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Abstract
We introduce partitioned matching games as a suitable model for international kidney
exchange programmes, where in each round the total number of available kidney
transplants needs to be distributed amongst the participating countries in a “fair” way.
A partitioned matching game (N , v) is defined on a graph G = (V , E) with an edge
weighting w and a partition V = V1 ∪ · · · ∪ Vn . The player set is N = {1, . . . , n},
and player p ∈ N owns the vertices in Vp. The value v(S) of a coalition S ⊆ N
is the maximum weight of a matching in the subgraph of G induced by the vertices
owned by the players in S. If |Vp| = 1 for all p ∈ N , then we obtain the classical
matching game. Let c = max{|Vp| | 1 ≤ p ≤ n} be the width of (N , v). We prove that
checking core non-emptiness is polynomial-time solvable if c ≤ 2 but co-NP-hard if
c ≤ 3. We do this via pinpointing a relationship with the known class of b-matching
games and completing the complexity classification on testing core non-emptiness for
b-matching games. With respect to our application, we prove a number of complexity
results on choosing, out of possibly many optimal solutions, one that leads to a kidney
transplant distribution that is as close as possible to some prescribed fair distribution.

Keywords Partitioned matching game · b-Matching games ·
Complexity classification · International kidney exchange

1 Introduction

We consider two generalizations of a classical class of games in cooperative game
theory, namely matching games, which in turn generalize the well-known class of
assignment games. One of the two generalizations of matching games is the known
class of b-matching games. The other one, the class of partitioned matching games,
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is a new class of cooperative games introduced in this paper. We show how these
two generalizations are related to each other and justify the new class of cooperative
games by an emerging real-world application: international kidney exchange [12, 35].
Partitioned matching games implicitly played a role in international kidney exchange
through thework of [7, 22] and have recently been used as a basis for simulations in [6].
The goal of this paper is to provide a strong theoretical basis for partitioned matching
games by proving a number of computational complexity results on computing core
allocations and finding allocations close to prescribed “fair” (core) allocations. We
start with introducing the necessary basic terminology.

1.1 Basic terminology

A (cooperative) game is a pair (N , v), where N is a set of n players (agents) and
v : 2N → R is a value function with v(∅) = 0. A subset S ⊆ N is a coalition
and the set N is the grand coalition. For many natural games, it holds that v(N ) ≥
v(S1) + · · · + v(Sr ) for every possible partition (S1, . . . , Sr ) of N . Hence, the central
problem is how to keep the grand coalition N stable by distributing v(N ) amongst the
players of N in a “fair” way. Such distributions of v(N ) are also called allocations.
That is, an allocation for a game (N , v) is a vector x ∈ R

N with x(N ) = v(N ); here,
we write x(S) = ∑

p∈S x p for a subset S ⊆ N . A solution concept prescribes a set of
fair allocations for a game (N , v), where the notion of fairness depends on context.

One of the best-known solution concepts, the core of a game consists of all allo-
cations x ∈ R

N satisfying x(S) ≥ v(S) for each S ⊆ N . Core allocations are highly
desirable, as they offer no incentive for a subset S of players to leave N and form a
coalition on their own. So core allocations ensure that the grand coalition N is sta-
ble. However, the core may be empty. Moreover, the following three problems may be
computationally hard for a class of cooperative games (assuming a “compact” descrip-
tion of the input game, which is often, and also in our paper, a graph with an edge
weighting):

P1. determine if a given allocation x belongs to the core, or find a coalition S with
x(S) < v(S),

P2. determine if the core is non-empty, and
P3. find an allocation in the core (if it is non-empty).

If P1 is polynomial-time solvable for some class of games, then so are P2 and P3 using
the ellipsoid method [19, 21]. As the core of a game might be empty, other solution
concepts are also considered. Well-known examples of other solution concepts are the
Shapley value and nucleolus (which are both computationally hard to compute).

The input games we consider are defined on an undirected graph G = (V , E) with
a positive edge weighting w : E → R+; here, V is a set of vertices and E is a set of
edges between pairs of distinct vertices. Such a game is said to be uniform (or simple)
ifw ≡ 1. For a subset S ⊆ V , we let G[S] denote the subgraph of G induced by S, that
is, G[S] = (S, {uv ∈ E | u, v ∈ S}) is the graph obtained from G after deleting all
the vertices outside S. A graph is bipartite if its vertex set can be partitioned into two
sets A and B such that every edge joins a vertex in A to a vertex in B. A matching M
is a set of edges in a graph G such that no two edges of M have a common end-vertex.
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Fig. 1 An example [5] of a
matching game (N , v) on a
graph G = (V , E), so N = V .
Note that v(N ) = 7 and that the
core of (N , v) is non-empty, e.g.
the allocation
x = ( 12 , 3

2 , 3
2 , 1, 2, 1

2 ) belongs
to the core

A matching game defined on a graph G = (V , E) with a positive edge weighting
w : E → R+ is the game (N , v) where N = V and the value v(S) of a coalition S is
equal to the maximum weight w(M) = ∑

e∈M w(e) over all matchings M of G[S];
see Fig. 1 for an example. Matching games defined on bipartite graphs are commonly
known as assignment games.

Let G = (V , E) be a graph with a vertex function b : V → N+, which we call a
capacity function. A b-matching of G is a subset M ⊆ E such that each vertex p ∈ V
is incident to at most b(p) edges in M . Let w : E → R+ be an edge weighting of G.
A b-matching game defined on (G, b, w) is the game (N , v) where N = V and the
value v(S) of a coalition S is the maximum weight w(M) over all b-matchings M of
G[S]. Note that if b ≡ 1, then we obtain a matching game. If G is bipartite, then we
speak of a b-assignment game.

In this paper we introduce the notion of a partitioned matching game. Let G =
(V , E) be a graph with an edge weighting w : E → R+. Let V = (V1, . . . , Vn) be a
partition of V . A partitioned matching game defined on (G, w,V) is the game (N , v)

where N = {1, . . . , n} and the value v(S) of a coalition S is the maximum weight
w(M) over all matchings M of G[⋃p∈S Vp]. Let c = max{|Vp| | 1 ≤ p ≤ n} be the
width of (N , v). Note that if Vp = {p} for every p ∈ N , then we obtain a matching
game.

We observe that if (N , v) is a b-matching game or a partitioned matching game,
then v(N ) ≥ v(S1)+· · ·+v(Sr ) for every possible partition (S1, . . . , Sr ) of N . Hence,
studying problems P1–P3 for both b-matching games and partitioned matching games
is meaningful.

Before presenting our new results on P1–P3 for b-matching games and parti-
tioned matching games in Sect. 1.3, we first survey the known results on P1–P3 for
b-assignment games and b-matching games, including results for b ≡ 1, in Sect. 1.2.
Afterwards, we describe the setting of international kidney exchange as an application
of partitioned matching games in Sect. 1.4.

1.2 Known results for P1–P3 for matching games and their variants

It follows from results of Koopmans and Beckmann [26] and Shapley and Shubik
[30] that the core of every assignment game is non-empty. In fact, this holds even for
b-assignments for any capacity function b, as shown by Sotomayor [31]. However, the
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Table 1 Complexity dichotomies for the core (P1–P3), with the following short-hand notations, yes: all
instances are yes-instances; poly: polynomial-time; coNPc: co-NP-complete; and coNPh: co-NP-hard

Problem P1 Problem P2 Problem P3

Assignment games poly yes poly

Matching games poly poly poly

b-assignment games: if b ≤ 2 poly yes poly

if b ≤ 3 coNPc yes poly

b-matching games: if b ≤ 2 poly poly poly

if b ≤ 3 coNPc coNPh coNPh

Partitioned matching games: if c ≤ 2 poly poly poly

if c ≤ 3 coNPc coNPh coNPh

Recall that b : V → N+ is a function and that c = max{|Vp | | 1 ≤ p ≤ n} is a natural number. The new
results of this paper are put in bold. The seven hardness results in the table hold even if w ≡ 1

core of a matching game might be empty (for example, if G is a triangle with w ≡ 1).
Problem P1 is linear-time solvable for matching games: the problem is equivalent
to verifying whether for an allocation x , it holds that x p + xq ≥ w(pq) for every
edge pq ∈ E . Hence, problems P2 and P3 are polynomial-time solvable for matching
games (and thus also for assignment games). We refer to [10, 15] for some alternative
polynomial-time algorithms for solving P2 and P3 on matching games.

Sotomayor [31] proved that P3 is polynomial-time solvable forb-assignment games.
However, Biró et al. [11] proved that P1 is co-NP-complete even for uniform 3-
assignment games. They also showed that for b ≤ 2, P1 (and so, P2 and P3) is
polynomial-time solvable for b-matching games.

Table 1 summarizes the known results for problems P1–P3 for matching games and
their variants (in this table we have also included our new results, which we explain
below in detail). In Sect. 5 we discuss future work. There, we also mention some
results for other solution concepts. For an in-depth discussion on complexity aspects
of solution concepts for matching games and their variants, we refer to the recent
survey of Benedek et al. [5].

1.3 New results for P1–P3 for the two generalizations of matching games

We start with the known generalization of matching games, namely the b-matching
games. In Sect. 2 we prove the following result, solving the only case left open in [11]
(see also Table 1).

Theorem 1 P2 and P3 are co-NP-hard for uniform b-matching games if b ≤ 3.

For a capacity function b : V → N+, we let b∗ denote the maximum b(p)-value
over all p ∈ V . In Sect. 2 we also prove the following two theorems, which together
show that there exists a close relationship between b-matching games and partitioned
matching games, our new generalization of matching games.
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Theorem 2 P1–P3 can be reduced in polynomial time from b-matching games to par-
titioned matching games of width c = b∗, preserving uniformity.

Theorem 3 P1–P3 can be reduced in polynomial time from partitioned matching
games of width c to b-matching games for some capacity function b with b∗ = c.

Combining Theorems 1–3 with the aforementioned results of Biró et al. [11], which
state that P1–P3 are polynomial-time solvable for b-matching games if b ≤ 2 and that
P1 is co-NP-complete even for uniform b-assignment games if b ≤ 3, leads to the
following dichotomy (see also Table 1).

Corollary 1 For c ≤ 2, P1–P3 are polynomial-time solvable for partitioned matching
games with width c, whereas for c ≤ 3, P1 is co-NP-complete, and P2–P3 are co-NP-
hard for uniform partitioned matching games.

1.4 An application of partitionedmatching games

As a strong motivation for introducing partitioned matching games, we consider inter-
national kidney exchange programmes. We explain these programmes below but note
that partitioned matching games can also be used to model other economic settings
where multi-organizations control pools of clients [18].

The most effective treatment for kidney patients is transplantation. The best long-
term outcome is to use living donors. A patient may have a willing donor, but the
donor’s kidney will often be rejected by the patient’s body if donor and patient are
medically incompatible. Therefore, in the last 30 years, an increasing number of coun-
tries have started to run a (national) Kidney Exchange Programme (KEP) [8]. In such
a programme, a patient and their incompatible donor are placed in a pool with other
patient-donor pairs. If donor d of patient p is compatible with patient p′ and simulta-
neously, donor d ′ of p′ is compatible with p, then the pairs (p, d) and (p′, d ′) are said
to be compatible and a (2-way) exchange between (p, d) and (p′, d ′) can take place.
That is, the kidney of donor d can be given to patient p′, and the kidney of donor d ′
can be given to patient p.

KEPs operate in regular rounds, each timewith an updated poolwhere some patient-
donor pairs may have left and new ones may have entered. Naturally, the goal of a KEP
is to help in each round as many patients as possible. For this goal, we construct for
each round, the corresponding (undirected) compatibility graph G as follows. First,
we introduce a vertex i p

d for each patient-donor pair (p, d) in the pool. Next, we add
an edge between two vertices i and j if and only if the corresponding patient-donor
pairs are compatible.We give each edge i j of G a weightw(i j) to express the utility of
an exchange between i and j ; we set w ≡ 1 if we do not want to distinguish between
the utilities of any two exchanges.

It now remains to find a maximum weight matching of G, as such a matching
corresponds to an optimal set of exchanges or, if we had set w ≡ 1, to a largest set of
exchanges in the patient-donor pool. As we can find a maximum weight matching of
a graph in polynomial time, we can find an optimal solution for each round of a KEP
in polynomial time.
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Fig. 2 Left: a directed compatibility graph G = (V , A) with a positive edge weighting w for a certain
round of an international KEP; note that G has a directed 4-vertex cycle, so in the corresponding KEP even
a 4-way exchange could take place. Right: the corresponding undirected compatibility graph G = (V , E)

(which is used when only 2-way exchanges are allowed)

We can generalize 2-way exchanges by defining the directed compatibility graph
G = (V , A), in which V consists of the patient-donor pairs and A consists of every
arc (i, j) such that the donor of pair i is compatible with the patient of pair j . Each
arc (i, j) ∈ A may have an associated weight wi j expressing the utility of a kidney
transplant involving the donor of i and the patient of j ; note that wi j �= w j i is
possible, should both arcs (i, j) and ( j, i) exist in G. For � ≥ 2, an �-way exchange
corresponds to a directed �-vertex cycle in a directed compatibility graph. It involves
� distinct patient-donor pairs (p1, d1), . . . , (p�, d�), where for i ∈ {1, . . . , � − 1},
donor di donates to patient pi+1 and donor d� donates to patient p1. We refer to Fig. 2
for an example. The same figure also illustrates how we can obtain an undirected
compatibility graph G = (V , E) from a directed compatibility graph G = (V , A):
we add an edge i j to E if and only if both (i, j) and ( j, i) are arcs in A and in that
case we set

w(i j) = wi j + w j i .

Allowing �-way exchanges for some � > 2 leads to possibly more patients being
treated. However, Abraham, Blum and Sandholm [1] proved that already for � = 3
it becomes NP-hard to find an optimal solution for a round. We therefore set � = 2,1

just like some related papers [13, 14, 33], which we discuss later.
Nowadays, several countries are starting an international Kidney Exchange Pro-

gramme (IKEP) by merging the pools of their national KEPs; for example, Austria
with the Czech Republic [12]; Denmark with Norway and Sweden; and Italy with
Portugal and Spain [35]. This may lead to more patients being helped. However, apart
from a number of ethical and legal issues, which are beyond the scope of this paper,
we now have an additional issue that must be addressed. Namely, in order to ensure
full participation of the countries in the IKEP, it is crucial that proposed solutions will
be accepted by each of the participating countries. Otherwise countries may decide
to leave the IKEP at some point. So, in order for an IKEP to be successful, we need
to ensure that the programme is stable on the long term. This is a highly non-trivial
issue, as we can illustrate even with the following small example.

Example 1 Let G be a compatibility graph with vertices i1, i2, j and edges i1i2 and
i2 j with weights 1 − ε and 1 respectively, for some small ε. The weight 1 − ε may

1 Some countries allow � = 3 or � = 4, but in practice choosing � = 2 is not uncommon due to lower risk
levels (kidney transplants in a cycle must take place simultaneously) [8].
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have been obtained after desensitization, which we explain below. Let V1 = {i1, i2}
and V2 = { j}. The optimum solution is an exchange between i2 and j with weight 1.
However, the solution consisting of the exchange between i1 and i2 (with weight 1−ε)
is better for V1, as then both patients in the pairs i1 and i2 receive a kidney, and with
more or less the same chance of success. 

To ensure stability, Carvalho and Lodi [13] used a 2-round system with 2-way
exchanges only: in the first round each country selects an internal matching, and in the
second round a maximum matching is selected for the international exchanges. They
gave a polynomial-time algorithm for computing a Nash-equilibrium that maximizes
the total number of transplants, improving the previously known result of [14] for two
countries. Sun et al. [33] also considered 2-way exchanges only. They defined so-called
selection ratios using various lower and upper target numbers of kidney transplants
for each country. In their setting, a solution is considered to be fair if the minimal ratio
across all countries is maximized. They also required a solution to be a maximum
matching and individually rational. They gave theoretical results specifying which
models admit solutions with all three properties and they provided polynomial-time
algorithms for computing such solutions, if they exist.

In contrast to [13, 14, 33], we model an IKEP as follows. Consider a directed
compatibility graphG = (V , A)with a positive arcweightingw. LetV = V1∪· · ·∪Vn

be a partition of V . Let G = (V , E) be the corresponding undirected compatibility
graph. If w ≡ 1, then we model a round of an IKEP of a set N of n countries as
a partitioned matching game (N , v) defined on (G, w) with partition V . Else, we
consider the directed partitioned matching game (N , v) on (G, w) with partition V;
so for each S ⊆ N , we have that v(S) = ∑

p∈S
∑

i, j :i j∈M, j∈Vp
wi j , where M is a

maximum weight matching in G[S]. If c = 1, then we also use the term directed
matching game. We define the following set:

M = {M | M is a maximum weight matching of G}.
Note thatM is the set of maximum matchings of G if w ≡ 1 on G. We note also that
Mmay consist of only a fewmatchings, or even a uniquematching. The latter is highly
likely when weightsw(i j) take many different values at random [27]. However, in our
context, this will not be the case. Compatibility graphs will usually have only a small
number of different weights. The reason is that to overcome certain blood and antigen
incompatibilities, patients can undergoone ormore desensitization treatments tomatch
with their willing donor or some other potential donor. After full desensitization the
chance on a successful kidney transplant is almost the same as in the case of full
compatibility. Allowing desensitization results in compatibility graphs with weights
either 1 (when no desensitization was needed) or 1−ε (after applying desensitization)
[3]. Hence, in our application,M is likely to have exponential size even if we prioritize
maximum weight matchings over maximum (size) matchings.

Our approach is based on a credit-based system that was first introduced by Kli-
mentova et al. [22]. In each round, we maximize the total welfare, that is, we choose
some matching M from the set M for that round. In addition, we specify a target
allocation x . A target allocation prescribes exactly which share of v(N ) each coun-
try ideally should receive in a certain round. However, if we use M ∈ M, then the
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allocated share of v(N ) for country p is

u p(M) =
∑

i, j :i j∈M, j∈Vp

wi j .

Note that
∑

p∈N u p(M) = w(M) = v(N ). The aim is now to choose a match-
ing M ∈ Mwith u p(M) “as close as possible” to x p for each country p. The difference
x p − u p(M) will then be taken as (positive or negative) credits for country p to the
next round. In the next round we repeat the same steps after updating the underlying
partitioned matching game (N , v).

For setting the target allocations, we start with choosing, for the round under con-
sideration, a “fair” initial (kidney) allocation y that is prescribed by some solution
concept for the underlying directed partitioned matching game (N , v) for that round,
so y(N ) = v(N ) holds. Then, for each country p, we change yp into p’s target
x p = yp + cp, where cp are the credits for country p from the previous round (we set
c ≡ 0 for the first round). The initial allocation y could correspond to a core allocation
of the game (N , v). We give more specific examples later.

We now define what we mean with being “as close as possible” to the target allo-
cation x . For country p, we say that |x p − u p(M)| is the deviation of country p from
its target x p in a certain round. We may want to select a minimal matching from M,
which is a matching M ∈ M that minimizes

max
p∈N

{|x p − u p(M)|}

over all matchings ofM. We call such a matching M weakly close to x .
As a more refined selection, we may want to select a matching fromM that is even

lexicographically minimal. That is, let

d(M) = (|x p1 − u p1(M)|, . . . , |x pn − u pn (M)|)
be the vector obtained by reordering the components |x p − u p(M)| non-increasingly.
We say that M is strongly close to x if d(M) is lexicographically minimal over all
matchings M ∈ M. Note that every strongly close matching in M is weakly close,
but the reverse might not be true.

From now on, if w ≡ 1 on G, we consider the actual number of incoming kidneys
that country p will receive in a certain round if M is used. That is, we let for every
p ∈ N , u p(M) be equal to

sp(M) = |{ j ∈ Vp| ∃i ∈ V : i j ∈ M}|.
We say that the vector (s1(M), . . . , sn(M)) is the actual allocation for a certain round.
Note that s1(M) + · · · + sn(M) = 2v(N ) for every M ∈ M, so formally we should
consider u p = 1

2 sp instead of sp. However, for our proofs it does notmatter.Moreover,
by defining sp as above we have a more natural definition in terms of actual numbers
of kidneys. This is a natural utility function, both due to its simplicity and because in
practice the weights w(e) are sparsely spread, as we explained above.
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Example 2 Consider the directed compatibility graph G = (V , A) with the
edge weighting w from Fig. 2. Let V1 = {i1, i2, i3} and V2 = { j1, j2}. It
holds that M = {M1, M2}, where M1 = {i2 j2} and M2 = {i1i2, j1 j2}. Note that
v(N ) = w(M1) = w(M2) = 4. We have that u1(M1) = 3 and u2(M1) = 1, whereas
u1(M2) = u2(M2) = 2. We now set w ≡ 1 and consider the corresponding undi-
rected compatibility graph G = (V , E), which is also displayed in Fig. 2. It now holds
that M = {M2}. Note that v(N ) = |M2| = 2. We have s1(M2) = s2(M2) = 2, so
s1(M2) + s2(M2) = 2v(N ), as we count “incoming” kidneys if w ≡ 1 on G. 


Recall that the aim of this paper is to provide a theoretical basis for our understanding
of partitioned matching games. We refer to a number of recent papers [6, 7, 22] for
experimental results on international kidney exchange that were obtained from simu-
lations using uniform partitioned matching games. As initial allocations, Benedek et
al. [6] used two “hard-to-compute” solution concepts, namely the Shapley value and
nucleolus, and two easy-to-compute solution concepts, the benefit value and contribu-
tion value. They found that almost all initial and actual allocations in their simulations
were core allocations, with the Shapley value yielding the best results. The latter find-
ing was in line with the findings of [7] and [22]. In both [7] and [22], 3-way exchanges
were allowed at the expense of a significant lower number of countries than the study
of [6].

In line with our research aim we prove, apart from the results in Sect. 1.3, a number
of computational complexity results for computing strongly and weakly close maxi-
mum (weight) matchings. The first of these results, the main result of Sect. 1.4, is a
polynomial-time algorithm that was used for the simulations in [6]. For the proof of
this result we refer to Sect. 3.

Theorem 4 It is possible to find a strongly close maximum matching for a uniform
partitioned matching game (N , v) and target allocation x in polynomial time.

In the nonuniform case, we can show the following positive but weaker result than
Theorem 4. It only holds for directed partitioned matching games of width 1 (i.e., for
directed matching games). Its proof can be found in Sect. 3 as well.

Theorem 5 It is possible to find a strongly close maximum weight matching for a
directed partitioned matching game (N , v) of width 1 (i.e., for a directed matching
game) and target allocation x in polynomial time.

Our remaining results, all proven in Sect. 4, are all hardness results. They show that the
situation quickly becomes computationally more difficult when weights are involved,
even if we only want to find a weakly close maximum weight matching and the input
is restricted in some way. For example, in the first of these hardness results we set the
number of countries n equal to 2.

Theorem 6 It is NP-hard to find a weakly close maximum weight matching for a
directed partitioned matching game (N , v) with n = 2 and target allocation x.

Recall that the setting of sparsely spread edge weights is highly relevant in our context.
Hence, we consider this situation more carefully. We say that a directed partitioned
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matching game (N , v), defined on a graph G with positive edge weighting w and
partition V of V , is d-sparse if w takes on only d distinct values. Note that if d = 1,
we obtain a uniform game (possibly after rescaling w) and in that case we can apply
Theorem 4. If d = 2, then we already obtain computational hardness, as shown in
our next result, (which is especially relevant when we consider compatibility graphs
obtained after desensitization).

Theorem 7 It is NP-hard to find a weakly close maximum weight matching for a (2-
sparse) directed partitioned matching game (N , v) with weights 1 and 1 + ε for any
arbitrarily small ε > 0, and target allocation x.

As will be clear from its proof, both the width c and the number of countries n in the
hardness construction of Theorem 7 are arbitrarily large. If c and n are constant, the
partitioned matching game has constant size. Hence, it is natural to consider sparse
directed partitioned matching games (N , v) for which either c or n is a constant. We
were not able to solve either of these two cases, but we can show two partial results
for the case where n is a constant.

By a “compact description” of a game defined on a graph we mean a logarithmic
description of the graph (if possible). For example, a cycle of length k can be described
by its length, which results in input size O(log k) rather than k. If we assume that we
have such a compact description of a directed partitioned matching game, then having
a constant number of countries does not make the problem easier, as our next result
shows.

Theorem 8 It is NP-hard to find a weakly close maximum weight matching for a 3-
sparse compact directed partitioned matching game (N , v) with n = 2 and target
allocation x.

We now make a connection to the Exact Perfect Matching problem introduced
by Papadimitriou and Yannakakis [28] forty years ago. This problem has as input an
undirected graph G whose edge set is partitioned into a set R of red edges and a set
B of blue edges. The question is whether G has a perfect matching with exactly k red
edges for some given integer k. The complexity status ofExact Perfect Matching
is a longstanding open problem, and so far only partial results were shown (see, for
example, [20]).

Consider a directed partitioned matching game (N , v) defined on a directed com-
patibility graph G = (V , A) with a positive arc weighting w and with partition V .
We say that (N , v) is perfect if the corresponding undirected compatibility graph
G = (V , E) has a perfect matching. We now define a specific class of perfect directed
partitioned matching games (N , v), where n = 2, so V = (V1, V2). First of all, we
may assume without loss of generality that (i, j) ∈ A if and only if ( j, i) ∈ A (as else
we would just remove (i, j) from G). For every 2-cycle i j i with i ∈ V1 and j ∈ V2,
we set wi j = 1

3 and w j i = 2
3 . For every other 2-cycle i j i in G (so where i, j ∈ V1 or

i, j ∈ V2) we set wi j = w j i = 1
2 . We say that (N , v) is ( 13 ,

2
3 ,

1
2 )-sparse. Note that
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( 13 ,
2
3 ,

1
2 )-sparse perfect directed partitioned matching games are 3-sparse and have

n = 2. We show the following result.2

Theorem 9 Exact Perfect Matching and the problem of finding a weakly close
maximum weight matching for a ( 13 ,

2
3 ,

1
2 )-sparse perfect directed partitioned match-

ing game (with n = 2) and target allocation x are polynomially equivalent.

In Sect. 5 we finish our paper with a discussion on future work.

2 The Proofs of Theorems 1–3

In this section we prove Theorems 1–3. A b-matching M in a graph G with capacity
function b covers a vertex u if M contains an edge incident to u, whereas M saturates u
if M contains b(u) edges incident to u. We identify M with the subgraph of G induced
by M (that is, the subgraph of G consisting of all edges in M and all vertices covered
by M). We speak about (connected) components of M . For instance, for b = 1, every
edge e ∈ M is a component.

We start with Theorem 1, which we restate below.

Theorem 1 (restated). P2 and P3 are co-NP-hard for uniform b-matching games if
b ≤ 3.

Proof Theproof is by reduction fromavariant of the 3- Regular Subgraphproblem.
This problem is to decide if a given graph has a 3-regular subgraph (a graph is 3-regular
if every vertex has degree 3). This problem is NP-complete even for bipartite graphs
[32]. We define the Nearly 3- Regular Subgraph problem. This problem is to
decide whether a (non-bipartite) graph G has a nearly 3-regular subgraph, that is, a
subgraph in which all vertices have degree 3 except for one vertex that must be of
degree 2.

The Nearly 3- Regular Subgraph problem is also NP-complete. Namely, we
can reduce from 3- Regular Subgraph restricted to bipartite graphs. Given a bipar-
tite graph (U ∪V , E), we construct the non-bipartite graph G consisting of |E | disjoint
copies of (U ∪ V , E) where in the copy corresponding to e ∈ E the edge e is subdi-
vided by a new vertex ve (that is, we replace e by ve and make ve adjacent to the two
end-vertices of e). Now, (U ∪ V , E) has a 3-regular subgraph if and only if G has a
nearly 3-regular subgraph. Indeed, if there is a 3-regular subgraph in (U ∪ V , E) that
contains the edge e, there will be a nearly 3-regular subgraph in G whose degree 2
vertex is ve. Conversely, if there is a nearly 3-regular subgraph in G, it must contain a
vertex ve for some e; otherwise the subgraph would be bipartite, but a nearly 3-regular
graph cannot be bipartite.

As mentioned, we reduce from Nearly 3- Regular Subgraph for non-bipartite
graphs. Given an instance G = (V , E) of the latter, we construct a graph G with
vertex capacities b(i) ≤ 3 and edge weights w = 1 as follows (see also Fig. 3).

2 Theorem 9 holds in fact for all 3-sparse perfect directed partitioned matching games with wi j = α for

some 0 < α < 1 with α �= 1
2 for arcs from V1 to V2 andw j i = 1−α for arcs from V2 to V1, and weights

1
2

for all other arcs. Note that we need α �= 1
2 , as the case where α = 1

2 corresponds to a partitioned matching
game on an (undirected) uniform compatibility graph G, so Theorem 4 could be applied.
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Fig. 3 A vertex v ∈ V with the three pendant triangles (av, cv, dv). Thick edges are edges in M . In this
case, we also say that v is matched “down” to all of av,1, av,2, av,3

– Give each v ∈ V capacity b(v) = 3.
– Make each v ∈ V adjacent to newvertices av,1, av,2, av,3 with b(av,1) = b(av,2) =

b(av,3) = 2.
– Make each av, j part of a trianglewith two new vertices cv, j and dv, j with b(cv, j ) =

b(dv, j ) = 2.
– For each v ∈ V add a new vertex av with b(av) = 3 and make av adjacent to av,1,

av,2, av,3.
– For each v ∈ V add a new vertex cv with b(cv) = 3 and make cv adjacent to cv,1,

cv,2, cv,3.
– For each v ∈ V add a new vertex dv with b(dv) = 3 and make dv adjacent to dv,1,

dv,2, dv,3.
– Make a new vertex r called the root node r with b(r) = 1 adjacent to every v ∈ V .

We next describe a maximum b-matching in G, as indicated, in part, in Fig. 3 as
well. Let M consist of all edges vav, j plus all edges of the form cv, j dv, j plus all edges
incident to av, cv and dv . As M saturates all vertices except r , we find that M is a
maximum b-matching. Hence,

v(N ) = |M | = 3|V | + 3|V | + 9|V | = 15|V |.

We let (N , v) be the b-matching game defined on (G, w). To show the theorem it
remains to prove the following claim.

Claim: G has a nearly 3-regular subgraph if and only if (N , v) has an empty core.

First supposeG contains no nearly 3-regular subgraph.We define a vector x as follows.

– Set x ≡ 3
2 on the vertices of V .

– Set x ≡ 1 on all triangle vertices av, j , cv, j , dv, j .
– Set x ≡ 3

2 on all vertices av, cv, dv .
– Set xr = 0.

Note that x(N ) = 3
2 |V |+9|V |+3 · 32 |V | = 15|V | = v(N ). Hence, x is an allocation.

We claim that x is even a core allocation. For a contradiction, suppose x(S) < v(S)

for some S ⊆ N ; we say that S is a blocking coalition. Let MS be a maximum b-
matching in G[S], so x(S) < |MS|. We assume that S is a minimal blocking coalition
(with respect to set inclusion).

As xi equals half the capacity of each vertex i except r , we find that for every
S∗ ⊆ N \ {r}, we have x(S∗) ≥ v(S∗). Hence, S contains r . By the same reason, MS
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must saturate all vertices of S (as otherwise x(S) ≥ |MS| = v(S) would hold; recall
that b(r) = 1). So, in particular MS contains some edge rv0 for some v0 ∈ V . As MS

saturates all vertices of S, v0 must be matched by MS to two more vertices (other than
r ).

Assume first that all v ∈ S ∩ V \ {v0} are either matched “down” to av,1, av,2, av,3
by three matching edges in MS (where “down” is with respect to the drawing in Fig. 3)
or matched “up” by three matching edges belonging to E . Let v ∈ V ∩ S be matched
“down” to its three triangles. Let A be the component of MS containing v. Note that
V (A) is a subset of the union of {v, av, cv, dv} and the set of vertices of the three
triangles for v. Hence, as all vertices in A are saturated by MS and each vertex except
r gets exactly half of its capacity, we find that x(A) ≥ v(V (A)). So, S \ V (A) is a
smaller blocking set, contradicting the minimality of S. Thus, all vertices v ∈ S ∩ V
with v �= v0 must bematched “up”. If also v0 is matched “up” by two edges in MS ∩ E ,
then (S ∩ V , MS) is a nearly 3-regular subgraph of G, a contradiction.

From the above,we are left to dealwith the casewhere there exists a vertex v ∈ S∩V
that is, say, matched “down” by some edge e = vav,1 ∈ MS but, say, e′ = vav,3 /∈ MS .
We distinguish the following three cases:

Case 1. av, cv, dv ∈ S.
Since all these are saturated by MS , we have all av, j , cv, j , dv, j ∈ S. Thus
av,3, cv,3, dv,3 ∈ S and each of these is already matched to av, cv, dv , respectively.
Since vav,3 /∈ MS , at most two of av,3, cv,3, dv,3 can be saturated by MS , a contradic-
tion.

Case 2. av, cv ∈ S, dv /∈ S.
Again we find that av,1, av,2, av,3 ∈ S and cv,1, cv,2, cv,3 ∈ S. Moreover, each of these
is already matched by some edge in MS to av or cv . In addition, av,1 is matched to v,
so av,1 is “already” saturated. Hence, in order to saturate also cv,1, MS must contain
cv,1dv,1. Hence, dv,1 ∈ S and MS cannot saturate it (as dv /∈ S), a contradiction.

Case 3. av ∈ S, cv, dv /∈ S.
Here, we conclude that av,1, av,2, av,3 ∈ S. Since vav,3 /∈ MS , av,3 can only be
saturated if, say, av,3cv,3 ∈ MS and hence cv,3 ∈ S. The latter can only be saturated
by cv,3dv,3 ∈ MS . Hence, dv,3 ∈ S and dv,3 cannot be saturated (since av,3av and
av,3cv,3 are in MS), a contradiction.

Case 4. av /∈ S.
Since av,1 is in S, it must be saturated, and as av /∈ S, either av,1cv,1 or av,1dv,1 ∈ MS .
By symmetry, suppose that av,1cv,1 ∈ MS . Then cv,1 is in S and must be saturated, so
either cv,1cv ∈ MS or cv,1dv,1 ∈ MS . In the first case cv ∈ S and dv /∈ S (as dv,1 /∈ S)
and in the second case cv /∈ S and dv ∈ S (as dv,1 can only be saturated by dv,1dv).
In both cases we get a contradiction when considering the third triangle, as follows. If
cv ∈ S and dv /∈ S, then we have cvcv,3 ∈ MS . Thus cv,3 is in S and must be saturated,
so must be matched to either av,3 or dv,3. In the former case av,3 must be matched to
dv,3 and the latter remains unsaturated, a contradiction. In the second case, dv,3 must
be saturated by matching it to av,3 and then again, the latter remains unsaturated. The
case dv ∈ S and cv /∈ S is similar. From dv ∈ S we conclude that dvdv,3 ∈ MS . Thus
dv,3 ∈ S and hence, dv,3 must be matched to either av,3 or cv,3. In the first case, av,3
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Fig. 4 Left: a b-matching game (N , v) with six players, where b ≡ 1 apart from b(2) = 2 and b(5) = 3, so
b∗ = 3. Note that v(N ) = 10 (take M = {12, 35, 45, 56}). Right: the reduction to the partitioned matching
game (N , v). Note that |N | = 14 and c = b∗ (example taken from [5])

must be matched to cv,3 (as v and av are not available) and cv,3 remains unsaturated.
In the second case, cv,3 must be matched to av,3 and again, av,3 remains unsaturated,
a contradiction.

Conversely, suppose that G ′ is a nearly 3-regular subgraph in G. We claim that (N , v)

has an empty core. For a contradiction, suppose that (N , v) has a core allocation x . Fix
any v ∈ V and let Sac := {av, cv, av, j , cv, j | j = 1, 2, 3}. As Sac allows a saturating
matching Mac of size |Mac| = 9, we find that x(Sac) ≥ 9. Similarly, x(Scd) ≥ 9 and
x(Sad) ≥ 9 for Scd and Sad defined analogously. Adding all three inequalities and
dividing by 2 yields

x(Sv) ≥ 27

2
for Sv := Sac ∪ Scd ∪ Sad .

We now recall the maximum b-matching M that we displayed, in part, in Fig. 3. As M
is maximum and x is a core allocation, it holds that x(A) = v(A) for every component
A of M , and moreover, xr = 0. The set Sv ∪{v} is covered exactly by two components
of M . Hence, x(Sv ∪{v}) = 6+9 = 15. As we also have that x(Sv) ≥ 27

2 , this implies
that xv ≤ 3

2 . As v was chosen arbitrarily, the inequality holds for every vertex of V .
Now, let v0 be the unique vertex that has degree 2 in G ′, and recall that by definition

all other vertices of G ′ have degree 3 in G ′. Consider the coalition V (G ′) ∪ {r}. The
edge set E(G ′)∪{rv0}matches each vertex in S up to its capacity, while x assigns only
half this value to each vertex in S and zero to r . Hence, x(S) < v(S), contradicting to
our assumption that x is in the core. ��
We will now prove Theorem 2. In order to do this we first explain our reduction. Let
(N , v) be a b-matching game defined on a graph G = (V , E) with a positive capacity
function b and a positive edge weighting w. We assume that b∗ ≥ 2, as otherwise
we obtain a matching game. We construct a graph G = (V , E) with a positive edge
weighting w and partition V of V by applying the construction of Tutte [34]:
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– Replace each vertex i ∈ V with capacity b(i) by a set Vi of b(i) vertices
i1, . . . , ib(i).

– Replace each edge i j ∈ E by an edge i j ji where i j and ji are new vertices,
such that i j is adjacent to i1, . . . , ib(i), while ji is adjacent to j1, . . . , jb( j). Let
Ei j = {i j , ji }.

– Let V consist of all the vertices in the sets Vi and the sets Ei j , and let E consist of
all the edges defined above.

– Give every edge i j ji , i j i h (h ∈ {1, . . . , b(i)}), ji j h (h ∈ {1, . . . , b( j)}) weight
w(i j) to obtain the weighting w.

– Let V consist of all the sets Vi and Ei j .

We denote the partitioned matching game defined on (G, w) with partition V by
(N , v). See Fig. 4 for an example. We let b∗ be the maximum b(i)-value for the vertex
capacity function b. Note that, by construction and our assumption that b∗ ≥ 2, we
have that c = b∗ and that uniformity is preserved. We use the above construction to
prove Theorem 2, which we restate below.

Theorem 2 (restated). P1–P3 can be reduced in polynomial time from b-matching
games to partitioned matching games of width c = b∗, preserving uniformity.

Proof Recall that we assume b∗ ≥ 2, as 1-matching games coincide with partitioned
matching games of width 1. Let (N , v) be a b-matching game defined on a graph
G = (V , E) with a positive capacity function b and a positive edge weighting w. We
construct in polynomial time the pair (G, w) and partition V to obtain the partitioned
matching game (N , v). Recall that the players of N are of the form Vi and Ei j , and
they are in 1 − 1 correspondence with V = N and E , respectively, so below we
sometimes will identify the players of N with V ∪ E .

The idea is that any b-matching M in G can be represented by a corresponding
matching M ⊆ E in G as follows. For each edge i j in G we do as follows. If i j ∈ M ,
then we match i j to some copy of i in G and, similarly, ji to some copy of j ; note that,
by definition, enough copies of i and j are available. If i j /∈ M , then we match i j and
ji to each other in G. We refer to the resulting matching M in G as a transform of M
(different transforms differ by the choice of copies of vertex i that are “matched” to
j). Note that M has size |E | + |M | and weight w(E) + w(M).

We first reduce P1. Let x be an allocation of (N , v). We define a vector x on N by
setting x(Vi ) := xi for every i ∈ N and x(Ei j ) := w(i j) for every i j ∈ E . We claim
that x ∈ core(N , v) if and only if x ∈ core(N , v).

First suppose that x ∈ core(N , v). Assume that M is amaximumweightb-matching
in G (so v(N ) = w(M)). The transform M of M is a maximum weight matching in
G, so

v(N ) = w(M) = w(E) + w(M) = x(N ).

Thus x is an allocation. To prove the core constraints, suppose for a contradiction that
there exists a blocking coalition S∗ ⊆ N , i.e., v(S∗) > x(S∗). For a coalition S ⊆ N ,
let the projection of S be defined as S = ⋃{Vi | i ∈ S} ∪ ⋃{Ei j | i, j ∈ S} in N .
First we show that if S∗ is not a projection of any coalition S ⊆ N then we can modify
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S∗ by removing and adding players of form Ei j to obtain another blocking coalition
S′ ⊆ N that is a projection of a coalition S′ ⊆ N .

There are two cases to consider. First, if Vi , Vj ∈ S∗, but Ei j /∈ S∗, then for
S′ = S∗ ∪ Ei j we get v(S′) ≥ v(S∗) + w(i j), whilst x(S′) = x(S∗) + w(i j), so S′
is also blocking. In the second case, if Ei j ∈ S∗, but one of Vi , Vj , say Vi /∈ S∗, then
for S′ = S∗ \ Ei j we have v(S′) = v(S∗) − w(i j) and x(S′) = x(S∗) − w(i j), so S′
is also blocking. Therefore, if a coalition S∗ is blocking, then it will remain blocking
when making the above operations until we obtain a blocking coalition S that is a
projection of a coalition S ⊆ N .

Finally, consider a blocking coalition S ⊆ N that is a projection of S ⊆ N , and let
VS andV S denote the corresponding vertex sets inG andG , respectively. By definition,
v(S) is the maximum weight of a b-matching M in the subgraph GS = G[VS] and
v(S) is the maximum weight of a matching M in G[V S], where M is a transform of
M . Hence,

w(E(GS))+x(VS)= x(S)<v(S)=w(M)=w(E(GS))+w(M)=w(E(GS))+v(S),

which implies x(S) < v(S), a contradiction.
Now suppose that x ∈ core(N , v). For a contradiction, suppose that there exists a

blocking coalition S ⊆ N , i.e., v(S) > x(S). We take its projection S and find that

x(S) = x(S) + w(E(GS)) < v(S) + w(E(GS)) = v(S),

contradicting our assumption that x ∈ core(N , v).
Finally, if x /∈ core(N , v) and one can find a blocking coalition S in N , then by the

above arguments we can also find a blocking coalition S for x in (N , v), completing
the proof for P1.

We now reduce P2 by proving that the core of (N , v) is non-empty if and only if the
core of (N , v) is non-empty. First suppose that the core of (N , v) is non-empty. Let
x ∈ core(N , v). In the proof for P1, we showed that x ∈ core(N , v), where x is the
vector defined by x(Vi ) = xi for every i ∈ N and x(Ei j ) = w(i j) for every i j ∈ E .
Hence, we find that the core of (N , v) is non-empty.

Now suppose that the core of (N , v) is non-empty. Let x ′ ∈ core(N , v). As x ′ ∈
core(N , v), we find that x ′(Ei j ) ≥ v(Ei j ) = w(i j) for all i j ∈ E . We first prove
that for all i j ∈ E , we may assume without loss of generality that x ′(Ei j ) = w(i j).
Suppose that there exists an edge i j ∈ E , such that x ′(Ei j ) = w(i j) + α for some
α > 0. We define a new vector x ′′ that is the same as x ′ except that we set x ′′(Ei j ) :=
w(i j) and x ′′(Vi ) := x ′(Vi )+ α

2 and x ′′(Vj ) := x ′(Vj )+ α
2 . As x ′ is an allocation, x ′′

is an allocation. We claim that x ′′ is in the core of (N , v) as well. In order to see this,
let S ⊆ N . If S contains none of {Vi , Vj , Ei j }; or both of {Vi , Vj }; or one of {Vi , Vj }
but not Ei j , then x ′′(S) ≥ x ′(S) ≥ v(S). If S contains Ei j but neither Vi nor Vj , then
we have that

x ′′(S) = x ′′(S\Ei j ) + x ′′(Ei j ) = x ′(S\Ei j ) + w(i j) ≥ v(S\Ei j ) + w(i j) = v(S).

123



Partitioned matching games for international kidney…

Fig. 5 Left: a partitioned matching game (N , v) with three players and width c = 3. Note that v(N ) = 7.
Right: the reduction to the b-matching game (N , v). Note that |N | = 9 and that for every i ∈ N , b(i) ≤ c
(example taken from [5])

Finally, if S contains Ei j and exactly only one of Vi , Vj , say Vi , then we have that

x ′′(S) = x ′′(S \ (Ei j ∪ Vi )) + x ′′(Ei j ) + x ′′(Vi )

= x ′(S \ (Ei j ∪ Vi )) + w(i j) + x ′(Vi ) + α
2 = x ′(S \ Ei j ) + w(i j) + α

2

≥ v(S \ Ei j ) + w(i j) + α
2 = v(S) + α

2 > v(S).

From the above we conclude that we may indeed assume that x ′(Ei j ) = w(i j) for all
i j ∈ E . Hence, from the arguments used to prove the reduction of P1, we find that the
vector x with xi = x ′(Vi ) for every i ∈ N belongs to the core of (N , v).

Finally, to reduce P3 it suffices to find a core allocation x ′ ∈ (N , v) and then to
transform x ′ into a core allocation x for (N , v) in the way explained above. Note
that this takes polynomial time. Hence, if we can find a core allocation for (N , v) in
polynomial time, then we can also find a core allocation for (N , v) in polynomial time.
This completes the proof of Theorem 2. ��
As the final result in this section, we will prove Theorem 3. Again, we first explain the
reduction. Let (N , v) be a partitioned matching game of width c defined on a graph
G = (V , E) with a positive edge weighting w and with a partition (V1, . . . , Vn) of V .
We assume that c ≥ 2, as otherwise we obtain a matching game. Construct a graph
G = (N , E)with a positive vertex capacity function b and a positive edgeweightingw

as follows.

– Put the vertices of V into N and the edges of E into E .
– For each Vi , add a new vertex ri to N that is adjacent to all vertices of Vi and to
no other vertices in G.

– Let w be the extension of w to E by giving each new edge weight 2v(N ).
– In V , give every u ∈ V capacity b(u) = 2 and every ri capacity b(ri ) = |Vi |.

We denote the b-matching game defined on (G, b, w) by (N , v). See Fig. 5 for an
example and note that, by construction, we have b∗ = c. We are now ready to prove
Theorem 3, which we restate below.
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Theorem 3 (restated). P1–P3 can be reduced in polynomial time from partitioned
matching games of width c to b-matching games for some capacity function b with
b∗ = c.

Proof Recall that we assume c ≥ 2, as partitionedmatching games of width 1 coincide
with matching games. Let (N , v) be a partitioned matching game defined by a graph
G = (V , E) with edge weights w and partition V = (V1, . . . , Vn). We construct
in polynomial time the triple (G, b, w) to obtain the b-matching game (N , v) (with
b∗ = c, as we observed above).

We first reduce P1. Let x be an allocation of (N , v). We define a vector x on N by
setting for every i ∈ N , x :≡ 2v(N ) on Vi and xri := xi .We claim that x ∈ core(N , v)

if and only if x ∈ core(N , v).
First suppose that x ∈ core(N , v). By construction, we have

x(N ) = x(N ) + 2v(N ) · |V | = v(N ) + 2v(N ) · |V | = v(N ).

Thus x is an allocation. To prove the core constraints, suppose for a contradiction that
there exists a blocking coalition S∗ ⊆ N , i.e., v(S∗) > x(S∗). For a coalition S ⊆ N ,
let the projection of S be defined as S = ⋃

i∈S(Vi ∪ {ri }) in N . First we show that if
S∗ is not a projection of any coalition S ⊆ N , then we can extend S∗ to a blocking
coalition S′ ⊆ N that is a projection of a coalition S′ ⊆ N .

If S∗ is not a projection of any coalition S ⊆ N , then there exists a player i ∈ N
either with ri /∈ S∗ and Vi ∩ S∗ �= ∅, or with ri ∈ S∗ and Vi\S∗ �= ∅. First, if ri /∈ S∗
and Vi ∩ S∗ �= ∅, then for S′ = S∗ ∪ (Vi\S∗) ∪ {ri }, we obtain the following, where
we set γ := 2 if |Vi ∩ S∗| ≥ 2 and γ := 1 if |Vi ∩ S∗| = 1 (we explain the first
inequality below; note that the other steps are immediate):

v(S′) ≥ v(S∗) + 2v(N ) · |Vi | − γ v(N )

> x(S∗) + 2v(N ) · |Vi | − γ v(N )

= x(S∗) + 2v(N ) · |Vi \ S∗| + 2v(N ) · |Vi ∩ S∗| − γ v(N )

≥ x(S∗) + 2v(N ) · |Vi \ S∗| + v(N )

≥ x(S∗) + 2v(N ) · |Vi \ S∗| + xi

= x(S′),

so S′ is also blocking. Note that the first inequality is obtained by considering the
b-matching M ′ in G[S′] that is obtained from a maximum weight b-matching M∗ in
G[S∗] by first adding all edges incident to ri and then compensating for the possible
“over-capacity” of vertices in Vi ∩S∗.We need to do the latter for the following reason.
Every vertex u of G has capacity b(u) = 2 in G. However, after adding the edge uri ,
it may hold that u is adjacent to three edges in M ′. First suppose |Vi ∩ S∗| = 1, say
Vi ∩ S∗ = {v}. If v is incident to two edges e1 and e2 of M∗, then we must delete
one such edge, say e1. Note that w(e1) = w(e1) ≤ v(N ). As γ = 1 in this case,
this means that the (first) inequality holds. Now suppose |Vi ∩ S∗| ≥ 2. Let F be
the subgraph of G that consists of the vertices in G and the edges of M∗. As every

123



Partitioned matching games for international kidney…

vertex in F has capacity 2, it holds that F has maximum degree at most 2. This means
that F is the disjoint union of paths and cycles. We let M1 be a maximum matching
in F , and we let M2 be a maximum matching in the graph obtained from F after
removing all the edges of M1. Both M1 and M2 are also matchings in G. Hence,
w(M1) = w(M1) ≤ v(N ) and w(M2) = w(M2) ≤ v(N ). We delete all edges in
M1 ∪ M2 from M ′. Afterwards, each vertex in Vi ∩ S∗ that was incident to three
edges in M ′ is now only incident to at most two edges in M ′. Hence, as γ = 2 and
w(M1 ∪ M2) = w(M1) + w(M2) ≤ 2v(N ), the (first) inequality again holds.

Second, if ri ∈ S∗ and Vi\S∗ �= ∅, then for S′ = S∗ ∪ (Vi \ S∗), we get

v(S′) ≥ v(S∗) + 2v(N ) · |Vi \ S∗| > x(S∗) + 2v(N ) · |Vi \ S∗| = x(S′),

so S′ is also blocking. Therefore, if a coalition S∗ is blocking, then it will remain
blocking when making the above operations until we obtain a blocking coalition S
that is a projection of a coalition S ⊆ N .

Finally, consider a blocking coalition S ⊆ N that is a projection of S ⊆ N . We
observe that x(S) = x(S)+2v(N ) ·∑i∈S |Vi | and v(S) = v(S)+2v(N ) ·∑i∈S |Vi |.
By combining these two equalities we obtain

x(S) = x(S) − 2v(N ) ·
∑

i∈S

|Vi | < v(S) − 2v(N ) ·
∑

i∈S

|Vi | = v(S),

contradicting our assumption that x ∈ core(N , v).
Now suppose x ∈ core(N , v). For a contradiction, suppose that there exists a

blocking coalition S ⊆ N , i.e., v(S) > x(S). We take its projection S and find that

x(S) = x(S) + 2v(N ) ·
∑

i∈S

|Vi | < v(S) + 2v(N ) ·
∑

i∈S

|Vi | = v(S),

contradicting our assumption that x ∈ core(N , v).
Finally, if x /∈ core(N , v) and one can find a blocking coalition S in N , then by the

above arguments we can also find a blocking coalition S for x in (N , v), completing
the proof for P1.

We now reduce P2 by proving that the core of (N , v) is non-empty if and only if
the core of (N , v) is non-empty. First suppose that the core of (N , v) is non-empty.
Let x ∈ core(N , v). In the proof for P1, we showed that x ∈ core(N , v), where
x :≡ 2v(N ) on Vi and xri := xi . Hence, we find that the core of (N , v) is non-empty.

Now suppose that the core of (N , v) is non-empty. Let x ′ ∈ core(N , v). We define
a vector x given by xi = ∑

j∈Vi
x ′

j + x ′
ri

− 2v(N ) · |Vi | for every i ∈ N . We observe
that

x(N ) = x ′(N ) − 2v(N ) · |V | = v(N ) − 2v(N ) · |V | = v(N ),

so x is an allocation for (N , v). To prove the core constraints, suppose for a contra-
diction that there exists a blocking coalition S ⊆ N , i.e., v(S) > x(S). Now, for the
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projection S of S we have that

x ′(S) = x(S) + 2v(N ) ·
∑

i∈S

|Vi | < v(S) + 2v(N ) ·
∑

i∈S

|Vi | = v(S),

contradicting our assumption that x ′ ∈ core(N , v).

Finally, to reduce P3 it suffices to find a core allocation x ′ ∈ (N , v) and then to
transform x ′ into a core allocation x for (N , v) in the way explained above. Note
that this takes polynomial time. Hence, if we can find a core allocation for (N , v) in
polynomial time, then we can also find a core allocation for (N , v) in polynomial time.
This completes the proof of Theorem 3. ��

3 The Proofs of Theorems 4 and 5

In this section we give the proofs of Theorems 4 and 5. To prove Theorem 4 we need
an additional result as a lemma; a similar construction was used by Plesnik [29] to
solve a constrained matching problem. Note that in Lemma 1 we allow arbitrary edge
weightings and thus M is the set of maximum weight matchings. Hence, Lemma 1
is a slightly more general result than we strictly need. Note also that each interval Ii

in the statement of Lemma 1 may either be open or closed. We need to allow both
options in order to apply Lemma 1 as a subroutine in our algorithm Lex-Min, which
we will present immediately after proving Lemma 1.

Lemma 1 Given a partitioned matching game (N , v) on a graph G = (V , E) with
a positive edge weighting w, partition V of V , and intervals I1, . . . , In, it is possible
in O(|V |3)-time to decide if there exists a matching M ∈ M with sp(M) ∈ Ip for
p = 1, . . . , n, and to find such a matching (if it exists).

Proof First assume that the intervals I1, . . . , In are closed. For p = 1, . . . , n, we let
Ip = [ap, bp], where we assume without loss of generality that bp ≤ |Vp|. We extend
(G, w) to a weighted graph (G, w) in linear time as follows. For p = 1, . . . , n, we add
a set Bp of |Vp|−bp new vertices, each of them joined to all vertices of Vp by edges of
weightwe = 0.We also introduce a set Ap of bp −ap new vertices that are completely
joined to all vertices of Vp by edges of weight we = 0. In addition, all vertices in⋃

p Ap are joined to each other by edges of weight we = 0. The original edges e ∈ E
in G keep their (original) weights, that is, we = we. If the total number of vertices is
odd, we add an additional vertex v and join it by zero weight edges to all vertices of⋃

p Ap. This completes the description of (G, w). Note that |V (G)| ≤ 2|V |.
First, we prove that there is a correspondence between thematchings in G satisfying

the interval conditions (which may not necessarily belong to M) and the perfect
matchings in G.

In the one direction, suppose there exists a matching M in G with sp(M) ∈ [ap, bp]
for p = 1, . . . , n. As sp(M) ≤ bp, we can match all vertices of Bp to Vp by all zero
weight edges. Finally, since sp(M) ≥ ap, we can match the bp − sp(M) ≤ bp − ap

remaining vertices in Vp to vertices from Ap. Thus all vertices of Vp will be matched.
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If after doing this for every p ∈ {1, . . . , n}, there still exist unmatched vertices in⋃
p Ap, then we match these to each other and, should their number be odd, to the

extra vertex v. This yields a perfect matching M in G.
In the other direction, let M be a perfect matching in G. Let M := M ∩ E denote the

correspondingmatching inG.As M matches all vertices of Bp intoVp,weknow that M
leaves at least |Vp|−bp vertices unmatched.Hence, sp(M) ≤ bp as required. Similarly,
since all vertices of Vp are matched by M and at most |Vp|−bp +bp −ap = |Vp|−ap

vertices in Vp can be matched to Bp ∪ Ap, we find that M matches at least ap vertices
in Vp. Hence, sp(M) ≥ ap, as required.

Now, let w∗ be the maximum weight of a matching in G. Let w∗ denote the maxi-
mumweight of a perfect matching in G, if a perfect matching exists in G. Note that we
can compute w∗ and w∗, and corresponding matchings, in O(|V |3) time [16]. Note
also that w∗ ≥ w∗ holds, as all the new edges in G have weight 0.

There are three possible cases, which we consider separately:

Case 1. A perfect matching does not exist in G.
Then, due to the correspondence we showed between the matchings in G satisfying
the interval conditions and the perfect matchings in G, there exists no matching in G,
and thus no maximum weight matching M ∈ M, satisfying the interval conditions.

Case 2. A perfect matching M exists in G, and w∗ = w∗.
Above we deduced that M := M ∩ E satisfies the interval conditions. As w(M) =
w(M) = w∗ = w∗, we find that M belongs to M. Note that we can find M in
polynomial time (after we found M in polynomial time).

Case 3. A perfect matching exists in G, and w∗ > w∗.
This implies that there exists no maximum weight matching M ∈ M with sp(M) ∈
[ap, bp] for p = 1, . . . , n. For a contradiction, assume there exists a maximumweight
matching M ∈ M satisfying the interval conditions. By the above correspondence,
we now find a perfect matching M in G with weightw∗, contradicting our assumption
that w∗ > w∗.
Now suppose we are given a set of intervals I1, . . . In , some of which are open instead
of closed. Let Ip be an open interval. Recall that the s-values are sizes of subsets of
matching edges and thus are integers. Hence, we may replace Ip by the largest closed
interval with integer end-points contained in Ip if this closed interval exists. If not,
then a matching M ∈ M with sp(M) ∈ Ip does not exist. ��
Using Lemma 1, algorithm Lex-Min computes for a partitioned matching game
(N , v), defined on a graph G = (V , E) with vertex partition (V1, . . . , Vn), and an
allocation x , values d1, . . . , dt with d1 > . . . > dt for some integer t ≥ 1, and, as we
will prove, returns a maximum matching M ∈ M that is strongly close to x .

Lex-Min
input : a partitioned matching game (N , v) and an allocation x
output: a maximum matching M ∈ M that is strongly close to x .

Step 1. Compute the smallest number d1 ≥ 0 such that there exists a maximum
matching M ∈ M with |x p − sp(M)| ≤ d1 for all p ∈ N .
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Step 2. Compute a minimal set N1 ⊆ N (with respect to set inclusion) such that there
exists a maximum matching M ∈ M with

|x p − sp(M)| = d1 for all p ∈ N1

|x p − sp(M)| < d1 for all p ∈ N \ N1.

Step 3. Proceed in a similar way for t ≥ 1:

– while N1 ∪ · · · ∪ Nt �= N do

• t ← t + 1.
• dt ← smallest d such that there exists a maximum matching M ∈ M with

|x p − sp(M)| = d j for all p ∈ N j , j ≤ t − 1

|x p − sp(M)| ≤ dt for all p ∈ N \ (N1 ∪ · · · ∪ Nt−1).

• Nt ← inclusion minimal subset of N \ (N1 ∪ · · · ∪ Nt−1) such that there
exists a matching M ∈ M with

|x p − sp(M)| = d j for all p ∈ N j , j ≤ t − 1

|x p − sp(M)| = dt for all p ∈ Nt

|x p − sp(M)| < dt for all p ∈ N \ (N1 ∪ · · · ∪ Nt ).

Step 4. Return a maximummatching M ∈ Mwith |x p − sp(M)| = d j for all p ∈ N j

and all j ∈ {1, . . . , t}.

Example 3 We illustrate the working of Lex-Min with two small examples. In both
examples, we consider a uniform (partitioned) matching game (N , v) on a graph
G = (V , E) that is a triangle on vertices a, b, c with partition (V1, V2, V3), where
V1 = {a}, V2 = {b} and V3 = {c}, so N = {1, 2, 3}, and we can allocate a total of two
kidney transplants. We consider target allocations x = (1, 1, 0) and x = ( 23 ,

2
3 ,

2
3 ). If

x = (1, 1, 0), then our algorithm first sets d1 := 0 by choosing M1 = {ab}, and then
it sets N1 := {1, 2, 3}. As N = N1, the algorithm terminates. If x = ( 23 ,

2
3 ,

2
3 ), then

our algorithm will pick M1 to be one of {ab}, {bc} or {ac}, say M1 = {ab}. It then
sets d1 := 2

3 . The only vertex not covered by M1 is c, so the algorithm sets N1 := {3}.
Next, the algorithm sets d2 := 1

3 and N2 := {a, b}. As N = N1 ∪ N2, the algorithm
terminates. 


We are now ready to prove Theorem 4, which we restate below.

Theorem 4 (restated). It is possible to find a strongly close maximum matching for
a uniform partitioned matching game (N , v) and target allocation x in polynomial
time.

123



Partitioned matching games for international kidney…

Proof To prove the theorem we will show that the Lex-Min algorithm is correct (that
is, thematching returned in Step 4 is strongly close to x) and runs in O(n|V |3(log |V |+
n)) time for a uniform partitioned matching game (N , v) with an allocation x .

Correctness proof.Wefirst prove the correctness ofLex-Min. Let (N , v) be a uniform
partitioned matching game on a graph G = (V , E) with partition V , and let x be an
allocation. Let M be the matching from M that is returned by Lex-Min. We claim
that M is strongly close to x . In order to prove this, let M∗ ∈ M be a matching
that is strongly close to x . Since both M and M∗ are maximum matchings, we have
M∗ = M ⊕ P ⊕ C, where P and C are sets of even alternating paths and (even)
alternating cycles, respectively. We make the additional assumption that among all
the strongly close matchings inM, the matching M∗ is chosen as closest to M in the
sense that |P| + |C| is as small as possible.

We claim that C = ∅. Otherwise, we would switch M∗ to another maximum
matching along an alternating cycle C ∈ C. This yields a new maximum match-
ing M∗ ⊕C ∈ M, which is again strongly close to x , as the switch does not affect any
sp(M∗). Moreover, M∗ ⊕ C is closer to M , contradicting our choice of M∗. Hence,
there exists a disjoint union of paths P1, . . . , Pk such that M∗ = M ⊕ P1 ⊕ · · · ⊕ Pk .
We claim that each Pj has endpoints in different countries; otherwise switching from
M∗ to M along Pj would not affect any sp(M∗) and so again leads to a new strongly
close maximum matching closer to M .

Let d∗
1 > d∗

2 > . . . denote the different values of |x p − sp(M∗)| and let N∗
j ⊆ N

denote the corresponding sets of players p ∈ N with |x p − sp(M∗)| = d∗
j . We prove

by induction on t that for every t , it holds that d∗
t = dt and N∗

t = Nt , which implies
that d(M∗) = d(M) and thus M is strongly close to x . Let t = 1. In Claims 1 and 2,
we prove that d∗

1 = d1 and N∗
1 = N1.

Claim 1: d∗
1 = d1.

Proof : As M∗ is strongly close to x , we have that d∗
1 ≤ d1. If d∗

1 < d1, then d1 was
not chosen as small as possible, since M = M∗ satisfies |x p − sp(M)| ≤ d∗

1 for every
p ∈ N . Hence d∗

1 = d1. 

Claim 2: N∗

1 = N1.
Proof : If N∗

1 � N1, then N1 is not minimal, as |x p − sp(M∗)| ≤ d∗
1 = d1 for p ∈ N∗

1
and |x p − sp(M∗)| < d∗

1 = d1 for p ∈ N\N∗
1 . This contradicts Step 2 of Lex-Min.

Hence, N∗
1 �⊂ N1. For a contradiction, let p0 ∈ N∗

1 \N1. So, |x p0 − sp0(M∗)| = d∗
1 =

d1 > |x p0 − sp0(M)|. We distinguish two cases.

Case 1. sp0(M∗) = x p0 + d∗
1 .

Then sp0(M∗) > sp0(M) ≥ 0, so there exists an even path, say, P1 starting in Vp0
with an M∗-edge and ending in some Vp1 with an M-edge. Recall that the endpoints
of P1 are in different countries, hence p1 �= p0. Note that replacing M∗ by M∗ ⊕ P1
would decrease sp0(M∗) and increase sp1(M∗).

Assume first that sp1(M∗) ≥ sp1(M). As P1 ends in Vp1 , we have sp1(M) ≥ 1.
Hence, there exists an alternating path, say P2, that starts with an M∗-edge in Vp1 and
ends with an M-edge in some Vp2 , p2 �= p1. If p2 = p0, then M∗ ⊕ P1 ⊕ P2 would
be strongly close to x and closer to M , a contradiction. Hence p2 /∈ {p0, p1} and in
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case sp2(M∗) ≥ sp2(M), we may continue to construct a sequence p0, p1, p2, ... in
this way. Note that whenever we run into a cycle, that is, when ps = pr for some
r > s, then we get a contradiction by observing that M∗ ⊕ Pr+1 ⊕ · · · ⊕ Ps is also
strongly close to x (indeed switching M∗ to M along Pr+1, . . . , Ps does not affect
any sp(M∗)) and closer to M . Hence, eventually, our sequence p0, p1, . . . , pr must
end up with spr (M∗) < spr (M) for some r ≥ 1.

We now derive that spr (M∗ ⊕ P1 ⊕ · · · ⊕ Pr ) ≤ spr (M) ≤ x pr + d1. If pr /∈ N1,
then we even get spr (M∗ ⊕ P1 ⊕ · · · ⊕ Pr ) ≤ spr (M) < x pr + d1. We now define the
matching M ′ := M∗ ⊕ P1 ⊕ · · · ⊕ Pr . Note that M ′ is a maximum matching closer
to M . To obtain a contradiction with our choice of M∗ it remains to show that M ′ is
strongly close to x .

We first consider p = pr . We have spr (M ′) = spr (M∗) + 1 ≥ x pr − d1 + 1 >

x pr − d1. Combining this with the upper bound found above, we obtain

x pr − d1 < spr (M ′) ≤ x pr + d1 if pr ∈ N1 (1)

x pr − d1 < spr (M ′) < x pr + d1 if pr /∈ N1.

For p = p0, we have that sp0(M ′) = sp0(M∗) − 1 = x p0 + d1 − 1, where the last
equality holds because p0 ∈ N∗

1 . Hence, we found that

|sp0(M ′) − x p0 | = d1 − 1. (2)

From (1) and (2) and the fact that |sp(M ′) − x p| = |sp(M∗) − x p| if p /∈ {p0, pr },
we conclude that either M ′ is lexicographically smaller than M∗, which yields a
contradiction (as M∗ is strongly close to x), or pr ∈ N1 and spr (M ′) = x pr + d1.
Assume that the latter case holds. Then we have

spr (M∗) = spr (M ′) − 1 = x pr + d1 − 1.

However, then M∗ and M ′ are symmetricwith respect to p0 and pr , namely, |sp0(M∗)−
x p0 | = d1 = |spr (M ′) − x pr | and |spr (M∗) − x pr | = d1 − 1 = |sp0(M ′) − x p0 |.
Combining these equalities with the fact that |sp(M ′) − x p| = |sp(M∗) − x p| if
p /∈ {p0, pr } implies that M ′ is strongly close to x , our desired contradiction. Hence,
N∗
1 \N1 = ∅. As N∗

1 �⊂ N1, we conclude that N∗
1 = N1.

Case 2. sp0(M∗) = x p0 − d∗
1 .

In this case we have sp0(M∗) < sp0(M). Hence, there must exist an alternating path
P1 that starts in Vp0 with an M-edge and that ends in some Vp1 with an M∗-edge. Just
as in Case 1, it holds that p1 �= p0. If sp1(M∗) ≤ sp1(M), we may continue with an
alternating path P2 starting from Vp1 and ending in some Vp2 with p2 /∈ {p0, p1}, and
continuing in this way we eventually end up with a sequence p0, p1, . . . , pr such that
spr (M∗) > spr (M). Then M ′ := M∗ ⊕ P1 · · · ⊕ Pr has sp0(M ′) = sp0(M∗) + 1 and
spr (M ′) = spr (M∗) − 1. By the same arguments that we used in Case 1, we prove
that M ′ is a maximum matching that is strongly close to x and that is closer to M than
M∗ is. This contradicts our choice of M∗, and we have proven Claim 2. 
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Now let t ≥ 2. Assume that d∗
1 = d1, . . . , d∗

t−1 = dt−1 and N∗
1 = N1, . . . , N∗

t−1 =
Nt−1. By using the same arguments as in the proof of Claim 1, we find that d∗

t = dt .
By using the same arguments as in the proof of Claim 2, we find that N∗

t �⊂ Nt .
We will now show that N∗

t = Nt . For a contradiction, consider a country p0 ∈
N∗

t \ Nt and split the proof into two cases similar to Cases 1 and 2 for the case t = 1,
namely when sp0(M∗) = x p0 + d∗

t and sp0(M∗) = x p0 − d∗
t . We will only show the

first case in detail, as the proof of the other case is similar. Hence, from now on we
assume that sp0(M∗) = x p0 + d∗

t .
Weknow that p0 ∈ N∗

t , so p0 /∈ N∗
1∪· · ·∪N∗

t−1 = N1∪· · ·∪Nt−1.Hence sp0(M) ≤
x p0 + dt , and p0 /∈ Nt implies sp0(M) < x p0 + dt , so that sp0(M∗) > sp0(M). So
there is an alternating path P1 starting in Vp0 with an M∗-edge and ending in some
Vp1 with an M-edge. Again, we may assume that p1 �= p0. If sp1(M∗) ≥ sp1(M),
then there must be some alternating P2 starting in Vp1 with an M∗-edge and leading
to some Vp2 with p2 /∈ {p0, p1} and so on, until eventually we obtain a sequence
p0, p1, . . . , pr with spr (M∗) < spr (M) for some r ≥ 1.

As before, we let M ′ := M∗⊕ P1 · · ·⊕ Pr and note that M ′ ∈ M is closer to M than
M∗ is. Hence, to obtain a contradiction, it remains to show that M ′ is strongly close to
x . As p0 /∈ N1 ∪· · ·∪ Nt , we find that sp0(M ′) = sp0(M∗)−1 ≥ sp0(M) > x p0 −dt .
On the other hand, sp0(M ′) < sp0(M∗) = x p0 + dt . Hence

|sp0(M ′) − x p0 | < dt . (3)

Now consider p = pr . We first rule out that pr ∈ N1 ∪ · · · ∪ Nt−1. Assume to
the contrary that pr ∈ N j for some j ∈ {1, . . . , t − 1}. Then as lower bound we
have spr (M ′) = spr (M∗) + 1 ≥ x pr − d j + 1 > x pr − d j , and as upper bound,
spr (M ′) = spr (M∗) + 1 ≤ spr (M) ≤ x pr + d j . Hence,

|spr (M ′) − x pr | ≤ d j . (4)

Inequality (4), together with (3) and the fact that |sp(M ′) − xi | = |sp(M∗) − x p| for
p /∈ {p0, pr } shows that M ′ is lexicographically smaller than M∗, a contradiction. We
conclude that pr /∈ N1 ∪ · · · ∪ Nt−1.

We now have spr (M) ≤ x pr + dt if pr ∈ Nt and spr (M) < x pr + dt if pr /∈ Nt .
Hence, we can repeat the arguments that we used for the case where t = 1 to obtain
our contradiction. This completes the correctness proof of Lex-Min.

Running time analysis. We first observe that for every p ∈ {1, . . . , }, x p is fixed and
sp(M) is an integer between 0 and |Vp|, and hence, there are at most |Vp|+1 different
values for |x p−sp(M)|. Thismeans that there are atmost (|V1|+1)+. . .+(|Vn|+1) ≤
2|V | different values for |x p −sp(M)| over all p ∈ N . Hence, we can find dt by binary
search in O(log |V |) time. This requires O(log |V |) applications of Lemma 1, each of
which taking time O(|V |3). So, finding a dt takes O(|V |3 log |V |) time.

For each dt , we now compute an inclusion-wise minimal set Nt as follows. Initially,
we set Nt = N if t = 1 and Nt = N\(N1 ∪ · · · ∪ Nt−1) if t ≥ 2. We also define
a set N t as the set of countries that must be removed from Nt in order to make Nt

inclusion-wise minimal. Initially, we set N t := ∅.
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We now consider each q ∈ Nt in arbitrary order and check for each q ∈ Nt whether
there exists a maximum matching M ∈ M such that

|x p − sp(M)| = d j for all p ∈ N j , j ≤ t − 1

|x p − sp(M)| ≤ dt for all p ∈ Nt \ {q}
|x p − sp(M)| < dt for all p ∈ N t ∪ {q}.

We can do this in O(|V |3) time by applying Lemma 1. If we find a maximum match-
ing M that satisfies the above conditions, then we move q from Nt to N t ; else we
leave q in Nt . As |N\(N1 ∪ · · · ∪ Nt−1)| ≤ n, we need to do this at most n times.
Note that the final set Nt is non-empty (due to the minimality of dt ) and disjoint from
the set N1 ∪ · · · ∪ Nt−1 (by construction). Hence, we find that t ≤ n. Thus, the total
running time of Lex-Min is O(n|V |3(log |V | + n)). ��
We now give the proof of Theorem 5. In our proof we use exponentially increasing
weights to minimize deviations from a target solution in a lexicographic way. This
is similar in nature to techniques used in the literature for representing lexicographic
preferences of agents over bundles in many-to-one allocation problems, see, for exam-
ple, [2].

Theorem 5 (restated). It is possible to find a strongly close maximum weight matching
for a directed partitioned matching game (N , v) of width 1 (i.e., for a directed matching
game) and target allocation x in polynomial time.

Proof Assume that our directed compatibility graph isG = (V , A), and our undirected
compatibility graph is G = (V , E), where i j ∈ E if both (i, j) and ( j, i) are arcs
in A. Extend G to a complete graph by adding zero-weight edges to it; note that a
strongly closemaximumweightmatching in the extended graph yields a strongly close
maximum weight matching in G if we forget its newly added zero-weight edges. To
keep notation simple, from now on we will assume that G is a complete graph.

Furthermore, if |V | is odd, thenwe add a dummy vertex v toG with target allocation
xv = 0. This still does not change the structure of the strongly close maximum weight
matchings, however, now each of them can be extended to a strongly close maximum
weight perfect matching by adding some zero-weight edges to it. Because of this, from
now on we focus on this problem in a weighted complete graph with an even number
of vertices.

For a target allocation x , we create an edge weighting wx of G where the weight
of each edge will be a vector from R

2, that is, wx (e) = (α, β), where wx
1 (e) = α and

wx
2 (e) = β are both real numbers. We can add or subtract two vectors coordinatewise,

and compare them lexicographically, i.e., w < w′ if w1 < w′
1 or w1 = w′

1 and
w2 < w′

2.
For every edge pq ∈ E , we let wx

1 (pq) = wpq + wqp. This is to ensure that
the maximum weight matching according to wx gives a maximum weight matching
according to w.

To define wx
2 (pq), we first let δx

pq = |x p −wqp| for all ordered pairs p, q ∈ V . We
introduce a vector �x that contains the n(n − 1) values of δx in a weakly increasing
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order. Let rpq denote the (average) rank of δx
pq in �x , meaning that if there is a tie

from position k to position l in �x , then each of these elements will have rank k+l
2 .

Define wx
2 (pq) = −2rpq − 2rqp for all pq ∈ E .

The w weight of a matching M is
∑

pq∈M wpq + wqp = ∑
pq∈M wx

1 (pq). If this
latter sum is maximized by M , we can conclude that M has maximum weight.

Similarly, let d(M) = (|x p1 − u p1(M)|, . . . , |x pn − u pn (M)|) be the deviation
vector of the perfectmatching M obtained by reordering the components |x p−u p(M)|
non-increasingly. If the deviation vector d(M ′) of some other perfect matching M ′ is
lexicographically larger than d(M), then we would have that

∑

pq∈M ′
wx
2 (pq) <

∑

pq∈M

wx
2 (pq) =

∑

p∈V ,pq∈M

−2rpq .

To see why the first inequality holds, the first few terms in
∑

p∈V ,pq∈M ′ −2rpq are the
same as in

∑
p∈V ,pq∈M −2rpq , until we reach a term that is strictly larger in M , and

by the exponential growth of 2rpq this single term is even larger than all further terms
together in M ′. Thus, if

∑
pq∈M wx

2 (pq) is maximized by M among some perfect
matchings, then we can conclude that M is strongly close among them.

We can use this for the perfect matchings that maximize
∑

pq∈M wx
1 (pq), to

conclude that a maximum weight perfect matching according to wx is a strongly
close maximum weight perfect matching according to w. Since we can find a maxi-
mum weight perfect matching according to wx by running the blossom algorithm of
Edmonds [16] whose running time is O(n3) (independent of the weights3), we are
done. ��

4 The Proofs of Theorems 6–9

In this section we prove Theorems 6–9. For the first three theorems we will reduce
from one of the following two problems. The problem Partition is well-known to
be NP-complete [17], and has as input a set of k integers a1, . . . , ak . The question is
whether there exists a set of indices I ⊆ {1, . . . , k} with

a(I ) = 1

2

k∑

i=1

ai .

The problem 3- Partition is to decide if we can partition a set of 3k positive integers
a1, . . . , a3k with

∑3k
p=1 ap = kc, for some integer c, into k sets that each sum up to c.

In contrast to Partition, the 3- Partition problem is even stronglyNP-complete [17]
(so NP-complete when encoded in unary) even if 1

4c < ai < 1
2c. The latter property

ensures that each set in a solution has size exactly 3.
We can now start with giving the proofs, the first one of which is the proof of

Theorem 6.

3 Note that these algorithms indeed work in any ordered abelian group; see this short argument by Emil
Jeřábek: https://cstheory.stackexchange.com/a/52389/419.
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Fig. 6 The construction of the
(directed) compatibility graph in
the proof of Theorem 6 for k = 3

Theorem 6 (restated). It is NP-hard to find a weakly close maximum weight matching
for a directed partitioned matching game (N , v) with n = 2 and target allocation x.

Proof We reduce from Partition. From an instance (a1, . . . , ak) of Partition
we construct a partitioned matching game (N , v) with n = 2. We define V1 =
{v1, . . . , vk, v

′
1, . . . , v

′
k} and V2 = {v′′

1 , . . . , v
′′
k }. For i = 1, . . . , k we have arcs

(vi , v
′
i ), (v

′
i , vi ), (vi , v

′′
i ) and (v′′

i , vi ), each with weight ai (see illustration for k = 3
in Fig 6.). Every maximum weight matching M matches each vi with either v′

i or
v′′

i . Matching vi with v′
i adds 2ai to u1 (and 0 to u2), while matching vi with v′′

i
adds ai to both u1 and u2. Note that v(N ) = 2

∑
j a j . Let x be the allocation with

x1 = 3
2

∑
j a j and x2 = 1

2

∑
j a j . Then there exists a maximum weight matching

M ∈ M with u1(M) = x1 and u2(M) = x2 if and only if (a1, . . . , ak) is a yes-
instance of Partition. If such a maximum weight matching M exists, then M is also
weakly close to x , since maxp∈N {|x p −u p(M)|} = 0. Thus, if we could find a weakly
close maximum weight matching in polynomial time, we can also decide Partition
in polynomial time. ��
We now prove Theorem 7.

Theorem 7 (restated). It is NP-hard to find a weakly close maximum weight matching
for a (2-sparse) directed partitioned matching game (N , v) with weights 1 and 1 + ε

for any arbitrarily small ε > 0, and target allocation x.

Proof We reduce from 3- Partition. From an instance (a1, . . . , a3k), such that∑3k
p=1 ap = kc for some integer c and 1

4c < ai < 1
2c, we construct a directed

partitioned matching game (N , v) on a (directed) compatibility graph G = (V , A) as
follows (see also Fig. 7):

– We start with 3k sources. That is, for p = 1, . . . , k, we define Sp := {p, p′, p′′}
and S := ⋃

p Sp.
– We add a set of 3k sinks T := {z1, . . . , z3k}.
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Fig. 7 The construction of the
(directed) compatibility graph
G = (V , A) in the proof of
Theorem 7 when k = 2, a1 = 3,
a2 = 2, a6 = 4. For clarity
reasons, only three paths are
displayed and the other 33 paths
between sources and sinks have
not been drawn

– We join every source to every sink by a path. That is, from each p (resp. p′ and
p′′) there is a path Ppq (resp. Pp′q and Pp′′q ) to each zq of (odd) length 2aq − 1.
This gives a total number of (3k)2 pairwise internally vertex disjoint paths.

– Every two consecutive vertices on each path are joined by two opposite arcs of
equal weight. The weights on each path alternate between L and L + 1, starting
and ending with opposite arcs of weight L + 1, where L is a sufficiently large
integer, say, L > kc.

– For p = 1, . . . , k, let Vp = (
⋃

q (V (Ppq) ∪ V (Pp′q) ∪ V (Pp′′q))) \ T , and let
Vk+1 = T .

Note that the edges of the underlying graph G = (V , E) have either weight 2 L
or 2(L + 1). As L > kc, every maximum weight matching in G is perfect. More
precisely, every maximum weight matching M of G looks as follows. Each edge has
either weight 2L or weight 2L + 2. We note that by dividing all weights by 2L and
setting ε := 1

L , we would obtain weights 1 and 1 + ε, where ε > 0 can be made
arbitrarily small by increasing L .

For p = 1, . . . , k there is a path Ppq from p to some zq , a path Pp′q ′ from p′ to
some zq ′ , and a path Pp′′q ′′ from p′′ to some zq ′′ that are completely matched in the
sense that M ∩ Ppq is a perfect matching of Ppq , and the same holds for Pp′q ′ and
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Pp′′q ′′ . These paths contribute to u p(M) a total gain of

(2(aq − 1) + 1)(L + 1) + (2(aq ′ − 1) + 1)(L + 1) + (2(aq ′′ − 1) + 1)(L + 1)

= (2(aq + aq ′ + aq ′′) − 3)(L + 1).

For p = 1, . . . , k, there are also 3k −1 paths from each of {p, p′, p′′} to the remaining
3k − 1 sinks in T \ {zq}, T \ {zq ′ }, and T \ {zq ′′ }, respectively, that start and end with
a non-matching edge (and are otherwise M-alternating). These paths contribute to
u p(M) a total of

2L

⎛

⎝
∑

r �=q

(ar − 1) +
∑

r �=q ′
(ar − 1) +

∑

r �=q ′′
(ar − 1)

⎞

⎠

= 2L((3
∑

r

ar ) − (aq + aq ′ + aq ′′) − 3(3k − 1)).

This means that for p = 1, . . . , k,

u p(M) = 2(aq + aq ′ + aq ′′) + 6 L

(
∑

r

ar

)

− 6 L(3k − 1) − 3(L + 1).

Let x be the allocation with for p = 1, . . . , k,

x p = 2c + 6 L

(
∑

r

ar

)

− 6 L(3k − 1) − 3(L + 1),

and
xk+1 = 3k(L + 1).

We now observe that there is a matching M ∈ M with u p(M) = x p for p =
1, . . . , k + 1 if and only if (a1, . . . , a3k) is a yes-instance of 3-Partition. Such a
matching M is also weakly close to x , since maxp∈N {|x p − u p(M)|} = 0. Moreover,
as 3-Partition is strongly NP-complete, a1, . . . , a3k can be represented in unary.
Thus, the size of (a1, . . . , a3k) is kc. Hence, (G, w) has polynomial size. ��
We continue with the proof of Theorem 8.

Theorem 8 (restated). It is NP-hard to find a weakly close maximum weight matching
for a 3-sparse compact directed partitioned matching game (N , v) with n = 2 and
target allocation x.

Proof We reduce again from the NP-complete Partition problem [17]. From a given
instance (a1, . . . , ak) of Partition we construct a 3-sparse compact directed parti-
tioned matching game (N , v) with n = 2. Let the undirected compatibility graph
G = (V , E) for (N , v) be the disjoint union C1 + . . . + Ck of k cycles C1, . . . , Ck ,
where for i ∈ {1, . . . , k}, Ci has length 4ai + 4. For each Ci we do as follows. For
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Fig. 8 The matchings M (top) and M ′ (bottom) in Ci for ai = 5 with edges e and e in the middle

some sufficiently large integer L , say L = ∑
ai , we assign to each edge of Ci weight

L , L + 1 or L + 1
2 as described below.

Let e and e be two “opposite edges” in cycle Ci , that is e and e are of maximum
distance from each other. Assign weights we = L and we = L + 1 to these edges.
Weightswe andwe are assumed to be split equally to their corresponding two opposite
arcs. Removing e and e splits Ci into two paths P1 and P2 of length 2ai + 1 each. The
edge weights on these two paths alternate between L and L + 1 except for their last
edge, which has weight L + 1

2 . More precisely, P1 starts with an edge (say, incident
to e) of weight L + 1 and continues alternating between edges of weight L + 1 and L
until its last edge (incident to e) gets weight L + 1

2 (instead of L + 1). Similarly, P2
starts with an edge of weight L , incident to e, and alternates between weights L + 1
and L until the last edge gets weight L + 1

2 (instead of L). See Fig. 8 for an example,
where ai = 5.

We let U1 and U2 denote the vertex sets of P1 and P2, respectively. We note that Ci

has exactly two maximum weight matchings, namely its two complementary perfect
matchings M and M ′, where M is the perfect matching that matches both e and e and
M ′ is the complement of M ; see also Fig. 8. Let V1 be the union of all the U1s in each
Ci and V2 be the union of all the U2s in each Ci .

We compute:

u1(M) = 1

2
L + 1

2
(L + 1) + ai L = L(ai + 1) + 1

2

and

u2(M) = 1

2
L + 1

2
(L + 1) + ai (L + 1) = L(ai + 1) + 1

2
+ ai ,

while u1(M ′) = L(ai + 1) + 1
2 + ai , and u2(M ′) = L(ai + 1) + 1

2 .
Recall that we have k components Ci , each with two complementary maximum

weight (perfect) matchings. So in the graph G consisting of these k components
Ci we have 2k maximum weight matchings, obtained by picking one of the two
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complementary M and M ′ in each Ci . Consider the allocation x with

x1 = x2 = L
(∑

ai + 1
)

+ 1

2

∑
ai + k/2,

and assume these can be realized by a suitable maximum weight matching MG in G.
Let I ⊆ {1, . . . , k} be the set of indices i such that MG picks M ′ in Ci . With respect
to MG , we find that V1 has utility L

∑
(ai + 1) + k/2 + ∑

I ai . Such a matching
MG exists if and only if (a1, . . . , ak) is a yes-instance of Partition. Moreover, MG

is weakly close to x , as |x1 − u1(MG)| = |x2 − u2(MG)| = 0. This completes the
reduction.

Each component Ci of the graph we construct has a description of length
O(log(kamax )), where amax denotes the maximum ai ; note that L is bounded
by log(kamax ) and the length of Ci is bounded by ai . Hence, allowing compact
descriptions, the weighted graph we constructed has size O(k log(kamax )), which
is polynomial in the size of (a1, . . . , ak). ��
Finally, we prove Theorem 9.

Theorem 9 (restated). Exact Perfect Matching and the problem of finding
a weakly close maximum weight matching for a ( 13 ,

2
3 ,

1
2 )-sparse perfect directed

partitioned matching game (with n = 2) and target allocation x are polynomially
equivalent.

Proof First suppose that we can solve Exact Perfect Matching in polynomial
time. Let (N , v) be a ( 13 ,

2
3 ,

1
2 )-sparse perfect directed partitioned matching game

defined on a directed compatibility graph G = (V , A) with partition (V1, V2). Recall
that for every 2-cycle i j i with i ∈ V1 and j ∈ V2, it holds that wi j = 1

3 and w j i = 2
3 ,

and for every other 2-cycle i j i in G (so where i, j ∈ V1 or i, j ∈ V2), we have wi j =
w j i = 1

2 . We denote the underlying undirected graph corresponding to G = (V , A)

by G = (V , E), which has a perfect matching by definition.
Let (x1, x2) be an allocation. As G has a perfect matching, we find that x1 + x2 =

1
2 |V |. We need to check if there exists a matching M ∈ M (which will be perfect)
with u1(M) ∈ I1 = [x1 − δ, x1 + δ] and u2(M) ∈ I2 = [x2 − δ, x2 + δ] for some
given δ ≥ 0. If we can do this, then we can do a search on δ similar to the one we
employed in the Lex-Min algorithm, leading to a maximum weight matching that is
weakly close to x . This can be done in polynomial time, as we still have a a polynomial
number of values for |x1 − u1(M)| and |x2 − u2(M)|, due to the fact that w takes on
only three different values (namely, 1

3 ,
2
3 or 1

2 ). Hence, we can follow the reasoning
used in the proof of Theorem 4 for analyzing the running time of Lex-Min.

Colour all edges of G with one end-vertex in V1 and the other one in V2 red. This
gives us the set R. Colour all remaining edges blue, that is, let B = E \ R.We check for
k = 1, . . . , |R| whether there exists a perfect matching of G with exactly k red edges.
This takes polynomial time by our assumption on Exact Perfect Matching. Each
time we find a solution M we let �i be the number of (blue) edges with both end-
vertices in Vi for i = 1, 2, and we check whether 2

3k + �1 belongs to I1 and 1
3k + �2

belongs to I2 (note that if k is fixed, then �1 and �2 are fixed as well).
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Now suppose that we can find in polynomial time a weakly close maximum weight
matching for a perfect directed partitioned matching game and target allocation x .
Let G = (V , E) be an undirected graph with a partition (R, B) of E into red and
blue edges forming, together with an integer k ≥ 0, an instance of Exact Perfect
Matching.

We subdivide each edge of G twice, that is, we replace each edge e = i j with
vertices i ′, j ′ and edges i i ′, i ′ j ′, j ′ j . Let G ′ = (V ′, E ′) be the resulting graph, so
V ′ \ V is the set of the 2|E | new vertices, which we call subdivision vertices. Any
perfect matching M in G translates into a unique perfect matching M ′ in G ′, and vice
versa. Namely, for every i j ∈ E , we have i j ∈ M if and only if i i ′, j ′ j ∈ M ′, and
also i j /∈ M if and only if i ′ j ′ ∈ M ′. We call M ′ the transform of M . We let V ′

1 be
the set of the subdivision vertices on red edges in G, and we let V ′

2 = V ′ \ V ′
1. We let

R′ denote the edges with one end-vertex in V ′
1 and the other end-vertex in V ′

2. Then
the transform M ′ of a perfect matching M with exactly k edges in R has 2k edges in
R′, and vice versa. To solve the latter problem, we define a ( 13 ,

2
3 ,

1
2 )-sparse perfect

directed partitioned matching game corresponding to G ′ and (V ′
1, V ′

2) and we choose
(x1, x2) = (|R| + 1

3k, 1
2 |V | + |B| − 1

3k) as allocation. Note that the size of a perfect
matching in G ′ is 1

2 |V | + |E | = 1
2 |V | + |R| + |B| = x1 + x2.

We now check if there exists a matching M ′ ∈ M′ (the set of perfect matchings of
G ′) such that u1(M ′) = |R| + 1

3k and u2(M ′) = 1
2 |V | + |B| − 1

3k. If such amatching
M ′ exists, it is also weakly close to x , since |x1 − u1(M ′)| = |x2 − u2(M ′)| = 0. By
our assumption we can do this in polynomial time. ��

5 Conclusions

We introduced a new class of cooperative games: partitioned matching games. We
showed how we can use partitioned matching games to model international kidney
exchange programmes. These programmes are seen as the next step in the medical
field of organ transplantations [12, 35]. We provided the theoretical basis for this
application by proving a number of computational complexity results for partitioned
matching games.

We found two sets of results. One set of results was about ensuring stability of the
international collaboration. The aim was to choose in each round of the international
programme a kidney transplant distribution as close as possible to some prescribed
fair distribution for that round. Roughly speaking, we proved that this problem can
be solved efficiently when transplant weights are equal, but otherwise the problem
becomes quickly computationally hard. We pose the following two open problems;
recall that we showed some partial results for directed partitioned matching games
(N , v) with |N | = 2 in Theorems 8 and 94:

1. Are there constants c and d such that the problem of finding a weakly close max-
imum weight matching for a d-sparse directed partitioned matching game (N , v)

with width c and target allocation x is NP-hard?

4 As future work we plan to perform simulations for finding weakly and strongly close maximum weight
matchings using integer linear programming (ILP) and Theorems 8 and 9 justify using an ILP model.

123



M. Benedek et al.

2. Are there constants n and d such that the problem of finding a weakly close max-
imum weight matching for a d-sparse directed partitioned matching game (N , v)

with |N | = n and target allocation x is NP-hard?

In our other set of results, we linked the core of partitioned matching games to the core
of b-matching games. We resolved a complexity gap for computing core allocations
of b-matching games. As a consequence we can settle the computational complexity
for the three core-related problems P1–P3 for partitioned matching games as well; see
also Table 1. We note that Table 1 contains two co-NP-hardness results for P2. We do
not know if P2 for b-matching games with b � 2 and for partitioned matching games
of width c ≥ 3 is co-NP-complete. Given that P1 is co-NP-complete for these cases
(see Table 1), P2 is likely to be computationally harder. We leave this question for
future research.

It is also interesting to consider other solution concepts for b-matching games and
partitioned matching games, such as the nucleolus. Könemann, Pashkovich and Toth
[23] proved that the nucleolus of a matching game can be computed in polynomial
time. In contrast, Könemann, Toth and Zhou [25] proved that computing the nucleolus
is NP-hard even for uniform b-assignment games with b ≤ 3. We refer to [4, 24, 25]
for some positive results (see also [5]), but determining the complexity of computing
the nucleolus is still open for the following games (see also [25]):

1. b-matching games with b ≤ 2,
2. partitioned matching games,
3. partitioned matching games with width c ≤ 2, and
4. partitioned matching games with width c ≤ 3.
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