1.00 0.00 0.632 1.00 0.00 0.570 1.00 0.00 0.700

0.8 0.4 1.00 0.00 0.792 1.00 0.00 0.750 1.00 0.00 0.786 1.00 0.00 0.632 1.00 0.00 0.570 1.00 0.00 0.700

0.8 0.6 1.00 0.00 0.792 1.00 0.00 0.750 1.00 0.00 0.786 1.00 0.00 0.632 1.00 0.00 0.570 1.00 0.00 0.700

0.8 0.8 0.46 0.54 0.822 0.38 0.62 0.790 0.41 0.59 0.827 0.49 0.51 0.661 0.40 0.60 0.622 0.45 0.55 0.760

Table 4: Simulated data example, Bivariate normal distribution, Scenario 1, n0 = n1 = 50
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G1 G2 α̂b Ĝb α̂k Ĝk α̂e Ĝe α̂b V̂b α̂k V̂k α̂e V̂e

n0 = n1 = 100, ρ = 0, σ1 = 1, σ2 = 1

0.2 0.2 0.50 0.50 0.291 0.55 0.45 0.318 0.52 0.48 0.330 0.47 0.53 0.221 0.54 0.46 0.239 0.38 0.62 0.320

0.4 0.2 0.65 0.35 0.443 0.59 0.41 0.466 0.60 0.40 0.485 0.62 0.38 0.327 0.62 0.38 0.345 0.69 0.31 0.410

0.4 0.4 0.50 0.50 0.545 0.52 0.48 0.566 0.53 0.47 0.587 0.49 0.51 0.410 0.51 0.49 0.425 0.48 0.52 0.530

0.6 0.2 0.73 0.27 0.614 0.67 0.33 0.622 0.71 0.29 0.643 0.71 0.29 0.462 0.66 0.34 0.467 0.48 0.52 0.540

0.6 0.4 0.60 0.40 0.677 0.57 0.43 0.689 0.57 0.43 0.709 0.59 0.41 0.519 0.56 0.44 0.531 0.52 0.48 0.630

0.6 0.6 0.50 0.50 0.764 0.53 0.47 0.765 0.53 0.47 0.782 0.50 0.50 0.603 0.52 0.48 0.612 0.55 0.45 0.690

0.8 0.2 0.78 0.22 0.796 0.72 0.28 0.786 0.71 0.29 0.807 0.78 0.22 0.632 0.67 0.33 0.620 0.69 0.31 0.710

0.8 0.4 0.68 0.32 0.827 0.65 0.35 0.819 0.65 0.35 0.838 0.67 0.33 0.666 0.60 0.40 0.665 0.70 0.30 0.740

0.8 0.6 0.59 0.41 0.871 0.58 0.42 0.860 0.58 0.42 0.870 0.58 0.42 0.719 0.56 0.44 0.719 0.58 0.42 0.800

0.8 0.8 0.50 0.50 0.927 0.47 0.53 0.912 0.51 0.49 0.920 0.50 0.50 0.798 0.52 0.48 0.786 0.62 0.38 0.850

n0 = n1 = 100, ρ = 0.5, σ1 = 1, σ2 = 1

0.2 0.2 0.62 0.38 0.229 0.66 0.34 0.235 0.73 0.27 0.252 0.75 0.25 0.177 0.73 0.27 0.189 1.00 0.00 0.250

0.4 0.2 1.00 0.00 0.404 1.00 0.00 0.414 0.97 0.03 0.429 1.00 0.00 0.303 1.00 0.00 0.313 0.99 0.01 0.380

0.4 0.4 0.59 0.41 0.441 0.63 0.37 0.433 0.68 0.32 0.456 0.63 0.37 0.327 0.70 0.30 0.326 0.71 0.29 0.390

0.6 0.2 1.00 0.00 0.598 1.00 0.00 0.600 1.00 0.00 0.624 1.00 0.00 0.454 1.00 0.00 0.455 1.00 0.00 0.540

0.6 0.4 0.92 0.08 0.599 1.00 0.00 0.600 1.00 0.00 0.624 0.93 0.07 0.455 1.00 0.00 0.455 1.00 0.00 0.540

0.6 0.6 0.58 0.42 0.647 0.62 0.38 0.627 0.56 0.44 0.652 0.60 0.40 0.493 0.68 0.32 0.471 0.98 0.02 0.550

0.8 0.2 1.00 0.00 0.794 1.00 0.00 0.785 1.00 0.00 0.802 1.00 0.00 0.634 1.00 0.00 0.617 1.00 0.00 0.690

0.8 0.4 1.00 0.00 0.794 1.00 0.00 0.785 1.00 0.00 0.802 1.00 0.00 0.634 1.00 0.00 0.617 1.00 0.00 0.690

0.8 0.6 0.88 0.12 0.797 0.94 0.06 0.785 0.90 0.10 0.805 0.89 0.11 0.637 1.00 0.00 0.617 1.00 0.00 0.690

0.8 0.8 0.58 0.42 0.840 0.62 0.38 0.813 0.66 0.34 0.838 0.59 0.41 0.682 0.65 0.35 0.643 0.33 0.67 0.710

n0 = n1 = 100, ρ = 0.75, σ1 = 1, σ2 = 1

0.2 0.2 0.68 0.32 0.213 0.90 0.10 0.219 0.84 0.16 0.236 0.92 0.08 0.167 0.86 0.14 0.179 0.55 0.45 0.230

0.4 0.2 1.00 0.00 0.400 1.00 0.00 0.400 1.00 0.00 0.419 1.00 0.00 0.299 1.00 0.00 0.305 1.00 0.00 0.360

0.4 0.4 0.64 0.36 0.412 0.75 0.25 0.404 0.86 0.14 0.428 0.71 0.29 0.306 0.81 0.19 0.307 0.91 0.09 0.370

0.6 0.2 1.00 0.00 0.593 1.00 0.00 0.583 1.00 0.00 0.608 1.00 0.00 0.449 1.00 0.00 0.441 1.00 0.00 0.520

0.6 0.4 1.00 0.00 0.593 1.00 0.00 0.583 1.00 0.00 0.608 1.00 0.00 0.449 1.00 0.00 0.441 1.00 0.00 0.520

0.6 0.6 0.63 0.37 0.610 0.62 0.38 0.590 0.67 0.33 0.620 0.66 0.34 0.462 0.78 0.22 0.444 1.00 0.00 0.520

0.8 0.2 1.00 0.00 0.789 1.00 0.00 0.771 1.00 0.00 0.795 1.00 0.00 0.629 1.00 0.00 0.598 1.00 0.00 0.640

0.8 0.4 1.00 0.00 0.789 1.00 0.00 0.771 1.00 0.00 0.795 1.00 0.00 0.629 1.00 0.00 0.598 1.00 0.00 0.640

0.8 0.6 1.00 0.00 0.789 1.00 0.00 0.771 1.00 0.00 0.795 1.00 0.00 0.629 1.00 0.00 0.598 1.00 0.00 0.640

0.8 0.8 0.62 0.38 0.807 0.62 0.38 0.778 0.81 0.19 0.804 0.64 0.36 0.646 0.69 0.31 0.609 0.31 0.69 0.680

Table 5: Simulated data example, Bivariate normal distribution, Scenario 1, n0 = n1 = 100
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G1 G2 α̂b Ĝb α̂k Ĝk α̂e Ĝe α̂b V̂b α̂k V̂k α̂e V̂e

n0 = n1 = 50, ρ = 0, σ1 = 2, σ2 = 1

0.2 0.2 0.39 0.61 0.286 0.33 0.67 0.268 0.29 0.71 0.290 1.00 0.00 0.333 0.95 0.05 0.369 0.46 0.54 0.360

0.4 0.2 0.56 0.44 0.444 0.56 0.44 0.402 0.75 0.25 0.440 0.90 0.10 0.405 0.84 0.16 0.428 0.54 0.46 0.440

0.4 0.4 0.40 0.60 0.545 0.34 0.66 0.514 0.39 0.61 0.548 0.63 0.37 0.422 0.82 0.18 0.436 0.58 0.42 0.520

0.6 0.2 0.66 0.34 0.623 0.63 0.37 0.571 0.69 0.31 0.620 0.83 0.17 0.524 0.89 0.11 0.513 0.96 0.04 0.580

0.6 0.4 0.51 0.49 0.682 0.43 0.57 0.634 0.52 0.48 0.662 0.64 0.36 0.549 0.77 0.23 0.523 0.63 0.37 0.660

0.6 0.6 0.40 0.60 0.767 0.35 0.65 0.733 0.33 0.67 0.758 0.46 0.54 0.610 0.49 0.51 0.573 0.49 0.51 0.700

0.8 0.2 0.74 0.26 0.809 0.83 0.17 0.755 0.76 0.24 0.791 0.84 0.16 0.687 0.80 0.20 0.647 0.81 0.19 0.760

0.8 0.4 0.60 0.40 0.835 0.56 0.44 0.790 0.54 0.46 0.817 0.70 0.30 0.705 0.69 0.31 0.665 0.84 0.16 0.760

0.8 0.6 0.50 0.50 0.876 0.44 0.56 0.845 0.46 0.54 0.884 0.57 0.43 0.740 0.59 0.41 0.697 0.68 0.32 0.780

0.8 0.8 0.40 0.60 0.930 0.41 0.59 0.914 0.41 0.59 0.939 0.43 0.57 0.804 0.45 0.55 0.756 0.47 0.53 0.860

n0 = n1 = 50, ρ = 0.5, σ1 = 2, σ2 = 1

0.2 0.2 0.39 0.61 0.262 0.10 0.90 0.245 0.58 0.42 0.272 1.00 0.00 0.325 1.00 0.00 0.361 1.00 0.00 0.380

0.4 0.2 0.90 0.10 0.421 0.85 0.15 0.395 0.76 0.24 0.428 1.00 0.00 0.402 1.00 0.00 0.418 1.00 0.00 0.440

0.4 0.4 0.38 0.62 0.483 0.35 0.65 0.443 0.46 0.54 0.482 1.00 0.00 0.402 1.00 0.00 0.418 0.26 0.74 0.460

0.6 0.2 1.00 0.00 0.612 0.95 0.05 0.565 0.98 0.02 0.600 1.00 0.00 0.521 1.00 0.00 0.517 1.00 0.00 0.600

0.6 0.4 0.71 0.29 0.622 0.75 0.25 0.577 0.77 0.23 0.618 1.00 0.00 0.521 1.00 0.00 0.517 1.00 0.00 0.600

0.6 0.6 0.38 0.62 0.689 0.35 0.65 0.637 0.39 0.61 0.670 0.55 0.45 0.540 0.91 0.09 0.518 0.94 0.06 0.620

0.8 0.2 1.00 0.00 0.805 1.00 0.00 0.752 1.00 0.00 0.805 1.00 0.00 0.684 1.00 0.00 0.653 1.00 0.00 0.740

0.8 0.4 1.00 0.00 0.805 0.93 0.07 0.753 1.00 0.00 0.805 1.00 0.00 0.684 1.00 0.00 0.653 1.00 0.00 0.740

0.8 0.6 0.67 0.33 0.817 0.74 0.26 0.766 0.93 0.07 0.806 0.88 0.12 0.685 1.00 0.00 0.653 1.00 0.00 0.740

0.8 0.8 0.38 0.62 0.872 0.34 0.66 0.828 0.32 0.68 0.860 0.46 0.54 0.726 0.67 0.33 0.665 0.69 0.31 0.760

n0 = n1 = 50, ρ = 0.75, σ1 = 2, σ2 = 1

0.2 0.2 0.38 0.62 0.249 0.56 0.44 0.239 0.54 0.46 0.266 1.00 0.00 0.325 1.00 0.00 0.351 1.00 0.00 0.360

0.4 0.2 1.00 0.00 0.423 1.00 0.00 0.395 1.00 0.00 0.428 1.00 0.00 0.403 1.00 0.00 0.414 1.00 0.00 0.440

0.4 0.4 0.37 0.63 0.455 0.56 0.44 0.420 0.38 0.62 0.464 1.00 0.00 0.403 1.00 0.00 0.414 1.00 0.00 0.440

0.6 0.2 1.00 0.00 0.615 1.00 0.00 0.568 1.00 0.00 0.602 1.00 0.00 0.523 1.00 0.00 0.510 1.00 0.00 0.580

0.6 0.4 1.00 0.00 0.615 0.95 0.05 0.568 1.00 0.00 0.602 1.00 0.00 0.523 1.00 0.00 0.510 1.00 0.00 0.580

0.6 0.6 0.37 0.63 0.655 0.24 0.76 0.602 0.51 0.49 0.643 1.00 0.00 0.523 1.00 0.00 0.510 1.00 0.00 0.580

0.8 0.2 1.00 0.00 0.806 1.00 0.00 0.753 1.00 0.00 0.799 1.00 0.00 0.685 1.00 0.00 0.650 1.00 0.00 0.720

0.8 0.4 1.00 0.00 0.806 1.00 0.00 0.753 1.00 0.00 0.799 1.00 0.00 0.685 1.00 0.00 0.650 1.00 0.00 0.720

0.8 0.6 1.00 0.00 0.806 0.94 0.06 0.753 1.00 0.00 0.799 1.00 0.00 0.685 1.00 0.00 0.650 1.00 0.00 0.720

0.8 0.8 0.37 0.63 0.842 0.24 0.76 0.791 0.39 0.61 0.829 0.60 0.40 0.693 1.00 0.00 0.650 0.95 0.05 0.740

Table 6: Simulated data example, Bivariate normal distribution, Scenario 2, n0 = n1 = 50
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G1 G2 α̂b Ĝb α̂k Ĝk α̂e Ĝe α̂b V̂b α̂k V̂k α̂e V̂e

n0 = n1 = 100, ρ = 0, σ1 = 2, σ2 = 1

0.2 0.2 0.38 0.62 0.278 0.55 0.45 0.297 0.62 0.38 0.318 0.89 0.11 0.314 0.69 0.31 0.329 0.64 0.36 0.350

0.4 0.2 0.58 0.42 0.425 0.68 0.32 0.445 0.65 0.35 0.466 0.84 0.16 0.388 0.72 0.28 0.414 0.72 0.28 0.450

0.4 0.4 0.38 0.62 0.519 0.44 0.56 0.511 0.41 0.59 0.541 0.60 0.40 0.411 0.64 0.36 0.439 0.67 0.33 0.490

0.6 0.2 0.71 0.29 0.597 0.78 0.22 0.595 0.71 0.29 0.616 0.83 0.17 0.502 0.99 0.01 0.519 0.70 0.30 0.560

0.6 0.4 0.51 0.49 0.649 0.55 0.45 0.635 0.53 0.47 0.659 0.64 0.36 0.526 0.70 0.30 0.527 0.61 0.39 0.590

0.6 0.6 0.38 0.62 0.735 0.37 0.63 0.708 0.35 0.65 0.731 0.45 0.55 0.584 0.56 0.44 0.564 0.45 0.55 0.630

0.8 0.2 0.82 0.18 0.784 0.84 0.16 0.753 0.84 0.16 0.773 0.87 0.13 0.660 1.00 0.00 0.657 1.00 0.00 0.730

0.8 0.4 0.63 0.37 0.805 0.67 0.33 0.771 0.60 0.40 0.788 0.71 0.29 0.675 0.85 0.15 0.662 1.00 0.00 0.730

0.8 0.6 0.50 0.50 0.846 0.49 0.51 0.810 0.45 0.55 0.826 0.57 0.43 0.709 0.75 0.25 0.679 0.62 0.38 0.750

0.8 0.8 0.38 0.62 0.907 0.35 0.65 0.880 0.30 0.70 0.897 0.42 0.58 0.774 0.43 0.57 0.727 0.44 0.56 0.820

n0 = n1 = 100, ρ = 0.5, σ1 = 2, σ2 = 1

0.2 0.2 0.45 0.55 0.280 0.64 0.36 0.308 0.73 0.27 0.332 1.00 0.00 0.332 1.00 0.00 0.344 1.00 0.00 0.350

0.4 0.2 0.97 0.03 0.438 0.93 0.07 0.457 0.87 0.13 0.481 1.00 0.00 0.411 1.00 0.00 0.429 0.74 0.26 0.450

0.4 0.4 0.43 0.57 0.487 0.49 0.51 0.495 0.49 0.51 0.522 0.87 0.13 0.413 0.81 0.19 0.431 0.49 0.51 0.480

0.6 0.2 1.00 0.00 0.622 1.00 0.00 0.615 1.00 0.00 0.632 1.00 0.00 0.529 1.00 0.00 0.534 1.00 0.00 0.600

0.6 0.4 0.78 0.22 0.627 0.72 0.28 0.623 0.64 0.36 0.651 0.98 0.02 0.529 0.86 0.14 0.536 1.00 0.00 0.600

0.6 0.6 0.42 0.58 0.683 0.48 0.52 0.670 0.51 0.49 0.691 0.60 0.40 0.548 0.63 0.37 0.562 0.66 0.34 0.650

0.8 0.2 1.00 0.00 0.807 1.00 0.00 0.774 1.00 0.00 0.795 1.00 0.00 0.686 1.00 0.00 0.673 1.00 0.00 0.770

0.8 0.4 1.00 0.00 0.807 1.00 0.00 0.774 0.99 0.01 0.795 1.00 0.00 0.686 0.88 0.12 0.675 1.00 0.00 0.770

0.8 0.6 0.74 0.26 0.814 0.64 0.36 0.782 0.63 0.37 0.797 0.87 0.13 0.688 0.79 0.21 0.684 0.91 0.09 0.780

0.8 0.8 0.42 0.58 0.861 0.34 0.66 0.829 0.37 0.63 0.847 0.52 0.48 0.722 0.56 0.44 0.715 0.56 0.44 0.800

n0 = n1 = 100, ρ = 0.75, σ1 = 2, σ2 = 1

0.2 0.2 0.45 0.55 0.272 0.65 0.35 0.299 0.84 0.16 0.323 1.00 0.00 0.340 1.00 0.00 0.348 0.81 0.19 0.350

0.4 0.2 1.00 0.00 0.443 1.00 0.00 0.461 0.97 0.03 0.485 1.00 0.00 0.418 1.00 0.00 0.437 1.00 0.00 0.430

0.4 0.4 0.44 0.56 0.467 0.55 0.45 0.478 0.56 0.44 0.503 1.00 0.00 0.418 1.00 0.00 0.437 0.89 0.11 0.440

0.6 0.2 1.00 0.00 0.627 1.00 0.00 0.620 1.00 0.00 0.637 1.00 0.00 0.535 1.00 0.00 0.546 1.00 0.00 0.610

0.6 0.4 1.00 0.00 0.627 1.00 0.00 0.620 0.89 0.11 0.639 1.00 0.00 0.535 1.00 0.00 0.546 1.00 0.00 0.610

0.6 0.6 0.44 0.56 0.656 0.52 0.48 0.647 0.53 0.47 0.674 0.96 0.04 0.535 0.86 0.14 0.547 0.63 0.37 0.630

0.8 0.2 1.00 0.00 0.811 1.00 0.00 0.777 1.00 0.00 0.795 1.00 0.00 0.691 1.00 0.00 0.686 1.00 0.00 0.770

0.8 0.4 1.00 0.00 0.811 1.00 0.00 0.777 1.00 0.00 0.795 1.00 0.00 0.691 1.00 0.00 0.686 1.00 0.00 0.770

0.8 0.6 1.00 0.00 0.811 1.00 0.00 0.777 1.00 0.00 0.795 1.00 0.00 0.691 1.00 0.00 0.686 1.00 0.00 0.770

0.8 0.8 0.43 0.57 0.837 0.36 0.64 0.806 0.28 0.72 0.824 0.69 0.31 0.698 0.69 0.31 0.693 1.00 0.00 0.770

Table 7: Simulated data example, Bivariate normal distribution, Scenario 2, n0 = n1 = 100

17



G1 G2 α̂b Ĝb α̂k Ĝk α̂e Ĝe α̂b V̂b α̂k V̂k α̂e V̂e

n0 = n1 = 50, ρ = 0, σ1 = 2, σ2 = 1.5

0.2 0.2 0.48 0.52 0.329 0.50 0.50 0.280 0.41 0.59 0.287 1.00 0.00 0.409 1.00 0.00 0.433 0.98 0.02 0.400

0.4 0.2 0.58 0.42 0.497 0.52 0.48 0.444 0.52 0.48 0.476 0.97 0.03 0.467 1.00 0.00 0.465 0.87 0.13 0.500

0.4 0.4 0.49 0.51 0.601 0.47 0.53 0.562 0.44 0.56 0.598 0.56 0.44 0.497 0.83 0.17 0.471 0.64 0.36 0.540

0.6 0.2 0.64 0.36 0.673 0.55 0.45 0.619 0.60 0.40 0.662 0.76 0.24 0.578 0.99 0.01 0.549 0.65 0.35 0.620

0.6 0.4 0.55 0.45 0.739 0.51 0.49 0.707 0.55 0.45 0.742 0.61 0.39 0.618 0.71 0.29 0.552 0.69 0.31 0.640

0.6 0.6 0.49 0.51 0.817 0.46 0.54 0.802 0.45 0.55 0.834 0.52 0.48 0.686 0.49 0.51 0.622 0.58 0.42 0.700

0.8 0.2 0.68 0.32 0.845 0.61 0.39 0.803 0.64 0.36 0.857 0.75 0.25 0.734 0.75 0.25 0.665 0.80 0.20 0.740

0.8 0.4 0.61 0.39 0.877 0.55 0.45 0.856 0.67 0.33 0.895 0.66 0.34 0.763 0.65 0.35 0.696 0.73 0.27 0.780

0.8 0.6 0.55 0.45 0.915 0.51 0.49 0.908 0.53 0.47 0.934 0.58 0.42 0.805 0.55 0.45 0.747 0.48 0.52 0.840

0.8 0.8 0.49 0.51 0.956 0.46 0.54 0.957 0.55 0.45 0.970 0.51 0.49 0.864 0.48 0.52 0.826 0.55 0.45 0.920

n0 = n1 = 50, ρ = 0.5, σ1 = 2, σ2 = 1.5

0.2 0.2 0.15 0.85 0.255 0.17 0.83 0.199 0.16 0.84 0.199 1.00 0.00 0.399 1.00 0.00 0.393 0.73 0.27 0.380

0.4 0.2 0.55 0.45 0.354 0.83 0.17 0.299 0.76 0.24 0.327 1.00 0.00 0.440 1.00 0.00 0.428 1.00 0.00 0.460

0.4 0.4 0.23 0.77 0.483 0.17 0.83 0.422 0.30 0.70 0.460 1.00 0.00 0.440 1.00 0.00 0.428 1.00 0.00 0.460

0.6 0.2 0.85 0.15 0.523 1.00 0.00 0.475 1.00 0.00 0.501 1.00 0.00 0.519 1.00 0.00 0.494 1.00 0.00 0.560

0.6 0.4 0.48 0.52 0.580 0.42 0.58 0.508 0.38 0.62 0.554 1.00 0.00 0.519 0.85 0.15 0.499 1.00 0.00 0.560

0.6 0.6 0.27 0.73 0.698 0.17 0.83 0.646 0.12 0.88 0.686 0.34 0.66 0.559 0.86 0.14 0.510 0.20 0.80 0.600

0.8 0.2 1.00 0.00 0.731 1.00 0.00 0.686 0.98 0.02 0.727 1.00 0.00 0.653 1.00 0.00 0.621 1.00 0.00 0.640

0.8 0.4 0.73 0.27 0.742 0.86 0.14 0.688 0.94 0.06 0.730 1.00 0.00 0.653 1.00 0.00 0.621 1.00 0.00 0.640

0.8 0.6 0.48 0.52 0.792 0.42 0.58 0.738 0.40 0.60 0.786 0.64 0.36 0.666 1.00 0.00 0.621 0.40 0.60 0.680

0.8 0.8 0.28 0.72 0.882 0.17 0.83 0.860 0.23 0.77 0.899 0.33 0.67 0.749 0.27 0.73 0.699 0.38 0.62 0.780

n0 = n1 = 50, ρ = 0.75, σ1 = 2, σ2 = 1.5

0.2 0.2 0.00 1.00 0.228 0.00 1.00 0.175 0.51 0.49 0.177 1.00 0.00 0.387 1.00 0.00 0.389 0.79 0.21 0.360

0.4 0.2 1.00 0.00 0.334 1.00 0.00 0.297 1.00 0.00 0.322 1.00 0.00 0.431 1.00 0.00 0.425 1.00 0.00 0.460

0.4 0.4 0.08 0.92 0.441 0.01 0.99 0.376 0.08 0.92 0.410 1.00 0.00 0.431 1.00 0.00 0.425 1.00 0.00 0.460

0.6 0.2 1.00 0.00 0.530 1.00 0.00 0.478 1.00 0.00 0.493 1.00 0.00 0.515 1.00 0.00 0.494 1.00 0.00 0.560

0.6 0.4 0.71 0.29 0.537 0.97 0.03 0.478 0.90 0.10 0.496 1.00 0.00 0.515 0.92 0.08 0.494 1.00 0.00 0.560

0.6 0.6 0.13 0.87 0.649 0.03 0.97 0.585 0.08 0.92 0.635 0.33 0.67 0.517 0.93 0.07 0.500 0.32 0.68 0.580

0.8 0.2 1.00 0.00 0.739 1.00 0.00 0.690 1.00 0.00 0.730 1.00 0.00 0.654 1.00 0.00 0.613 1.00 0.00 0.640

0.8 0.4 1.00 0.00 0.739 1.00 0.00 0.690 1.00 0.00 0.730 1.00 0.00 0.654 1.00 0.00 0.613 1.00 0.00 0.640

0.8 0.6 0.68 0.32 0.748 0.91 0.09 0.692 0.97 0.03 0.734 1.00 0.00 0.654 1.00 0.00 0.613 1.00 0.00 0.640

0.8 0.8 0.16 0.84 0.844 0.03 0.97 0.803 0.18 0.82 0.850 0.26 0.74 0.703 0.17 0.83 0.644 0.20 0.80 0.760

Table 8: Simulated data example, Bivariate normal distribution, Scenario 3, n0 = n1 = 50
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G1 G2 α̂b Ĝb α̂k Ĝk α̂e Ĝe α̂b V̂b α̂k V̂k α̂e V̂e

n0 = n1 = 100, ρ = 0, σ1 = 2, σ2 = 1.5

0.2 0.2 0.46 0.54 0.274 0.56 0.44 0.285 0.61 0.39 0.310 0.96 0.04 0.352 0.84 0.16 0.371 0.67 0.33 0.370

0.4 0.2 0.69 0.31 0.435 0.69 0.31 0.441 0.74 0.26 0.467 0.89 0.11 0.424 0.80 0.20 0.450 0.64 0.36 0.490

0.4 0.4 0.47 0.53 0.523 0.51 0.49 0.513 0.49 0.51 0.535 0.62 0.38 0.449 0.70 0.30 0.475 0.82 0.18 0.520

0.6 0.2 0.82 0.18 0.620 0.74 0.26 0.599 0.83 0.17 0.623 0.90 0.10 0.540 0.80 0.20 0.554 0.83 0.17 0.620

0.6 0.4 0.62 0.38 0.664 0.61 0.39 0.640 0.59 0.41 0.658 0.70 0.30 0.561 0.74 0.26 0.576 0.77 0.23 0.640

0.6 0.6 0.47 0.53 0.743 0.49 0.51 0.716 0.42 0.58 0.737 0.53 0.47 0.616 0.61 0.39 0.611 0.69 0.31 0.670

0.8 0.2 0.91 0.09 0.812 0.96 0.04 0.766 1.00 0.00 0.784 0.94 0.06 0.700 0.93 0.07 0.686 1.00 0.00 0.750

0.8 0.4 0.74 0.26 0.827 0.69 0.31 0.787 0.80 0.20 0.802 0.79 0.21 0.712 0.78 0.22 0.696 0.63 0.37 0.780

0.8 0.6 0.60 0.40 0.861 0.55 0.45 0.826 0.55 0.45 0.842 0.65 0.35 0.742 0.66 0.34 0.721 0.61 0.39 0.790

0.8 0.8 0.47 0.53 0.914 0.43 0.57 0.889 0.42 0.58 0.905 0.51 0.49 0.801 0.53 0.47 0.770 0.59 0.41 0.830

n0 = n1 = 100, ρ = 0.5, σ1 = 2, σ2 = 1.5

0.2 0.2 0.40 0.60 0.243 0.40 0.60 0.264 0.46 0.54 0.287 1.00 0.00 0.298 1.00 0.00 0.339 0.26 0.74 0.360

0.4 0.2 0.99 0.01 0.408 0.87 0.13 0.402 1.00 0.00 0.428 1.00 0.00 0.380 1.00 0.00 0.410 0.56 0.44 0.430

0.4 0.4 0.45 0.55 0.464 0.40 0.60 0.460 0.33 0.67 0.483 0.52 0.48 0.401 0.47 0.53 0.428 0.53 0.47 0.500

0.6 0.2 1.00 0.00 0.610 1.00 0.00 0.581 0.99 0.01 0.611 1.00 0.00 0.510 1.00 0.00 0.514 1.00 0.00 0.550

0.6 0.4 0.83 0.17 0.614 0.87 0.13 0.588 0.95 0.05 0.614 0.89 0.11 0.511 1.00 0.00 0.514 0.84 0.16 0.570

0.6 0.6 0.47 0.53 0.674 0.37 0.63 0.642 0.48 0.52 0.664 0.49 0.51 0.553 0.49 0.51 0.546 0.62 0.38 0.620

0.8 0.2 1.00 0.00 0.809 1.00 0.00 0.767 1.00 0.00 0.791 1.00 0.00 0.682 1.00 0.00 0.656 1.00 0.00 0.720

0.8 0.4 1.00 0.00 0.809 1.00 0.00 0.767 1.00 0.00 0.791 1.00 0.00 0.682 1.00 0.00 0.656 1.00 0.00 0.720

0.8 0.6 0.81 0.19 0.814 0.87 0.13 0.774 0.83 0.17 0.795 0.83 0.17 0.686 0.93 0.07 0.656 0.84 0.16 0.730

0.8 0.8 0.48 0.52 0.862 0.43 0.57 0.821 0.53 0.47 0.841 0.49 0.51 0.735 0.53 0.47 0.688 0.76 0.24 0.760

n0 = n1 = 100, ρ = 0.75, σ1 = 2, σ2 = 1.5

0.2 0.2 0.37 0.63 0.227 0.30 0.70 0.248 0.51 0.49 0.273 1.00 0.00 0.303 1.00 0.00 0.339 0.11 0.89 0.340

0.4 0.2 1.00 0.00 0.410 1.00 0.00 0.404 1.00 0.00 0.428 1.00 0.00 0.384 1.00 0.00 0.410 1.00 0.00 0.420

0.4 0.4 0.44 0.56 0.436 0.38 0.62 0.433 0.49 0.51 0.461 0.82 0.18 0.385 1.00 0.00 0.410 0.49 0.51 0.480

0.6 0.2 1.00 0.00 0.611 1.00 0.00 0.584 1.00 0.00 0.610 1.00 0.00 0.512 1.00 0.00 0.512 1.00 0.00 0.540

0.6 0.4 1.00 0.00 0.611 1.00 0.00 0.584 1.00 0.00 0.610 1.00 0.00 0.512 1.00 0.00 0.512 0.93 0.07 0.550

0.6 0.6 0.47 0.53 0.640 0.38 0.62 0.609 0.34 0.66 0.632 0.58 0.42 0.525 0.48 0.52 0.522 0.57 0.43 0.590

0.8 0.2 1.00 0.00 0.809 1.00 0.00 0.768 1.00 0.00 0.788 1.00 0.00 0.683 1.00 0.00 0.652 1.00 0.00 0.700

0.8 0.4 1.00 0.00 0.809 1.00 0.00 0.768 1.00 0.00 0.788 1.00 0.00 0.683 1.00 0.00 0.652 1.00 0.00 0.700

0.8 0.6 1.00 0.00 0.809 1.00 0.00 0.768 1.00 0.00 0.788 1.00 0.00 0.683 1.00 0.00 0.652 0.94 0.06 0.710

0.8 0.8 0.49 0.51 0.834 0.55 0.45 0.791 0.45 0.55 0.811 0.55 0.45 0.702 0.60 0.40 0.662 0.90 0.10 0.730

Table 9: Simulated data example, Bivariate normal distribution, Scenario 3, n0 = n1 = 100

References

[1] Pepe MS, Thompson ML. Combining diagnostic test results to increase accuracy. Biostatistics 2000;

1(2):123–140.

[2] Samawi HM, Yin J, Rochani H, Panchal V. Notes on the overlap measure as an alternative to the

youden index: How are they related? Statistics in Medicine 2017; 36(26):4230–4240.

19



[3] Franco-Pereira AM, Nakas CT, Reiser B, Carmen Pardo M. Inference on the overlap coefficient: The

binormal approach and alternatives. Statistical Methods in Medical Research 2021; 30(12):2672–2684.

[4] Schmid F, Schmidt A. Nonparametric estimation of the coefficient of overlapping—theory and empirical

application. Computational Statistics & Data Analysis 2006; 50(6):1583–1596.

[5] Wang D, Tian L. Parametric methods for confidence interval estimation of overlap coefficients. Compu-

tational Statistics & Data Analysis 2017; 106:12–26.

[6] Zhou XH, McClish DK, Obuchowski NA. Statistical Methods in Diagnostic Medicine. Wiley-Interscience:

New York, 2002.

[7] Hand DJ, Till RJ. A simple generalisation of the area under the roc curve for multiple class classification

problems. Machine Learning 2001; 45(2):171–186.

[8] Komaba A, Johno H, Nakamoto K. A novel statistical approach for two-sample testing based on the

overlap coefficient 2023.

[9] Su J, Liu J. Linear combinations of multiple diagnostic markers. Journal of the American Statistical

Association 1993; 88(424):1350–1355.

[10] Pepe M, Cai T, Longton G. Combining predictors for classification using the area under the receiver

operating characteristic curve. Biometrics 2006; 62(1):221–229.

[11] Coolen-Maturi T. Predictive inference for best linear combination of biomarkers subject to limits of

detection. Statistics in Medicine 2017; 36(18):2844–2874.

[12] Krzanowski WJ, Hand DJ. ROC Curves for Continuous Data. Chapman & Hall/CRC: Boca Raton,

FL, 2009.

[13] Wieand S, Gail MH, James BR, James KL. A family of nonparametric statistics for comparing diagnostic

markers with paired or unpaired data. Biometrika 1989; 76(3):585–592.

[14] Cox LH, Johnson MM, Kafadar K. Exposition of statistical graphics technology. ASA Statistical Com-

puting Section, 1982; 55–56.

[15] Li J, Fine JP. Weighted area under the receiver operating characteristic curve and its application to gene

selection. Journal of the Royal Statistical Society: Series C (Applied Statistics) 2010; 59(4):673–692.
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