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The balance between the degradation and preservation of organic carbon (OC)
is vital for the modulation of atmospheric CO2 and O2 in the Earth system, which
regulates short-term climate as well as oxygenation of the early Earth. The min-
eral carbon pump (MnCP) was recently proposed to describe how soil minerals
enhance the persistence and accumulation of OC, where interactions with min-
erals stabilize labile OC against microbial degradation (including via sorption, oc-
clusion, aggregation, geopolymerization, and redox reactions).1 Given the wide-
spread occurrence of metal (oxyhydr)oxides and clay minerals in terrestrial
andmarine environments and building on recent progress in mineral-OC interac-
tions,we suggest that theMnCPoccursacross the Earth system,where it plays a
Figure 1. Mineral-OC interactions (MnCP) exist
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key role in OC preservation and hence the global carbon and oxygen cycles
(Figure 1).
Contact between minerals and OC is inevitable in many terrestrial and marine

environments, and interfacial reactions can happen spontaneously and
commonly between minerals with charged hydroxyl groups, and/or permanent
charge, and functional groups of OC (notably carboxyl, phenol, and amine).Metal
(oxyhydr)oxides, particularly iron (oxyhydr)oxides, are typically an order ofmagni-
tude less abundant than clayminerals but are often disproportionately important
for OC preservation because they have higher surface area and extremely reac-
tive surfaces that facilitate dynamic interfacial reactions. Up to 80% of all OC
in multiple environments of the Earth system
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 across global terrestrial andmarine depositional environments is preserved inas-

sociation with reactive iron. In marine sediments, recent work finds that reactive
iron and manganese minerals can geopolymerize labile OCmolecules into more
complex and recalcitrant macromolecular OC forms under ambient marine sedi-
ment conditions to bury around 4.1Mt C year�1.2 Recentwork also shows that in
the ocean interior, the key role of the coupling between colloidal ironminerals and
OC molecules is controlling iron distributions in seawater.3 This colloidal shunt
mechanism highlights an important link between iron minerals and OC, like their
coupling inmarine sediments above. Thus, although oceanic primary production
(PP) is often limited by iron, the MnCP can decouple PP from OC burial by
enhancing preservation without requiring a concomitant increase in PP.

Clay minerals possess both charged hydroxyl groups and permanent surface
charge and thus can also provide an important repository for OC in terrestrial and
marine environments, where they may also occlude OC within their interlayers.
Working together in concert, iron (oxyhydr)oxides/clay minerals can facilitate
terrestrial OC burial during erosion and fluvial transit, which transfers biospheric
particulate OC (POC) to downstream depositional basins or lakes, where mineral
protection significantly reduces POC loss due to oxidation. Fluvial OC can also
endure in marine environments when tightly associated with mica and chlorite,4

where it escapes disassociation thatwould otherwise occurwhen exposed to the
high ionic strength of seawater. Once in the ocean, iron (oxyhydr)oxides/claymin-
erals can aggregate with algae to increase the carbon sequestration of the bio-
logical carbon pump, as mineral-OC aggregates usually sink faster in seawater
andare thus less prone tomicrobial degradation. These findings strongly support
the operation of the MnCP in environments other than soils, including fluvial and
marine environments, where in the marine environment, the MnCP occurs in
addition to the marine microbial carbon pump.

Such is the importance of the interactions between minerals and OC in the
Earth system that the MnCP could have helped drive the origin of life and facili-
tated Earth’s biogeochemical evolution. Seafloor hydrothermal sediments and
chimneys can provide flowthrough gradient systems (such as pH, temperature,
and redox) that combine reactive minerals with organic compounds, which offer
favorable conditions for redox and geopolymerization reactions that may have
been instrumental in life’s beginnings. Reactive minerals like iron (oxyhydr)oxide
or saponite clay can catalyze the synthesis of macromolecules (such as RNA
and peptides) from smaller OC molecules in these environments. Given that
the protection of OC via the MnCP results in the partial burial of OC, this allows
O2 to accumulate in Earth’s early atmosphere. Through a compilation of the con-
tents of iron oxides in fine-grained marine sediments throughout Earth history,
recent works finds that the mean content of iron oxides of post-Tonian age
(<830 Ma) is more than twice that of the pre-Cryogenian (>830 Ma)—0.43 ±

0.12 versus 0.19 ± 0.06 wt %.5 Along with a biogeochemical model, this work
shows that an increase in the burial of OC associated with iron oxides could
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be a driver for the Neoproterozoic Oxygenation Event (NOE) and Great Oxidation
Event (GOE). The increase in atmospheric oxygen could further promote the
oxidation of pyrite in marine sediments to iron oxides, further accelerating OC
burial and atmospheric oxygenation, thus providing a positive feedback on
oxygenation.5

In summary, we posit that theMnCP is ubiquitous acrossmany different Earth
systems and should be included inmultiple levels of modeling processes. Based
on the variety of reactiveminerals, includingmetal (oxyhydr)oxides and clays, the
different types/sources of OC, and the array of environmental conditions present
across the Earth system, we expect that different mineral-OC interactions
(MnCP) likely dominate in different systems, leading to varied rates/efficiencies
of the MnCP, which should now be quantitatively evaluated to assess their
impact on OC preservation and burial, carbon and oxygen cycling, and related
Earth system processes. Harnessing the power of the MnCP could also play a
critical role in increasing OC stocks for climate change mitigation and achieving
carbon neutrality.
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