
Information and Computation 303 (2025) 105266

Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Generalising the maximum independent set algorithm via

Boolean networks

Maximilien Gadouleau ∗, David C. Kutner

Department of Computer Science, Durham University, Durham, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 March 2024
Received in revised form 10 January 2025
Accepted 10 January 2025
Available online 17 January 2025

A simple greedy algorithm to find a maximal independent set (MIS) in a graph starts
with the empty set and visits every vertex, adding it to the set if and only if none of
its neighbours are already in the set. In this paper, we consider (the complexity of decision
problems related to) the generalisation of this MIS algorithm wherein any starting set
is allowed. Two main approaches are leveraged. Firstly, we view the MIS algorithm as
a sequential update of a Boolean network according to a permutation of the vertex set.
Secondly, we introduce the concept of a constituency of a graph: a set of vertices that is
dominated by an independent set. Recognizing a constituency is NP-complete, a fact we
leverage repeatedly in our investigation.
Our contributions are multiple: we establish that deciding whether all maximal independent
sets can be reached from some configuration is coNP-complete; that fixing words (which
reach a MIS from any starting configuration) and fixing permutations (briefly, permises)
are coNP-complete to recognize; and that permissible graphs (graphs with a permis) are
coNP-hard to recognize. We also exhibit large classes of permissible and non-permissible
graphs, notably near-comparability graphs which may be of independent interest.
Lastly, we extend our study to digraphs, where we search for kernels. Since the natural
generalisation of our approach may not necessarily find a kernel, we introduce two further
Boolean networks for digraphs: one always finds an independent set, and the other always
finds a dominating set.

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The MIS algorithm A simple greedy algorithm to find a maximal independent set (MIS) in a graph starts with the empty set
and visits every vertex, adding it to the set if and only if none of its neighbours are already in the set. We shall refer to it
as the MIS algorithm. Because the MIS algorithm always terminates in a maximal independent set, it has been the subject
of a stream of work (see [9] and references therein).

A core feature of the classical MIS algorithm is that the starting set of vertices is the empty set. However, the seminal
observation of this paper is that this constraint can be lifted. Indeed, starting from any set of vertices and visiting each
vertex once, removing a vertex if one of its neighbours already appears in the set, one always terminates at an independent
set. Moreover, starting from any independent set and visiting each vertex once, one always terminates at a MIS. Thus,
iterating over the vertex set twice is sufficient to obtain a MIS from any starting set of vertices.

* Corresponding author.
E-mail addresses: m.r.gadouleau@durham.ac.uk (M. Gadouleau), david.c.kutner@durham.ac.uk (D.C. Kutner).

https://doi.org/10.1016/j.ic.2025.105266
0890-5401/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ic.2025.105266
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2025.105266&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:m.r.gadouleau@durham.ac.uk
mailto:david.c.kutner@durham.ac.uk
https://doi.org/10.1016/j.ic.2025.105266
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

As such, the scope of this paper is the generalisation of the MIS algorithm, where one can start with any (not necessarily
independent) set of vertices, and one can visit vertices in any order with possible repetitions. Of course, some sequences of
vertices will guarantee reaching a MIS from any starting configuration – we shall call those fixing words, while others will
not, as in Example 1.1 below.

Example 1.1. Consider the path on three vertices:

a b c

This graph has two MIS, namely {a, c} and {b}. Starting at the empty set, the MIS algorithm terminates at {b} if the sequence
begins with b (i.e. w = bac or w = bca) or at {a, c} otherwise (i.e. w ∈ {abc,acb, cab, cba}).

For this graph, abc is not a fixing word: if one starts from the set {b, c}, then one terminates at {c}. However, acb is a
fixing word: if the starting set contains b, then one terminates at {b}; otherwise one terminates at {a, c}.

Finally, for this graph, the words w = abcabc and w = acbacb are fixing words, as are any words of the form w = w1 w2,
where w1 and w2 are permutations of the vertex set.

Contributions for graphs Below we give a summary of our contributions for the MIS algorithm on graphs.
When starting from the empty set, the MIS algorithm is able to reach any possible maximal independent set (if the

algorithm goes through the MIS first, then it would terminate with that MIS). However, the empty set is not the only set
with that property: the full set of vertices also allows that (this time, if the algorithm finishes with a MIS). In Theorem 4.1,
we prove that deciding whether a set of vertices can reach every MIS is coNP-complete.

As we showed in Example 1.1, though iterating over the whole set of vertices twice is always sufficient to reach a MIS,
it is not always necessary. Consequently, we ask: what are the sequences of vertices which always reach a MIS, regardless
of the starting set of vertices? In Theorem 5.1, we prove that deciding whether a sequence offers that guarantee is coNP-
complete.

Since the MIS algorithm visits each vertex exactly once, we also consider permutations of vertices that are guaranteed
to reach a MIS; we call those permises. In Theorem 5.11, we prove that deciding whether a permutation of vertices is a
permis is coNP-complete. A graph that admits a permis is called permissible. Not all graphs are permissible; the smallest
non-permissible graph is the heptagon. We exhibit large classes of permissible and non-permissible graphs. In particular,
we introduce near-comparability graphs and classify them in Theorem 6.2; they naturally generalise comparability graphs
and can be recognised in polynomial time. We prove that near-comparability graphs are permissible in Proposition 6.1. In
Theorem 6.13, we prove that deciding whether a graph is permissible is coNP-hard. There is no obvious candidate for a
no-certificate, so it may be that the problem is not actually in coNP.

In some situations, one can skip some vertices and still guarantee a MIS is reached. For instance, in the complete graph,
one can simply update all but one vertex and still reach a maximal independent set, from any starting configuration. We
prove in Theorem 5.8 that deciding whether a given set of vertices can be skipped is coNP-complete. We also prove in
Theorem 5.9 that deciding whether any vertices can be skipped is coNP-complete.

Boolean networks Our main tool is Boolean networks. A configuration on a graph G = (V , E) is x ∈ {0,1}V , i.e. the assign-
ment of a Boolean state to every vertex of the graph. A Boolean network is a mapping F : {0,1}V →{0,1}V that acts on the
set of configurations. Boolean networks are used to model networks of interacting entities. As such, it is natural to consider
a scenario wherein the different entities update their state at different times. This gives rise to the notion of sequential (or
asynchronous) updates, by updating the state of one vertex at a time; a word w then gives the order in which those vertices
are updated (with repeats allowed in general). Since the original works by Kauffman [21] and Thomas [29], asynchronous
updates have been widely studied, both in terms of modelling purposes and of dynamical analysis (see [11,4] and references
therein). The problem of whether a Boolean network converges (sequentially) goes back to the seminal result by Robert on
acyclic interaction graphs [27]; further results include [19,18,24]. Recently, [5] introduced the concept of a fixing word: a
word w such that updating vertices according to w will always lead to a fixed point, regardless of the initial configuration.
Fixing words are a natural feature of Boolean networks, for two main reasons. Firstly, almost all networks with a fixed
point, and hence a positive asymptotic proportion of all networks, have fixing words [10]. Secondly, large classes of Boolean
networks, including monotone networks and networks with acyclic interaction graphs, have short fixing words (of length at
most cubic in |V |) [5,15].

We refer to the Boolean network where the update function is the conjunction of all the negated variables in the
neighbourhood of a vertex as the MIS network on the graph, i.e. M : {0,1}V →{0,1}V with M(x)v = ∧

u∼v ¬xu for all v ∈ V .
The MIS network was highlighted in [26,3], where the fixed points of different conjunctive networks on (directed) graphs
are studied. In particular, [26] shows that the set of fixed points of the MIS network is the set of (configurations whose
supports are) maximal independent sets of the graph. It is further shown in [3] that for square-free graphs, the MIS network
is the conjunctive network that maximises the number of fixed points.

The MIS algorithm can be interpreted in terms of Boolean networks as follows: starting with the all-zero configuration x,
update one vertex v at a time according to the update function M(x)v = ∧

u∼v ¬xu . Once all vertices have been updated, we

2

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

obtain the final configuration y where the set of ones is a maximal independent set, regardless of the order in which the
vertices have been updated. As such, fixing words of the MIS network correspond to sequences of vertices that guarantee
that the MIS algorithm terminates for any starting set of vertices. The seminal observation of this paper is that for any
permutation w , the word w w is a short fixing word (of length 2|V |).

Self-stabilization and distributed computing Some of our results may be applied in the context of distributed computing.
Similar to Boolean networks, distributed algorithms produce an output through local, independent updates of nodes in
a fixed topology. Asynchronous models for distributed computing do not assume a bound on message delay [2], making
them less relevant here. Consequently, we focus on synchronous models, in which time is discrete and all nodes perform
a SEND-RECEIVE-UPDATE loop synchronously at each time step. The algorithm executed at all nodes is identical, and the
state of some node at time t depends only on the state of (all nodes in) its inclusive neighbourhood at time t − 1. Some
key differences with the Boolean Network setting are worth emphasizing. For example, in standard models for synchronous
distributed computation: nodes each have an (unbounded-size) internal state, and may solve arbitrarily hard problems
during their UPDATE; messages sent may differ from the sender’s state; nodes may choose not to SEND anything at all; and
updates occur synchronously.

The problem of finding a MIS has been a focus of much study in this setting, including in the LOCAL [17], CONGEST [16]
and Beeping models [1,8]. LOCAL is characterized by its unrestricted message size, whereas CONGEST limits messages to
O (log |V |) bits per outgoing edge. The Beeping model is a significant restriction, in which nodes can communicate only via
beeps (which are indistinguishable) and silence [13]. We refer the interested reader to [12] for a more complete treatment
of this model’s variants, which also includes a discussion of the distributed MIS problem in Sections 4.5 and 6.2.

An algorithm or procedure is said to be “self-stabilizing” if it is guaranteed to reach a legitimate state regardless of
its initial state, and additionally will never reach an illegitimate state from a legitimate state [14,28]. This notion has been
integrated into the design of distributed algorithms [22] and is explicitly identified as a feature of the Beeping MIS algorithm
given in [1].

Our results do not directly apply to these models; in particular, we assume (and sometimes exploit) asynchronous and
instantaneous updates. That is, each vertex’s local update is immediately “visible” to all its neighbours. This differs from
standard models of distributed computing, which generally incorporate some transmission delay (which is typically one
unit in synchronous models, and controlled by an adversary in asynchronous models).

To emulate the MIS network M studied in the present work, it would then be sufficient for a distributed model to sup-
port: asynchronous updates (scheduled by an adversary or a helper) and instantaneous transmission. We call the minimum
length of time within which each node updates at least once a phase. In the adversarial setting, our seminal observation
translates to the fact that this protocol necessarily reaches a MIS within two phases from any starting configuration and
self-stabilizes. In the helpful setting, a Permis is an update schedule which guarantees self-stabilization within a single
phase. By Theorem 5.1, it is coNP-complete to determine whether some update schedule satisfies this property; by Theo-
rem 5.11, the problem remains coNP-complete even if the schedule is guaranteed to contain every node exactly once; and
by Theorem 6.13 it is coNP-hard to determine whether any such update schedule exists at all for the given network. If the
helpful scheduler is limited to some subset of nodes, Theorem 5.8 means it is coNP-hard to determine whether there is
a self-stabilizing schedule which uses only that subset of nodes. Furthermore, Theorem 5.9 entails that deciding whether
there exists any such schedule using n − 1 nodes (even allowing repetitions) is coNP-hard.

Constituencies The main tool for the hardness results in this paper is that of a constituency. A constituency is a set of
vertices of a graph that is dominated by an independent set, i.e. S is a constituency if there exists an independent set I
such that S ⊆ N(I). We believe that the constituency problem is of independent interest for a couple of reasons. Firstly,
this is a natural definition for a set of vertices, but to the best of the authors’ knowledge, it has not been considered
in the literature yet. Secondly, the Constituency problem asks whether a set S is a constituency. Unlike problems like
Clique, Independent Set or Vertex Cover, the Constituency problem does not rely on an integer parameter. Nonetheless,
Constituency is NP-complete, while the problem of deciding whether a set is a clique (or independent set, or vertex cover)
is clearly in P. As such, Constituency provides a natural intractable graph problem whose input does not include an integer.
We heavily use Constituency and its variants in our hardness proofs, and we believe that this problem could be used more
broadly for reductions in the wider graph theory community.

Extension to digraphs In this paper, we further generalise the MIS algorithm by applying it to the digraph case. In this case,
a vertex is added to the set if and only if none of its in-neighbours are already in the set. The expected outcome is a kernel,
i.e. a dominating independent set (equivalent to a maximal independent set if the digraph is a graph). Unfortunately, not all
digraphs have a kernel: odd directed cycles provide an intuitive example of kernel-less digraphs. In fact, deciding whether
a digraph has a kernel is NP-complete (see [7], p. 119).

Nonetheless, the algorithm for digraphs now corresponds to sequential updates of the kernel network, with K(x)v =∧
u→v ¬xu . Again, the set of fixed points of the kernel network is the set of (configurations whose supports are) kernels

[26]. As a side note, the kernel network has been heavily used in logic and philosophy. Indeed, Yablo discovered the first
non-self-referential paradox in [30]. The construction for this paradox implicitly applies the fact that the kernel network on

3

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

a transitive tournament on N has no fixed point. The study of acyclic digraphs that admit a paradox is continued further in
[25], where the kernel network is referred to as an F -system.

Some digraphs have a kernel and yet the corresponding kernel network does not have a fixing word. More strongly,
in Theorem 7.4 we show that deciding whether the kernel network has a fixing word is coNP-hard, and we show in
Theorem 7.5 that the result holds even for a restricted class of oriented digraphs that have a kernel.

We then consider two other Boolean networks, that are fixable for any digraph. Firstly, the independent network is given
by I(x)v = xv ∧ ∧

u→v ¬xu ; its set of fixed points consists of the independent sets of the digraph. We classify the fixing
words of the independent network in Proposition 7.7 and in Corollary 7.8 we prove that deciding whether a word fixes
the independent network is in P. Secondly, the dominating network is given by D(x)v = xv ∨ ∧

u→v ¬xu ; its set of fixed
points consists of the dominating sets of the digraph. Similarly, we classify the fixing words of the dominating network in
Proposition 7.10 and in Corollary 7.11 we prove that deciding whether a word fixes the dominating network is in P.

Outline The rest of the paper is organised as follows. Some necessary background is given in Section 2. Constituencies
and districts are introduced in Section 3, where some decision problems based on those are proved to be NP- or coNP-
complete. The configurations that allow to reach any possible maximal independent set are determined in Section 4. Fixing
words, fixing sets, and permises for the MIS network are studied in Section 5. Classes of permissible and non-permissible
graphs are given in Section 6. The extension to digraphs is carried out in Section 7, where we first consider fixing words
of the kernel network and then study the independent and dominating networks instead. Finally, some conclusions and
possible avenues for future work are given in Section 8.

2. Preliminaries

2.1. Graphs and digraphs

Most of our contributions (Sections 3 to 6) will focus on (undirected) graphs. However, when we extend our focus to
directed graphs, we shall view graphs as natural special cases of digraphs. As such, we give the background on graphs and
digraphs in its full generality, i.e. for digraphs first, and then we make some notes about the special case of graphs.

By digraph, we mean an irreflexive directed graph, i.e. G = (V , E) where E ⊆ V 2 \ {(v, v) : v ∈ V }. We use the notation
u → v to mean that (u, v) ∈ E . We say an edge (u, v) ∈ E is symmetric if (v, u) is also an edge, and oriented otherwise.
We will sometimes emphasize that (u, v) is symmetric by writing it uv instead. For a vertex v , the open in-neighbourhood,
closed in-neighbourhood, open out-neighbourhood and closed out-neighbourhood of the vertex v are respectively defined
as

N in(v) = {u ∈ V : u → v}, N in[v] = N in(v)∪ {v},
Nout(v) = {u ∈ V : v → u}, Nout[v] = Nout(v)∪ {v}.

All of those are generalised to sets of vertices, e.g. N in(S) = ⋃
s∈S N in(s). Clearly, all notations above should reflect the

dependence on the digraph G , e.g. N in(v;G); we shall omit that dependence on any notation when the digraph is clear
from the context.

For a digraph G = (V , E) and set of vertices S ⊆ V , we call the digraph (S, {(u, v) : (u, v) ∈ E ∧ {u, v} ⊆ S}) the induced
subgraph on S , which we denote G[S]. We denote G − S the digraph G[V \ S]. A path is a sequence of edges v1 → v2 →
·· ·→ vk where all vertices are distinct; a cycle in a digraph is a sequence of edges v1 → v2 → ·· ·→ vk → v1 where only
the first and the last vertices are equal. A digraph is strong if for all vertices u and v , there is a path from u to v . A strong
component of G is a subset of vertices S such that G[S] is strong, but G[T] is not strong for all T ⊋ S . A digraph is acyclic
if it has no cycles. An acyclic digraph has a topological order, whereby u → v only if u ≤ v . For instance, the digraph where
each vertex is a strong component of G and C → C ′ if and only if u → u′ for some u ∈ C , u′ ∈ C ′ is acyclic. If C → C ′ in that
digraph, we say that C is a parent component of C ; a strong component without any parent is called an initial component.

We say that two vertices u and v are closed twins if N in[u] = N in[v]. Accordingly, we say that the vertex m is a benjamin
of G if there is no vertex v with N in[v] ⊂ N in[m]. We denote the set of benjamins of G by B(G) and the corresponding
induced subgraph by GB = G[B(G)]. We say that a set of vertices S is tethered if there is an edge st between any s ∈ S and
any t ∈ T = N(S) \ S .

An out-tree is a digraph where all edges are oriented, one vertex has no in-neighbours (the so-called root), and all other
vertices have exactly one in-neighbour each. A spanning out-forest of a digraph G rooted at a set S ⊆ V is a collection of
out-trees, each rooted at a different vertex of S , such that each out-tree is a subgraph of G and each vertex of G appears in
exactly one out-tree. We shall use the following simple fact about spanning out-forests.

Lemma 2.1. If G is strong, then for any nonempty S ⊆ V , G has a spanning out-forest rooted at S.

Proof. Let S = {s1, . . . , sk}. For any u ∈ V , let sn(u) denote the nearest vertex in S from u with the smallest index. More
formally, let d(a,b) denote the length of a shortest path from a to b, then we define sn(u) such that d(sn(u), u) < d(sl, u) for

4

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

all 1 ≤ l ≤ n(u) and d(sn(u), u) ≤ d(sm, u) for all n(u) ≤ m ≤ k. For all 1 ≤ l ≤ k, let Tl = {u ∈ V : n(u) = l}. It is clear that if v
is on a shortest path from sn(u) to u, then n(v) = n(u) (in particular, n(sl) = l). Therefore, each Tl has a spanning out-forest
rooted at sl . The union of all the Tl trees forms the desired spanning out-forest rooted at S . �

A digraph is undirected if all its edges are symmetric; which we shall simply call a graph. We then denote N(v) =
N in(v) = Nout(v), which we call the neighbourhood of v . A strong graph is called connected, and the (initial) strong
components of a graph are called its connected components. In a graph, if u → v , then v → u, which we shall denote by
u ∼ v . Lemma 2.1 applied to graphs is given below – a spanning forest of a graph G rooted at a set S ⊆ V is a collection of
trees, each rooted at a different vertex of S , such that each tree is a subgraph of G and each vertex of G appears in exactly
one tree.

Corollary 2.2. If G is connected, then for any nonempty S ⊆ V , G has a spanning forest rooted at S.

2.2. Boolean networks

A configuration on a digraph G = (V , E) is x ∈ {0,1}V = (xv : v ∈ V), where xv ∈ {0,1} is the state of the vertex v for all
v . We denote 1(x) = {v ∈ V : xv = 1} and 0(x) = {v ∈ V : xv = 0}. Conversely, for any set of vertices S ⊆ V , the characteristic
vector of S is the configuration x = χ(S) such that 1(x) = S . For any set of vertices S ⊆ V , we denote xS = (xv : v ∈ S). We
denote the all-zero (all-one, respectively) configuration by 0 (by 1, respectively), regardless of its length.

We consider the following kinds of sets of vertices of, and accordingly configurations on, a digraph G:

1. An independent set I is a set such that (i, j) / ∈ E for all i, j ∈ I . (In other words, Nout(I)∩ I = ∅.) Every digraph G has an
independent set, namely the empty set ∅. The collection of characteristic vectors of independent sets of G is denoted by
I(G).

2. A dominating set D is a set such that for every vertex v ∈ V , either v ∈ D or there exists u ∈ D such that (u, v) ∈ E . (In
other words, Nout(D)∪ D = V .) Every digraph G has an dominating set, namely V . The collection of characteristic vectors
of dominating sets of G is denoted by D(G).

3. A kernel K is a dominating independent set. (In other words, Nout(K) � K = V .) Not all digraphs have a kernel, for
instance the directed cycle �Cn (with vertex set Zn and edges (v, v + 1) for all v ∈Zn) does not have a kernel whenever
n ≥ 3 is odd. The collection of characteristic vectors of kernels of G is denoted by K(G).

4. If G is a graph, then a kernel is a maximal independent set of G , i.e. an independent set I such that there is no
independent set J ⊃ I . Every graph has a maximal independent set. In order to highlight this special case of particular
importance to this paper, the collection of characteristic vectors of maximal independent sets of G is denoted by M(G).

Let w = w1 . . . wl ∈ V ∗ be a sequence of vertices, or briefly a word. For any a,b ∈ {1, . . . , l}, we denote wa:b = wa . . . wb
if a ≤ b and wa:b is the empty sequence if a > b. We also denote by [w] = {u ∈ V : ∃ j w j = u} the set of vertices that w
visits. For any S ⊆ V , the subword of w induced by S , denoted by w[S], is obtained by deleting all the entries in w that do
not belong to S; alternatively, it is the longest subword of w such that [w[S]] ⊆ S . A permutation of V is a word w = w1:n
such that [w] = V and wa �= wb for all a �= b.

A Boolean network is a mapping F : {0,1}V → {0,1}V . For any Boolean network F and any v ∈ V , the update of the
state of vertex v is represented by the network Fv : {0,1}V → {0,1}V where Fv(x)v = F(x)v and Fv (x)u = xu for all other
vertices u. We extend this notation to words as follows: if w = w1 . . . wl then

Fw = Fwl ◦ · · · ◦ Fw2 ◦ Fw1 .

Unless otherwise specified, we let x be the initial configuration, w = w1 . . . wl be a word, y = Fw(x) be the final configura-
tion, and for all 0 ≤ a ≤ l, ya = Fw1:a (x) be an intermediate configuration, so that x = y0 and y = yl .

If there is a word w such that y = Fw(x), we say that y is reachable from x, and we write x �→F y. For any two
configurations x and y, we denote �(x, y) = {v ∈ V : xv �= yv}. An F-geodesic from x to y is a word w such that y = Fw(x),
[w] = �(x, y) and wa �= wb for all a �= b, i.e. w visits every vertex v where x and y differ exactly once, and does not visit
any other vertex. If there exists a geodesic from x to y, we denote it by x

geo�−−→F y.
The set of fixed points of F is Fix(F) = {x ∈ {0,1}V : F(x) = x}. It is clear that x ∈ Fix(F) if and only if Fw (x) = x for any

word w , i.e. a “parallel” fixed point is also a “sequential” fixed point. The word w is a fixing word for F [5] (and we say
that w fixes F) if for all x, Fw (x) ∈ Fix(F) (see [5] for some examples of fixing words). A Boolean network is fixable if it has
a fixing word.

3. Constituencies and districts

In this section, we introduce two kinds of sets of vertices, namely constituencies and districts, and we determine the
complexity of some decision problems related to them. Even though both concepts will be useful to the sequel of this paper
(an intuition behind the role of constituencies is given in the introduction of Section 5), we believe that the concept of
constituency in particular is a natural property and is interesting to the wider graph theory community.

5

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 1. Illustration of the reduction from Set Cover to Constituency (the set S is the vertices in the dashed box). Here the Set Cover instance has C1 =
∅, C2 = {x1}, C3 = {x2, x3}, C4 = {x4}, with k = 2. Observe that both the Set Cover instance and the Constituency instance are no-instances.

3.1. Constituencies

Let G = (V , E) be a graph. A subset S of V is a constituency of G if there exists an independent set I such that S ⊆ N(I)
(note that this requires that S ∩ I = ∅). The following are equivalent for a set of vertices S ⊆ V (the proof is easy and hence
omitted):

1. S is a constituency of G , i.e. there exists an independent set I of G such that S ⊆ N(I);
2. V \ S contains a maximal independent set of G;
3. there exists a maximal independent set M of G such that M ∩ S = ∅;

A non-constituency is a set of vertices that is not a constituency. The Constituency (Non-Constituency, respectively)
problem asks, given a graph G and set S , whether S a constituency (a non-constituency, respectively) of G .

Constituency

Input: A graph G = (V , E) and a set of vertices S ⊆ V .
Question: Is S a constituency of G?

Non-Constituency

Input: A graph G = (V , E) and a set of vertices S ⊆ V .
Question: Is S a non-constituency of G?

Theorem 3.1. Constituency is NP-complete.

Proof. Membership of NP is known: the yes-certificate is an independent set I such that S ⊆ N(I).
The hardness proof is by reduction from Set Cover, which is NP-complete [20]. In Set Cover, the input is a finite set of

elements X = {x1, . . . , xn}, a collection C = {C1, C2, . . . , Cm} of subsets of X , and an integer k. The question is whether there
exists a subset Y ⊆ C of cardinality at most k such that ∪Ci∈Y Ci = X .

We first construct the graph G on n + mk vertices. G consists of: vertices Q j = {q1
j , . . . ,qk

j}, for each j ∈ [m]; vertices
vi for each i ∈ [n]; edges from each vertex in Q j to vi , whenever xi ∈ C j ; edges connecting {ql

1,ql
2, . . . ,ql

m} in a clique, for
each l ∈ [k]. Let the target set S = {v1, . . . , vn}. This concludes our construction; an illustrative example is shown in Fig. 1.

We now show that if (X, C,k) is a yes-instance of Set Cover, then (G, S) is a yes-instance of Constituency. Let Y ⊆ C
be a set cover of X of cardinality at most k. We obtain the set I as follows:

I = {qa
j : C j is the ath element of Y }.

Note that every vertex in I exists in G since Y has cardinality at most k (if |Y | = k then the last subset to appear in Y is its
kth element exactly). Further, I is an independent set, since by construction every vertex qa

j is adjacent to some other vertex
qb

l if and only if a = b. Lastly, every vertex vi ∈ Y is incident to some vertex in I; for any i, ∃ j : vi ∈ C j . Then necessarily
∃a : qa

j ∈ I , and by construction (vi,qa
j) is an edge in G .

Conversely, if (G, S) is a yes-instance of Constituency then (X, C,k) is a yes-instance of Set Cover. Let I be an indepen-
dent set in G which dominates S . By construction of G , I has cardinality at most k. Suppose otherwise, for contradiction -

6

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

then by the pigeon-hole principle there is some clique C j such that |C j ∩ I| ≥ 2, contradicting that I is an independent set.
We obtain the set Y of cardinality |I| as follows:

Y = {C j : ∃a such that qa
j ∈ I}.

We now show Y is a set cover of X . For each i ∈ [n], vi must be adjacent to some vertex in I; denote this vertex qa
j - now

by construction xi is in the set C j , and C j ∈ Y . �
Corollary 3.2. Non-Constituency is coNP-complete.

We make four remarks about constituencies. Let G be a graph, S be a subset of its vertices, and T = N(S) \ S . First, if
G − S has an isolated vertex t , then S is a constituency of G if and only if S \ N(t) is a constituency of G − t . Second,
whether S is a constituency of G is independent of the edges in G[S]. As such, we can (and shall) reduce ourselves to either
of two canonical types of instances (G, S) of Constituency (and of course, of Non-Constituency as well):

Complete type: G[S] is complete and G − S has no isolated vertices.
Empty type: G[S] is empty and G − S has no isolated vertices.

Third, S is a constituency of G if and only if S is a constituency of G[S ∪ T]. Therefore, we could reduce ourselves to the
case where V = S ∪ N(S); however, this assumption shall be unnecessary in our subsequent proofs and as such we shall
not use it. Fourth, if S is a constituency of G then every subset of S is also a constituency of G .

3.2. Districts

A subset T of vertices of a graph G is a district of G if there exists v ∈ V \ T such that T ∩ N(v) is a constituency of
G − v . A non-district is a set of vertices that is not a district. The District (Non-District, respectively) decision problem
asks, given a graph G and a set T , whether T is a district (a non-district, respectively) of G .

District

Input: A graph G = (V , E) and a set of vertices T ⊆ V .
Question: Is T a district of G?

Non-District

Input: A graph G = (V , E) and a set of vertices T ⊆ V .
Question: Is T a non-district of G?

Theorem 3.3. District is NP-complete.

Proof. Membership of NP is known: the yes-certificate is a vertex v and a set of vertices I such that v / ∈ I ∪ T , I is an
independent set, and T ∩ N(v) ⊆ N(I).

The hardness proof is by reduction from Constituency, which is NP-complete, as proved in Theorem 3.1. Let (G, S) be
an instance of Constituency, and construct the instance (Ĝ, Ŝ) of District as follows.

Let G = (V , E) and denote T = V \ S . Then consider a copy T ′ = {t′ : t ∈ T } of T and an additional vertex v̂ / ∈ V ∪ T ′ . Let
Ĝ = (V̂ , Ê) with V̂ = V ∪ T ′ ∪ {v̂} and Ê = E ∪ {tt′ : t ∈ T } ∪ {sv̂ : s ∈ S}, and Ŝ = S ∪ T ′ . This construction is illustrated in
Fig. 2.

We only need to prove that S is a constituency of G if and only if Ŝ is a district of Ĝ . Firstly, if S is a constituency of G ,
then there exists an independent set I of G such that S ⊆ N(I;G). Then Ŝ ∩ N(v̂; Ĝ) = S is contained in N(I; Ĝ − v̂), thus Ŝ
is a district of Ĝ .

Conversely, if Ŝ is a district of Ĝ , then there exists u ∈ V̂ \ Ŝ such that Ŝ ∩ N(u; Ĝ) is a constituency of Ĝ −u. Then either
u = v̂ or u ∈ T . Suppose u = t ∈ T , then t′ ∈ Ŝ is an isolated vertex of G − t , hence Ŝ ∩ N(t; Ĝ) is not a constituency of Ĝ − t .
Therefore, u = v̂ and there exists an independent set Î of Ĝ − v̂ such that Ŝ ∩ N(v̂; Ĝ) = S is contained in N(Î; Ĝ). Since
S ⊆ V and N(S; Ĝ − v̂) ⊆ V , we obtain S ⊆ N(Î ∩ V ; Ĝ − v̂) ∩ V = N(Î ∩ V ;G), where I = Î ∩ V is an independent set of G .
Thus, S is a constituency of G . �
Corollary 3.4. Non-District is coNP-complete.

If T is a district of G , then any subset of T is also a district of G . Therefore, any superset of a non-district is also a
non-district. Furthermore, every graph G has a trivial non-district, namely V . The Non-Trivial Non-District problem asks
whether G has any other non-district. We provide some illustrative instances in Fig. 3. We need only consider sets W with
|W | = n − 1. For C4 and C3, we can by symmetry assume W = V \ {a}, and then for C4 {c} is an independent set which
dominates N(a)∩ W , whereas for the C3 there are no vertices outside N(a)∩ W and hence {b, c} is a non-district. Similarly,
for P3, W = V \ {b} is a non-trivial non-district.

7

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 2. Example reduction from a no-instance of Constituency (G, S) to the corresponding no-instance of District (Ĝ, Ŝ), with Ŝ := S ∪ T ′ .

Fig. 3. Some example instances of the Non-Trivial Non-District problem. C4 (left) is a no-instance, whereas C3 (centre) and P3 (right) are yes-instances.

Non-Trivial Non-District

Input: A graph G = (V , E).
Question: Does there exist a non-district S �= V of G?

Theorem 3.5. Non-Trivial Non-District is coNP-complete.

Proof. Since any superset of a non-district is also a non-district, G has a non-district S �= V if and only if there exists
v ∈ V such that V \ {v} is a non-district of G . Therefore, Non-Trivial Non-District is in coNP, where the no-certificate is a
collection (I v : v ∈ V) such that I v is an independent set of G − v and N(v) ⊆ N(I v) for all v .

The hardness proof is by reduction from Non-Constituency, which is coNP-complete by Corollary 3.2. Let (G = (V , E), S)

be an instance of Non-Constituency of complete type (i.e. where S is a clique in G) and denote T = V \ S . Let V ′ = {v ′ :
v ∈ V } be a copy of V , T ′′ = {t′′ : t ∈ T } be a second copy of T , and σ ′′ and v̂ be two additional vertices. For any A ⊆ V ,
we denote A′ = {a′ : a ∈ A}. Let Ĝ = (V̂ , Ê) with V̂ = V ∪ V ′ ∪ T ′′ ∪ {σ ′′, v̂} and Ê = E ∪ {v v ′ : v ∈ V } ∪ {v̂s, v̂s′, s′σ ′′ : s ∈
S} ∪ {t′′t̄′′, t′′σ ′′ : t, t̄ ∈ T }. This is illustrated in Fig. 4.

We first show that Wa = V \ {a} is a district of Ĝ for all a �= v̂ (note that Wa ∩ N(a; Ĝ) = N(a; Ĝ)). Necessarily one of the
following holds.

• a = s ∈ S .
Then N(s; Ĝ) = {v̂, s′} ∪ N(s;G) is dominated by the independent set {σ ′′} ∪ N(s;G)′ .

• a = s′ ∈ S ′ .
Then N(s′; Ĝ) = {v̂, s, σ ′′} is dominated by the independent set {s̄, s̄′} where s̄ ∈ S \ {s} (and so necessarily ss̄ ∈ E).

• a = σ ′′ .
Then N(σ ′′; Ĝ) = S ′ ∪ T ′′ is dominated by the independent set {v̂} ∪ T ′ .

8

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 4. Illustration of the reduction from Non-Constituency to Non-Trivial Non-District.

• a = t ∈ T .
Then N(t; Ĝ) = t′ ∪ N(t;G) is dominated by the independent set {t′′} ∪ N(t;G)′ (or alternatively {t′′, v̂}).

• a = t′ ∈ T ′ .
Then N(t′; Ĝ) = {t, t′′} is dominated by the independent set {t̄, t̄′′} where tt̄ ∈ E . (Recall G − S has no isolated vertices in
a Constituency instance of complete type.)

• a = t′′ ∈ T ′′ .
Then N(t′′; Ĝ) = {t′, σ ′′} ∪ (T ′′ \ {t′′}) is dominated by the independent set {t} ∪ (V ′ \ {t′})∪ S ′ .

We now show that W v̂ is a district of Ĝ if and only if S is a constituency of G . We remark that W v̂ ∩ N(v̂; Ĝ) = S ∪ S ′ .
If W v̂ is a district of Ĝ , then S ⊆ N(I \ N[v̂; Ĝ]; Ĝ) for some independent set I . Therefore S ⊆ N(I ∩ T ;G), i.e. S is a
constituency of G . Conversely, if S is a constituency of G , say S ⊆ N(I;G) for some independent set I of G , then I ∪ {σ ′′} is
an independent set of Ĝ such that S ∪ S ′ ⊆ N(I ∪ {σ ′′}; Ĝ), i.e. W v̂ is a district of Ĝ . �
4. Reachability of the MIS network

4.1. The MIS network

By identifying a configuration x ∈ {0,1}V with its support 1(x), one can interpret the MIS algorithm as sequential updates
of a particular Boolean network. The MIS network on G , denoted as M(G) or simply M when the graph is clear from the
context, is defined by

M(x)v =
{

0 if ∃u ∈ N(v) : xu = 1

1 if ∀u ∈ N(v) : xu = 0

=
∧
u∼v

¬xu,

with M(x)v = 1 if N(v) = ∅. We then have Fix(M(G)) = M(G) [26,3].
The MIS algorithm then begins with the all-zero configuration, updates the state of every vertex in order, and leads to a

configuration whose support is a maximal independent set. In the language of Boolean networks:

• x = 0;
• w is a permutation of V ;
• y = Mw(x) ∈ M(G).

9

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

The pivotal role of constituencies for the MIS network can be explained by the equivalence below (its proof is easy and
hence omitted). For a set of vertices S ⊆ V , S is a constituency of G if and only if there exists a fixed point y ∈ M(G) such
that yS = 0.

4.2. Universal configurations

In this paper, we are interested in removing the constraint on the initial configuration x. This in turn will lead to
constraints on the word w , as we shall see in the sequel. For now, in this section, we are interested in initial configurations
x that can lead to any MIS y.

Say a configuration x is F-universal if every fixed point of F is reachable from x, i.e. x �→F z for all z ∈ Fix(F). Clearly,
the all-zero configuration is M(G)-universal, as one can reach any MIS from the empty set. In fact, those fixed points can
be reached by a geodesic. We now classify the universal configurations for the MIS network, which actually also allow to
reach all fixed points by a geodesic. Since the classification is based on constituencies, the problem of deciding whether a
configuration is universal is coNP-complete.

M-Universal Configuration

Input: A graph G and a configuration x.
Question: Is x an M(G)-universal configuration?

Theorem 4.1. M-Universal Configuration is coNP-complete.

We first characterise the configurations y that are reachable from a given configuration x. For any configuration x on
G , we denote the collection of connected components of G[1(x)] as C(x). Before giving the full statement of the result, we
provide some intuition. Suppose y is reachable from x; we show that y must satisfy two conditions. First, y cannot “create
an edge”: if [w] intersects an edge of G[1(x)], then it will destroy it. Therefore, any edge in G[1(y)] must be an (untouched)
edge of G[1(x)]. Second, y cannot “empty out” a connected component: in order to update a vertex v from xv = ya−1

v = 1
to yv = ya

v = 0, there must be a neighbour a of v such that ya−1
v = 1. Therefore, for any C ∈ C , yC �= 0.

Proposition 4.2 then shows that these two conditions are indeed sufficient for reachability, and in fact for reachability by
a geodesic.

Proposition 4.2 (Reachability for the MIS network). Let G be a graph and x, y be two configurations on G. The following are equivalent:

1. x �→M y;

2. x
geo�−−→M y;

3. every edge in G[1(y)] is an edge in G[1(x)] and yC �= 0 for any C ∈ C(x).

Lemma 4.3. Let x be a configuration on G, w be a word, and y = Mw(x). If uv is an edge in G[1(y)], then [w] ∩ {u, v} = ∅.

Proof. Suppose v is the last updated in {u, v}, say v = wa+1 while wb / ∈ {u, v} for all b > a + 1. Then ya
u = 1 and hence

yv = ya+1
v = M(ya)v = 0, which is the desired contradiction. �

Proof of Proposition 4.2. Suppose that x �→M y. It follows from Lemma 4.3 that every edge in G[1(y)] is an edge in G[1(x)].
We prove that yC �= 0 for any C ∈ C(x). Suppose yC = 0 for some C ∈ C(x) with w = w1:l but yl−1

C �= 0. Then wl ∈ C ,
yl−1

C\{wl} = 0, and yl−1
wl

= 1. Since M(yl−1)wl = 0, there exists u such that u ∼ wl and yl−1
u = 1.

Claim 1. u ∈ [w1:l−1].

Proof. Firstly, since yl−1
C\{wl} = 0 and yl−1

u = 1, we have u / ∈ C . Secondly, since u ∈ N(wl) \ C while N(wl)∩ 1(x) ⊆ C , we have
u ∈ 0(x). Thirdly, since xu = 0 and yl−1

u = 1, we must have u ∈ [w1:l−1]. �
Finally, uwl is an edge in G[1(yl−1)] with [w1:l−1] ∩ {u, wl} �= ∅, which contradicts Lemma 4.3.

Conversely, suppose that every edge in G[1(y)] is an edge in G[1(x)] and yC �= 0 for any C ∈ C(x). We first describe a
word w and we then prove that w is a geodesic from x to y. The word w is constructed in four steps as follows.

1. Let w0 be any permutation of 1(y) ∩ 0(x).
2. For any C ∈ C(x), the word wC is constructed as follows. By Corollary 2.2, let T be a spanning forest of C rooted at

D = 1(y)∩ C , then wC is a traversal of the spanning forest from leaves towards roots, skipping the roots. More formally,
wC = t1 . . . tk where {t1, . . . , tk} = C \ D and if ti is a parent of t j in T , then i > j.

10

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

3. Let w1 be a concatenation (in any order) of wC for every C ∈ C(x). More formally, let C(x) = {C1, . . . , Cm} then w1 =
wC1 . . . wCm .

4. Let w = w1 w0.

We now verify that w is a geodesic from x to y, i.e. that [w] = �(x, y) and y = Mw(x). Firstly,

[w0] = 1(y) ∩ 0(x),

[w1] =
⋃

C∈C(x)

[wC] =
⋃

C∈C(x)

C ∩ 0(y) = 0(y) ∩ 1(x),

[w] = [w0] ∪ [w1] = �(x, y).

Secondly, we prove that Mw(x)[w1] = 0 while Mw(x)[w0] = 1. Let C ∈ C and wC = t1 . . . tk . By induction on 1 ≤ j ≤ k, we have
Mw(x)t j = MwC

(x)t j = 0 since t j has a parent ti ∈ C which will only be updated after t j . This shows that Mw (x)[w1] = 0.
Moreover, let w0 = v1 . . . vl . Suppose Mw(x)vi = 0, then let z = Mw1

(x) then there exists u such that u ∼ vi and zu = 1. We
derive a contradiction from a case analysis on u.

1. Case 1: yu = 1.
Then uvi is an edge in G[1(y)], hence it is an edge in G[1(x)] so that xvi = 1, which is a contradiction.

2. Case 2: yu = 0 and xu = 0.
Then u / ∈ �(x, y) = [w] hence zu = xu = 0, which is a contradiction.

3. Case 3: yu = 0 and xu = 1.
Then u ∈ [w1] and hence zu = yu = 0, which is the desired contradiction.

Therefore Mw(x)[w0] = 1. �
Corollary 4.4. The configuration x is M(G)-universal if and only if every C ∈ C(x) is a non-constituency of G.

Proof. If C ∈ C(x) is a constituency of G , then there exists a fixed point z ∈ M(G) with zC = 0, which is not reachable from
x by Proposition 4.2. Conversely, if every C ∈ C(x) is a non-constituency of G , then for any z ∈ M(G) we have zC �= 0 for all
C , and hence z is reachable from x. �

In particular, the all-zero and all-one configurations are M-universal for all graphs.

Proof of Theorem 4.1. Membership of coNP is known: the no-certificate is a fixed point z ∈ M(G) that is not reachable from
x; checking that certificate is by finding C ∈ C(x) such that zC = 0.

We prove coNP-hardness by reduction from Non-Constituency. If (G, S) is an instance of Non-Constituency of complete
type, then let x = χ(S) so that C(x) = {S}. By Corollary 4.4, x is universal if and only if S is a non-constituency of G . �

Another consequence of Proposition 4.2 is that any initial configuration can reach a fixed point via a geodesic.

Corollary 4.5. For any configuration x, there exists y ∈ M(G) such that x
geo�−−→M y.

Proof. Choose a vertex vC for every C ∈ C(x), then I = {vC : C ∈ C(x)} is an independent set. Let M be a maximal indepen-
dent set that contains I , then y = χ(M) ∈ M(G) satisfies Property 3 of Proposition 4.2 and hence is reachable from x by a
geodesic. �
5. Words fixing the MIS network

We now focus on words fixing the MIS network. As we shall prove later, every graph G has a fixing word. Whether a
word w fixes the MIS network does not only depend on the set [w] of vertices it visits. Indeed, as seen in Example 1.1
for the graph P3, the word w = abc does not fix M, while w = acb does fix M. We define Fixing Word to be the decision
problem asking, for an instance (G, w), whether w fixes M(G).

Fixing Word

Input: A graph G = (V , E) and a word w .
Question: Does w fix M(G)?

11

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Theorem 5.1. Fixing Word is coNP-complete.

Fixing Word is in coNP; the certificate being a configuration x such that Mw (x) / ∈ M(G). We shall prove that Fixing Word

is coNP-complete, even when restricted to permutations, in Section 5.3. As such, we omit the proof of Theorem 5.1.

5.1. Prefixing and suffixing words

The seminal observation is that if G is a graph, and w is a permutation of V , then w w fixes M(G): for any initial
configuration x, Mw(x) ∈ I(G); then for any y ∈ I(G), Mw(y) ∈ M(G). We shall not prove this claim now, as we will prove
stronger results in the sequel (see Propositions 5.3 and 5.5).

Following the seminal observation above, we say that wp prefixes M(G) if Mwp
(x) ∈ I(G) for all x ∈ {0,1}V , and that ws

suffixes M(G) if Mws
(y) ∈ M(G) for all y ∈ I(G). In that case, for any word ω, wpω also prefixes M(G) and ωws also suffixes

M(G). Clearly, if w = wp ws, where wp prefixes M(G) and ws suffixes M(G), then w fixes M(G). We can be more general, as
shown below.

Proposition 5.2. If w = w1:l where w1:a prefixes M(G), wb:l suffixes M(G), and [wb:a] is an independent set of G for some 0 ≤ a,b ≤ l,
then w fixes M(G).

Proof. First, suppose a < b, so that w = w1 . . . wa . . . wb . . . wl . As mentioned above, wp = w1:b−1 prefixes M(G) and ws =
wb:wl suffixes M(G), hence w = wp ws fixes M(G).

Second, suppose a ≥ b, so that w = w1 . . . wb . . . wa . . . wl . It is easily seen that for any two non-adjacent vertices u and
v , Mv v = Mv and Muv = Mvu . As such,

Mw = Mw1...wb ...wa...wl = Mw1...wb wb ...wa wa...wl = Mw1...wb ...wa wb ...wa...wl ,

and again if we let wp = w1:a and ws = wb:l , we have Mw = Mwp ws
, hence w fixes M(G). �

We now characterise the words that prefix (or suffix) the MIS network. Interestingly, those properties depend only on
[w]. Also, while deciding whether a word prefixes the MIS network is computationally tractable, deciding whether a word
suffixes the MIS network is computationally hard as it is based on the Non-District problem.

Proposition 5.3. Let G be a graph. Then the word w prefixes M(G) if and only if [w] is a vertex cover of G.

Proof. Suppose [w] is a vertex cover of G and that y = Mw(x) / ∈ I(G), i.e. yuv = 11 for some edge uv of G . Without loss, let
the last update in {u, v} be v , i.e. there exists a such that wa+1 = v and wb / ∈ {u, v} for all b > a+1. We obtain ya

u = yu = 1
hence yv = ya+1

v = 0, which is the desired contradiction.
Conversely, if [w] is not a vertex cover, then there is an edge uv ∈ E such that [w] ∩ {u, v} = ∅. Therefore, if we take

x = χ({u, v}) then xuv = 11 and we have yuv = 11 as well. �
Prefixing Word

Input: A graph G = (V , E) and a word w .
Question: Does w prefix M(G)?

Corollary 5.4. Prefixing Word is in P.

Proposition 5.5. Let G be a graph. Then the word w suffixes M(G) if and only if [w] is a non-district of G.

Proof. Suppose [w] is a district of G , i.e. there exists an independent set I and a vertex v / ∈ [w] such that W = [w] ∩ N(v)

is dominated by I . Let x = χ(I) (in particular, xv = 0), and let y = Mw(x). Then for any u ∈ W , u has a neighbour in I , hence
yu = 0; thus yN[v] = 0 and w does not suffix M.

Conversely, suppose w does not suffix M(G), i.e. there exists x ∈ I(G) and v ∈ V such that y = Mw(x) with yN[v] = 0.
By Proposition 4.2, y ∈ I(G) and y ≥ x, hence xN[v] = 0. Let W = [w] ∩ N(v) and I = 1(y) ∩ N(W); we note that I is an
independent set. For each u ∈ W , we have yu = 0 hence there exists i ∈ V such that yi = 1 and u ∈ N(i), and hence i ∈ I .
Therefore, W ⊆ N(I) and W is a constituency of G − v , i.e. [w] is a district of G . �

Suffixing Word

Input: A graph G = (V , E) and a word w .
Question: Does w suffix M(G)?

Corollary 5.6. Suffixing Word is coNP-complete.

Proof. This immediately follows from Theorem 3.3. �
12

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

5.2. Fixing sets

Some graphs have fixing words that do not visit all vertices. For instance, if G = Kn is the complete graph with vertices
v1, . . . , vn , then it is easily shown that w = v1 . . . vn−1 is a fixing word for the MIS network. In general, we say that a set S
of vertices of G is a fixing set of G if there exists a word w with [w] = S that fixes M(G).

We first characterise the fixing sets of graphs. Interestingly, those are the same sets S such that w w is a fixing word of
M(G) for any permutation w of S .

Proposition 5.7. Let S be a subset of vertices of G. The following are equivalent.

1. S is a fixing set of M(G), i.e. there exists a fixing word w of M(G) with [w] = S.
2. For all words wp , ws such that [wp] = [ws] = S, the word wp ws fixes M(G).
3. S is a vertex cover and a non-district.

Proof. 1 =⇒ 3. Since w prefixes M(G), S = [w] is a vertex cover by Proposition 5.3; similarly, since w suffixes M(G),
S = [w] is a non-district by Proposition 5.5.

3 =⇒ 2. Since S is a vertex cover, then by Proposition 5.3 wp prefixes M(G); similarly, by Proposition 5.5 ws suffixes
M(G). Therefore, wp ws fixes M(G).

2 =⇒ 1. Trivial. �
The Fixing Set problem asks, given a graph G and a set of vertices S , if S is a fixing set of G . In other words, it asks

whether the vertices outside of S can be skipped by some fixing word.

Fixing Set

Input: A graph G = (V , E) and a set S ⊆ V .
Question: Is S a fixing set of M(G)?

Theorem 5.8. Fixing Set is coNP-complete.

Proof. Membership of coNP is known: the no-certificate is a permutation w of S and an initial configuration x ∈ {0,1}V

such that Mw w (x) / ∈ M(G) (by Proposition 5.7).
The hardness proof is by reduction from Non-District, which is coNP-complete, as proved in Theorem 3.3. Let (G, S) be

an instance of Non-District, and construct the instance (Ĝ, Ŝ) of Fixing Set as follows.
Let G = (V , E) and T = V \ S . For any t ∈ T , let Gt = (Vt ∪ {t̂}, Et) be the graph defined as follows: Vt = {ut : u ∈ V \ t} is

a copy of all the vertices apart from t , which is replaced by a new vertex t̂ / ∈ Vt , and Et = {atbt : ab ∈ E,a,b �= t} ∪ {st t̂ : st ∈
E, s ∈ S} is obtained by removing the edges between t̂ and the rest of T . Then G is the disjoint union of all those graphs,
i.e. G = ⋃

t∈T Gt , while Ŝ = ⋃
t∈T Vt . For the sake of simplicity, we shall use the notation At = {ut : u ∈ A} for all A ⊆ V \ {t}.

Our construction is illustrated in Fig. 5.
By construction, Ĝ − Ŝ is the empty graph on {t̂ : t ∈ T }, hence Ŝ is a vertex cover of Ĝ . All we need to show is that Ŝ

is a non-district of Ĝ if and only if S is a non-district of G . We have that Ŝ is a district of Ĝ if and only if there exists t̂
and an independent set Î of Ĝ − t̂ such that W = Ŝ ∩ N(t̂; Ĝ) = (S ∩ N(t;G))t is contained in N(Î; Ĝ). We have Î ∩ Vt = It

for some independent set I of G . Since W ⊆ Vt and N(W ; Ĝ − t̂) ⊆ Vt , we have W ⊆ N(Î ∩ Vt; Ĝ) ∩ Vt = N(I;G)t , which is
equivalent to S being a district of G . �

Clearly, if S is a fixing set of M(G), then every superset of S is also a fixing set. Moreover, every graph G has a trivial
fixing set, namely V . The Non-Trivial Fixing Set asks whether G has any other fixing set. Equivalently, it asks whether any
vertex can be skipped by a fixing word.

Non-Trivial Fixing Set

Input: A graph G .
Question: Does there exist a fixing set S �= V of G?

Theorem 5.9. Non-Trivial Fixing Set is coNP-complete.

Proof. We prove that G has a non-trivial fixing set if and only if it has a non-trivial non-district. If G has a non-trivial
fixing set, then there exists S �= V which is a vertex cover and a non-district of G , hence S is a non-trivial non-district of
G . Conversely, if G has a non-trivial non-district, then there exists v such that S = V \ {v} is a non-district of G , in which
case S is also a vertex cover, and hence a non-trivial fixing set of G .

The coNP-completeness of Non-Trivial Fixing Set then follows Theorem 3.5. The connection between the two problems
is illustrated in Fig. 6. �

13

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 5. Example reduction from a no-instance of Non-District (G, S) to the corresponding no-instance of Fixing Set (Ĝ, Ŝ), with Ŝ = V c ∪ Vd ∪ V e .

Fig. 6. C4 is a no-instance of the Non-Trivial Non-District problem, and hence also a no-instance of Non-Trivial Fixing Set. For any word w with [w] =
{b, c,d}, Mw (1000) = 1000 / ∈ M(C4). By symmetry, no set of three vertices is a fixing set for M(C4).

5.3. Permises

The MIS algorithm doesn’t use any word w to update the state of each vertex, but instead restricts itself to w being a
permutation of V . As such, we now focus on permutations and we call a permutation of V that fixes M(G) a permis of G .
The Permis decision problem is equivalent to the Fixing Word problem, restricted to permutations.

Permis

Input: An undirected graph G = (V , E) and a permutation w of V .
Question: Is w a permis of G?

Let w be a permutation of V , then w naturally induces a linear order on V , whereby wi � w j whenever i < j, i.e. wi

is updated before w j . Then consider the orientation of G induced by w: G w = (V , E w) with E w = {(u, v) : uv ∈ E, u � v}.
We see that G w is acyclic, and that conversely any acyclic orientation of G is given by some G w . A simple application of [6,
Theorem 1] shows that if w, w ′ are two permutations of V such that G w = G w ′

, then w is a permis if and only if w ′ is a
permis.

We say that the vertex v is covered by w if for every x ∈ {0,1}V , yN[v] �= 0, where y = Mw(x). Thus, w is a permis if
and only if w covers all vertices.

Covered Vertex

Input: A graph G = (V , E), a permutation w of V and a vertex v ∈ V .
Question: Is v covered by w?

14

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 7. Illustration of the reduction from Non-Constituency to Permis.

We now give a sufficient condition for a vertex to be covered. Let G be a graph, H be an orientation of G , and let t and
v be vertices of G . We say t is transitive if for all a,b ∈ V , t → a → b implies t → b in G w . We say v is near-transitive if
there exists a transitive vertex t such that N[t;G] ⊆ N[v;G].

Lemma 5.10. If v is a near-transitive vertex of G w , then v is covered by w.

Proof. First, suppose v = t is transitive. Let x such that yN[t;G] = 0. We shall repeatedly use the fact that for any vertex u,
if yN in[u;G w] = 0, then there exists u′ ∈ Nout(u;G w) ∩ 1(x), i.e. xu′ = 1 and u → u′ (u is updated after u).

Since yN in[t;G w] = 0, there exists a ∈ Nout(t;G w) ∩ 1(x). Without loss let a be the last vertex of this kind to be updated:
if a′ �= a satisfies a′ ∈ Nout(t;G w) ∩ 1(x), then a′ → a. Again, since xa = 1, we have yN in(a;G w) = 0; and since ya = 0 as well,
there exists b ∈ Nout(a;G w)∩1(x). Since t → a → b and by transitivity of t , we obtain t → b, but then b ∈ Nout(t;G w)∩1(x)
and hence b → a, which is the desired contradiction.

Second, suppose that t is transitive (and hence, as shown above, covered) and that N[t;G] ⊆ N[v;G]. For all x we have
yN[t;G] �= 0, and hence yN[v;G] �= 0, thus v is also covered by w . �
Theorem 5.11. Permis is coNP-complete.

Proof. Membership of coNP is known: the no-certificate is a configuration x such that y = Mw(x) / ∈ M(G).
The hardness proof is by reduction from Non-Constituency, which is coNP-complete by Corollary 3.2. Let (G, S) be

an instance of Non-Constituency of empty type and construct the instance (Ĝ, w) of Permis as follows. Let T = V \ S
and T ′ = {t′ : t ∈ T } be a copy of T . Then let Ĝ be the graph with vertex set V̂ = {v,a,b} ∪ V ∪ T ′ , and with edges
Ê = E ∪ {sv : s ∈ S} ∪ {va,ab} ∪ {tt′ : t ∈ T }. Let w be a permutation of V̂ such that v � a � b � T � T ′ � S . This is illustrated
in Fig. 7.

We claim that w is a permis of Ĝ if and only if S is not a constituency of G . Firstly, the vertices in S ∪ T ′ ∪ {b} are all
transitive and hence the vertices in T ∪{a} are near-transitive. Therefore, w is a permis if and only if v is covered. We prove
that v is covered if and only if S is not a constituency of G .

If S is a constituency of G , then let I ⊆ T be a maximal independent set of G (and hence an independent set of Ĝ as
well) such that S ⊆ N(I). Let x = χ(I ∪ {a,b}). Then yv = 0 (because xa = 1), ya = 0 (because xb = 1), yI = 1 and yS = 0
(because for any vertex u, if xu = 1 and xN(u) = 0, then yu = 1 and yN(u) = 0). Thus yN[v] = 0.

15

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 8. An 8-vertex perfect graph with no permis.

Conversely, if yN[v] = 0, then for any s ∈ S , yN(s) �= 0. Since yv = 0, there is t ∈ T such that ts ∈ E and yt = 1. Therefore,
the set 1(y) ∩ T is an independent set that dominates S , i.e. S is a constituency of G . �

The proof of Theorem 5.11 also settles the complexity of Covered Vertex.

Theorem 5.12. Covered Vertex is coNP-complete.

6. Permissible and non-permissible graphs

We say that G is permissible if it has a permis. As we shall see, not all graphs are permissible. In this subsection, we ex-
hibit permissible and non-permissible graphs, and we prove that deciding whether a graph is permissible is computationally
hard.

We classified (non-)permissible graphs by computer search, using nauty’s geng utility (https://doi.org/10.1016/j.jsc.
2013.09.003) to exhaustively generate connected graphs up to 9 vertices. Full results are available at https://github.com/
dave-ck/MISMax/. Here are some highlights. Of 273194 connected graphs on at most nine vertices, only 432 are non-
permissible; the heptagon C7, 13 8-vertex graphs (including the perfect graph shown in Fig. 8), and 418 9-vertex graphs.
The Petersen graph is also non-permissible.

We prove the graph in Fig. 8 is perfect as follows. First note that four vertices in the graph have degree 3 and four
vertices in the graph have degree 5. The absence of an induced C5 can be verified manually. There is no induced C7: any
subgraph on seven vertices includes at least one vertex formerly of degree 5 hence of degree at least 4 in the induced
subgraph. Similarly, there is no induced C7; any subgraph on seven vertices includes at least one vertex formerly of degree
3 and hence of degree at most 3 in the induced subgraph (C7 is 4-regular).

6.1. Permissible graphs

We now exhibit large classes of permissible graphs.
An orientation of G is transitive (near-transitive, respectively) if all the vertices are transitive (near-transitive, respec-

tively). Any transitive orientation is necessarily acyclic. A graph that admits a transitive orientation is called a comparability
graph. The following are comparability graphs: complete graphs, bipartite graphs, permutation graphs, cographs, and in-
terval graphs. Accordingly, we say that a graph that admits a near-transitive orientation is a near-comparability graph.
Lemma 5.10 immediately yields the permissibility of near-comparability graphs.

Proposition 6.1. All near-comparability graphs are permissible.

We now give a characterisation of near-comparability graphs below. Recall that the vertex m is a benjamin of G if there
is no vertex v with N in[v] ⊂ N in[m] and that GB is the subgraph of G induced by its benjamins.

Theorem 6.2. Let G be a graph. The following are equivalent:

1. G is a near-comparability graph, i.e. it admits a near-transitive orientation;
2. G admits a near-transitive acyclic orientation;
3. GB is a comparability graph.

16

https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/j.jsc.2013.09.003
https://github.com/dave-ck/MISMax/
https://github.com/dave-ck/MISMax/

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Proof. 1 =⇒ 2. Let H be a near-transitive orientation of G . Let T be the set of transitive vertices of H . Then T is disjoint
from all the cycles in H (for if t ∈ T belongs to the cycle t → v1 → ·· · → vk → t , we must have t → vk by transitivity),
and in particular H[T] is acyclic. Construct any acyclic orientation of G , say G w , such that G w [T] = H[T] and V \ T � T .
Note such an orientation can be constructed efficiently (for example by a greedy algorithm). Then any vertex in T is still
transitive in G w , and hence G w is near-transitive.

2 =⇒ 3. Let G be a near-comparability graph. In order to prove that GB is a comparability graph, we need to consider
the graph 〈G〉 obtained by only keeping one twin out of every set of twins. More formally, for any v ∈ V (G), let 〈v〉 =
{u ∈ V : N[u] = N[v]} be the equivalence class of v . We further denote 〈V 〉 = {〈v〉 : v ∈ V }, 〈E〉 = {〈v〉〈v ′〉 : v v ′ ∈ E}. Then
〈G〉 = (〈V 〉, 〈E〉).

Say that a graph is closed twin-free if there are no closed twins, i.e. N[u] �= N[v] for all u �= v ∈ V .

Claim 2. 〈G〉 is closed twin-free.

Proof. Suppose N[〈u〉; 〈G〉] = N[〈v〉; 〈G〉]. Then N[u;G] = ⋃
〈a〉∈N[〈u〉;〈G〉]〈a〉 = N[v;G], hence u and v are closed twins in G

and 〈u〉 = 〈v〉. �
Claim 3. 〈G〉 is a near-comparability graph.

Proof. Suppose G w is a near-transitive acyclic orientation of G . Then for every equivalence class c ∈ 〈V 〉, G w [c] is a transitive
tournament with a unique source. Consider the orientation H of 〈G〉 naturally induced by w , i.e. 〈u〉→ 〈v〉 in 〈G〉 if and only
if u → v , where u and v are the unique sources of G w [〈u〉] and G w [〈v〉], respectively. We now prove that all vertices of 〈G〉
are near-transitive in H . Firstly, if t is transitive in G w , then 〈t〉 is transitive in H . Secondly, if v satisfies N[v;G] ⊇ N[t;G]
for some transitive t , then N[〈v〉; 〈G〉] ⊇ N[〈t〉; 〈G〉] and hence 〈v〉 is near-transitive in H . �
Claim 4. 〈G〉B is a comparability graph.

Proof. Let 〈G〉w be a near-transitive acyclic orientation of 〈G〉 and let B = B(〈G〉). If m ∈ B , then there exists a transitive
vertex t such that N[m] ⊇ N[t]. Since m ∈ B we have N[m] = N[t] and since 〈G〉 is closed twin-free we obtain m = t , i.e.
m is transitive in 〈G〉w . Therefore, m is also transitive in 〈G〉w [B] = 〈G〉B

w[B] . Thus, 〈G〉B
w[B] is a transitive orientation of

〈G〉B. �
Claim 5. GB is a comparability graph.

Proof. We first remark that 〈u〉 ∈ B(〈G〉) if and only if u ∈ B(G). Now, let 〈G〉B
w ′

be a transitive orientation, then consider
the orientation GB

w of GB as follows. First, fix an arbitrary order of every equivalence class 〈v〉. Second, orient u → v if
〈u〉→ 〈v〉 in 〈G〉B

w ′
.

We now verify that this orientation is transitive. If u → a → b in GB
w , then 〈u〉→ 〈a〉→ 〈b〉 in 〈G〉B

w ′
, hence 〈u〉→ 〈b〉

in 〈G〉B
w ′

, and finally u → b in GB
w . �

3 =⇒ 1. Construct the orientation of G as follows. First, use the transitive orientation on GB. Second, orient every edge
v → m where v / ∈ B(G) and m ∈ B(G). Third, use any orientation on G − B(G). Then the vertices in B(G) remain transitive,
and for any v / ∈ B(G), there exists m ∈ B(G) such that N[m;G] ⊆ N[v;G], i.e. v is near-transitive. �

Recognising comparability graphs can be done in polynomial time; see [23] and references therein. In fact, the algorithm
in [23] not only decides whether a graph is a comparability graph, but it also produces a transitive orientation if such exists.
In view of Theorem 6.2, applying that algorithm to GB not only decides whether a graph is a near-comparability graph, but
it also produces a near-transitive orientation (see the proof of Claim 5) if one exists.

Any induced subgraph of a comparability graph is a comparability graph. However, as we shall prove below, any graph
is the induced subgraph of some near-comparability graph. Thus, Proposition 6.1 shows that every graph is the induced
subgraph of a permissible graph. This entails that the class of permissible graphs is not hereditary, i.e. it is impossible to
characterize permissible graphs by some forbidden induced subgraphs.

Corollary 6.3. For every graph G, there exists a near-transitive (and hence permissible) graph H such that G is an induced subgraph
of H.

Proof. Let G = (V , E) and construct the graph Ĝ = (V̂ , Ê) so that G = Ĝ[V] as follows. Let V ′ = {v ′ : v ∈ V } be a copy of V ,
V̂ = V ∪ V ′ , and Ê = E ∪ {v v ′ : v ∈ V }. Then Ĝ is a near-comparability graph: let w be a permutation of V̂ where V � V ′ ,
then Ĝ w is a near-transitive acyclic orientation of Ĝ . By Proposition 6.1, H is permissible. �

17

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 9. Illustration of the composition operation.

We now introduce an operation on graphs, that we call graph composition, that preserves permissibility. Let H be an
n-vertex graph, G1, . . . , Gn other graphs, then the composition H(G1, . . . , Gn) is obtained by replacing each vertex h of H
by the graph Gh , and whenever hh′ ∈ E(H), adding all edges between Gh and Gh′ . More formally, we have

V (G) = {vh : h ∈ V (H), v ∈ V (Gh)},
E(G) = {vh v ′

h′ : hh′ ∈ E(H), v ∈ V (Gh), v ′ ∈ V (Gh′)} ∪ {vh v ′
h : h ∈ V (H), v v ′ ∈ E(Gh)}.

This is illustrated in Fig. 9.
This construction includes for instance the disjoint union of two graphs: G1 ∪ G2 = K̄2(G1, G2) and the join of two

graphs: K2(G1, G2). In the special case where only a single vertex b is replaced by the graph Gb , we use the notation

H(b, Gb) = H(K1, . . . , K1, Gb, K1, . . . , K1).

This special case includes adding an open twin (a new vertex b′ with N(b′) = N(b)): H(b, K̄2) and adding a closed twin
(N[b′] = N[b]): H(b, K2). In fact, any composition can be obtained by repeatedly replacing a single vertex.

Lemma 6.4. Let G = H(G1, . . . , Gn) be a graph composition, where V (H) = {1, . . . ,n}. For all 0 ≤ i ≤ n, let Gi be defined as G0 = H
and Gi = Gi−1(i, Gi). Then Gn = G.

Proof. The proof is by induction on 0 ≤ i ≤ n. Let I = {1, . . . , i} and J = {i + 1, . . . ,n}. We prove that

V (Gi) = J ∪ {va : a ∈ I, v ∈ V (Ga)},
E(Gi) = E(H[J]) ∪ {va v ′

a : a ∈ I, v v ′ ∈ E(Ga)}
∪ {va v ′

b : ab ∈ E(H[I])} ∪ {hva : h ∈ J ,a ∈ I,ha ∈ E(H)}.
This is clear for i = 0, and for i ≥ 1 this is easily verified from the recurrence property:

V (Gi) = (V (Gi−1) \ {i})∪ {vi : v ∈ V (Gi)}
E(Gi) = E(Gi−1 − i) ∪ {vi v ′

i : v v ′ ∈ E(Gi)} ∪ {hvi : v ∈ V (Gi),hi ∈ E(H)}.
The details are omitted. �
Proposition 6.5. If G = H(G1, . . . , Gn), where each of H, G1, . . . , Gn is permissible, then G is permissible.

Proof. According to Lemma 6.4, we only need to prove the case where G = H(b, Gb), where the vertices are sorted according
to a permis ŵ = ŵ1:b−1 ŵb ŵb+1:n of H . We denote the vertex set of Gb as Vb , and we let wb be a permis of Gb . Then we
claim that w = ŵ1:b−1 wb ŵb+1:n is a permis of G .

For any configuration x of G , let x̂ be the configuration of H such that x̂u = xu for all u �= ŵb and x̂ŵb
= ∨

v∈Vb
xv . We

then prove that y ∈ M(G) by considering the three main steps of w .

18

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

• Step 1: before the update of Gb (ŵ1:b−1).
In Step 1, the initial configuration is x and the final configuration is α = yb−1. It is easy to show that for any 1 ≤ a < b,
we have Mw1:a (x;G)G−Vb = Mŵ1:a (x̂; H)H−ŵb

. We obtain α̂ = Mŵ1:b−1 (x̂; H).

• Step 2: update of Gb (wb).
In Step 2, the initial configuration is α = yb−1 and the final configuration is β = yb−1+|Vb | . Note that Vb is a tethered set
of G , so let T = N(Vb;G) \ Vb . If αT �= 0, then the whole of Gb will be updated to 0: βVb = 0. Otherwise, it is as if Gb is
isolated from the rest of the graph and βVb = Mwb

(αVb ;Gb). In either case, we have β̂ = Mŵb (α̂; H).
• Step 3: after the update of Gb (ŵb+1:n).

In Step 3, the initial configuration is β = yb−1+|Vb | and the final configuration is y. Again, we have for all b < a ≤ n,
Mwb+1:a (β;G)G−Vb = Mŵb+1:a (β̂; H)H−ŵb

. We obtain ŷ = Mŵb+1:n (β̂; H).

We obtain

ŷ = Mŵb+1:n(β̂; H)

= Mŵb+1:n(Mŵb (α̂; H); H)

= Mŵb+1:n(Mŵb (Mŵ1:b−1(x̂; H); H); H)

= Mŵ(x̂; H).

We can now prove that yN[v;G] �= 0 for every vertex v of G . First, if v is not a vertex of Gb , then ŷN[v;H] �= 0, and hence
yN[v;G] �= 0. Second, if v = ub is a vertex of Gb , then we need to consider two cases. Either ŷb = 0, in which case there
exists a ∈ N(b; H) ⊆ N(ub;G) with ŷa = ya �= 0; or ŷb = 1, in which case yVb = Mwb

(xVb ;Gb) ∈ M(Gb) and in particular
yN[ub;G] �= 0. �
6.2. Non-permissible graphs

We now exhibit classes of non-permissible graphs. As mentioned earlier, the smallest non-permissible graph is the
heptagon; in fact, any odd hole with at least seven vertices is non-permissible.

Proposition 6.6. For all k ≥ 3, the odd hole C2k+1 is not permissible.

Proof. Let w be a permutation of the vertex set of G = C2k+1. We shall prove that if w is a permis there cannot be two
consecutive arcs in G w with the same direction; this shows that the direction of arcs must alternate, which is impossible
because there is an odd number of arcs in the cycle. We do this by a case analysis on the arcs preceding those two
consecutive arcs.

We consider six vertices a to f , where the first two arcs a ← b ← c are in the same direction. The first case is where
c ← d; in that case, if xabc = 111, then ybcd = 000 and hence c is not covered. This is shown in Fig. 10, along with the other
three cases. �

We now give two ways to construct larger non-permissible graphs.
Recall that a set of vertices S is tethered if there is an edge st between any s ∈ S and any t ∈ T = N(S) \ S .

Proposition 6.7. Let G be a graph. If G has a tethered set of vertices S such that G[S] has no permis, then G has no permis.

Proof. Let w be any permutation of V and ŵ = w[S]. Let x̂ be a configuration of G[S] which is not fixed by ŵ:
Mŵ(x̂;G[S]) / ∈ M(G[S]). We first note that x̂ �= 0 and that for all 0 ≤ a ≤ |ŵ|, Mŵ1:a (x̂;G[S]) �= 0.

Let T = N(S) \ S and U = V \ (S ∪ T) and x = (xS = x̂, xT = 0, xU), where xU is any partial configuration. We prove by
induction on 0 ≤ b ≤ |w| that

yb := Mw1:b (x;G) =
(

yb
S = Mŵ1:b′ (x̂;G[S]), yb

T = 0, yb
U

)
,

where b′ is defined by [ŵ1:b′] = S ∩ [w1:b]. The base case b = 0 is clear. Suppose it holds for b − 1.

• Case 1: wb ∈ S .
Then b′ = (b − 1)′ + 1 and wb = ŵb′ . Since yb−1

T = 0, we have

yb
wb

= M(yb−1;G)wb = M(yb−1
S ;G[S])wb = M(Mŵ1:b′−1(x̂;G[S]);G[S])ŵb′ = Mŵ1:b′ (x̂;G[S])wb ,

and hence yb
S = Mŵ1:b′ (x̂;G[S]).

• Case 2: wb ∈ T .
Then b′ = (b − 1)′ . Since yb−1

S �= 0, we have M(yb−1;G)wb = 0 and hence yb
T = 0.

19

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 10. Illustration of Proposition 6.6.

• Case 3: wb ∈ U .
This case is trivial.

For b = |w| we obtain y = Mw(x;G) = (Mŵ(x̂;G[S]),0, yU), for which yS / ∈ M(G[S]), and hence y / ∈ M(G). �
Propositions 6.6 and 6.7 yield perhaps the second simplest class of non-permissible graphs. The wheel graph is Wn+1 =

K2(Cn, K1).

Corollary 6.8. For all k ≥ 3, the wheel graph W2k+2 is not permissible.

Clearly, a graph is permissible if and only if all its connected components are permissible. In particular, for any G , the
union H = G ∪C7 is not permissible, but is disconnected. An interesting consequence of Proposition 6.7 is that permissibility
of a connected graph cannot be decided by focusing on an induced subgraph, even if the latter has all but seven vertices of
the original graph. Indeed, for any graph G , the join H ′ = K2(C7, G) is not permissible, since the heptagon is tethered in H ′ .

Corollary 6.9. Let G be a graph. Then there exists a connected non-permissible graph H ′ such that G is an induced subgraph of H ′.

Second, and unsurprisingly, we can construct larger non-permissible graphs by using a constituency.

Proposition 6.10. Let G be a graph. If there exists A ⊆ V such that G[A] is not permissible and S = N(A) \ A is a constituency of
G − A, then G is not permissible.

Proof. Let I be an independent set of G − A such that S ⊆ N(I). Let w be a permutation of V and w[A] be the permutation
of A induced by w . Then let ẋ ∈ {0,1}A be a configuration such that ẏ = Mw[A](ẋ) / ∈ M(G[A]). Then consider x ∈ {0,1}V such
that: xI = 1, xA = ẋ, xV −A−I = 0. We then have yI = 1, yS = 0, and hence y A = ẏ. Since ẏ / ∈ M(G[A]) and yS = 0, we obtain
that y / ∈ M(G), i.e. w is not a permis of G . �

For all k ≥ 3 the odd hole C2k+1 is non-permissible. Consider the graph C2k+1+ by adding a vertex of degree one to C2k+1;
as we shall see later it is permissible. Now add another vertex of degree one to the tail of C2k+1+ to obtain C2k+1++ . The
graphs C7, C7+ and C7++ are illustrated in Fig. 11. In C7++ , the vertex S = {η} is a constituency and is the neighbourhood
of the heptagon; therefore C7++ is not permissible. Obviously, this reasoning applies to all larger C2k+1++ as well.

Corollary 6.11. For all k ≥ 3, C2k+1++ is not permissible.

20

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 11. Graphs C7 (non-permissible), C7+ (permissible), and C7++ (non-permissible).

Fig. 12. The permis of C7+ .

6.3. The Permissible decision problem

We now prove that deciding whether a graph is permissible is computationally hard.

Permissible

Input: A graph G .
Question: Is G permissible?

As mentioned above, C7+ is permissible; the proof of Lemma 6.12 below can easily be generalised to show that C2k+1+
is permissible for all k ≥ 3.

Lemma 6.12. Any w such that C7+w is given on Fig. 12 is a permis of C7+.

Proof. The vertices β , δ, ζ , and η are all transitive, and v is near-transitive, and hence these are covered. We only need to
show that α, γ and ε are covered.

For α, suppose yvαβ = 000. We then have the following chain of implications:

(yα = 0 ∧ yβ = 0) ∧ (α → β ← γ) =⇒ yγ = 1

(yγ = 1) ∧ (γ → β) =⇒ xβ = 0

(xβ = 0 ∧ yv = 0) ∧ (v → α → β) =⇒ yα = 1,

which is the desired contradiction.
For γ , suppose yβγ δ = 000. We then have the following chain of implications:

(yβ = 0 ∧ yγ = 0) ∧ (α → β ← γ) =⇒ yα = 1

(yα = 1) ∧ (α → β) =⇒ xβ = 0

(yγ = 0 ∧ yδ = 0) ∧ (γ → δ ← ε) =⇒ yε = 1

(yε = 1) ∧ (δ ← ε) =⇒ xδ = 0

(xβ = 0 ∧ xδ = 0) ∧ (β ← γ → δ) =⇒ yγ = 1,

which is the desired contradiction.
For ε , suppose yδεζ = 000. We then have the following chain of implications:

(yδ = 0 ∧ yε = 0) ∧ (γ → δ ← ε) =⇒ yγ = 1

21

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 13. Illustration of the reduction from Non-Constituency to Permissible.

(yγ = 1) ∧ (γ → δ) =⇒ xδ = 0

(yε = 0 ∧ yζ = 0) ∧ (ε → ζ ← v) =⇒ yv = 1

(yv = 1) ∧ (ζ ← v) =⇒ xζ = 0

(xδ = 0 ∧ xζ = 0) ∧ (δ ← ε → ζ) =⇒ yε = 1,

which is the desired contradiction. �
Theorem 6.13. Permissible is coNP-hard.

Proof. Reduction from Non-Constituency. Let (G, S) be an instance of Non-Constituency of empty type, and let T = V \ S .
Let T ′ be a copy of T . Let A be another set of 7 vertices inducing a heptagon and let v ∈ A. Then consider the instance
Ĝ = (V̂ , Ê) of Permissible with

V̂ = V ∪ T ′ ∪ A

Ê = E ∪ {tt′ : t ∈ T } ∪ C7(A)∪ {sv : s ∈ S}.
This construction is illustrated in the left hand side of Fig. 13.

We claim that (G, S) is a yes-instance of Non-Constituency if and only if Ĝ is a yes-instance of Permissible. First, if S
is a constituency of G , then S is a constituency of Ĝ − A, and hence Ĝ is not permissible by Proposition 6.10. Second, if S is
not a constituency of G , let ω be the permis of C7+ given in Lemma 6.12 and consider the orientation Ĝ w such that T ′ ∪ S
are all sinks and Ĝ w [A ∪ {s}] = C7+ω for all s ∈ S . (The edges of Ĝ[T] can be oriented arbitrarily.) This is illustrated in the
right hand side of Fig. 13.

The vertices in T ∪ T ′ ∪ S are all near-transitive, and hence covered by w . We now prove that the vertices in B = A \ {v}
are also covered by w . Let ẋ ∈ {0,1}A∪{η} be given by ẋa = xa for all a ∈ A and ẋη = ∧

s∈S ¬xs , and let ẏ ∈ {0,1}A∪{η} =
Mω(ẋ;C7+). Since A � V \ A in Ĝ w , we obtain y A = Mw(x; Ĝ)A = Mω(ẋ;C7+)A = ẏ A . For all u ∈ B , we have N[u; Ĝ] =
N[u;C7+] and since ω is a permis, yN[u;Ĝ] = ẏN[u;C7+] �= 0, thus u is covered by w . Therefore, the only vertex in contention
is v . Suppose yv = 0 and let I = 1(y) ∩ T . Since I is an independent set of G and S is not a constituency of G , there exists
s ∈ S outside of the neighbourhood of I . Thus, yN(s) = 0 and hence ys = 1, which yields yN[v] �= 0. Thus v is covered, and
w is a permis of Ĝ . �

22

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

7. Extension to kernels in digraphs

The MIS network can be easily extended to digraphs as follows. The kernel network, denoted by K(G), is defined by

K(x)v =
∧

u→v

¬xu,

where K(x)v = 1 if N in(v) = ∅. We then have Fix(K(G)) = K(G).

7.1. Fixability of the kernel network

Henceforth we consider the fixability of the kernel network. We saw that �C2k+1 has no kernel, and hence it is not fixable.
However, the existence of kernels does not guarantee fixability, as we shall prove in Proposition 7.1.

First, we give some sufficient conditions for a digraph to have a kernel and yet to not be fixable. Generalising the
definition from the undirected case, we say a set of vertices S is tethered if there is an undirected edge st between any
s ∈ S and any t ∈ T = N in(S) \ S . Note that necessarily T ⊆ Nout(S) but possibly Nout(S) \ T �= ∅.

Proposition 7.1. If G has a tethered set S such that K(G[S]) is not fixable, then K(G) is not fixable.

We need two lemmas before giving the proof of Proposition 7.1.

Lemma 7.2. If x ∈ {0,1}V �= 0 and x �→K y, then y �= 0.

Proof. Suppose, for the sake of contradiction, that y = Kw(x) = 0 with w = w1:l , while yl−1 �= 0. Then yl−1
N in(wl)

= 0, hence
ywl = K(yl−1)wl = 1, which is the desired contradiction. �
Lemma 7.3. If K(G) is not fixable, then for any word w, there exists a nonzero configuration x of G such that Kw(x) / ∈ K(G).

Proof. For the sake of contradiction, suppose Kw (x) ∈ K(G) for all nonzero x. We remark that K(0)w1 = 1 hence Kw1 (0) �= 0
and by Lemma 7.2, Kw(0) �= 0. Therefore, Kw w(0) ∈ K(G), and by hypothesis Kw w(x) ∈ K(G) for any nonzero x, which shows
that w w fixes K(G). �
Proof of Proposition 7.1. Partition the vertex set of G into three parts: S , T = N in(S) \ S , and U = V \ (S ∪ T).

Let w ∈ V ∗ be a word, then by Lemma 7.3 there exists a nonzero configuration x̂ of G[S] such that Kw[S](x̂;G[S]) / ∈
K(G[S]). Let x be a configuration of G such that xS = x̂ �= 0 and xT = 0. By induction on 0 ≤ a ≤ l, we prove that ya

S �= 0 and
ya

T = 0. The claim is clear for a = 0, hence suppose it holds for a − 1. We consider three cases.

• Case 1: wa ∈ S .
Since ya−1

T = 0, we have ya
S = Kwa (ya−1;G)S = Kwa (ya−1

S ;G[S]) �= 0 by Lemma 7.2. Also, ya
T = ya−1

T = 0.
• Case 2: wa ∈ T .

Since ya−1
S �= 0, we have K(ya−1;G)wa = 0. Also, ya

S = ya−1
S �= 0.

• Case 3: wa ∈ U .
Then ya

S = ya−1
S �= 0 and ya

T = ya−1
T = 0.

Therefore yS = Kw[S](xS ;G[S]) and hence yS / ∈ K(G[S]). Since yT = 0, this implies that y / ∈ K(G). �
In particular, if G has a tethered set S with G[S] = �C2k+1 and G − S is a graph, then G has a kernel (namely every

maximal independent set of G − S) but K(G) is not fixable.
We are now interested in the computational complexity of deciding whether the kernel network is fixable.

Fixable

Input: A digraph G .
Question: Is K(G) fixable?

Theorem 7.4. Fixable is coNP-hard.

Proof. The proof is by reduction from Tautology, which is coNP-hard. Let φ be a DNF with set of variables A, set of literals
B = {α,¬α : α ∈ A}, and set of clauses �, so that φ can be expressed as φ = ∨

γ∈�

∧
β∈Bγ

β with Bγ ⊆ B for all γ ∈ �. We
construct a graph that has a vertex per literal, then builds a NOR-gate circuit for φ, and finally attaches the output of this

23

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 14. Illustration of the reduction from Tautology to Fixable.

circuit to a �C3. Intuitively, a 0 output of the circuit (which occurs whenever φ is not a tautology) will isolate the �C3, which
is not fixable, while a 1 output will guarantee convergence.

Let G = (V , E) with

V = B ∪ � ∪ {¬φ,φ,a,b, c},
E = {α¬α : α ∈ A} ∪ {β → γ : ¬β ∈ γ ,γ ∈ �} ∪ {γ →¬φ : γ ∈ �} ∪ {¬φ → φ → a → b → c → a}.

This is illustrated in Fig. 14.
If φ is a tautology, then let w = w B w�¬φφabc, where w B and w� are any permutations of B and �, respectively. For

each α, let α′ = {α,¬α}. Then G[α′] is a complete graph, and has w[α′] as a permis. Therefore, at the end of w B , we have
yα′ = y|B|

α′ ∈ {01,10}. Let z ∈ {0,1}A = y|B|
A . The graph G then induces a circuit for φ, so that yγ = y|B|+|�|

γ = ∧
β∈γ ¬y|B|

¬β =
γ (z) and y¬φ =¬φ(z) and eventually yφ = φ(z) = 1. Finally, we obtain yabc = 010, and it is easily verified that y ∈ K(G).

If φ is not a tautology, let w be any word and construct the configuration x as follows. Let z ∈ {0,1}A such that φ(z) = 0
then let xα = zα , x¬α =¬zα , xγ = γ (z), x¬φ =¬φ(z), xφ = φ(z) = 0 and xabc can be chosen arbitrarily, since in a �C3 every
configuration is such that Kw[abc](xabc) / ∈ K(G[abc]). By construction, updating the value of any vertex outside of the �C3 will
not change anything, i.e. y = Kw[abc](x;G). Now, since xφ = yφ = 0, we have Kw[abc](x;G)abc = Kw[abc](x;G[abc]) / ∈ K(G[abc]),
and hence y / ∈ K(G). �

We now refine Theorem 7.4 by restricting ourselves to a very specific class of digraphs. For any ε > 0, say a digraph G
is ε-fixable if there is a word w that fixes at least a fraction 1 − ε of configurations, i.e. |{x ∈ {0,1}V : Kw(x) ∈ K(G)}| ≥
(1 − ε)2n .

Theorem 7.5. For any ε > 0, Fixable is coNP-hard for oriented ε-fixable digraphs of maximum in- and out-degree 2.

Proof. The proof is by reduction from 3-Tautology restricted to expressions where each literal appears at most twice, which
is coNP-hard. We use the notation introduced in the proof of Theorem 7.4.

Let φ be a 3-Tautology instance where each literal appears at most twice. Let � be an additional set of − log2 ε!
variables, and let

ψ = φ ∨
∨

�.

Let G be the graph constructed in the proof of Theorem 7.4 for the expression ψ . Now replace each K2 corresponding to a
variable by a �C4 as follows. Let u be a variable in A∪� and let u′ = {u,¬u, u̇,¬u̇} induce the cycle u →¬u → u̇ →¬u̇ → u.
We finally adapt the NOR-gate circuit of ψ to have fan-in 2. The new graph Ĝ is illustrated in Fig. 15.

By construction, Ĝ is oriented. Since each literal appears at most twice in ψ , the out-degree of each vertex in �C4 is at
most 2; it is easily verified that the in-degree at out-degree of each vertex is then at most 2. Also, as before, Ĝ is fixable if
and only if ψ is a tautology, which in turn occurs if and only if φ is a tautology.

24

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Fig. 15. Illustration of the reduction from 3-Tautology where each literal appears at most twice to Fixable.

We now prove that the new graph Ĝ is ε-fixable by exhibiting a word w that fixes all configurations with xω = 1 for
some ω ∈ �. Let u ∈ A ∪�, then the word wu =¬uu̇¬u̇ fixes Ĝ[u′] without updating the vertex u. Then let w ′ = (wu : u ∈
A ∪ �) be the concatenation of all the wu words (in any order). Let w ′′ be a word that follows the circuit in topological
order, and finally let w = w ′w ′′abc. Let x be a configuration such that xω = 1 for some ω ∈ �. Note that because we chose
|�| ≥ − log2 ε at least 1 − ε of all configurations satisfy this property. We have ψ(xA∪�) = ψ(y A∪�) = 1 and hence yψ = 1
and yabc = 010. Thus y ∈ K(Ĝ). �
7.2. The independent network

Since the kernel network is not fixable in general, and since it is not even tractable to decide whether the kernel network
of a particular digraph is fixable, we now introduce and study two Boolean networks that are always fixable, and whose
sets of fixed points contain all kernels.

The independent network on G , denoted by I(G), is defined by

I(x)v = xv ∧
∧

u→v

¬xu,

with I(x)v = xv if N in(v) = ∅. We then have Fix(I(G)) = I(G). Moreover, as we shall prove later, any permutation of V is a
fixing word of I(G).

We first settle the reachability problem for the independent network. We shall tacitly use the simple fact that if x �→I y,
then y ≤ x. We characterise the configurations y that are reachable from a given initial configuration x. Generalising the
undirected case, for any configuration x ∈ {0,1}V , we let C(x) denote the collection of initial strong components of G[1(x)].

25

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Proposition 7.6 (Reachability for the independent network). Let x, y ∈ {0,1}V be two configurations. The following are equivalent:

1. x �→I y;

2. x
geo�−−→I y;

3. y ≤ x and yC �= 0 for any C ∈ C(x).

Proof of Proposition 7.6. If x = 0 then the proposition trivially holds as G[1(x)] is the empty digraph and y = x, so the
geodesic is the empty word; we now consider x �= 0.

We first prove that if x �→I y, then yC �= 0 for all C ∈ C(x). Suppose y = Iw(x) satisfies yC = 0, with w = w1:l , and that
yl−1

C �= 0. Then wl ∈ C and there exists a vertex u such that yl−1
u = xu = 1 and u → wl; but then u ∈ C and hence yC �= 0,

which is the desired contradiction.
We now prove that if y ≤ x and yC �= 0 for all C ∈ C(x), then there is a geodesic from x to y. We use Lemma 2.1. The

geodesic is a concatenation of words w B , one for each strong component B of G[1(x)], in reverse topological order. The
word w B is described as follows.

• Case 1: yB = 0.
Then B is not an initial component, hence there exists u ∈ B with an in-neighbour in a parent strong component and T
a spanning out-tree of B rooted at u. Then w B is the word obtained by traversing the tree from leaves to root.

• Case 2: yB �= 0.
Let S = 1(y) ∩ B and T be the spanning out-forest of B rooted at S . Then w B is the word obtained by traversing the
out-forest but missing out the roots. (In particular, if S = B , then w B is empty.)

It is easy to verify that w is indeed a geodesic from x to y. �
We now determine the words that fix the independent network. We generalise the concept of a vertex cover to digraphs

as follows: a directed vertex cover of a digraph is a set of vertices S such that for every symmetric edge uv , {u, v} ∩ S �= ∅
and for every oriented edge (u, v), v ∈ S .

Proposition 7.7 (Words fixing the independent network). Let G be a digraph. Then w fixes the independent set network I(G) if and
only if [w] is a directed vertex cover of G.

Proof. Suppose w fixes I. If uv is a symmetric edge with {u, v} ∩ [w] = ∅, then for any configuration x with xuv = 11, we
have yuv = 11. If (u, v) is an oriented edge with v / ∈ [w], then if xN in(u),u,v = (0,1,1), we have yuv = 11.

Suppose [w] is a directed vertex cover. Suppose yuv = 11. If uv is symmetric, without loss let v be updated last. Let ya

be the configuration before the last update of v , then ya
u = yu = 1, which implies yv = 1, which is a contradiction. If (u, v)

is oriented, then let ya be the configuration before the last update of v , then ya
u = yu = 1, which implies yv = 1, which is

a contradiction. �
I fixing word

Input: A digraph G = (V , E) and a word w .
Question: Does w fix I(G)?

Corollary 7.8. I fixing word is in P.

7.3. The dominating network

The dominating network on G , denoted by D(G), is defined by

D(x)v = xv ∨
∧

u→v

¬xu,

with D(x)v = 1 if N in(v) = ∅. We then have Fix(D(G)) = D(G). Moreover, once again, any permutation of V fixes the domi-
nating network.

We first settle the reachability problem for the dominating network. We use the simple fact that if x �→D y, then y ≥ x.
We characterise the configurations y that are reachable from a given configuration x. For any configuration x, let A(x) =
0(x) ∩ Nout(1(x)) and B(x) = 0(x) \ Nout(1(x)).

Proposition 7.9 (Reachability for the dominating network). Let x, y ∈ {0,1}V be two configurations. The following are equivalent:

1. x �→D y;

26

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

2. x
geo�−−→D y;

3. y ≥ x, y A(x) = 0, and G[1(yB(x))] is acyclic.

Proof. We first prove that if x �→D y, then y A(x) = 0. We prove that ya
A(x) = 0 by induction on a. This is clear for a = 0, so

assume it holds for a. If wa+1 / ∈ A(x), then we’re done. Otherwise, since ya ≥ x, we have ya
1(x) = 1, therefore D(ya)wa+1 = 0

and hence ya+1
A(x) = 0.

We now prove that if x �→D y, then G[1(yB(x))] is acyclic. Suppose that G[1(yB(x))] has a cycle v1, . . . , vk and without
loss, suppose that vk is the last updated. Let z be the configuration before that last update, then zvk−1 = 1 hence yvk =
D(z)vk = 0, which is the desired contradiction.

We finally prove that if y ≥ x, y A(x) = 0, and H = G[1(yB(x))] is acyclic, then there is a geodesic from x to y. Let w
be a traversal of H in reverse topological order; it is easily shown by induction on a that N in(wa+1;G) ⊆ 0(ya) and hence
D(ya)wa+1 = 1, as required. �

We now determine the words that fix the dominating network.
We denote the set of closed twins of v by 〈v〉 and we note that 〈v〉 ⊆ N in(v). Note that V can be efficiently partitioned

into these equivalence classes.

Proposition 7.10 (Words fixing the dominating network). Let G be a digraph. Then w fixes the dominating set network D(G) if and
only if [w] ∩ 〈m〉 �= ∅ for all m ∈ B(G).

Proof. Suppose that there exists m ∈ B(G) such that [w] ∩ 〈m〉 = ∅, then we exhibit a configuration x such that yN in[m] = 0.
Let A = N in[m] \ 〈m〉 and B = N in(A) \ N in[m]. For any a ∈ A, there exists b ∈ N in(a) \ N in[m] ⊆ B , since otherwise we would
have N in[a] ⊆ N in[m] and hence a ∈ 〈m〉. Let x〈m〉,A,B = (0,0,1), then y〈m〉 = x〈m〉 = 0, yB ≥ xB = 1 and hence y A = 0, thus
yN in[m] = 0.

Suppose that for all m ∈ B(G), we have [w] ∩ 〈m〉 �= ∅, and suppose that yN in[v] = 0 for some v . For all u with N in[u] ⊆
N in[v], we also have yN in[u] = 0, therefore, there exists m ∈ B(G), N in[m] ⊆ N in[v] such that yN in[m] = 0. Since y ≥ x, we
also have xN in[m] = 0. Let m′ ∈ [w] ∩ 〈m〉 ⊆ N in[m] and let wa+1 be the first update of m′ , then ya

N in[m′] = ya
N in[m] = 0, thus

D(ya)wa+1 = 1 = ym′ and yN in[m] �= 0, which is the desired contradiction. �
D fixing word

Input: A digraph G = (V , E) and a word w .
Question: Does w fix D(G)?

Corollary 7.11. D fixing word is in P.

8. Conclusion

Summary of results In this paper, we have considered the generalisation of the MIS algorithm to allow for any initial con-
figuration and to use update words that are not necessarily permutations. We have defined many decision problems with
respect to this generalisation, such as:

• Given G and a configuration x, can x reach all MIS?
• Given G and a word w , does w fix M(G)?
• Given G and a set of vertices S , can we fix M(G) by only updating S?
• Given G , is there a word fixing M(G) that skips a vertex?
• Given G and a permutation w , does w fix M(G) (i.e. is w a permis of G)?
• Given G , does G have a permis?

Even though every graph has a fixing word that guarantees terminating at a MIS regardless of the initial configuration,
all the decision problems about the MIS algorithm in this paper are computationally hard. Additionally, we exhibit broad
classes of graphs with and without permises, and relate these to existing graph classes. We introduce the class of near-
comparability (a strict superclass of comparability graphs, which themselves encompass interval graphs and bipartite graphs,
among others) and show that all near-comparability graphs are permissible.

We further extended the MIS algorithm to digraphs; in this case, deciding whether the kernel network has a fixing word
is computationally hard once again. Lastly, we consider the independent network and the dominating network, which are
both related to the kernel network, and show that the analogous problems for these networks are tractable.

27

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

Future work This paper can be extended in several ways. We give three potential avenues below.

1. Graph classes.
Since our problems are NP- or coNP-hard for the class of all graphs, it is natural to examine the complexity of those prob-
lems when we restrict ourselves to particular graph classes. The main tool for reductions is the Constituency decision
problem. However, the reductions used in this paper did not preserve certain graph classes. For instance, Constituency

remains NP-complete even for bipartite graphs, while Permissible is trivial for comparability graphs.
2. Minimum length of a fixing word.

We have investigated the existence of fixing words, but not their lengths. From our results on prefixing and suffixing
words, we get an upper bound on the minimum length of a fixing word: a + b − 1, where a is the minimum size
of a non-district and b is the minimum size of a vertex cover. We conjecture that the problem of determining the
minimum length of a fixing word is computationally hard. The analogous problem when we can only start at the all-zero
configuration is obviously NP-hard, as this amounts to determining the minimum size of a maximal independent set.

3. Permises with bounded diameter.
Let w be a permutation of V , and for any vertex v , let δ(v) denote the maximum length of a path terminating at v in
G w . Let Ci = {v ∈ V : δ(v) = i}, then V = C0 ∪ · · · ∪ Cd , where d is the diameter of w . Instead of updating the vertices
sequentially according to w , one can update all the vertices in Ci at once, thus only requiring d + 1 time steps. As
such, the diameter of a permis w measures the time it takes to fix the MIS network when we allow for some amount
of synchronicity. If � is the maximum degree of G , then G always has a permutation of diameter �: partition V into
colour classes C0, . . . , C� (since the chromatic number is at most � + 1), then C0 � C1 � · · · � C� . This is best possible
if G is complete, for instance. We therefore ask: if G has a permis, then does it have a permis of diameter bounded by a
function of �?

CRediT authorship contribution statement

Maximilien Gadouleau: Writing – review & editing, Writing – original draft, Formal analysis, Conceptualization. David C.
Kutner: Writing – review & editing, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

We would like to thank William K. Moses Jr. and Peter Davies-Peck for their insights on self-stabilization and distributed
computing.

Data availability

No data was used for the research described in the article.

References

[1] Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeupler, Fabian Kuhn, Beeping a maximal independent set, Distrib. Comput.
26 (4) (2013) 195–208.

[2] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai, Ziv Bar-Joseph, A biological solution to a fundamental distributed computing
problem, Science 331 (6014) (2011) 183–185.

[3] J. Aracena, A. Richard, L. Salinas, Maximum number of fixed points in and-or-not networks, J. Comput. Syst. Sci. 80 (7) (2014) 1175–1190.
[4] J. Aracena, A. Richard, L. Salinas, Synchronizing Boolean networks asynchronously, J. Comput. Syst. Sci. 136 (2023) 249–279.
[5] Julio Aracena, Maximilien Gadouleau, Adrien Richard, Lilian Salinas, Fixing monotone Boolean networks asynchronously, Inf. Comput. 274 (104540)

(October 2020).
[6] Julio Aracena, Eric Goles, A. Moreira, Lilian Salinas, On the robustness of update schedules in Boolean networks, Biosystems 97 (2009) 1–8.
[7] Jorgen Bang-Jensen, Gregory Gutin, Digraphs: Theory, Algorithms and Applications, Springer, 2009.
[8] Joffroy Beauquier, Janna Burman, Fabien Dufoulon, Shay Kutten, Fast beeping protocols for deterministic MIS and (� + 1)-coloring in sparse graphs, in:

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018, pp. 1754–1762.
[9] Guy E. Blelloch, Jeremy T. Fineman, Julian Shun, Greedy sequential maximal independent set and matching are parallel on average, in: SPAA’12:

Proceedings of the Twenty-Fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures, June 2012, pp. 308–317.
[10] Béla Bollobás, Imre Leader, Connectivity and dynamics for random subgraphs of the directed cube, Isr. J. Math. 83 (1993) 321–328.
[11] S. Bornholdt, Boolean network models of cellular regulation: prospects and limitations, J. R. Soc. Interface 5 (Suppl 1) (2008) S85–S94.
[12] A. Casteigts, Y. Métivier, J.M. Robson, A. Zemmari, Design patterns in beeping algorithms: examples, emulation, and analysis, Inf. Comput. 264 (2019)

32–51.
[13] Artur Czumaj, Peter Davies, Communicating with beeps, J. Parallel Distrib. Comput. 130 (C) (Aug 2019) 98–109.
[14] Edsger W. Dijkstra, Self-stabilizing systems in spite of distributed control, Commun. ACM 17 (11) (Nov 1974) 643–644.

28

http://refhub.elsevier.com/S0890-5401(25)00002-1/bib8AE4333FBAC57A7250A3D80F5440C6B0s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib8AE4333FBAC57A7250A3D80F5440C6B0s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib8ABF95FF51D074C318D4645285D77E44s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib8ABF95FF51D074C318D4645285D77E44s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibD8B2BBCE5D179F9E6229C3BF4A9819FBs1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib90D07C3DD6F4F18D879DA0E80186A97Fs1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibA888E0E6E99961320BDE842545DF00E2s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibA888E0E6E99961320BDE842545DF00E2s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib3DC2F1551DAC4997FB446B82197AC531s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib29D4612447694B050F8DB2B1800FD9D9s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibF5F351802F8B4D439E94271B5DE0AD65s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibF5F351802F8B4D439E94271B5DE0AD65s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib1395D6FC6DBB44ED3920ABD58E31C8F8s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib1395D6FC6DBB44ED3920ABD58E31C8F8s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib3D659157E27B9856F5522063D5150BFAs1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib4DAF94109CAD7D9D306D2847F6D784B9s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib6ACD6E45A8C11F9235C258660699DB44s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib6ACD6E45A8C11F9235C258660699DB44s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibDB94FB8647502DFFF420E17FDEE0A1D0s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib185971E708173F992C5089D0CF4FA4D2s1

M. Gadouleau and D.C. Kutner Information and Computation 303 (2025) 105266

[15] Maximilien Gadouleau, Adrien Richard, On fixable families of Boolean networks, in: Proc. Workshop on Asynchronous Cellular Automata, September
2018, pp. 396–405.

[16] Mohsen Ghaffari, Distributed maximal independent set using small messages, in: Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2019, pp. 805–820.

[17] Mohsen Ghaffari, Local computation of maximal independent set, in: 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),
2022, pp. 438–449.

[18] E. Goles, M. Noual, Disjunctive networks and update schedules, Adv. Appl. Math. 48 (5) (2012) 646–662.
[19] Eric Goles, Dynamics of positive automata networks, Theor. Comput. Sci. 41 (1985) 19–32.
[20] Richard M. Karp, Reducibility among combinatorial problems, in: Raymond E. Miller, James W. Thatcher (Eds.), Complexity of Computer Computations,

Plenum Press, New York, 1972, pp. 85–103.
[21] S.A. Kauffman, Metabolic stability and epigenesis in randomly connected nets, J. Theor. Biol. 22 (1969) 437–467.
[22] Christoph Lenzen, Jukka Suomela, Roger Wattenhofer, Local algorithms: self-stabilization on speed, in: Sándor Fekete, Stefan Fischer, Martin Riedmiller,

Suri Subhash (Eds.), Algorithmic Methods for Distributed Cooperative Systems, in: Dagstuhl Seminar Proceedings (DagSemProc), vol. 9371, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2010, pp. 1–18.

[23] Ross M. McConnell, Jeremy Spinrad, Linear-time transitive orientation, in: Proc. 8th ACM-SIAM Symposium on Discrete Algorithms, 1997, pp. 19–25.
[24] Mathilde Noual, Sylvain Sené, Synchronism versus asynchronism in monotonic Boolean automata networks, Nat. Comput. 17 (June 2018) 393–402.
[25] Landon Rabern, Brian Rabern, Matthew Macauley, Dangerous reference graphs and semantic paradoxes, J. Philos. Log. 42 (5) (2013) 727–765.
[26] A. Richard, P. Ruet, From kernels in directed graphs to fixed points and negative cycles in Boolean networks, Discrete Appl. Math. 161 (7) (2013)

1106–1117.
[27] F. Robert, Iterations sur des ensembles finis et automates cellulaires contractants, Linear Algebra Appl. 29 (1980) 393–412.
[28] Jukka Suomela, Survey of local algorithms, ACM Comput. Surv. 45 (2) (Mar 2013).
[29] R. Thomas, Boolean formalization of genetic control circuits, J. Theor. Biol. 42 (3) (1973) 563–585.
[30] Steven Yablo, Paradox without self-reference, Analysis 53 (4) (1993) 251–252.

29

http://refhub.elsevier.com/S0890-5401(25)00002-1/bibB11DD61276376FCA01D2BB15E14319AAs1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibB11DD61276376FCA01D2BB15E14319AAs1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib007DB343B7636F532BCC447BA94AB8AFs1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib007DB343B7636F532BCC447BA94AB8AFs1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib6D1631BA131E33F744136FFF1B92A3A7s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib6D1631BA131E33F744136FFF1B92A3A7s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibDA9D600789F63E3CD3E553FC008DAC3Cs1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib86E8C6F9CEEF34C67F325F70F51F758Es1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib9C04D736806ABE7F8C1C3B6468651829s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib9C04D736806ABE7F8C1C3B6468651829s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibB359B2A9A2BACAB6B22E7087C033F66Bs1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibEF836F7F600C283E4D97D9A2E4BD8647s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibEF836F7F600C283E4D97D9A2E4BD8647s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibEF836F7F600C283E4D97D9A2E4BD8647s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibB830851AF8ADC337A3ED23A6FFAD3C49s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib92F4CC2AE5AF0AE836E1B92FD04AFDC9s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib30FFDD0D878BB3F14F751C2191B9BFF6s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibBF195D9B17842E312DE3BAA934E75FD4s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibBF195D9B17842E312DE3BAA934E75FD4s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibDADBCFE00D558609DBBCB863B644E53Es1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bibCC1B442834B3F8F18BAF161EAF3B1686s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib7A5AA6CCB9280FE2AEA553A3E3A9FF66s1
http://refhub.elsevier.com/S0890-5401(25)00002-1/bib368619AA253BF602D19CA583362C5BA5s1

	Generalising the maximum independent set algorithm via Boolean networks
	1 Introduction
	2 Preliminaries
	2.1 Graphs and digraphs
	2.2 Boolean networks

	3 Constituencies and districts
	3.1 Constituencies
	3.2 Districts

	4 Reachability of the MIS network
	4.1 The MIS network
	4.2 Universal configurations

	5 Words fixing the MIS network
	5.1 Prefixing and suffixing words
	5.2 Fixing sets
	5.3 Permises

	6 Permissible and non-permissible graphs
	6.1 Permissible graphs
	6.2 Non-permissible graphs
	6.3 The Permissible decision problem

	7 Extension to kernels in digraphs
	7.1 Fixability of the kernel network
	7.2 The independent network
	7.3 The dominating network

	8 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

