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Abstract

Image restoration poses a significant challenge, aiming to accurately recover damaged
images by delving into their inherent characteristics. Various models and algorithms have
been explored by researchers to address different types of image distortions, including
sparse representation, grouped sparse representation, and low-rank self-representation.
The grouped sparse representation algorithm leverages the prior knowledge of non-
local self-similarity and imposes sparsity constraints to maintain texture information
within images. To further exploit the intrinsic properties of images, this study proposes
a novel low-rank representation-guided grouped sparse representation image restoration
algorithm. This algorithm integrates self-representation models and trace optimization
techniques to effectively preserve the original image structure, thereby enhancing image
restoration performance while retaining the original texture and structural information.
The proposed method was evaluated on image denoising and deblocking tasks across
several datasets, demonstrating promising results.

1 INTRODUCTION

Image restoration serves as a fundamental task in image pro-
cessing, aiming to reconstruct or recover the original image
from degraded or corrupted signals [1]. This field has garnered
extensive research attention and can generally be formulated as
follows:

𝐘 = 𝐇𝐗 + 𝐄 (1)

Here,𝐗, 𝐘, and 𝐄 represent the original, degraded, and noise
components of the image, respectively, while 𝐇 denotes the
degradation matrix. The restoration problem represented by
Equation (1) can vary significantly depending on the degra-
dation matrix 𝐇. For instance, an identity matrix for 𝐇
corresponds to image denoising [2], a diagonal masking cor-
responds to image inpainting [3], and a blurring operator
corresponds to image deblurring [4].

Image priors play a crucial role in image restoration, includ-
ing total variation (TV) [5–7], sparsity [2, 8], low-rank [9–11],
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and deep image prior [12–20]. Particularly, sparsity prior is con-
sidered remarkable for natural images [2, 8, 21–24]. Current
algorithms, based on strategies for manipulating sparsity prior,
are roughly divided into two classes: patch-based [2, 25, 26] and
group-based approaches [8, 22, 27–29].

Patch-based image restoration has received considerable
attention over the past decades [2, 30]. These algorithms aim
to identify low-dimensional representations (patch codes) under
the assumption that each patch can be modelled with a linear
combination of learned basis elements, known as a dictionary
[2]. Dictionary strategies typically fall into two categories: ana-
lytic and learning-based. Analytic approaches include discrete
cosine transform (DCT), wavelet, and curvelet [31]. Compared
to traditional analytic methods, dictionaries learned from images
are more adaptive and accurate since they comprehensively
depict the local structure of images. For instance, the widely-
used dictionary learning method K-SVD [30] exhibits strong
adaptability and has been successfully applied to tasks like image
denoising [2, 30]. Furthermore, by imposing sparse constraints
on patch representations, patch-based sparse representation
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(PSR) achieves excellent performance for image restoration,
where each patch is represented with a linear combination of
a few atoms from the learned dictionary.

However, patch-based methods have been criticized for inde-
pendently learning dictionaries and representations for each
patch, leading to two significant limitations. Firstly, these meth-
ods are computationally time-consuming, hindering their appli-
cation to large-scale image datasets. Secondly, they only exploit
the intrinsic structure of each patch, disregarding the corre-
lation among various patches, namely non-local self-similarity
(NSS). To address these issues, group-based approaches, such
as group sparse representation (GSR) [27, 28, 32], learn sparse
coding and dictionaries from groups of similar patches, where
strong correlations among them can be captured. In recent
years, with the continuous development of deep neural net-
works (DNN), many image restoration methods based on DNN
have emerged. Ref.[33] proposes a retractable transformer
architecture based on attention mechanisms, which dynamically
adjusts attention across different layers to restore images details
more precisely. Ref.[34] proposes sparse transformer to solve
deraining problems adaptively. The model leverage multi-scale
features to improve the efficiency of removing rain streaks.
Ref. [35] efficiently captures long-rang dependencies and pre-
serves fine image details, enabling effective image restoration
while reducing computational complexity. The image restora-
tion algorithm based on DNN essentially achieves implicit patch
similarity computation through the combination and cascading
of linear layers (especially convolutional neural networks) and
non-linear layers.

Compared to patch-based methods, GSR models [25, 26]
demonstrate outstanding performance in image restoration. For
example, BM3D [26] performs collaborative filtering on groups
of 3D patches. Mairal et al. [32] proposed LSSC, which simul-
taneously sparse encodes similar patches in a certain transform
domain to enforce similar coefficients. Zhang et al. [27] intro-
duced a GSR-based model for image restoration, designing a
self-adaptive dictionary for image patch groups and solving
sparse coding with 𝓁0 minimization. Xu et al. [36] learned an
NSS prior for patch groups based on external image databases
before image denoising, achieving excellent results when the
distribution of external patch groups and target image patch
groups is similar. To preserve the characteristics of the tar-
get image itself, a series of models combining internal and
external priors are proposed [37, 38]. To obtain more correct
sparsity solutions for image restoration, Wang et al. [29] incor-
porated non-convex weighted 𝓁p minimization into the GSR
framework for image denoising. To avoid learning dictionar-
ies from image patches, principal component analysis (PCA) is
adopted to construct dictionaries [27, 29]. Recently, Zha et al.
[39] proposed the LGSR model, utilizing low-rankness to guide
dictionary learning.

However, these group sparse representation models sim-
ply group similar image patches without fully exploiting the
relationships between these patches and ignoring the speci-
ficity among patches within the same group. To address these
issues, we propose a graph learning-guided group sparse rep-
resentation image restoration algorithm. Firstly, this algorithm

characterizes the similarity relationships between image patches
through graph learning and performs initial reconstruction of
the image to enhance the performance of subsequent sparse
representation learning. Secondly, low-rank constraints are
imposed during graph learning to fully explore the sub-group
structure of the same group of image patches. Finally, to ensure
that the learned representation satisfies sparsity while preserv-
ing the original similarity structure between image patches, the
algorithm introduces trace optimization regularization. Exten-
sive experiments are conducted to validate the superiority of
the proposed algorithm over some currently popular image
restoration algorithms.

The following is a summary of this research’s main contribu-
tions.

- To enhance the quality of sparse representation learning, this
study utilizes a graph learning model to characterize the sim-
ilarity relationships between image patches and employs this
model for the initial reconstruction of the image.

- In order to fully exploit the relationships between image
patches while preserving the specificity of each patch, low-
rank constraints are imposed during the graph learning
process to identify sub-group structures within the same
group of image patches.

- To ensure that the learned representation maintains spar-
sity while preserving the original similarity structure between
image patches, this paper introduces a structural preservation
regularization term into the model, thereby further improving
the interpretability of sparse representation.

- Extensive experiments on two image restoration tasks,
namely image denoising and inpainting, are conducted to
thoroughly validate the effectiveness and superiority of the
proposed algorithm.

The remaining sections of this article are arranged as follows:
Section 2 introduces the preliminaries, Section 3 elaborates on
the proposed algorithm for image restoration in detail, Section 4
presents the experimental results, and conclusions are drawn in
Section 5.

2 PRELIMINARIES

In this section, we will present the notations and preliminaries
that are going to be used for the rest of the paper.

2.1 Notations

Let the bold upper, bold lower, and lower-case letters denote
matrices, vectors, and scalars, respectively. Let 𝐗 ∈ Rn×m be
a n × m matrix, and 𝐱 ∈ Rd be a vector with d elements,
respectively. 𝐗

′
is the transpose of matrix 𝐗.

The Frobenius norm of matrix 𝐗 is defined as

‖𝐗‖ =√
tr (𝐗′𝐗) =

√
tr (𝐗𝐗′ ), (2)
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where tr (𝐗) is the trace of matrix 𝐗. 𝓁0-norm of vector 𝐱 is
defined as the number of non-zero elements in 𝐱, that is,

‖𝐱‖0 =
∑

i

|xi |0. (3)

𝓁1-norm of vector 𝐱 is the sum of absolute values of elements
in 𝐱, that is,

‖𝐱‖1 =
∑

i

|xi |. (4)

𝓁p-norm (0 < p < 1) of vector 𝐱 is defined as

‖𝐱‖p =

(∑
i

|xi |p

)1∕p

. (5)

‖𝐗‖0, ‖𝐗‖1 and ‖𝐗‖p denotes imposing 𝓁0-norm, 𝓁1-norm,
and 𝓁p-norm on each column of matrix𝐗, respectively. Nuclear
norm of matrix 𝐗 is defined as

‖𝐗‖∗ = min(m,n)∑
i=1

|𝜆i |, (6)

where 𝜆i is the i-th singular value of matrix 𝐗.

2.2 Image restoration

To simplify the model, we set the degradation matrix 𝐇 as
the identity matrix. Then, given a degraded image 𝐘, image
restoration is formulated as

𝐘 = 𝐗 + 𝐄, (7)

where 𝐗 and 𝐄 denote the original image and additive noise,
respectively. Without loss of generality, image prior is denoted
by 𝜃 and then maximum a posteriori (MAP) framework [8,
27, 40] is employed, that is, a posteriori function of the form
log p(𝐗|𝐘, 𝜃) is maximized

log p(𝐗|𝐘) = log p(𝐘|𝐗, 𝜃) + log p(𝐗|𝜃). (8)

The likelihood term is the Gaussian distribution [8]

p(𝐘|𝐗, 𝜃) =
1√

2𝜋𝜎E

exp

(
−

1

2𝜎2
E

‖𝐘 − 𝐗‖2

)
, (9)

where 𝜎2
E

is the noise variance. And then Equation (8) is equal
to

min
𝐗

1
2
‖𝐘 − 𝐗‖2 + 𝜎2

E
Θ(𝐗), (10)

where Θ(𝐗) is regularization term derived from prior 𝜃.

2.3 Sparse representation

Given features 𝐝1, … , 𝐝n, representation learning for a vector 𝐱
aims to obtain a linear function such that

𝐱 ≈ a1𝐝1 +⋯+ an𝐝n, (11)

where ai is the coefficient for feature 𝐱i . Equation (11) is solved
by minimizing approximation, that is,

min
1
2
‖𝐱 − 𝐃𝐚‖2, (12)

where D = [𝐱1, … , 𝐱n], and 𝐚 = (a1, … , an )
′
, respectively. The

sparse representation learning expects most of the coefficients
are 0, where Equation (11) is formulated as

min
1
2
‖𝐱 − 𝐃𝐚‖2 + 𝛼‖𝐚‖0, (13)

where 𝛼 is a parameter.
Furthermore, an extension for sparse representation learn-

ing is needed. When multiple objects involve, that is, 𝐗 =
[𝐱1, … , 𝐱n], GSR simultaneously handles n objects into an
objective function, where Equation (13) is re-written as,

min
1
2
‖𝐗 −𝐃𝐀‖2 + 𝛼‖𝐀‖0, (14)

where ‖𝐀‖0 is the regularization item, denotes imposing 𝓁0-
norm on each column of 𝐀.

There are various strategies for constructing sparsity, that
is, 𝓁1-norm [41, 42], and 𝓁p-norm (0 < p < 1), to bridge 𝓁0
and 𝓁1 [43, 44]. In summary, sparse representation meth-
ods assume that image patches or pixels can be represented
by a small number of basis elements (atoms). And graph-
based sparse representation methods decompose the image into
sparse components while considering the graph structure of the
image. Graph-based sparse coding exploits the graph structure
to encourage similarity between adjacent patches, allowing for
the recovery of missing parts of the image by leveraging the
underlying relationships in the graph.

3 PROPOSED METHOD

In this section, we present the proposed method in detail,
encompassing the restoration model, optimization, parameter
selection, and discussion on its computational complexity.

The overview of the proposed algorithm is illustrated
in Figure 1, which comprises four major components:
patch grouping, sparse representation learning, low-rank self-
representation, and structure preservation. Patch grouping
divides sub-blocks of the original images into different classes,
where patches within the same groups exhibit high similar-
ity. The low-rank self-representation module conducts self-
representation learning through original image blocks and
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4 of 20 GAO ET AL.

FIGURE 1 Overview of the proposed image restoration algorithm, which consists of three major parts, including patch grouping, sparse representation
learning and group residual learning.

initiates the reconstruction of the image blocks. Group sparse
representation learning projects each group of image blocks
into a subspace spanned by dictionary matrix columns to obtain
the representation of the image block, while the structure
preservation module aims to ensure that the learned sparse
representation maintains the original similarity structure of
the image.

3.1 Restoration model

In the patch grouping block, like other GSR-based restoration
models [27, 28, 32], a patch-matching based approach is utilized.
Specifically, the degraded image𝐘 is divided into patches, where
the size of patches varies with downstream applications. For
each reference patch, the closest m patches within window of
l × l are selected as a group, where patches belonging to multi-
ple groups are allowed. To ensure the quality of groups, the step
size of selected reference patches is small, where window size is
large. In general, we set step size of selection reference patches
as 3 or 4, and that of windows as 25 × 25. By stacking pixels
each reference patch is denoted as 𝐲i , and the corresponding
patch group is 𝐘i , where each column corresponds to a patch
within the group.

In the sparse representation learning block, the most intuitive
strategy is to project each group of patches into a sub-
space, where the low-dimensional representation of patches

is obtained. Specifically, given patch group 𝐘i , the low-
dimensional representation of patches is learned by minimizing
the approximation, which is formulated as:

(𝐘i ) =
1
2
‖𝐘i −𝐃i𝐀i‖2, (15)

where 𝐃i and 𝐀i denotes the dictionary and coefficient matrix
of 𝐘i , respectively. Sparse representation learning [30] expects
the learned 𝐀i is sparse, that is, the most elements are 0, which
improves computational efficiency and interpretability of solu-
tions. By imposing 𝓁1-norm constraint to coefficient matrix𝐀i ,
Equation (15) is reformulated as:

(𝐘i ) =
1
2
‖𝐘i −𝐃i𝐀i‖2 + 𝛽‖𝐀i‖1, (16)

where parameter 𝛽 determines the relative importance of spar-
sity constraint. Recently, evidence [43, 44] demonstrates that
𝓁p-norm overcomes limitation of 𝓁1-norm to fulfil sparsity of
representation. Therefore, Equation (16) is re-written as,

(𝐘i ) =
1
2
‖𝐘i −𝐃i𝐀i‖2 + 𝛽‖𝐀i‖p. (17)

In order to achieve better image restoration effects, in addition
to utilizing image sparsity, the non-local self-similarity of the
image should also be considered. This chapter uses low-rank
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self-representation to characterize the non-local self-similarity
of images, that is, an image block can be represented by a linear
combination of similar image blocks, and the coefficient matrix
satisfies the block diagonal structure (low rank). Based on the
group sparse representation model, this chapter introduces the
low-rank self-representation feature, and obtains,

O(Yi ) =
1
2
||Yi −DiAi ||2 + 𝛽||Ai ||p

+
𝛾

2
||DiAi − Zi ||2 + 𝜏||Wi||∗

s.t. Zi = ZiWi , Wi =W ′
i , (18)

where Zi is an intermediate auxiliary variable, Wi is a self-
represented sparse matrix, and ||Wi ||∗ represents the nuclear
norm of Wi . Different from the method proposed in the pre-
vious chapter, low-rank self-representation learning is used here
to guide the learning of dictionary matrices and sparse represen-
tations at the same time, thereby further improving the quality
and interpretability of sparse representation learning.

In order to prevent over-smoothing, this paper hopes
that the learned sparse representation satisfies the sparsity
constraints while still maintaining the similarity structure
between the original image blocks. First, we perform self-
representation learning on the sparse representation Ai , and
the obtained self-representation matrix is as close as possible
to the self-representation of the original image block, that is,
minimizing

O(Ai ) = ||Ai − AiSi ||2 − Tr (W ′
i Si ), (19)

where Si is the self-representation matrix of sparse coding
Ai . Tr (⋅) represents the trace of the matrix, Tr (W ′

i Si ) mea-
sures the similarity between matrices Wi and Si . The combined
expressions (18) and (19) can be obtained

O(Yi ) =
1
2
||Yi −DiAi ||2 + 𝛽||Ai ||p + 𝜆(||Ai − AiSi ||2

− Tr (W ′
i Si )) +

𝛾

2
||DiAi − Zi ||2 + 𝜏||Wi||∗

s.t. Zi = ZiWi , Wi =W ′
i , (20)

Without loss of generality, the above prior model can be sub-
stituted into the general image restoration framework (10) to
obtain

O(Y ) =
1
2
||Y − X || +∑

i

{𝛼
2
||QiX −DiAi ||2 + 𝛽||Ai ||p

+
𝛾

2
||DiAi − Zi ||2 + 𝜏||Wi ||∗ + 𝜆(||Ai − AiSi ||2

−Tr (W ′
i Si ))

}
s.t. Zi = ZiWi , Wi =W ′

i , ∀i (21)

where Qi represents the matrix operator for extracting the ith
group of image blocks in image X , that is, QiX = Xi . Given
the degradation image Y , the restored image X can be obtained
by solving the above equation. The next section will introduce
the optimization process of solving this objective function.

3.2 Optimization

Due to the non-convex nature of the nuclear norm and lp
norm, the objective function (21) cannot directly yield an ana-
lytical solution. Therefore, this paper employs an alternating
iteration strategy for optimization, wherein a single variable is
optimized while keeping other variables fixed until convergence
or reaching the termination condition.

1) Update Zi and weight matrix Wi : Fixing X and Ai , and
simultaneously eliminating irrelevant terms, the objective
function (21) for Wi can be equivalently expressed as,

𝛾

2
||DiAi − Zi ||2 + 𝜏||Wi || ∗ s.t. Zi = ZiWi , ,Wi =W ′i.

(22)

According to the literature [45], Equation (22) can be effi-
ciently solved by performing singular value decomposition
on DiAi , that is, DiAi = UiΣiV

′i, where Λi = diag(𝜆i ) is a
diagonal matrix containing singular values, and Ui and Vi

represent the left and right singular matrices, respectively.
Then, the optimal solution for Zi in Equation (22) can be
expressed as,

Ẑi = U i1Σi1V ′i1, (23)

where Σi1 contains singular values greater than
√

2𝜏

𝛾
, while

Ui1 and Vi1 contain the corresponding singular vectors. The
optimal solution for Wi is

Ŵi =Vi1V ′
i1. (24)

For the proof of the optimal solution of the above formula,
please refer to the literature [45] .

2) Update the weight matrix Si : Eliminate terms irrelevant to Si ,
and the objective function (21) can be simplified to

O(Ai ) = ||Ai − AiSi ||2 − Tr(W ′
i

Si ). (25)

Taking the partial derivative of Si yields

A′
i Ai + A′

i AiSi −Wi = 0. (26)

Setting it to 0, we obtain the updated formula for Si as

Ŝi = (A′
i Ai )

−1(A′
i Ai +Wi ). (27)
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6 of 20 GAO ET AL.

3) Update group sparse representation Ai : Eliminate terms
irrelevant to Ai , and the objective function (21) can be
simplified to

𝛼

2
||Xi −DiAi ||2 + 𝛾2 ||DiAi − Zi ||2
+
𝜂

2
||Ai − AiSi ||2 + 𝛽||Ai ||p. (28)

By merging the first two terms, we obtain

1
2
||Gi −DiAi ||2 + 𝜂2 ||Ai − AiSi ||2 + 𝛽||Ai ||p, (29)

where Gi = (𝛼Xi + 𝛾Zi )∕(𝛼 + 𝛾). To better adapt to the
local structure of the image, this section adopts the PCA
sub-dictionary strategy, that is, learning an orthogonal
dictionary through each group Gi .

After obtaining the dictionary Di , the lp norm makes the
solution of Equation (29) non-convex. Therefore, this paper
utilizes the generalized soft threshold (GST) algorithm [46],
an efficient iterative strategy to obtain approximate solu-
tions. Specifically, the update rule for Ai can be expressed
as

Âi = GST(Pi , 𝜇, p, t ), (30)

where t represents the number of iterations of the GST
algorithm, and the specific definitions of Pi and 𝜇 are:

⎧⎪⎨⎪⎩
Pi = 𝛼(Ai −D′

iXi ) + 𝛾Ai (I − Si − S ′i + SiS
′
i ),

mu =
𝛽

𝛼 + 𝛾||I − Si ||2 .
(31)

4) Update the restored image X : By fixing the matrices Ai and
Wi , the objective function (21) can be simplified to

1
2
||Y − X ||2 + 𝛼

2

∑
i

||QiX −DiAi ||2. (32)

Since Equation ((32)) is convex with respect to X , setting
the partial derivative of (32) with respect to X to 0 yields the
exact solution as

X̂ =

(
I + 𝛼

∑
i

Q′i Qi

)−1(
Y + 𝛼

∑
i

Q′i DiAi

)
, (33)

where DiAi represents the reconstruction of the image
patch group Xi , and Q′

i
can be regarded as a matrix oper-

ator that puts the reconstructed image patch group back
into the original image. In fact, (I + 𝛼

∑
i
Q′i Qi ) is a diag-

onal matrix, and its inverse can be obtained by element-wise
division. Therefore, Equation (33) can be regarded as super-
imposing the reconstructed image patches and performing
a weighted average with the degraded image to obtain the
restored image.

3.3 Parameter selection

In order to obtain the best performance results, this algorithm
adopts an adaptive parameter adjustment strategy to enable
the proposed algorithm to adapt to various image structures.
First, we update the noise variance 𝜎2

E
[6] using an iterative

regularization strategy,

𝜎
(k)
E
= c0

√(
𝜎2

E
− ||Y − X̂ (k)||2), (34)

Among them, k represents the current number of iterations, and
c0 is a positive constant.

Inspired by the maximum posterior probability framework
[8], it is assumed here that the sparse encoding Ai obeys the
Laplace distribution [29, 47], and the sparse residual Ri obeys
the Gaussian distribution, and then the parameters can be
obtained. The update strategy of 𝛽 and 𝜂 is

𝛽 =
𝜎2

E

𝛿i + 𝜖
, (35)

𝜂 =
𝜎2

E

𝛿2
i
+ 𝜖

, (36)

Among them, 𝛿i represents the standard deviation of Ai , and
its estimation method can be found in the document [10]. At
the same time, 𝜖 represents a very small constant to prevent the
denominator from being zero.

In addition, the parameters 𝛼 and 𝛾 adopt the following
update strategy:

𝛼 = c1𝜎
2
E
, (37)

𝛾 = c2𝜎
2
E
. (38)

where c1 and c2 both represent positive constants. Formulas (37)
and (38) mean that the parameters 𝛼 and 𝛾 are respectively
proportional to the standard deviation 𝛿i of the noise variance
𝜎2

E
.

3.4 Method overview

To sum up, the image restoration algorithm proposed in
this chapter can be realized through the above-mentioned
alternating update steps and parameter adaptive adjustment
mechanism. The pseudocode of the proposed algorithm is
shown in Algorithm 1.

3.5 Computational complexity analysis

In this section, we analyse the computational complexity of
the proposed method theoretically. Concerning the spatial com-
plexity, the proposed algorithm requires space complexity of
O(m2n). The matrices Wi and Si for each image block group

 17519667, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.70004 by T

est, W
iley O

nline L
ibrary on [13/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GAO ET AL. 7 of 20

ALGORITHM 1 The proposed algorithm for image restoration.

Input: The degraded image 𝐘.

1: Initialize �̂�(0) = 𝐘, k = 0, 𝜎
(0)
E

.

2: Set the parameters c0, c1, c2 and p.

3: while k <=Max-Iter do

4: for each reference patch 𝐱i do in �̂�(k)

5: Search similar patches to construct patch group 𝐗i .

6: Update Zi and Wi by (23) and (24).

7: Update 𝛼 and 𝛾 by (37) and (38).

8: Construct the dictionary 𝐃i through PCA on 𝐆i by (29).

9: Update 𝐀i by 𝐀i = 𝐃i

′

𝐗i .

10: Update Si by (27).

11: Update 𝛽 and 𝜂 by (35) and (36).

12: Update 𝐀i by (30).

13: end for

14: Update �̂�(k) by (33).

15: Update 𝜎
(k)
E

by (34).

16: Until convergence conditions are met.

17: end while

Output: The restored image �̂�.

require space of O(m2). The space complexity for Ai , Xi , and
Zi for each image block group is O(dm), where d represents the
number of rows in Ai , Xi , and Zi . Therefore, the total spatial
complexity of the proposed algorithm is O(m2n), where n is the
number of image block groups.

Regarding the time complexity, it comprises four main com-
ponents: (1) Low-rank self-representation learning; (2) structure
preservation; (3) sparse representation learning; and (4) image
reconstruction. The time complexity for updating Wi is O(tnm3),
where t is the number of iterations. The time complexity for
updating Si is O(tnm3). The time complexity for updating Ai is
O(tndm). The time complexity for image group reconstruction
is O(tnb2m). Hence, the total time complexity of the algorithm
is O(tnm3).

4 EXPERIMENTAL RESULTS

To fully validate the performance of the proposed algorithms,
extensive experiments are conducted on two typical image
restoration tasks: denoising and deblocking.

4.1 Experimental setting

1) Benchmark: As the proposed algorithm follows a self-
supervised learning approach, only test datasets are required
to validate the performance of the proposed algorithm.

For the image denoising task, experiments are conducted
on three datasets: commonly used test images, the Set12
benchmark dataset [48] (consisting of 12 greyscale images),

and the DND dataset [49]. DND consists of 50 high-
resolution images with realistic image noise, and the DND
images have been resized to 256 × 256. For the scene with
man-made noise (the first two datasets), Gaussian noise
at various levels is added to the original images to gen-
erate noisy images, which are then used for testing. For
DND, there is no need to generate noisy images via man-
ually adding Gaussian noise. Additionally, several real noisy
images are also selected for experiments to thoroughly
validate the algorithm’s effectiveness.

For the image deblocking task, two widely used datasets
are employed: the LIVE1 dataset [50] and the Classic5
dataset [51], comprising 29 and five natural images, respec-
tively. Each test image is first encoded using the MATLAB
JPEG encoder at different compression quality levels Q.
Subsequently, the compressed images are decoded using
a standard JPEG decoder to obtain the input images for
experimentation. Besides the LIVE1 and Classic5 datasets,
eight fingerprint images are also used to further validate the
superiority of the proposed algorithm.

This experimental setup ensures comprehensive evalua-
tion of the proposed algorithm’s performance across various
image restoration tasks.

2) Parameter setting: For image denoising, the parameter set-
tings of the proposed algorithm are as follows: when the
noise level 𝜎E is ≤ 30, 30 < 𝜎E ≤ 50, and 50 < 𝜎E ≤ 100,
the patch sizes are set to 7 × 7, 8 × 8, and 9 × 9, respectively.
When 𝜎E ≤ 30, 30 < 𝜎E ≤ 40, 40 < 𝜎E ≤ 50, 50 < 𝜎E ≤

75, and 75 < 𝜎E ≤ 100, the number of patches per group is
set to 60, 70, 80, 90, and 100, respectively. When 𝜎E ≤ 30,
30 < 𝜎E ≤ 40, and 40 < 𝜎E ≤ 100, the parameter p is set
to 0.8, 0.85, and 0.9, respectively.

For image deblocking, the patch size is set to 7 × 7.
The number of similar patches per group is set to 60.
When the compression quality Q is ≤ 10, 10 < Q ≤ 20, and
20 < Q ≤ 40, the parameter p is set to 0.9, 0.8, and 0.2,
respectively.

4.2 Compared methods

In the image denoising task, the proposed algorithm is com-
pared with several state-of-the-art denoising methods, including
BM3D [26], LSSC [32], EPLL [52], LPCA [53], NCSR [8],
aGMM [54], NLN-CDR [55], SNSS [56], and LGSR [39].
Among them, algorithms such as BM3D [26], LSSC [32],
EPLL [52], LPCA [53], aGMM [54], and NLN-CDR [55] uti-
lize the prior of non-local self-similarity in images. The SNSS
[57] algorithm further incorporates non-local self-similarity
prior knowledge obtained through an external image database.
Particularly, the NCSR [8] algorithm and the proposed algo-
rithm in this paper are both based on sparse representation
models and utilize non-local self-similarity in images for algo-
rithmic improvement. Additionally, the proposed algorithm is
compared with several deep learning-based denoising models,
including TRND [58], DnCNN [48], and S2S [59]. Among these
models, TRND and DnCNN are supervised learning models,
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8 of 20 GAO ET AL.

TABLE 1 Average PSNR (dB) results of image denoising compared with classical methods on the test image dataset.

𝝈E BM3D LSSC EPLL LPCA NCSR aGMM NLN-CDR SNSS LGSR Ours

20 31.87 31.98 31.44 31.31 31.85 31.78 31.21 32.09 32.15 32.20

30 29.86 29.88 29.88 29.40 29.72 29.69 29.02 30.11 30.21 30.25

40 28.25 28.41 27.95 27.48 28.29 28.22 27.84 28.68 28.65 28.77

50 27.26 27.26 26.82 26.25 27.16 27.10 26.73 27.62 27.62 27.68

75 25.31 25.16 24.82 24.09 25.08 25.02 24.82 25.65 25.67 25.69

100 23.92 23.69 23.46 22.61 23.60 23.63 23.58 24.33 24.35 24.30

Average 27.75 27.73 27.40 26.86 27.62 27.57 27.20 28.08 28.11 28.15

while S2S is a self-supervised learning algorithm. These deep
learning models serve as widely adopted baseline models.

For the image deblocking task, the proposed method is
compared with various classical image deblocking methods,
including BM3D [26], SA-DCT [60], PC-LRM [61], WNNM
[62], ANCE [63], SSR-QC [64], COGL [65], JPG-SR [57],
NSSRC [22], as well as with deep learning-based deblocking
models such as AR-CNN [66], TRND [58], DnCNN [48],
DCSC [67], and MDDU [68]. Among these comparison meth-
ods, AR-CNN is a commonly used deep learning baseline
model for compression artefact removal, while TRND and
DnCNN are general-purpose image restoration models. Lastly,
DCSC and MDDU are the latest and most advanced image
deblocking models.

It is worth noting that the experiments in this section were
conducted with the default parameters set by the original
authors for the compared methods. For deep learning models,
the experiments were conducted using the pre-trained models
provided by the official sources.

4.3 Image denoising

Image denoising is the most common and fundamental task
in image restoration. To validate the effectiveness of the pro-
posed image restoration algorithm in this chapter, experiments
were conducted using MATLAB’s random number generator
to synthesize Gaussian white noise (GWN) images for test-
ing. Additionally, several real images were selected for denoising
testing.

1) Comparison with classical image denoising methods: The
proposed method and other classical denoising methods
were evaluated at noise levels 𝜎E of 20, 30, 40, 50, 75, and
100, respectively. To quantify the effectiveness of the algo-
rithms, two evaluation metrics were used to assess the quality
of the restored images: Peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) [69]. Table 1 (PSNR
results) and Table 2 (SSIM results) show the denoising aver-
age results of all compared methods on 13 commonly used
test images, with the best results highlighted in bold. It is
evident that the proposed algorithm outperforms all other
compared methods overall in both PSNR and SSIM met-

rics. Particularly in terms of the SSIM metric, the proposed
algorithm significantly outperforms other methods. The
SSIM metric primarily focuses on the structural information
of images, simulating human perception of image struc-
ture, and providing a more accurate assessment of image
quality.

Experiments setup on real-word dataset DND follows the
main approach outlined in [49]. The algorithms are applied
to the space of linear raw intensity(RAW data) and RAW
data with a variance stabilizing transformation (VST). After
denoising, the results are compared with RAW and sRGB for
evaluation, respectively. Therefore, there are four separate
scenarios in the experiment results, as reported in Table 3 for
average PSNR and Table 4 for average SSIM, respectively,
where the best performance is highlighted in bold. It is obvi-
ous that performance is better in scenarios where algorithms
are evaluated on the RAW space, regardless of which space
the algorithm is applied to. Our proposed method outper-
forms most other baseline methods in nearly all scenarios,
except for the third scenario, where both PSNR and SSIM
are slightly weaker than BM3D.

Human visual perception is the most intuitive judgment
of image quality, which is crucial for evaluating image
denoising algorithms. Figures 2 and 3, respectively illus-
trate the denoising visualization results of the proposed
algorithm and other classical algorithms on images Airplane

and Miss at noise level 𝜎E = 75. Among them, BM3D
[26] adopts collaborative filtering for denoising, and it
can be observed from the images that its result suffers
from oversmoothing, leading to the blurring of the original
texture structure. The EPLL algorithm [52] denoises based
on image distribution, but the denoising result is not ideal,
as there are still many artefacts remaining. The NCSR
algorithm [8], like the algorithm proposed in this chapter,
is based on group sparse representation model. However,
it can be seen from the images that although NCSR can
effectively remove noise, the image does not retain the
original structure clearly, whereas the proposed algorithm
in this chapter has addressed this issue as much as possible.
Overall, both the SSIM results and the visualization results
demonstrate the superiority of the proposed algorithm. This
is attributed to the adoption of low-rank self-representation
for graph learning and guiding the learning of sparse
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GAO ET AL. 9 of 20

TABLE 2 Average SSIM results comparing image denoising with classical methods on test image dataset.

𝝈E BM3D LSSC EPLL LPCA NCSR aGMM NLN-CDR SNSS LGSR Ours

20 0.9014 0.9013 0.8950 0.8935 0.9004 0.8994 0.8905 0.9029 0.9056 0.9062

30 0.8659 0.8648 0.8549 0.8526 0.8645 0.8607 0.8357 0.8712 0.8760 0.8764

40 0.8303 0.8330 0.8177 0.8145 0.8346 0.8256 0.8183 0.8439 0.8456 0.8477

50 0.8058 0.8047 0.7836 0.7789 0.8079 0.7939 0.7879 0.8195 0.8202 0.8231

75 0.7440 0.7398 0.7096 0.6988 0.7518 0.7197 0.7320 0.7660 0.7658 0.7687

100 0.6925 0.6907 0.6477 0.6277 0.7042 0.6566 0.6964 0.7230 0.7260 0.7262

Average 0.8067 0.8057 0.7848 0.7777 0.8106 0.7927 0.7935 0.8211 0.8232 0.8247

TABLE 3 Average PSNR (dB) results of image denoising compared with classical methods on DND dataset.

Applied Evaluated BM3D LSSC EPLL LPCA NCSR aGMM NLN-CDR SNSS Ours

RAW RAW 46.52 45.04 46.32 46.22 42.04 45.58 42.47 43.58 46.63

RAW sRGB 37.91 37.11 37.37 36.55 36.28 36.02 36.23 35.99 37.99

RAW+VST RAW 47.05 46.98 46.85 46.72 45.58 45.09 45.39 44.98 47.01

RAW+VST sRGB 36.78 36.85 35.89 36.56 36.12 36.84 36.28 36.44 36.91

TABLE 4 Average SSIM results of image denoising compared with classical methods on DND dataset.

Applied Evaluated BM3D LSSC EPLL LPCA NCSR aGMM NLN-CDR SNSS Ours

RAW RAW 0.9701 0.9655 0.9583 0.958 0.9537 0.962 0.9674 0.9532 0.9724

RAW sRGB 0.9218 0.919 0.9012 0.9242 0.9273 0.9242 0.9101 0.9154 0.9313

RAW+VST RAW 0.9542 0.9172 0.9143 0.9111 0.9204 0.9044 0.9174 0.9077 0.9502

RAW+VST sRGB 0.9135 0.8995 0.9045 0.9235 0.9005 0.9141 0.9006 0.9133 0.9258

FIGURE 2 Visualization of algorithms for denoising image airplane under 𝜎E = 75 noise: (a) Original image, (b) noise image, (c) BM3D (PSNR = 23.99 dB,
SSIM = 0.7488), (d) EPLL (PSNR = 23.94 dB, SSIM = 0.7168), (e) NCSR (PSNR = 23.77 dB, SSIM = 0.7551), and (f) the proposed algorithm (PSNR = 24.25 dB,
SSIM = 0.7690).
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10 of 20 GAO ET AL.

FIGURE 3 Visualization of algorithms for denoising imageMiss under 𝜎E = 75 noise: (a) Original image, (b) noisy image, (c) BM3D (PSNR = 27.34 dB, SSIM
= 0.7722), (d) EPLL (PSNR = 26.69 dB, SSIM = 0.7422), (e) NCSR (PSNR = 27.01 dB, SSIM = 0.7927), and (f) the proposed algorithm (PSNR = 27.55 dB, SSIM
= 0.7956).

TABLE 5 Average PSNR (dB)/SSIM results comparing image denoising
with DNN-based methods on the Set12 dataset.

Methods 𝝈E = 15 𝝈E = 25 𝝈E = 50 Average

TRND 32.51 30.04 26.78 29.78

0.8970 0.8523 0.7672 0.8388

DnCNN 32.50 30.17 26.98 29.88

0.8966 0.8549 0.7700 0.8405

S2S 32.07 29.94 26.12 29.38

0.8891 0.8475 0.7382 0.8249

Ours 32.51 30.17 27.01 29.90

0.8941 0.8538 0.7794 0.8424

representation in this algorithm, which allows the learned
sparse representation to maintain the original graph
structure, thus avoiding oversmoothing to a certain extent.

2) Comparison with DNN-based image denoising models:
Deep neural networks (DNNs) have achieved signifi-
cant success in both high-level understanding and basic
processing tasks of images. Therefore, this section com-
pares the proposed algorithm with several mainstream
DNN-based image denoising models, including TRND
[58], DnCNN [48], and S2S [59]. The average results
(PSNR and SSIM) on the Set12 dataset are shown in
Table 5.

The results indicate that the proposed method outper-
forms some popular deep image denoising models. For
better visualization, this section selects some denoising

results at 𝜎E = 50 for visual display, as shown in Figures 4
and 5. The denoising results of TRND, DnCNN, S2S,
and the proposed method are displayed in the figures. It
can be observed that deep learning-based methods tend
to produce artefacts or oversmoothing during denoising,
while the proposed method can avoid such issues and more
clearly restore the details of the image. The results indi-
cate that although supervised deep models can be trained
on large-scale datasets to fit the distribution of images as
much as possible, the generalization ability of this distribu-
tion fitting is usually insufficient, resulting in unsatisfactory
performance on images dissimilar to the training dataset
distribution. These supervised deep models overlook the
inherent structural priors of images, such as sparsity and
NSS, while the proposed algorithm can effectively utilize
these priors to achieve desirable results on various images.
Although the S2S model and the proposed method are both
self-supervised models, the deep network parameters of the
S2S model lead to longer learning times compared to the
proposed method.

To thoroughly validate the effectiveness of the proposed
algorithm, experiments were conducted using real noisy images.
As the model proposed in this chapter requires the noise vari-
ance of the images as a prior parameter, a fast noise estimation
method [70] was employed to obtain the noise variance of
the real images in advance. The denoising results of real noisy
images are shown in Figure 6. The proposed method is com-
pared with the S2S [59] model, which is also a self-supervised
model based on deep learning. It can be clearly observed that
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GAO ET AL. 11 of 20

FIGURE 4 Visualization of denoising results of algorithms for image House in the Set12 dataset under 𝜎E = 50 noise: (a) Original image, (b) noisy image, (c)
TRND (PSNR = 29.40 dB, SSIM = 0.8058), (d) DnCNN (PSNR = 29.74 dB, SSIM = 0.8059), (e) S2S (PSNR = 27.47 dB, SSIM = 0.7032), and (f) the proposed
algorithm (PSNR = 30.40 dB, SSIM = 0.8293).

FIGURE 5 Visualization of denoised image Barbara in the Set12 dataset under 𝜎E = 50 noise: (a) Original image, (b) noisy image, (c) TRND (PSNR = 25.78
dB, SSIM = 0.7450), (d) DnCNN (PSNR = 25.53 dB, SSIM = 0.7361), (e) S2S (PSNR = 26.82 dB, SSIM = 0.7840), and (f) the proposed algorithm (PSNR = 27.88
dB, SSIM = 0.8243).

 17519667, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.70004 by T

est, W
iley O

nline L
ibrary on [13/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 20 GAO ET AL.

FIGURE 6 Visualization of denoising for real images by various algorithms: (a) Real image, (b) S2S, and (c) the proposed algorithm.

TABLE 6 Average PSNR (dB) results of image deblocking compared with the classic method on the datasets LIVE1 and Classic5 (image size: 256 × 256).

LIVE1 dataset (Image size: 256 × 256)

Q JPEG BM3D SA-DCT PC-LRM ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours

10 26.37 27.16 27.23 27.24 27.24 27.25 27.26 27.38 27.29 27.43 27.45

20 28.55 29.21 29.24 29.28 29.29 29.29 29.33 29.46 29.37 29.53 29.55

30 29.86 30.45 30.48 30.54 30.57 30.55 30.60 30.74 30.75 30.85 30.86

40 30.80 31.35 31.37 31.45 31.51 31.46 31.57 31.66 31.71 31.82 31.81

Average 28.90 29.54 29.58 29.63 29.65 29.64 29.69 29.81 29.78 29.91 29.92

Classic5 dataset (Image size: 256 × 256)

Q JPEG BM3D SA-DCT PC-LRM ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours

10 27.57 28.69 28.72 28.79 28.77 28.78 28.83 28.93 28.78 28.97 29.03

20 29.90 30.87 30.89 30.98 30.96 30.98 31.07 31.13 31.12 31.23 31.26

30 31.21 32.07 32.09 32.21 32.22 32.21 32.34 32.39 32.50 32.55 32.54

40 32.14 32.94 32.96 33.09 33.16 33.10 33.30 33.29 33.46 33.54 33.51

Average 30.21 31.14 31.17 31.27 31.28 31.27 31.39 31.43 31.47 31.57 31.59

the restoration results of S2S exhibit oversmoothing, while the
proposed method preserves more image details.

4.4 Image deblocking

To further comprehensively validate the effectiveness of the
proposed algorithm, experiments were conducted on the JPEG
compression artifact removal problem [60, 64, 66], which
involves removing blocky artefacts from JPEG compressed
images. Unlike image denoising tasks, in image deblocking, the
additive noise E is quantization noise. Therefore, classic Gaus-
sian models [60] were employed to estimate the noise standard
deviation 𝜎E , characterizing the noise quantization process.

1) Comparison with classical image deblocking methods: To
evaluate the performance of all classical deblocking methods
involved in the comparison, experiments were conducted on
two commonly used benchmark datasets: the LIVE1 dataset
[50] and the Classic5 dataset [51]. Similar to image denois-
ing, experiments utilized two evaluation metrics, PSNR and

SSIM. The results are shown in Tables 6 and 7. It is
evident that the proposed method outperforms other clas-
sical methods on the Classic5 dataset at a compression
quality of Q = 40. Particularly, the proposed method sig-
nificantly outperforms other comparison methods on low
compression quality images (Q = 10, 20, 30) and approaches
or even surpasses current state-of-the-art methods on high
compression quality images (Q = 40).

To provide a more intuitive demonstration of the superi-
ority of the proposed algorithm, Figures 7 and 8, respectively
illustrate the deblocking results of the images buildings and
sailing3 from the LIVE1 dataset at a compression quality of
Q = 10. A visual comparison is made between the proposed
algorithm and the popular SA-DCT image compression
algorithm. From the images, it can be observed that the
SA-DCT algorithm fails to fully restore the edge informa-
tion of the images during the deblocking process. Portions
of the edges still exhibit blocky artefacts, as highlighted by
the red boxes in the figures. In contrast, the proposed algo-
rithm is able to effectively remove the blocky artefacts while
preserving the edge details of the images.
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GAO ET AL. 13 of 20

TABLE 7 Average SSIM results of image deblocking compared with the classic method on the datasets LIVE1 and Classic5 (image size: 256 × 256).

LIVE1 dataset (Image size: 256 × 256)

Q JPEG BM3D SA-DCT PC-LRM ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours

10 0.7611 0.7877 0.7869 0.7835 0.7879 0.7824 0.7859 0.7957 0.7931 0.7956 0.7971

20 0.8423 0.8591 0.8571 0.8550 0.8585 0.8542 0.8576 0.8642 0.8630 0.8645 0.8651

30 0.8791 0.8917 0.8903 0.8892 0.8913 0.8888 0.8913 0.8952 0.8967 0.8963 0.8970

40 0.8998 0.9103 0.9093 0.9089 0.9102 0.9087 0.9099 0.9129 0.9145 0.9148 0.9144

Average 0.8456 0.8622 0.8609 0.8592 0.8620 0.8585 0.8612 0.8670 0.8668 0.8678 0.8684

Classic5 dataset (Image size: 256 × 256)

Q JPEG BM3D SA-DCT PC-LRM ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours

10 0.7715 0.8087 0.8060 0.8043 0.8081 0.8033 0.8094 0.8134 0.8134 0.8168 0.8195

20 0.8519 0.8753 0.8728 0.8723 0.8730 0.8714 0.8740 0.8751 0.8796 0.8802 0.8807

30 0.8844 0.9018 0.9002 0.9003 0.9002 0.8998 0.9017 0.9012 0.9063 0.9060 0.9061

40 0.9036 0.9178 0.9168 0.9170 0.9172 0.9167 0.9180 0.9175 0.9225 0.9226 0.9217

Average 0.8529 0.8759 0.8740 0.8735 0.8746 0.8728 0.8758 0.8768 0.8805 0.8814 0.8820

FIGURE 7 Visualization of image buildings in the LIVE1 dataset (image size: 256 × 256) under compression quality Q = 10 deblocked by various algorithms:
(a) Original image, (b) JPEG compressed image (PSNR = 23.83 dB, SSIM = 0.8232), (c) SA-DCT (PSNR = 24.66 dB, SSIM = 0.8177), and (d) the proposed
algorithm (PSNR = 25.11 dB, SSIM = 0.8311).

FIGURE 8 Visualization of performance of various algorithms for deblocking image sailing3 in the LIVE1 dataset (image size: 256 × 256) under compression
quality Q = 10: (a) Original image, (b) JPEG compressed image (PSNR = 28.61 dB, SSIM = 0.7561), (c) SA-DCT (PSNR = 29.62 dB, SSIM = 0.8310), and (d) the
proposed algorithm (PSNR = 29.96 dB, SSIM = 0.8457).
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FIGURE 9 Deblocking image Barbara in the Classic5 dataset under compression quality Q = 10: (a) Original image, (b) JPEG compressed image (PSNR =
25.78 dB, SSIM = 0.7621), (c) ARCNN (PSNR = 26.89 dB, SSIM = 0.7934), (d) TRND (PSNR = 27.24 dB, SSIM = 0.8104), (e) DnCNN (PSNR = 27.59 dB, SSIM
= 0.8161), and (f) the proposed algorithm (PSNR = 28.26 dB, SSIM = 0.8335).

TABLE 8 Average PSNR (db)/SSIM results comparing image deblocking
with DNN-based methods on dataset Classic5.

Methods Q = 10 Q = 20 Q = 30 Average

AR-CNN 29.08 31.25 32.60 30.98

0.7909 0.8514 0.8808 0.8410

TRND 29.29 31.48 32.79 31.19

0.7996 0.8581 0.8841 0.8473

DnCNN 29.40 31.63 32.91 31.31

0.8026 0.8610 0.8861 0.8499

DCSC 29.62 31.81 33.06 31.50

0.8096 0.8641 0.8882 0.8540

MDDU 29.95 32.11 33.33 31.80

0.8171 0.8689 0.8916 0.8592

Ours 29.43 31.65 32.88 31.32

0.8047 0.8608 0.8855 0.8503

2) Comparison with DNN-based image deblocking models: To
further demonstrate the superiority of the proposed method
in the image deblocking task, experiments were conducted
to compare it with several deep learning-based methods,
including AR-CNN [66], TRND [58], DnCNN [48], DCSC
[67], and MDDU [68]. The comparison experiment was
conducted on the Classic5 [51] dataset, which is a popular
benchmark dataset in the field of image deblocking. Table 8
presents the average PSNR and SSIM results at different
compression qualities Q.

The results indicate that the proposed method achieves
better results compared to AR-CNN and TRND, while per-
forming comparably to DnCNN, DCSC, and MDDU. It is
worth noting that these supervised deep learning methods
require large-scale image datasets to train the image deblock-
ing models. It can be observed that if the training image
dataset and the distribution of test images are similar or
identical, then deep learning models can effectively adapt to
different image structures.

However, it was observed in the experimental results that
deep learning methods tend to cause excessive smoothing in
the restored images, especially for texture-rich images, as shown
in Figure 9. To further validate this finding, experiments were
conducted using eight fingerprint images collected from the
NIST dataset as the test benchmark, as shown in Figure 10.
The average deblocking results for the eight fingerprint images
are presented in Table 9. The proposed method outperforms
all other deep learning-based image deblocking methods. Visual
comparison results are shown in Figure 11, where it can be
observed that the proposed method reconstructs better texture
details compared to other methods.

4.5 Convergence

Since the proposed algorithm involves block grouping oper-
ations, non-convex optimization, and parameter updates, it
is challenging to provide theoretical proof for the local
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FIGURE 10 Eight fingerprint test images selected from the NIST dataset.

FIGURE 11 Performance of algorithms for deblocking image image 01 in the Classic5 dataset under compression quality Q = 10: (a) Original image, (b) JPEG
compressed image (PSNR = 28.41 dB, SSIM = 0.8737), (c) ARCNN (PSNR = 29.57 dB, SSIM = 0.8969), (d) TRND (PSNR = 29.73 dB, SSIM = 0.9008), (e)
DnCNN (PSNR = 29.72 dB, SSIM = 0.9019), (f) DCSC (PSNR = 29.82 dB, SSIM = 0.9045), (g) MDDU (PSNR = 29.82 dB, SSIM = 0.9081), and (h) the proposed
algorithm (PSNR = 30.13 dB, SSIM = 0.9083).

convergence of the proposed algorithm. Therefore, this sec-
tion provides experimental evidence to validate the convergence
of the proposed algorithm. Five test images were selected from
the test dataset, and the process of restoring these images was
recorded. Figure 12a,b shows the variation curves of PSNR

values during the iterations of the image denoising with noise
level 𝜎E = 50 and image deblocking with compression qual-
ity Q = 10 algorithms, respectively. It can be clearly observed
that as the number of algorithm iterations increases, the PSNR
curves of all restored images first monotonically increase and
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TABLE 9 Average PSNR (db)/SSIM results comparing image deblocking
with DNN-based methods on fingerprint image dataset.

Methods Q = 10 Q = 20 Q = 30 Average

AR-CNN 30.23 33.04 34.76 32.68

0.8859 0.9291 0.9480 0.9210

TRND 30.42 33.19 34.87 32.83

0.8899 0.9317 0.9492 0.9236

DnCNN 30.31 33.07 34.73 32.70

0.8894 0.9308 0.9485 0.9229

DCSC 30.52 33.13 34.78 32.81

0.8934 0.9330 0.9497 0.9254

MDDU 30.45 32.95 34.35 32.58

0.8961 0.9349 0.9508 0.9273

Ours 30.81 33.54 35.20 33.18

0.8967 0.9344 0.9507 0.9273

TABLE 10 Average PSNR (dB) results of image denoising and ablation
experiments on 13 commonly used test images.

Modules 20 30 40 50 75 100 Average

SR 30.26 27.61 27.27 26.70 24.90 23.72 26.74

LR 25.70 23.23 17.59 15.70 12.30 9.18 17.28

SR+LR 32.24 30.13 28.56 27.60 25.66 24.23 28.07

SR+LR+SP 32.20 30.25 28.77 27.68 25.69 24.30 28.15

then gradually stabilize. Therefore, it can be proved that the
proposed algorithm exhibits good convergence.

4.6 Ablation study

From the objective function 21, it can be seen that the proposed
algorithm consists of three main modules: group sparse repre-
sentation (SR), low-rank self-representation (LR), and structure
preservation (SP). In order to investigate the effectiveness of
these different modules in the proposed algorithm, this sec-
tion conducts ablation experiments by separately removing
the low-rank self-representation guidance module (𝛾 = 0), the
sparse constraint (𝛽 = 0), and the structure preservation term
(𝜆 = 0), to verify the roles played by each module. The ablation
experiments are conducted using 13 widely used test images and
applying these modules to image denoising. The average PSNR
results are shown in Table 10. It can be observed that the low-
rank self-representation also has the effect of noise removal, and
the group sparse representation model guided by low-rank self-
representation achieves a significant improvement in denoising
performance compared to the single group sparse representa-
tion model. Additionally, the introduced structure preservation
module in this chapter also contributes to the improvement
in performance.

FIGURE 12 Convergence of the proposed algorithm with various
strategies: (a) how PSNR changes as the number of iterations increases with
noise level 𝜎E = 50 and (b) how PSNR changes as the number of iterations
increases with compression quality Q = 10.

To further reveal the roles of each module in the pro-
posed algorithm, Figures 13 and 14, respectively demonstrate
the denoising results of each module on images Lena and
Plants. As shown in Figures 13c and 14c, the sparse repre-
sentation module indeed serves as an effective tool for image
restoration, but it is susceptible to noise, resulting in some
undesirable artefacts such as pseudo structures. Although the
low-rank self-representation has a minor effect on denoising,
combining the sparse representation model with the low-rank
self-representation significantly improves the denoising per-
formance, as illustrated in Figures 13e and 14e. Similarly,
by introducing the structure preservation module, it can be
observed from Figures 13f and 14f that the images retain
well-preserved texture details.
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FIGURE 13 Visualization of algorithms for denoising image Lena under noise 𝜎E = 75: (a) Original image, (b) noisy image, (c) SR (PSNR = 25.04 dB, SSIM
= 0.7487), (d) LR (PSNR = 12.31 dB, SSIM = 0.1234), (e) SR+LR (PSNR = 25.50 dB, SSIM = 0.7554), and (f) SR+LR+SP (PSNR = 25.51 dB, SSIM = 0.7562).

FIGURE 14 Visualization of algorithms for denoising image Plants under noise 𝜎E = 75: (a) Original image, (b) noisy image, (c) SR (PSNR = 25.51 dB, SSIM
= 0.7116), (d) LR (PSNR = 12.32 dB, SSIM = 0.0820), (e) SR+LR (PSNR = 26.46 dB, SSIM = 0.7270), and (f) SR+LR+SP (PSNR = 26.50 dB, SSIM = 0.7278).

In addition, our previous work [71] also integrated the
sparsity and low-rank self-representation properties of images.
However, that method was based on sparse coding for self-
representation learning, leading to suboptimal solutions because

each set of sparse coding coefficients could not guarantee low-
rank self-representation properties. In this ablation experiment,
we compared the proposed method with the method proposed
in our previous work. The PSNR and SSIM results are shown
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TABLE 11 Comparison with the method proposed in [71] in the image
denoising task.

Methods 20 30 40 50 75 100

SRLR 32.23 30.24 28.81 27.73 25.72 24.40

0.9046 0.8711 0.8450 0.8198 0.7662 0.7255

LRSR-
SP

32.20 30.25 28.77 27.68 25.69 24.30

0.9062 0.8764 0.8477 0.8231 0.7687 0.7262

in Table 11. From the table, it can be seen that the proposed
algorithm outperforms the previous method in terms of SSIM,
which is closer to the human visual system’s intuitive evalua-
tion mechanism for image quality. This further demonstrates the
effectiveness of the proposed method.

5 CONCLUSION

Most existing group sparse representation models overlook the
similarity relationships between non-local image blocks, while
leveraging these relationships can effectively preserve texture
information in images. Group sparse representation models
apply simple sparsity constraints only to each image block
within a group, neglecting other beneficial characteristics of
images. To further explore the intrinsic properties of natural
images, this chapter proposes a low-rank self-representation
guided group sparse representation image restoration algo-
rithm. Specifically, in addition to utilizing the group sparse
representation regularization term, this algorithm also utilizes
the low-rank self-representation property to jointly estimate
the reconstructed image block groups. This low-rank self-
representation model can better characterize the intrinsic
properties of natural images, namely the correlation between
similar image blocks. Additionally, to ensure that the learned
sparse representation also preserves the similarity structure
between image blocks, the algorithm also performs self-
representation learning on the sparse representation, making
the self-representation obtained as close as possible to the
original self-representation between image blocks. Extensive
experimental results demonstrate that this algorithm performs
excellently in image restoration tasks such as image denoising
and image deblocking.

However, this research still has limitations because it can
only achieve excellent performance in scenarios with additive
Gaussian noise. In future research, we will consider other noise
distributions or multiplicative noise. Furthermore, since the
proposed algorithm is self-supervised, it only utilizes the intrin-
sic information of the degraded images themselves without
leveraging external prior knowledge, which limits the improve-
ment of the current algorithm’s performance. This is also a
challenge that needs to be addressed in future work.
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