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A B S T R A C T 

We consider a natural generalization of Vertex Cover: the Subset Vertex Cover problem, which is to decide for a graph 𝐺 = (𝑉 ,𝐸), a subset 
𝑇 ⊆ 𝑉 and integer 𝑘, if 𝑉 has a subset 𝑆 of size at most 𝑘, such that 𝑆 contains at least one end-vertex of every edge incident to a vertex of 𝑇 . A 
graph is 𝐻-free if it does not contain 𝐻 as an induced subgraph. We solve two open problems from the literature by proving that Subset Vertex 
Cover is NP-complete on subcubic (claw, diamond)-free planar graphs and on 2-unipolar graphs, a subclass of 2𝑃3-free weakly chordal graphs. 
Our results show for the first time that Subset Vertex Cover is computationally harder than Vertex Cover (under 𝖯 ≠ 𝖭𝖯). We also prove new 
polynomial time results, some of which follow from a reduction to Vertex Cover restricted to classes of probe graphs. We first give a dichotomy 
on graphs where 𝐺[𝑇 ] is 𝐻-free. Namely, we show that Subset Vertex Cover is polynomial-time solvable on graphs 𝐺, for which 𝐺[𝑇 ] is 𝐻-free, 
if 𝐻 = 𝑠𝑃1 + 𝑡𝑃2 and NP-complete otherwise. Moreover, we prove that Subset Vertex Cover is polynomial-time solvable for (𝑠𝑃1 + 𝑃2 + 𝑃3)-free 
graphs and bounded mim-width graphs. By combining our new results with known results we obtain a partial complexity classification for Subset 
Vertex Cover on 𝐻-free graphs.

1. Introduction

We consider a natural generalization of the classical Vertex Cover problem: the Subset Vertex Cover problem, introduced 
in [8]. Let 𝐺 = (𝑉 ,𝐸) be a graph and 𝑇 be a subset of 𝑉 . A set 𝑆 ⊆ 𝑉 is a 𝑇 -vertex cover of 𝐺 if 𝑆 contains at least one end-vertex of 
every edge incident to a vertex of 𝑇 . We note that 𝑇 itself is a 𝑇 -vertex cover. However, a graph may have much smaller 𝑇 -vertex 
covers. For example, if 𝐺 is a star whose leaves form 𝑇 , then the centre of 𝐺 forms a 𝑇 -vertex cover. We can now define the problem; 
see also Fig. 1.

Subset Vertex Cover
Instance: A graph 𝐺 = (𝑉 ,𝐸), a subset 𝑇 ⊆ 𝑉 , and a positive integer 𝑘.

Question: Does 𝐺 have a 𝑇 -vertex cover 𝑆𝑇 with |𝑆𝑇 | ≤ 𝑘?

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
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Fig. 1. An instance (𝐺,𝑇 ,𝑘) of Subset Vertex Cover, where 𝑇 consists of the orange vertices, together with a solution 𝑆 (a 𝑇 -vertex cover of size 5). Note that 𝑆
consists of four vertices of 𝑇 and one vertex of 𝑇 = 𝑉 ⧵ 𝑇 . (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

If we set 𝑇 = 𝑉 , then we obtain the Vertex Cover problem. Hence, as Vertex Cover is NP-complete, so is Subset Vertex Cover.

To obtain a better understanding of the complexity of an NP-complete graph problem, we may restrict the input to some special 
graph class. In particular, hereditary graph classes, which are the classes closed under vertex deletion, have been studied intensively 
for this purpose. It is readily seen that a graph class  is hereditary if and only if  is characterized by a unique minimal set of 
forbidden induced subgraphs 𝐺 . Hence, for a systematic study, it is common to first consider the case where  has size 1. This is 
also the approach we follow in this paper. So, for a graph 𝐻 , we set  = {𝐻} for some graph 𝐻 and consider the class of 𝐻 -free 
graphs (graphs that do not contain 𝐻 as an induced subgraph). We now consider the following research question:

For which graphs 𝐻 is Subset Vertex Cover, restricted to 𝐻 -free graphs, still NP-complete and for which graphs 𝐻 does it become 
polynomial-time solvable?

We will also address two open problems posed in [8] (see Section 2 for any undefined terminology):

Q1. What is the complexity of Subset Vertex Cover for claw-free graphs?

Q2. Is Subset Vertex Cover NP-complete for 𝑃𝑡-free graphs for some 𝑡?

The first question is of interest, as Vertex Cover is polynomial-time solvable even on 𝑟𝐾1,3-free graphs for every 𝑟 ≥ 1 [6], where 
𝑟𝐾1,3 is the disjoint union of 𝑟 claws (previously this was known for 𝑟𝑃3-free graphs [24] and 2𝑃3-free graphs [25]). The second 
question is of interest due to some recent quasi-polynomial-time results. Namely, Gartland and Lokshtanov [18] proved that for every 
integer 𝑡, Vertex Cover can be solved in 𝑛𝑂(log3 𝑛)-time for 𝑃𝑡-free graphs. Afterwards, Pilipczuk, Pilipczuk and Rzążewski [31] 
improved the running time to 𝑛𝑂(log2 𝑛) time. Even more recently, Gartland et al. [19] extended the results of [18,31] from 𝑃𝑡-free 
graphs to 𝐻 -free graphs where every connected component of 𝐻 is a path or a subdivided claw.

Grötschel, Lovász, and Schrijver [21] proved that Vertex Cover can be solved in polynomial time for the class of perfect graphs. 
The class of perfect graphs is a rich graph class, which includes well-known graph classes, such as bipartite graphs and (weakly) 
chordal graphs.

Before we present our results, we first briefly discuss the relevant literature.

1.1. Existing results

Whenever Vertex Cover is NP-complete for some graph class , then so is the more general problem Subset Vertex Cover. 
Moreover, Subset Vertex Cover can be polynomially reduced to Vertex Cover: given an instance (𝐺,𝑇 ,𝑘) of the former problem, 
remove all edges not incident to a vertex of 𝑇 to obtain an instance (𝐺′, 𝑘) of the latter problem. Hence, we obtain:

Proposition 1. The problems Vertex Cover and Subset Vertex Cover are polynomially equivalent for every graph class closed under 
edge deletion.

For example, the class of bipartite graphs is closed under edge deletion and Vertex Cover is polynomial-time solvable on bipartite 
graphs. Hence, by Proposition 1, Subset Vertex Cover is polynomial-time solvable on bipartite graphs. However, a class of 𝐻 -

free graphs is only closed under edge deletion if 𝐻 is a complete graph, and Vertex Cover is NP-complete even for triangle-free 
graphs [32]. This means that there could still exist graphs 𝐻 such that Vertex Cover and Subset Vertex Cover behave differently 
if the former problem is (quasi)polynomial-time solvable on 𝐻 -free graphs. The following well-known result of Alekseev [1] restricts 
the structure of such graphs 𝐻 .

Theorem 2 ([1]). For every graph 𝐻 that contains a cycle or a connected component with two vertices of degree at least 3, Vertex Cover, 
and thus Subset Vertex Cover, is NP-complete for 𝐻 -free graphs.

Due to Theorem 2 and the result of Gartland et al. [19], every graph 𝐻 is now either classified as a quasi-polynomial case or NP-hard 
case for Vertex Cover. For Subset Vertex Cover the situation is much less clear. So far, only one positive result for 𝐻 -free graphs 
is known, due to Brettell et al. [8].
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Theorem 3 ([8]). For every 𝑠≥ 0, Subset Vertex Cover is polynomial-time solvable on (𝑠𝑃1 + 𝑃4)-free graphs.

We notice one more result for Subset Vertex Cover, which can be obtained by making a connection to the concept of probe graphs, 
introduced by Zhang et al. [35] in the context of genome research. Suppose  is a class of graphs. The class of probe graphs 𝑝 of 
contains all graphs 𝐺 such that there exist an independent set 𝑁 in 𝐺 and a set of edges 𝐹 ⊆

(𝑁
2 
)

such that 𝐺+𝐹 ∈ . The intuition is 
that the vertices of 𝑃 = 𝑉 (𝐺) ⧵𝑁 are the probes, for which there is structural information, and the vertices of 𝑁 are the non-probes, 
for which there is no concrete information except that the “actual graph” 𝐺 + 𝐹 belongs to some graph class, achieved by adding 
some edges between vertices of 𝑁 .

We recall that an instance (𝐺,𝑇 ,𝑘) of Subset Vertex Cover is reducible to an instance (𝐺′, 𝑘) of Vertex Cover, where 𝐺′ is 
the graph obtained from 𝐺 by deleting all edges between vertices not in 𝑇 . In other words, we can solve Subset Vertex Cover

in polynomial time on a graph class  if we can solve Vertex Cover in polynomial time on 𝑝. Chang et al. [12] observed that 
probe split graphs are perfect, and Golumbic and Lipshteyn [20] showed that probe interval graphs are probe chordal graphs, and 
that probe chordal graphs are perfect. As Vertex Cover is polynomial-time solvable on perfect graphs [21], it follows that Subset 
Vertex Cover can be solved in polynomial time on chordal graphs.

Theorem 4 ([20,21]). Subset Vertex Cover can be solved in polynomial time for chordal graphs.

1.2. Related work

Subset variants of classic graph transversal problems are widely studied, also in the context of 𝐻 -free graphs. Indeed, Brettell et 
al. [8] needed Theorem 3 as an auxiliary result in complexity studies for Subset Feedback Vertex Set and Subset Odd Cycle 
Transversal restricted to 𝐻 -free graphs. The first problem is to decide for a graph 𝐺 = (𝑉 ,𝐸), subset 𝑇 ⊆ 𝑉 and integer 𝑘, if 𝐺 has 
a set 𝑆 of size at most 𝑘 such that 𝑆 contains a vertex of every cycle that intersects 𝑇 . The second problem is similar but replaces 
“cycle” by “cycle of odd length”. Brettell et al. [8] proved that both these subset transversal problems are polynomial-time solvable 
on (𝑠𝑃1 + 𝑃3)-free graphs for every 𝑠 ≥ 0. They also showed that Odd Cycle Transversal is polynomial-time solvable for 𝑃4-free 
graphs and NP-complete for split graphs, which form a subclass of 2𝑃2-free graphs, whereas NP-completeness for Subset Feedback 
Vertex Set on split graphs was shown by Fomin et al. [17]. Recently, Paesani et al. [29] extended the result of [8] for Subset 
Feedback Vertex Set from (𝑠𝑃1 + 𝑃3)-free graphs to (𝑠𝑃1 + 𝑃4)-free graphs for every integer 𝑠 ≥ 0. If 𝐻 contains a cycle or claw,

NP-completeness for both subset transversal problems follows from corresponding results for Feedback Vertex Set [28,32] and

Odd Cycle Transversal [13].

Combining all the above results leads to a dichotomy for Subset Feedback Vertex Set and a partial classification for Subset 
Odd Cycle Transversal (see also [8,29]). Here, we write 𝐹 ⊆𝑖 𝐺 if 𝐹 is an induced subgraph of 𝐺.

Theorem 5. For a graph 𝐻 , Subset Feedback Vertex Set on 𝐻 -free graphs is polynomial-time solvable if 𝐻 ⊆𝑖 𝑠𝑃1 +𝑃4 for some 𝑠 ≥ 0, 
and NP-complete otherwise.

Theorem 6. For a graph 𝐻 ≠ 𝑠𝑃1 +𝑃4 for some 𝑠 ≥ 1, Subset Odd Cycle Transversal on 𝐻 -free graphs is polynomial-time solvable if 
𝐻 = 𝑃4 or 𝐻 ⊆𝑖 𝑠𝑃1 + 𝑃3 for some 𝑠 ≥ 0, and NP-complete otherwise.

We note that neither Subset Feedback Vertex Set nor Subset Odd Cycle Transversal restricted to some graph class  can be 
reduced to their classical counterparts on the probe graph class 𝑝 by removing edges between any pair of vertices that both do not 
belong to 𝑇 . So, in this sense these two subset transversal problems are different in nature than Subset Vertex Cover.

1.3. Our results

In Section 3 we prove two new hardness results, using the same basis reduction, which may have a wider applicability. We first 
answer Q1 by proving that Subset Vertex Cover is NP-complete even for subcubic planar line graphs of triangle-free graphs, 
or equivalently, subcubic planar (claw,diamond)-free graphs [26]. We then answer Q2 by proving that Subset Vertex Cover is

NP-complete even for 2-unipolar graphs, which are 2𝑃3-free (and thus 𝑃7-free).

Our hardness results show a sharp contrast with Vertex Cover, which can be solved in polynomial time for both weakly chordal 
graphs [21] and 𝑟𝐾1,3-free graphs for every 𝑟 ≥ 1 [6]. Hence, Subset Vertex Cover may be harder than Vertex Cover for a graph 
class closed under vertex deletion (if 𝖯 ≠ 𝖭𝖯). This is in contrast to graph classes closed under edge deletion (see Proposition 1).

In Section 3 we also prove that Subset Vertex Cover is NP-complete for inputs (𝐺,𝑇 ,𝑘) if the subgraph 𝐺[𝑇 ] of 𝐺 induced by 𝑇
is 𝑃3-free. On the other hand, our first positive result, shown in Section 4, shows that the problem is polynomial-time solvable if 𝐺[𝑇 ]
is 𝑠𝑃2-free for any 𝑠 ≥ 2. In Section 4 we also prove that Subset Vertex Cover can be solved in polynomial time for (𝑠𝑃1 +𝑃2 +𝑃3)-
free graphs for every 𝑠 ≥ 1. Our positive results generalize known results for Vertex Cover. Recall that Subset Vertex Cover is 
polynomial-time solvable for split graphs. Note that this also follows from our first result and contrasts our NP-completeness result 
for 2-unipolar graphs, which are generalized split, 2𝑃3-free, and weakly chordal.

Combining our new results with Theorem 3 gives us a partial classification and a dichotomy, both of which are proven in Section 5.



Theoretical Computer Science 1032 (2025) 115088

4

N. Brettell, J.J. Oostveen, S. Pandey et al. 

Theorem 7. For a graph 𝐻 ≠ 𝑟𝑃1 + 𝑠𝑃2 + 𝑃3 for any 𝑟 ≥ 0, 𝑠 ≥ 2; 𝑟𝑃1 + 𝑠𝑃2 + 𝑃4 for any 𝑟 ≥ 0, 𝑠 ≥ 1; or 𝑟𝑃1 + 𝑠𝑃2 + 𝑃𝑡 for any 𝑟 ≥ 0, 
𝑠 ≥ 0, 𝑡 ∈ {5,6}, Subset Vertex Cover on 𝐻 -free graphs is polynomial-time solvable if 𝐻 ⊆𝑖 𝑠𝑃1 + 𝑃2 + 𝑃3, 𝑠𝑃2, or 𝑠𝑃1 + 𝑃4 for some 
𝑠 ≥ 1, and NP-complete otherwise.

Theorem 8. For a graph 𝐻 , Subset Vertex Cover on instances (𝐺,𝑇 ,𝑘), where 𝐺[𝑇 ] is 𝐻 -free, is polynomial-time solvable if 𝐻 ⊆𝑖 𝑠𝑃2
for some 𝑠 ≥ 1, and NP-complete otherwise.

Theorems 5–8 show that Subset Vertex Cover on 𝐻 -free graphs can be solved in polynomial time for infinitely more graphs 𝐻
than Subset Feedback Vertex Set and Subset Odd Cycle Transversal. This is in line with the behaviour of the corresponding 
original (non-subset) problems.

In Section 6 we discuss our final new result, which states that Subset Vertex Cover is polynomial-time solvable on every graph 
class of bounded mim-width, such as the class of circular-arc graphs. In Section 7 we discuss some directions for future work, which 
naturally originate from the above results.

2. Preliminaries

Let 𝐺 = (𝑉 ,𝐸) be a graph. The degree of a vertex 𝑢 ∈ 𝑉 is the size of its neighbourhood 𝑁(𝑢) = {𝑣 | 𝑢𝑣 ∈ 𝐸}. We say that 𝐺 is 
subcubic if every vertex of 𝐺 has degree at most 3. An independent set 𝐼 in 𝐺 is maximal if there exists no independent set 𝐼 ′ in 𝐺
with 𝐼 ⊊ 𝐼 ′. Similarly, a vertex cover 𝑆 of 𝐺 is minimal if there exists no vertex cover 𝑆′ in 𝐺 with 𝑆′ ⊊ 𝑆 . For a graph 𝐻 we write 
𝐻 ⊆𝑖 𝐺 if 𝐻 is an induced subgraph of 𝐺, that is, 𝐺 can be modified into 𝐻 by a sequence of vertex deletions. If 𝐺 does not contain 
𝐻 as an induced subgraph, 𝐺 is 𝐻 -free. For a set of graphs , 𝐺 is -free if 𝐺 is 𝐻 -free for every 𝐻 ∈. If  = {𝐻1,… ,𝐻𝑝} for 
some 𝑝 ≥ 1, we also write that 𝐺 is (𝐻1,… ,𝐻𝑝)-free.

The line graph of a graph 𝐺 = (𝑉 ,𝐸) is the graph 𝐿(𝐺) that has vertex set 𝐸 and an edge between two vertices 𝑒 and 𝑓 if and 
only if 𝑒 and 𝑓 share a common end-vertex in 𝐺. The complement 𝐺 of a graph 𝐺 = (𝑉 ,𝐸) has vertex set 𝑉 and an edge between two 
vertices 𝑢 and 𝑣 if and only if 𝑢𝑣 ∉𝐸.

For two vertex-disjoint graphs 𝐹 and 𝐺, the disjoint union 𝐹 +𝐺 is the graph (𝑉 (𝐹 ) ∪𝑉 (𝐺),𝐸(𝐹 ) ∪𝐸(𝐺)). We denote the disjoint 
union of 𝑠 copies of the same graph 𝐺 by 𝑠𝐺. A linear forest is a disjoint union of one or more paths.

Let 𝐶𝑠 be the cycle on 𝑠 vertices; 𝑃𝑡 the path on 𝑡 vertices; 𝐾𝑟 the complete graph on 𝑟 vertices; and 𝐾1,𝑟 the star on (𝑟+1) vertices. 
The graph 𝐶3 =𝐾3 is the triangle; the graph 𝐾1,3 the claw, and the graph 2𝑃1 + 𝑃2 is the diamond (so the diamond is obtained from 
the 𝐾4 after deleting one edge). The subdivision of an edge 𝑢𝑣 replaces 𝑢𝑣 with a new vertex 𝑤 and edges 𝑢𝑤, 𝑤𝑣. A subdivided claw

is obtained from the claw by subdividing each of its edges zero or more times.

A graph is chordal if it has no induced 𝐶𝑠 for any 𝑠 ≥ 4. A graph is weakly chordal if it has no induced 𝐶𝑠 and no induced 𝐶𝑠 for 
any 𝑠 ≥ 5. A cycle 𝐶𝑠 or an anti-cycle 𝐶𝑠 is odd if it has an odd number of vertices. By the Strong Perfect Graph Theorem [16], a 
graph is perfect if it has no odd induced 𝐶𝑠 and no odd induced 𝐶𝑠 for any 𝑠 ≥ 5. Every chordal graph is weakly chordal, and every 
weakly chordal graph is perfect. A graph 𝐺 = (𝑉 ,𝐸) is unipolar if 𝑉 can be partitioned into two sets 𝑉1 and 𝑉2, where 𝐺[𝑉1] is a 
complete graph and 𝐺[𝑉2] is a disjoint union of complete graphs. If every connected component of 𝐺[𝑉2] has size at most 2, then 𝐺
is 2-unipolar. Unipolar graphs form a subclass of generalized split graphs, which are the graphs that are unipolar or their complement 
is unipolar. It can also readily be checked that every 2-unipolar graph is weakly chordal (but not necessarily chordal, as evidenced 
by 𝐺 = 𝐶4).

For an integer 𝑟, a graph 𝐺′ is an 𝑟-subdivision of a graph 𝐺 if 𝐺′ can be obtained from 𝐺 by subdividing every edge of 𝐺 𝑟 times, 
that is, by replacing each edge 𝑢𝑣 ∈𝐸(𝐺) with a path from 𝑢 to 𝑣 of length 𝑟+ 1.

3. NP-hardness results

In this section we prove our hardness results for Subset Vertex Cover, using the following notation. Let 𝐺 be a graph with an 
independent set 𝐼 . We say that we augment 𝐺 by adding a (possibly empty) set 𝐹 of edges between some pairs of vertices of 𝐼 . We 
call the resulting graph an 𝐼 -augmentation of 𝐺.

The following lemma forms the basis for our hardness gadgets.

Lemma 9. Every vertex cover of a graph 𝐺 = (𝑉 ,𝐸) with an independent set 𝐼 is a (𝑉 ⧵ 𝐼)-vertex cover of every 𝐼 -augmentation of 𝐺, and 
vice versa.

Proof. Let 𝐺′ be an 𝐼 -augmentation of 𝐺. Consider a vertex cover 𝑆 of 𝐺. For a contradiction, assume that 𝑆 is not a (𝑉 ⧵ 𝐼)-vertex 
cover of 𝐺′. Then 𝐺′ − 𝑆 must contain an edge 𝑢𝑣 with at least one of 𝑢, 𝑣 belonging to 𝑉 ⧵ 𝐼 . As 𝐺 − 𝑆 is an independent set, 𝑢𝑣
belongs to 𝐸(𝐺′) ⧵𝐸(𝐺) implying that both 𝑢 and 𝑣 belong to 𝐼 , a contradiction.

Now consider a (𝑉 ⧵ 𝐼)-vertex cover 𝑆′ of 𝐺′. For a contradiction, assume that 𝑆′ is not a vertex cover of 𝐺. Then 𝐺 − 𝑆′ must 
contain an edge 𝑢𝑣 (so 𝑢𝑣 ∈𝐸). As 𝐺′ is a supergraph of 𝐺, we find that 𝐺′ −𝑆′ also contains the edge 𝑢𝑣. As 𝑆′ is a (𝑉 ⧵ 𝐼)-vertex 
cover of 𝐺′, both 𝑢 and 𝑣 must belong to 𝐼 . As 𝑢𝑣 ∈𝐸, this contradicts the fact that 𝐼 is an independent set. □

To use Lemma 9 we need one other lemma, which follows directly from an observation due to Poljak [32].
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Fig. 2. The graph 𝐺′ from Theorem 11, where 𝑇 = 𝑉 ⧵𝑊 consists of the orange vertices. 

Fig. 3. The graph 𝐺′ from Theorem 12, where the orange vertices form 𝑇 = 𝑉 ⧵ 𝑉 (𝐺∗). 

Lemma 10 ([32]). For an integer 𝑟, a graph 𝐺 with 𝑚 edges has an independent set of size 𝑘 if and only if the 2𝑟-subdivision of 𝐺 has an 
independent set of size 𝑘+ 𝑟𝑚.

We are now ready to prove our first two hardness results. Recall that a graph is (claw,diamond)-free if and only if it is a line graph of 
a triangle-free graph. Hence, the result in particular implies NP-hardness of Subset Vertex Cover for line graphs. Recall also that 
we denote the claw and diamond by 𝐾1,3 and 2𝑃1 + 𝑃2, respectively.

Theorem 11. Subset Vertex Cover is NP-complete for (𝐾1,3,2𝑃1 + 𝑃2)-free subcubic planar graphs.

Proof. We reduce from Vertex Cover, which is NP-complete even for cubic planar graphs [27]. As an 𝑛-vertex graph has a vertex 
cover of size at most 𝑘 if and only if it has an independent set of size at least 𝑛 − 𝑘, we find that Vertex Cover is NP-complete 
even for subcubic planar graphs that are 4-subdivisions due to an application of Lemma 10 with 𝑟 = 2 (note that subdividing an edge 
preserves both maximum degree and planarity). So, let (𝐺,𝑘) be an instance of Vertex Cover, where 𝐺 = (𝑉 ,𝐸) is a subcubic planar 
graph that is a 4-subdivision of some cubic planar graph 𝐺∗, and 𝑘 is an integer.

In 𝐺, we let 𝑈 = 𝑉 (𝐺∗) and 𝑊 be the subset of 𝑉 (𝐺) ⧵ 𝑈 that consists of all neighbours of vertices of 𝑈 . Note that 𝑊 is an 
independent set in 𝐺. We construct a 𝑊 -augmentation 𝐺′ as follows; see also Fig. 2. For every vertex 𝑢 ∈𝑈 of degree 3 in 𝐺, we pick 
two arbitrary neighbours of 𝑢 (which both belong to 𝑊 ) and add an edge between them. It is readily seen that 𝐺′ is (𝐾1,3,2𝑃1 + 𝑃2)-
free, planar and subcubic. By Lemma 9, it holds that 𝐺 has a vertex cover of size at most 𝑘 if and only if 𝐺′ has a (𝑉 ⧵𝑊 )-vertex 
cover of size at most 𝑘. □

Theorem 12. Subset Vertex Cover is NP-complete for instances (𝐺,𝑇 ,𝑘), for which 𝐺 is 2-unipolar and 𝐺[𝑇 ] is a disjoint union of 
edges.

Proof. We reduce from Vertex Cover. So, let (𝐺,𝑘) be an instance of Vertex Cover, where 𝐺 = (𝑉 ,𝐸) is a graph and 𝑘 is an 
integer. By Lemma 10 (take 𝑟 = 1) we may assume that 𝐺 is a 2-subdivision of a graph 𝐺∗. Note that 𝑉 (𝐺∗) is an independent set 
in 𝐺. We construct a 𝑉 (𝐺∗)-augmentation 𝐺′ of 𝐺 by changing 𝑉 (𝐺∗) into a clique; see also Fig. 3. It is readily seen that 𝐺′ is 
2-unipolar. We set 𝑇 ∶= 𝑉 ⧵ 𝑉 (𝐺∗), so 𝐺[𝑇 ] is a disjoint union of edges. By Lemma 9, it holds that 𝐺 has a vertex cover of size at 
most 𝑘 if and only if 𝐺′ has a 𝑇 -vertex cover of size at most 𝑘. □

Remark 13. It can be readily checked that 2-unipolar graphs are (2𝐶3,𝐶5,𝐶6,𝐶3 +𝑃3,2𝑃3, 𝑃6,𝐶6)-free graphs, and thus are 2𝑃3-free 
and weakly chordal. 

4. Polynomial-time results

In this section, we prove our polynomial-time results for instances (𝐺,𝑇 ,𝑘) where either 𝐺 is 𝐻 -free or only 𝐺[𝑇 ] is 𝐻 -free. The 
latter type of results are stronger, but only hold for graphs 𝐻 with smaller connected components.
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Fig. 4. An example of the 2𝑃2-free graph 𝐺′ of the proof of Theorem 17. Here, 𝑇 consists of the orange vertices. A solution 𝑆 can be split up into a minimal vertex 
cover 𝑅 of 𝐺′[𝑇 ] and a vertex cover 𝑊 of 𝐺[𝑉 ⧵𝑅].

For completeness, we state Kőnig’s theorem here, which has as an immediate consequence that Vertex Cover can be solved in 
polynomial time on bipartite graphs, which is constructively shown by Bondy and Murty [5].

Theorem 14 (Kőnig’s Theorem   [23]). In a bipartite graph, the number of edges in a maximum matching is equal to the minimum number of 
vertices in a vertex cover.

We start with the case where 𝐻 = 𝑠𝑃2 for some 𝑠 ≥ 1. For this case we need the following two well-known results. The delay of an 
enumeration algorithm is the maximum of the time taken before the first output and that between any pair of consecutive outputs.

Theorem 15 ([2]). For every constant 𝑠≥ 1, the number of maximal independent sets of an 𝑠𝑃2-free graph on 𝑛 vertices is at most 𝑛2𝑠 + 1.

Theorem 16 ([33]). For every constant 𝑠≥ 1, it is possible to enumerate all maximal independent sets of an 𝑠𝑃2-free graph 𝐺 on 𝑛 vertices 
and 𝑚 edges with a delay of 𝑂(𝑛𝑚).

We now prove that Subset Vertex Cover is polynomial-time solvable for instances (𝐺,𝑇 ,𝑘), where 𝐺[𝑇 ] is 𝑠𝑃2-free. The idea 
behind the algorithm is to remove any edges between vertices in 𝑉 ⧵ 𝑇 , as these edges are irrelevant. As a consequence, we may 
leave the graph class, but this is not necessarily an obstacle. For example, if 𝐺[𝑇 ] is a complete graph, or 𝑇 is an independent set, 
we can easily solve the problem. Both cases are generalized by the result below.

Theorem 17. For every 𝑠≥ 1, Subset Vertex Cover can be solved in polynomial time for instances (𝐺,𝑇 ,𝑘) for which 𝐺[𝑇 ] is 𝑠𝑃2-free.

Proof. Let 𝑠 ≥ 1, and let (𝐺,𝑇 ,𝑘) be an instance of Subset Vertex Cover where 𝐺 = (𝑉 ,𝐸) is a graph such that 𝐺[𝑇 ] is 𝑠𝑃2-free. 
Let 𝐺′ = (𝑉 ,𝐸′) be the graph obtained from 𝐺 after removing every edge between two vertices of 𝑉 ⧵ 𝑇 , so 𝐺′[𝑉 ⧵ 𝑇 ] is edgeless. 
We observe that 𝐺 has a 𝑇 -vertex cover of size at most 𝑘 if and only if 𝐺′ has a 𝑇 -vertex cover of size at most 𝑘. Moreover, 𝐺′[𝑇 ] is 
𝑠𝑃2-free, and we can obtain 𝐺′ in 𝑂(|𝐸(𝐺)|) time. Hence, from now on, we consider the instance (𝐺′, 𝑇 , 𝑘).

We first prove the following two claims, see Fig. 4 for an illustration.

Claim 17.1. A subset 𝑆 ⊆ 𝑉 (𝐺′) is a 𝑇 -vertex cover of 𝐺′ if and only if 𝑆 =𝑅 ∪𝑊 for a minimal vertex cover 𝑅 of 𝐺′[𝑇 ] and a vertex 
cover 𝑊 of 𝐺′[𝑉 ⧵𝑅].

Proof. We prove Claim 17.1 as follows. Let 𝑆 ⊆ 𝑉 (𝐺′). First assume that 𝑆 is a 𝑇 -vertex cover of 𝐺′. Let 𝐼 = 𝑉 ⧵𝑆 . As 𝑆 is a 𝑇 -vertex 
cover, 𝑇 ∩ 𝐼 is an independent set. Hence, 𝑆 contains a minimal vertex cover 𝑅 of 𝐺′[𝑇 ]. As 𝐺′[𝑉 ⧵ 𝑇 ] is edgeless, 𝑆 is a vertex 
cover of 𝐺, or in other words, 𝐼 is an independent set. In particular, this means that 𝑆 ⧵𝑅 is a vertex cover of 𝐺′[𝑉 ⧵𝑅].

Now assume that 𝑆 = 𝑅 ∪𝑊 for a minimal vertex cover 𝑅 of 𝐺′[𝑇 ] and a vertex cover 𝑊 of 𝐺′[𝑉 ⧵ 𝑅]. For a contradiction, 
suppose that 𝑆 is not a 𝑇 -vertex cover of 𝐺′. Then 𝐺′ − 𝑆 contains an edge 𝑢𝑣 ∈ 𝐸′, where at least one of 𝑢, 𝑣 belongs to 𝑇 . First 
suppose that both 𝑢 and 𝑣 belong to 𝑇 . As 𝑅 is a vertex cover of 𝐺′[𝑇 ], at least one of 𝑢, 𝑣 belongs to 𝑅⊆ 𝑆 , a contradiction. Hence, 
exactly one of 𝑢, 𝑣 belongs to 𝑇 , say 𝑢 ∈ 𝑇 and 𝑣 ∈ 𝑉 ⧵ 𝑇 , so in particular, 𝑣 ∉ 𝑅. As 𝑅 ⊆ 𝑆 , we find that 𝑢 ∉ 𝑅. Hence, both 𝑢 and 
𝑣 belong to 𝑉 ⧵𝑅. As 𝑊 is a vertex cover of 𝐺′[𝑉 ⧵𝑅], this means that at least one of 𝑢, 𝑣 belongs to 𝑊 ⊆𝑆 , a contradiction. This 
proves the claim. ⋄

Claim 17.2. For every minimal vertex cover 𝑅 of 𝐺′[𝑇 ], the graph 𝐺′[𝑉 ⧵𝑅] is bipartite.

Proof. We prove Claim 17.2 as follows. As 𝑅 is a vertex cover of 𝐺′[𝑇 ], we find that 𝑇 ⧵𝑅 is an independent set. As 𝐺′[𝑉 ⧵ 𝑇 ] is 
edgeless by construction of 𝐺′, this means that 𝐺′[𝑉 ⧵𝑅] is bipartite with partition classes 𝑇 ⧵𝑅 and 𝑉 ⧵ 𝑇 . ⋄

We are now ready to give our algorithm. We enumerate the minimal vertex covers of 𝐺′[𝑇 ]. For every minimal vertex cover 𝑅, we 
compute a minimum vertex cover 𝑊 of 𝐺′[𝑉 ⧵𝑅]. In the end, we return the smallest 𝑆 =𝑅 ∪𝑊 that we found.

The correctness of our algorithm follows from Claim 17.1. It remains to analyze the running time. As 𝐺′ [𝑇 ] is 𝑠𝑃2-free, we can 
enumerate all maximal independent sets 𝐼 of 𝐺′[𝑇 ] and thus all minimal vertex covers 𝑅 = 𝑇 ⧵ 𝐼 of 𝐺′[𝑇 ] in (𝑛2𝑠 + 1) ⋅𝑂(𝑛𝑚) time 
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due to Theorems 15 and 16. For a minimal vertex cover 𝑅, the graph 𝐺′[𝑉 ⧵𝑅] is bipartite by Claim 17.2. Hence, we can compute a 
minimum vertex cover 𝑊 of 𝐺′[𝑉 ⧵𝑅] in polynomial time by applying Kőnig’s Theorem (Theorem 14). We conclude that the total 
running time is polynomial. □

For our next result (Theorem 20) we need two known results as lemmas.

Lemma 18 ([8]). If Subset Vertex Cover is polynomial-time solvable on 𝐻 -free graphs for some 𝐻 , then it is so on (𝐻 +𝑃1)-free graphs.

Lemma 19 ([6]). For every 𝑟≥ 1, Vertex Cover is polynomial-time solvable on 𝑟𝐾1,3-free graphs.

We are now ready to prove our second polynomial-time result.

Theorem 20. For every integer 𝑠, Subset Vertex Cover is polynomial-time solvable on (𝑠𝑃1 + 𝑃2 + 𝑃3)-free graphs.

Proof. Due to Lemma 18, we can take 𝑠 = 0, so we only need to give a polynomial-time algorithm for (𝑃2 + 𝑃3)-free graphs. Hence, 
let (𝐺,𝑇 ,𝑘) be an instance of Subset Vertex Cover, where 𝐺 = (𝑉 ,𝐸) is a (𝑃2 + 𝑃3)-free graph.

First, we compute a minimum vertex cover 𝑆vc of 𝐺. As 𝐺 is (𝑃2 + 𝑃3)-free, and thus 2𝐾1,3-free, this takes polynomial time by 
Lemma 19.

We now set out to compute a minimum 𝑇 -vertex cover 𝑆 of 𝐺 that is not a vertex cover of 𝐺. Then 𝐺 −𝑆 must contain an edge 
between two vertices in 𝑉 ⧵ 𝑇 . We branch by considering all 𝑂(𝑛2) options of choosing this edge. For each chosen edge 𝑢𝑣 we set 
out to construct a smallest 𝑇 -vertex cover 𝑆𝑢𝑣 of 𝐺 that does not contain 𝑢 nor 𝑣. Observe that we thus must add every neighbour 
of 𝑢 or 𝑣 that belongs to 𝑇 to 𝑆𝑢𝑣, as otherwise 𝐺 − 𝑆𝑢𝑣 would contain an edge 𝑢𝑡 or 𝑣𝑡 for some vertex 𝑡 ∈ 𝑇 . Hence, we have 
𝑁({𝑢, 𝑣}) ∩ 𝑇 ⊆ 𝑆𝑢𝑣.

Let 𝑇 ′ = 𝑇 ⧵𝑁({𝑢, 𝑣}) consist of all vertices of 𝑇 that are neither adjacent to 𝑢 nor to 𝑣. As 𝐺 is (𝑃2 +𝑃3)-free and 𝑢𝑣 ∈𝐸, we find 
that 𝐺[𝑇 ′] is 𝑃3-free, and thus 𝐺[𝑇 ′] is a disjoint union of complete graphs. We call a connected component of 𝐺[𝑇 ′] large if it has 
at least two vertices; else we call it small (so every large connected component of 𝐺[𝑇 ′] is a complete graph on at least two vertices 
and every small connected component of 𝐺[𝑇 ′] is an isolated vertex).

Case 1. The graph 𝐺[𝑇 ′] has at most two large connected components. 
Let 𝐷1 and 𝐷2 be the large connected components of 𝐺[𝑇 ′] (if they exist). As 𝑉 (𝐷1) and 𝑉 (𝐷2) are cliques in 𝐺[𝑇 ′], at most one 
vertex of 𝐷1 and at most one vertex of 𝐷2 can belong to 𝐺 −𝑆𝑢𝑣 if 𝑆𝑢𝑣 is to become a 𝑇 -vertex cover. We branch by considering all 
𝑂(𝑛2) options of choosing at most one vertex of 𝐷1 and at most one vertex of 𝐷2 to be these vertices. For each choice of vertices we 
do as follows. We add all other vertices of 𝐷1 and 𝐷2 to a set 𝑆∗

𝑢𝑣
. Let 𝑇 ∗ be the set of vertices of 𝑇 ′ that we have not added to 𝑆∗

𝑢𝑣
. 

Then 𝑇 ∗ consist of all the vertices of the small connected components of 𝐺[𝑇 ′] and at most one vertex of each of the at most two 
large connected components of 𝐺[𝑇 ′]. Hence, 𝑇 ∗ is an independent set.

We delete every edge between any two vertices in 𝑉 ⧵ 𝑇 . Now the graph 𝐺∗ induced by 𝑇 ∗ ∪ (𝑉 ⧵ 𝑇 ) is bipartite, namely with 
partition classes 𝑇 ∗ and 𝑉 ⧵ 𝑇 . It remains to compute a minimum vertex cover 𝑆∗ of 𝐺∗. This can be done in polynomial time by 
applying Kőnig’s Theorem. We let 𝑆∗

𝑢𝑣
consist of 𝑆∗ together with all vertices of 𝑇 that we had added to 𝑆∗

𝑢𝑣
already.

Finally, let 𝑆𝑢𝑣 be a smallest such set 𝑆∗
𝑢𝑣

(found over all 𝑂(𝑛2) branches) together with 𝑁({𝑢, 𝑣})∩𝑇 , so 𝑆𝑢𝑣 is a smallest 𝑇 -vertex 
cover of 𝐺 that does not contain 𝑢 nor 𝑣. This completes Case 1.

Case 2. The graph 𝐺[𝑇 ′] has at least three large connected components. 
Let 𝐷1,… ,𝐷𝑝, for some 𝑝 ≥ 3, be the large connected components of 𝐺[𝑇 ′]. Let 𝐴 consist of all the vertices of the small connected 
components of 𝐺[𝑇 ′].

We start by considering each vertex 𝑤 ∈ 𝑉 ⧵ 𝑇 with one of the following properties:

1. for some 𝑖, 𝑤 has a neighbour and a non-neighbour in 𝐷𝑖; or

2. for some 𝑖, 𝑗 with 𝑖 ≠ 𝑗, 𝑤 has a neighbour in 𝐷𝑖 and a neighbour in 𝐷𝑗 ; or

3. for some 𝑖, 𝑤 has a neighbour in 𝐷𝑖 and a neighbour in 𝐴.

Let 𝑊 be the set of all vertices of 𝑉 ⧵ 𝑇 that satisfy at least one of the Properties 1–3 (note that 𝑊 does not contain 𝑢 nor 𝑣). We say 
that a vertex 𝑤 ∈ 𝑉 ⧵ 𝑇 is semi-complete to some 𝐷𝑖 if 𝑤 is adjacent to all vertices of 𝐷𝑖 except at most one. We show the following 
claim. See Fig. 5 for an illustration.

Claim 20.1. Every vertex 𝑤∈𝑊 is semi-complete to 𝐷𝑖 for every 𝑖 ∈ {1,… , 𝑝}.

Proof. Let 𝑤∈𝑊 . First, assume 𝑤 satisfies Property 1. Let 𝑥 and 𝑦 be vertices of some 𝐷𝑖, say 𝐷1, such that 𝑤𝑥 ∈𝐸 and 𝑤𝑦 ∉𝐸. For 
a contradiction, assume 𝑤 is not semi-complete to some 𝐷𝑗 . Hence, 𝐷𝑗 contains vertices 𝑦′ and 𝑦′′, such that 𝑤𝑦′ ∉𝐸 and 𝑤𝑦′′ ∉𝐸. 
If 𝑗 ≥ 2, then {𝑦′, 𝑦′′,𝑤,𝑥, 𝑦} induces a 𝑃2 + 𝑃3 (as 𝐷1 and 𝐷𝑗 are complete graphs). This contradicts that 𝐺 is (𝑃2 + 𝑃3)-free. Hence, 
𝑤 is semi-complete to every 𝑉 (𝐷𝑗 ) with 𝑗 ≥ 2. Now suppose 𝑗 = 1. As 𝑝 ≥ 3, the graphs 𝐷2 and 𝐷3 exist. As 𝑤 is semi-complete to 
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Fig. 5. An illustration of the graph 𝐺 in the proof of Case 2 of Theorem 20, where 𝑇 consists of the orange vertices, and 𝑝= 3. Edges in 𝐺[𝑉 ⧵ 𝑇 ] are not drawn, and 
for 𝑥2 and 𝑥3 some edges are partially drawn. Vertices 𝑥1, 𝑥4, 𝑥5, 𝑢, 𝑣 do not belong to 𝑊 , as they do not satisfy one of the Properties 1–3, whereas 𝑥2 belongs to 𝑊 , 
as 𝑥2 satisfies Property 1 for 𝐷2 (and also Property 2 for 𝐷2 and 𝐷3), and 𝑥3 belongs to 𝑊 , as 𝑥3 satisfies Property 3 for 𝐷3.

every 𝐷𝑗 for 𝑗 ≥ 2 and every 𝐷𝑗 is large, there exist vertices 𝑥′ ∈ 𝑉 (𝐷2) and 𝑥′′ ∈ 𝑉 (𝐷3) such that 𝑤𝑥′ ∈𝐸 and 𝑤𝑥′′ ∈𝐸. However, 
now {𝑦′, 𝑦′′, 𝑥′,𝑤,𝑥′′} induces a 𝑃2 + 𝑃3, a contradiction.

Now assume 𝑤 satisfies Property 2, say 𝑤 is adjacent to 𝑥1 ∈ 𝑉 (𝐷1) and to 𝑥2 ∈ 𝑉 (𝐷2). Suppose 𝑤 is not semi-complete to some 
𝐷𝑗 . If 𝑗 ≥ 3, then the two non-neighbours of 𝑤 in 𝐷𝑗 , together with 𝑥1,𝑤,𝑥2, form an induced 𝑃2 + 𝑃3, a contradiction. Hence, 𝑤 is 
semi-complete to every 𝐷𝑗 for 𝑗 ≥ 3. If 𝑗 ∈ {1,2}, say 𝑗 = 1, then let 𝑦, 𝑦′ be two non-neighbours of 𝑤 in 𝐷1 and let 𝑥3 be a neighbour 
of 𝑤 in 𝐷3. Now, {𝑦, 𝑦′, 𝑥2,𝑤,𝑥3} induces a 𝑃2 + 𝑃3, a contradiction. Hence, 𝑤 is semi-complete to 𝐷1 and 𝐷2 as well.

Finally, assume 𝑤 satisfies Property 3, say 𝑤 is adjacent to 𝑧 ∈𝐴 and 𝑥1 ∈ 𝑉 (𝐷1). If 𝑤 is not semi-complete to 𝐷𝑗 for some 𝑗 ≥ 2, 
then two non-neighbours of 𝑤 in 𝐷𝑗 , with 𝑧,𝑤,𝑥1, form an induced 𝑃2 +𝑃3, a contradiction. Hence, 𝑤 is semi-complete to every 𝐷𝑗
with 𝑗 ≥ 2. As before, by using a neighbour of 𝑤 in 𝐷2 and one in 𝐷3, we find that 𝑤 is also semi-complete to 𝐷1. This completes 
the proof of Claim 20.1. ⋄

We now first consider the possible situation where 𝑆𝑢𝑣 will not contain some vertex 𝑤 ∈𝑊 . We branch by considering all 𝑂(𝑛)
options for choosing such a vertex 𝑤. For each chosen vertex 𝑤, we do as follows. Let 𝑇𝑤 =𝑁(𝑤) ∩ 𝑇 ′ be the set of neighbours of 𝑤
in 𝑇 ′ (recall that 𝑇 ′ = 𝑇 ⧵𝑁({𝑢, 𝑣})). So, all of the vertices of 𝑇𝑤 must belong to 𝑆𝑢𝑣. By Claim 20.1, we find that 𝑇 ′ ⧵ 𝑇𝑤 does not 
contain two vertices from the same large connected component of 𝐺[𝑇 ′]. Hence, 𝑇 ′ ⧵ 𝑇𝑤 is an independent set. We delete any edge 
between two vertices from 𝑉 ⧵ 𝑇 , so 𝑉 ⧵ 𝑇 becomes an independent set as well. We now compute, in polynomial time by Kőnig’s 
Theorem, a minimum vertex cover in the resulting bipartite graph with partition classes 𝑇 ′ ⧵𝑇𝑤 and 𝑉 ⧵𝑇 . We let 𝑆𝑤

𝑢𝑣
be the set that 

is the union of this vertex cover, 𝑇𝑤, and (𝑁{𝑢, 𝑣} ∩ 𝑇 ). By construction, 𝑆𝑤
𝑢𝑣

is a smallest vertex cover of 𝐺 that does not contain 
any vertex of {𝑢, 𝑣,𝑤}. After processing all of the 𝑂(𝑛) branches, we keep a smallest set 𝑆𝑤

𝑢𝑣
, which we denote by 𝑆∗

𝑢𝑣
.

We are left to examine the possible situation where 𝑆𝑢𝑣 contains every vertex of 𝑊 . Let 𝐺′ be the subgraph obtained from 𝐺 by 
removing every vertex of 𝑊 ∪ (𝑁({𝑢, 𝑣})∩𝑇 ) ∪ {𝑢, 𝑣}. We will now describe how to compute in polynomial time a smallest 𝑇 ′-vertex 
cover 𝑆′

𝑢𝑣
of 𝐺′ (recall that 𝑇 ′ = 𝑇 ⧵𝑁({𝑢, 𝑣})).

We start with considering the connected component 𝐷′
1 of 𝐺′ that contains (all) the vertices from 𝐷1 . As no vertex from 𝑊

belongs to 𝐺′ by definition, 𝐷′
1 contains no vertices from 𝑉 ⧵ 𝑇 satisfying Property 2 or 3. Hence, 𝐷′

1 contains no vertices from 𝐴 or 
from any 𝐷𝑗 with 𝑗 ≥ 2 either. So it holds that

𝑉 (𝐷′
1) ∩ 𝑇 = 𝑉 (𝐷1).

First suppose that 𝐷′
1 =𝐷1. As 𝐷′

1 =𝐷1 is a complete graph, we add all vertices of 𝐷1 except for one arbitrary vertex of 𝐷1 to 𝑆′
𝑢𝑣

. 
Now suppose that there exists a vertex 𝑥 in 𝑉 (𝐷′

1)⧵𝑉 (𝐷1). As 𝐷′
1 is connected, we may assume without loss of generality that 𝑥 has a 

neighbour in 𝐷1. Consequently, 𝑥 is complete to 𝐷1, as 𝑥 does not belong to 𝑊 and thus does not satisfy Property 1. This implies that 
we must put at least |𝑉 (𝐷1)| vertices from 𝐷′

1 in 𝑆′
𝑢𝑣

, so we might just as well put every vertex of 𝐷1 in 𝑆′
𝑢𝑣

. As 𝑉 (𝐷′
1) ∩ 𝑇 = 𝑉 (𝐷1), 

we do not need to add any more vertices from 𝐷′
1 to 𝑆′

𝑢𝑣
.

We do the same as we did for 𝐷1 for the connected components 𝐷′
2,… ,𝐷′

𝑝
of 𝐺′ that contain the sets 𝑉 (𝐷2),… , 𝑉 (𝐷𝑝), respec-

tively.

Now, it remains to consider the induced subgraph 𝐹 of 𝐺′ that consists of the connected components of 𝐺′ containing the vertices 
of 𝐴. Recall that 𝐴 is an independent set. We delete every edge between two vertices in 𝑉 ⧵ 𝑇 , resulting in another independent set. 
This changes 𝐹 into a bipartite graph, and we can compute a minimum vertex cover 𝑆𝐹

𝑢𝑣
of 𝐹 in polynomial time due to Kőnig’s 

Theorem. We add 𝑆𝐹
𝑢𝑣

to 𝑆′
𝑢𝑣

. In this way we computed the set 𝑆′
𝑢𝑣

. We let 𝑆′′
𝑢𝑣
= 𝑆′

𝑢𝑣
∪𝑊 ∪ (𝑁({𝑢, 𝑣}) ∩ 𝑇 ). By construction, 𝑆′′

𝑢𝑣
is a 

smallest vertex cover 𝑆′′
𝑢𝑣

of 𝐺 that contains 𝑊 but does not contain 𝑢 and 𝑣.
Now compare the size of 𝑆′′

𝑢𝑣
with the size of 𝑆∗

𝑢𝑣
, and pick one of smallest size as 𝑆𝑢𝑣. This completes Case 2.

Finally, for each choice of the edge 𝑢𝑣 ∈𝐸(𝐺[𝑉 ⧵ 𝑇 ]), we consider the output 𝑆𝑢𝑣, and take a smallest set found. We compare its size 
with the size of 𝑆vc, again taking a smallest set as the final solution.

The correctness of our algorithm follows from the above description. The number of branches is 𝑂(𝑛2) in Case 1 and 𝑂(𝑛) in 
Case 2. Hence, as there 𝑂(𝑛2) vertex pairs 𝑢, 𝑣 to consider, the total number of branches is 𝑂(𝑛4). As each branch takes polynomial 
time to process, this means that the total running time of our algorithm is polynomial. This completes our proof. □
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5. The proof of Theorems 7 and 8

We first prove Theorem 7, which we restate below.

Theorem 7 (restated). For a graph 𝐻 ≠ 𝑟𝑃1 + 𝑠𝑃2 + 𝑃3 for any 𝑟 ≥ 0, 𝑠 ≥ 2; 𝑟𝑃1 + 𝑠𝑃2 + 𝑃4 for any 𝑟 ≥ 0, 𝑠 ≥ 1; or 𝑟𝑃1 + 𝑠𝑃2 + 𝑃𝑡 for 
any 𝑟 ≥ 0, 𝑠 ≥ 0, 𝑡∈ {5,6}, Subset Vertex Cover on 𝐻 -free graphs is polynomial-time solvable if 𝐻 ⊆𝑖 𝑠𝑃1 + 𝑃2 + 𝑃3, 𝑠𝑃2, or 𝑠𝑃1 + 𝑃4
for some 𝑠 ≥ 1, and NP-complete otherwise.

Proof. Let 𝐻 be a graph not equal to 𝑟𝑃1 + 𝑠𝑃2 +𝑃3 for any 𝑟 ≥ 0, 𝑠 ≥ 2; 𝑟𝑃1 + 𝑠𝑃2 +𝑃4 for any 𝑟 ≥ 0, 𝑠≥ 1; or 𝑟𝑃1 + 𝑠𝑃2 +𝑃𝑡 for any 
𝑟 ≥ 0, 𝑠 ≥ 0, 𝑡∈ {5,6}. If 𝐻 has a cycle, then we apply Theorem 2. Else, 𝐻 is a forest. If 𝐻 has a vertex of degree at least 3, then the 
class of 𝐻 -free graphs contains all 𝐾1,3-free graphs, and we apply Theorem 11. Else, 𝐻 is a linear forest. If 𝐻 contains an induced 
2𝑃3, then we apply Theorem 12. If not, then 𝐻 ⊆𝑖 𝑠𝑃1 +𝑃2 +𝑃3, 𝑠𝑃2, or 𝑠𝑃1 +𝑃4 for some 𝑠 ≥ 1. In the first case, apply Theorem 20; 
in the second case Theorem 17; and in the third case Theorem 3. □

We now prove Theorem 8, which we restate below.

Theorem 8 (restated). For a graph 𝐻 , Subset Vertex Cover on instances (𝐺,𝑇 ,𝑘), where 𝐺[𝑇 ] is 𝐻 -free, is polynomial-time solvable if 
𝐻 ⊆𝑖 𝑠𝑃2 for some 𝑠 ≥ 1, and NP-complete otherwise.

Proof. First note that any NP-completeness result of Theorem 7 also holds here, as 𝐺[𝑇 ] is 𝐻 -free if the entire graph is 𝐻 -free. 
We immediately get that Subset Vertex Cover is NP-complete if 𝐻 is not a linear forest. Suppose 𝑃3 ⊆𝑖 𝐻 . Observe that in the 
instance of Theorem 12, 𝐺[𝑇 ] is a disjoint union of edges, so 𝐺[𝑇 ] is 𝑃3-free, and hence, 𝐻 -free. We see that Subset Vertex Cover

is NP-complete when 𝑃3 ⊆𝑖 𝐻 . In the remaining case, 𝐻 ⊆𝑖 𝑠𝑃2 for some 𝑠 ≥ 1, and we apply Theorem 17. □

6. Graphs of bounded clique-width and bounded mim-width

In this section, we give a polynomial algorithm for Subset Vertex Cover on graphs of bounded clique-width and of bounded 
mim-width.

We begin with a result regarding the clique-width of probe graphs. Recall that 𝑝 denotes the class of probe graphs of some graph 
class  and that a graph 𝐺 belongs to 𝑝 if there is some independent set 𝑁 of 𝐺 and a set of edges 𝐹 with end-vertices in 𝑁 such that 
𝐺 + 𝐹 ∈ . The clique-width 𝖼𝗐(𝐺) of a graph 𝐺, introduced by Courcelle, Engelfriet and Rozenberg [14], is the minimum number 
of labels needed to construct 𝐺 by means of the following four operations:

1. creating a new labelled vertex;

2. taking the disjoint union of two labelled graphs;

3. adding an edge between every vertex of label 𝑖 and every vertex of label 𝑗, where 𝑖 ≠ 𝑗; and

4. changing the label of all vertices with label 𝑖 to label 𝑗 for some 𝑗 ≥ 𝑖.

Cographs have clique-width at most 2 [15]. The authors of [11,12] observed that probe cographs have clique-width at most 4. 
Their argument holds more generally, as we prove below for the sake of completeness. We note that Proposition 21 directly implies 
Theorem 3 for 𝑠 = 0.

Proposition 21. Let 𝐺 = (𝑉 ,𝐸) be a graph, let 𝑁 be an independent set of 𝐺, and let 𝐹 be a set of edges with both end-vertices in 𝑁 . Then 
we have 𝖼𝗐(𝐺) ≤ 2𝖼𝗐(𝐺 + 𝐹 ).

Proof. We adapt a sequence of operations that constructs 𝐺 + 𝐹 using only 𝖼𝗐(𝐺 + 𝐹 ) labels to a sequence of operations that 
constructs 𝐺 using 2𝖼𝗐(𝐺 + 𝐹 ) labels. If an operation is to create a new vertex 𝑣 with label 𝑖, then create 𝑣 and label it with 𝑖𝑁 if 
𝑣 ∈𝑁 and with 𝑖𝑃 otherwise. If an operation is the disjoint union of two labelled graphs, then we keep this operation. If an operation 
is adding an edge between every vertex of label 𝑖 and every vertex of label 𝑗, where 𝑖≠ 𝑗, then we add an edge between every vertex 
of label 𝑖𝑃 and every vertex of label 𝑗𝑃 , every vertex of label 𝑖𝑁 and every vertex of label 𝑗𝑃 , and every vertex of label 𝑖𝑃 and every 
vertex of label 𝑗𝑁 . If an operation is renaming a label 𝑖 to 𝑗, then we rename 𝑖𝑁 to 𝑗𝑁 and 𝑖𝑃 to 𝑗𝑃 . Note that these operations 
construct 𝐺 because they include all edges from 𝐺 + 𝐹 except the edges with both end-vertices in 𝑁 . Clearly, we use 2𝖼𝗐(𝐺 + 𝐹 )
labels, which proves the statement. □

We now introduce some new terminology to explain the notion of mim-width, which was first defined by Vatshelle [34]. Let 
𝐺 = (𝑉 ,𝐸) be a graph. For 𝑋 ⊆ 𝑉 , we use 2𝑋 to denote its power set and 𝑋 to denote 𝑉 ⧵𝑋. A set 𝑀 ⊆𝐸 is a matching in 𝐺 if no 
two edges in 𝑀 share an end-vertex. A matching 𝑀 is an induced matching if no end-vertex of any edge 𝑒 ∈𝑀 is adjacent to any 
end-vertex of an edge in 𝑀 ⧵ {𝑒}. A rooted binary tree is a rooted tree of which each node has degree 1 or 3, except for a distinguished 
node that has degree 2 and is the root of the tree. A rooted layout  = (𝐿,𝛿) of 𝐺 consists of a rooted binary tree 𝐿 and a bijection 𝛿
between 𝑉 and the leaves of 𝐿. For each node 𝑥 ∈ 𝑉 (𝐿), we let 𝐿𝑥 be the set of leaves that are a descendant of 𝑥 (including 𝑥 if 𝑥 is 



Theoretical Computer Science 1032 (2025) 115088

10

N. Brettell, J.J. Oostveen, S. Pandey et al. 

Fig. 6. An example of a graph 𝐺 (left) with a rooted layout  = (𝐿,𝛿) (middle), taken from [7]. Note that 𝗆𝗂𝗆(𝑉𝑥) = 2 (right), and an easy check shows that in fact 
𝗆𝗂𝗆() = 2. The rooted layout ′ obtained from  by swapping 𝑣2 and 𝑣5 and swapping 𝑣3 and 𝑣4 yields 𝗆𝗂𝗆(𝐺) = 1.

a leaf). We define 𝑉𝑥 as the corresponding set of vertices of 𝐺, that is, 𝑉𝑥 = {𝛿(𝑦) ∣ 𝑦 ∈𝐿𝑥}. For a set 𝐴⊆ 𝑉 , let 𝗆𝗂𝗆𝐺(𝐴) be the size 
of a maximum induced matching in the bipartite graph obtained from 𝐺 by removing all edges between vertices of 𝐴 and all edges 
between vertices of 𝐴 = 𝑉 ⧵ 𝐴. In other words, this is the bipartite graph (𝐴,𝐴,𝐸 ∩ (𝐴 × 𝐴)). The mim-width 𝗆𝗂𝗆𝐺() of a rooted 
layout  = (𝐿,𝛿) of graph 𝐺 is the maximum over all 𝑥 ∈ 𝑉 (𝐿) of 𝗆𝗂𝗆𝐺(𝑉𝑥). If the graph in question is clear from the context, then 
we omit the subscript. The mim-width 𝗆𝗂𝗆(𝐺) of 𝐺 is the minimum mim-width over all rooted layouts of 𝐺. See Fig. 6 for an example.

In general, it is not known if there exists a polynomial-time algorithm for computing a rooted layout  of a graph 𝐺, such that 
𝗆𝗂𝗆() is bounded by a function in the mim-width of 𝐺. However, Belmonte and Vatshelle [3] showed that for several graph classes 
of bounded mim-width, including interval graphs and permutation graphs, it is possible to find in polynomial time a rooted layout 
of a graph 𝐺 ∈  with mim-width equal to the mim-width of 𝐺.

We now prove the following result on the mim-width of probe graphs that is analogous to Proposition 21 for clique-width.

Proposition 22. Let 𝐺 = (𝑉 ,𝐸) be a graph, let 𝑁 be an independent set of 𝐺, let 𝐹 be a set of edges with both ends in 𝑁 , and let  = (𝐿,𝛿)
be a rooted layout of 𝐺 + 𝐹 . Then we have 𝗆𝗂𝗆𝐺() ≤ 2𝗆𝗂𝗆𝐺+𝐹 () and, in particular, 𝗆𝗂𝗆(𝐺) ≤ 2𝗆𝗂𝗆(𝐺 + 𝐹 ).

Proof. As 𝐺 and 𝐺+𝐹 have identical vertex sets,  is a rooted layout of 𝐺 too. Let 𝑥 ∈ 𝑉 (𝐿) be such that 𝗆𝗂𝗆𝐺(𝑉𝑥) =𝗆𝗂𝗆𝐺(), and 
let 𝐻 denote the bipartite graph (𝑉𝑥,𝑉𝑥,𝐸 ∩ (𝑉𝑥 × 𝑉𝑥)). In 𝐻 , let 𝐸1 denote the edges with one end-vertex in 𝑉𝑥 ∩𝑁 , let 𝐸2 denote 
the edges with one end-vertex in 𝑉𝑥 ∩𝑁 , and let 𝐸3 denote the edges with no end-vertex in 𝑁 . Note that the sets 𝐸1, 𝐸2 and 𝐸3 are a 
partition of 𝐸(𝐻) since 𝑁 is independent in 𝐺. Lastly, let 𝑀 be a maximum induced matching of 𝐻 . In particular, |𝑀| =𝗆𝗂𝗆𝐺(𝑉𝑥).

By symmetry, we may assume that |𝐸1 ∩𝑀| ≤ |𝐸2 ∩𝑀|. The set 𝑀 ′ =𝑀 ∩ (𝐸2 ∪𝐸3) is an induced matching of 𝐻 + 𝐹 too. On 
the one hand, we have |𝑀 ′| ≥ |𝑀|∕2 by the assumption that |𝐸2 ∩𝑀| ≥ |𝐸1 ∩𝑀|. On the other hand, we have |𝑀 ′| ≤𝗆𝗂𝗆𝐺+𝐹 (𝑉𝑥)
by definition. Together, this implies

𝗆𝗂𝗆𝐺() =𝗆𝗂𝗆𝐺(𝑉𝑥) = |𝑀| ≤ 2|𝑀 ′| ≤ 2𝗆𝗂𝗆𝐺+𝐹 (𝑉𝑥) ≤ 2𝗆𝗂𝗆𝐺+𝐹 ().

This argument holds for any rooted layout , so in particular, it holds for the layout  such that 𝗆𝗂𝗆𝐺+𝐹 () =𝗆𝗂𝗆(𝐺 + 𝐹 ). For any 
layout , it holds that 𝗆𝗂𝗆(𝐺) ≤𝗆𝗂𝗆𝐺(), and so we may conclude that 𝗆𝗂𝗆(𝐺) ≤ 2𝗆𝗂𝗆(𝐺+𝐹 ) holds. This completes the proof. □

Let  be a class of graphs of bounded mim-width. Then, Proposition 22 implies that 𝑝 also has bounded mim-width. Therefore, 
an algorithm for Subset Vertex Cover on classes of bounded mim-width graphs is implied by results in the literature. Suppose 
that (𝐺,𝑇 ,𝑘) is an instance of Subset Vertex Cover is given together with a rooted layout  = (𝐿,𝛿) of 𝐺. Let 𝐺′ be the graph 
obtained from 𝐺 by deleting all edges not incident to a vertex of 𝑇 . Then  is also a rooted layout of 𝐺′ and 𝗆𝗂𝗆𝐺′ () ≤ 2𝗆𝗂𝗆𝐺()
by Proposition 22. Now, solving the Subset Vertex Cover instance (𝐺,𝑇 ,𝑘) amounts to solving the Vertex Cover instance (𝐺′, 𝑘). 
The dynamic programming algorithm for Vertex Cover of Bui-Xuan et al. [10] has running time 𝑂(𝑛4 ⋅𝗇𝖾𝖼1(𝑇 , 𝛿)3) (𝗇𝖾𝖼𝑑 (.) is defined 
below). Belmonte and Vatshelle [3] showed that 𝗇𝖾𝖼𝑑 (𝐴) ≤ |𝐴|𝑑⋅𝗆𝗂𝗆𝐺(𝐴) for any 𝐴 ⊆ 𝑉 (𝐺). Together, this implies an 𝑂(𝑛6𝗆𝗂𝗆𝐺()+4)-
time algorithm for Subset Vertex Cover with a given rooted layout  of 𝐺. However, this is a weaker result than that of Theorem 29, 
which is attained through a direct algorithm that we give next.

We now introduce the notion of neighbour equivalence, which was first defined by Bui-Xuan et al. [10]. Let 𝐺 = (𝑉 ,𝐸) be a 
graph on 𝑛 vertices. Let 𝐴⊆ 𝑉 and 𝑑 ∈ ℕ+. We say that 𝑋,𝑊 ⊆𝐴 are 𝑑-neighbour equivalent with respect to 𝐴, denoted 𝑋 ≡𝐴

𝑑
𝑊 , if 

min{𝑑, |𝑋 ∩𝑁(𝑣)|} = min{𝑑, |𝑊 ∩𝑁(𝑣)|} for all 𝑣 ∈𝐴. Clearly, this is an equivalence relation. We let 𝗇𝖾𝖼𝑑 (𝐴) denote the number of 
equivalence classes of ≡𝐴

𝑑
. For a rooted layout (𝐿,𝛿) of 𝐺, we let 𝗇𝖾𝖼𝑑 (𝑇 , 𝛿) denote the maximum of 𝗇𝖾𝖼𝑑 (𝑉𝑥) over all 𝑥 ∈ 𝑉 (𝐿). For 

each 𝑋 ⊆ 𝐴, let 𝗋𝖾𝗉𝐴
𝑑
(𝑋) denote the lexicographically smallest set 𝑅 ⊆ 𝐴 such that 𝑅 ≡𝐴

𝑑
𝑋 and |𝑅| is minimum. This is called the 

representative of 𝑋. We use 𝐴
𝑑
= {𝗋𝖾𝗉𝐴

𝑑
(𝑋) ∣𝑋 ⊆𝐴}. Note that |𝐴

𝑑
| ≥ 1, as the empty set is always a representative. The following 

lemma allows us to work efficiently with representatives.

Lemma 23 (Bui-Xuan et al.   [10]). It is possible to compute in time 𝑂(𝗇𝖾𝖼𝑑 (𝐴) ⋅ 𝑛2 log(𝗇𝖾𝖼𝑑 (𝐴))), the set 𝐴
𝑑

and a data structure that given 
a set 𝑋 ⊆𝐴, computes 𝗋𝖾𝗉𝐴

𝑑
(𝑋) in 𝑂(|𝐴| ⋅ 𝑛 log(𝗇𝖾𝖼𝑑 (𝐴))) time.
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We are now ready to give an explicit polynomial-time algorithm for Subset Vertex Cover on graphs of bounded mim-width. Our 
algorithm is inspired by the algorithm of Bui-Xuan et al. [10] for Independent Set and of Bergougnoux et al. [4] for Subset 
Feedback Vertex Set. Our presentation of the algorithm follows the presentation form in Bergougnoux et al. [4]. In fact, we 
solve the complementary problem. Given a graph 𝐺 = (𝑉 ,𝐸) with a rooted layout  = (𝐿,𝛿), a set 𝑇 ⊆ 𝑉 , and a weight function 𝜔
on its vertices, we find a maximum-weight 𝑇 -independent set on 𝐺. Our goal is to use a standard dynamic programming algorithm. 
However, the size of the table that we would need to maintain by a naive approach is too large. Instead, we work with representatives 
of the sets in our table. We show that we can reduce the table size so that it is bounded by the square of the number of 1-neighbour 
equivalence classes.

First, we define a notion of equivalence between elements of our dynamic programming table. Given a set 𝑇 ⊆ 𝑉 , a set 𝑋 ⊆ 𝑉 is 
a 𝑇 -independent set if in 𝐺[𝑋] there is no edge incident on any vertex of 𝑇 ∩𝑋. Note that 𝑋 is a 𝑇 -independent set if and only if 𝑋
is a 𝑇 -vertex cover.

Definition 24. Let 𝑋,𝑊 ⊆ 𝑉𝑥 be 𝑇 -independent sets. We say that 𝑋 and 𝑊 are equivalent, denoted by 𝑋 ∼𝑇 𝑊 , if 𝑋 ∩𝑇 ≡
𝑉𝑥
1 𝑊 ∩𝑇

and 𝑋 ⧵ 𝑇 ≡
𝑉𝑥
1 𝑊 ⧵ 𝑇 .

We now prove the following lemma.

Lemma 25. For every 𝑌 ⊆ 𝑉𝑥 and every 𝑇 -independent sets 𝑋,𝑊 ⊆ 𝑉𝑥 such that 𝑋 ∼𝑇 𝑊 , it holds that 𝑋 ∪ 𝑌 is a 𝑇 -independent set if 
and only if 𝑊 ∪ 𝑌 is a 𝑇 -independent set.

Proof. By symmetry, it suffices to prove one direction. Suppose that 𝑋 ∪ 𝑌 is a 𝑇 -independent set, but 𝑊 ∪ 𝑌 is not. Note that 𝑋
and 𝑊 are 𝑇 -independent sets by definition and that 𝑌 must be a 𝑇 -independent set as well, because 𝑋 ∪ 𝑌 is. Hence, the fact that 
𝑊 ∪ 𝑌 is not a 𝑇 -independent set implies there is an edge 𝑢𝑣 ∈𝐸(𝐺) for which:

1. 𝑢 ∈𝑊 ∩ 𝑇 , 𝑣 ∈ 𝑌 ∩ 𝑇 ,

2. 𝑢 ∈𝑊 ∩ 𝑇 , 𝑣 ∈ 𝑌 ⧵ 𝑇 , or

3. 𝑢 ∈𝑊 ⧵ 𝑇 , 𝑣 ∈ 𝑌 ∩ 𝑇 .

In the first case, since 𝑣 ∈ 𝑌 ∩ 𝑇 has a neighbour in 𝑊 ∩ 𝑇 , note that min{1, |(𝑊 ∩ 𝑇 ) ∩𝑁(𝑣)|} = 1. Since 𝑋 ∩ 𝑇 ≡
𝑉𝑥
1 𝑊 ∩ 𝑇 by the 

assumption that 𝑋 ∼𝑇 𝑊 , it follows that min{1, |(𝑋 ∩𝑇 )∩𝑁(𝑣)|} = 1. Hence, there is an edge from 𝑣 ∈ 𝑌 ∩𝑇 to 𝑋 ∩𝑇 , contradicting 
that 𝑋 ∪ 𝑌 is a 𝑇 -independent set.

The second case is analogous to the first case. The third case is also analogous, but uses that 𝑋 ⧵ 𝑇 ≡
𝑉𝑥
1 𝑊 ⧵ 𝑇 . □

We now introduce a final definition.

Definition 26. For every ⊆ 2𝑉𝑥 and 𝑌 ⊆ 𝑉𝑥, let

𝖻𝖾𝗌𝗍(, 𝑌 ) = max{𝜔(𝑋) ∣𝑋 ∈ and 𝑋 ∪ 𝑌 is a 𝑇 -independent set}.

Given , ⊆ 2𝑉𝑥 , we say that  represents  if 𝖻𝖾𝗌𝗍(, 𝑌 ) = 𝖻𝖾𝗌𝗍(, 𝑌 ) for every 𝑌 ⊆ 𝑉𝑥.

We use the above definition in our next lemma.

Lemma 27. Given a set  ⊆ 2𝑉𝑥 , we can compute  ⊆ that represents  and has size at most 𝗇𝖾𝖼1(𝑉𝑥)2 in 𝑂(|| ⋅ 𝑛2 log(𝗇𝖾𝖼1(𝑉𝑥)) +
𝗇𝖾𝖼1(𝑉𝑥) ⋅ 𝑛2 log(𝗇𝖾𝖼1(𝑉𝑥)) + 𝗇𝖾𝖼1(𝑉𝑥)2) time.

Proof. We obtain  from  as follows: for all sets in  that are equivalent under ∼𝑇 , maintain only a set 𝑋 that is a 𝑇 -independent 
set for which 𝜔(𝑋) is maximum. Note that if among a collection of equivalent sets, there is no 𝑇 -independent set, then no set 
is maintained. By construction,  has size at most 𝗇𝖾𝖼1(𝑉𝑥)2, because there are at most 𝗇𝖾𝖼1(𝑉𝑥)2 equivalence classes of ∼𝑇 by 
Definition 24.

We now prove that  represents . Let 𝑌 ⊆ 𝑉𝑥. Note that 𝖻𝖾𝗌𝗍(, 𝑌 ) ≤ 𝖻𝖾𝗌𝗍(, 𝑌 ), because  ⊆. Hence, if there is no 𝑋 ∈

such that 𝑋 ∪ 𝑌 is a 𝑇 -independent set, then 𝖻𝖾𝗌𝗍(, 𝑌 ) = 𝖻𝖾𝗌𝗍(, 𝑌 ) = −∞. So assume otherwise, and let 𝑊 ∈ satisfy 𝜔(𝑊 ) =
𝖻𝖾𝗌𝗍(, 𝑌 ). This means that 𝑊 ∪ 𝑌 is a 𝑇 -independent set and in particular, 𝑊 is a 𝑇 -independent set. By the construction of , 
there is a 𝑋 ∈ that is a 𝑇 -independent set with 𝑋 ∼𝑇 𝑊 and 𝜔(𝑋) ≥ 𝜔(𝑊 ). By Lemma 25, 𝑋 ∪ 𝑌 is a 𝑇 -independent set. Hence, 
𝖻𝖾𝗌𝗍(, 𝑌 ) ≥ 𝜔(𝑋) ≥ 𝜔(𝑊 ) = 𝖻𝖾𝗌𝗍(, 𝑌 ). It follows that 𝖻𝖾𝗌𝗍(, 𝑌 ) = 𝖻𝖾𝗌𝗍(, 𝑌 ) and thus  represents .

For the running time, note that we can implement the algorithm by maintaining a table indexed by pairs of representatives of the 
1-neighbour equivalence classes. Note that a pair of representatives uniquely identifies an equivalence class of ∼𝑇 . By Lemma 23, 
we can compute the indices in 𝑂(𝗇𝖾𝖼1(𝑉𝑥) ⋅ 𝑛2 log(𝗇𝖾𝖼1(𝑉𝑥))) time, which gives us both the complete set of representatives and the 
data structure to compute representatives. Then for each 𝑋 ∈, we can compute its representatives in 𝑂(|𝑉𝑥| ⋅ 𝑛 log(𝗇𝖾𝖼1(𝑉𝑥))) time 
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and check whether it is a 𝑇 -independent set in 𝑂(𝑛2) time. Creation of the table and returning  takes 𝑂(𝗇𝖾𝖼1(𝑉𝑥)2) time. Hence, the 
total running time is 𝑂(|| ⋅ 𝑛2 log(𝗇𝖾𝖼1(𝑉𝑥)) + 𝗇𝖾𝖼1(𝑉𝑥) ⋅ 𝑛2 log(𝗇𝖾𝖼1(𝑉𝑥)) + 𝗇𝖾𝖼1(𝑉𝑥)2). □

We are now ready to prove the following result.

Theorem 28. Let 𝐺 be a graph on 𝑛 vertices with a rooted layout (𝐿,𝛿). We can solve Subset Vertex Cover in 𝑂(
∑
𝑥∈𝑉 (𝐿)(𝗇𝖾𝖼1(𝑉𝑥))4 ⋅

𝑛2 log(𝗇𝖾𝖼1(𝑉𝑥))) time.

Proof. It suffices to find a maximum-weight 𝑇 -independent set of 𝐺. For every node 𝑥∈ 𝑉 (𝐿), we aim to compute a set 𝑥 ⊆ 2𝑉𝑥 of 
𝑇 -independent sets such that 𝑥 represents 2𝑉𝑥 and has size at most 𝑝(𝑥) ∶= 𝗇𝖾𝖼1(𝑉𝑥)2 + 1. Letting 𝑟 denote the root of 𝐿, we then 
return the set in 𝑟 of maximum weight. Since 𝑟 represents 2𝑉𝑟 , this is indeed a maximum-weight 𝑇 -independent set of 𝐺.

We employ a bottom-up dynamic programming algorithm to compute 𝑥 . If 𝑥 is a leaf with 𝑉𝑥 = {𝑣}, then set 𝑥 = {∅,{𝑣}}. 
Clearly, 𝑥 represents 2𝑉𝑥 and has size at most 𝑝(𝑥). So now suppose 𝑥 is an internal node with children 𝑎, 𝑏. For any ,⊆ 2𝑉 (𝐺), 
let ⊗  = {𝑋 ∪ 𝑌 ∣𝑋 ∈, 𝑌 ∈ }. Now let 𝑥 be equal to the result of the algorithm of Lemma 27 applied to 𝑎 ⊗𝑏. Then, 
indeed, |𝑥| ≤ 𝑝(𝑥). Using induction, it remains to show the following for the correctness proof:

Claim 28.1. If 𝑎 and 𝑏 represent 2𝑉𝑎 and 2𝑉𝑏 respectively, then the computed set 𝑥 represents 2𝑉𝑥 .

Proof. We prove Claim 28.1 as follows. If 𝑎 ⊗𝑏 represents 2𝑉𝑥 , then by Lemma 27 and the transitivity of the ‘represents’ relation, 
it follows that 𝑥 represents 2𝑉𝑥 . So it suffices to prove that 𝑎 ⊗𝑏 represents 2𝑉𝑥 . Let 𝑌 ⊆ 𝑉𝑥. Note that

𝖻𝖾𝗌𝗍(𝑎 ⊗𝑏, 𝑌 ) = max{𝜔(𝑋) +𝜔(𝑊 ) ∣𝑋 ∈𝑎,𝑊 ∈𝑏,

𝑋 ∪𝑊 ∪ 𝑌 is a 𝑇 -independent set}
= max{𝖻𝖾𝗌𝗍(𝑎,𝑊 ∪ 𝑌 ) +𝜔(𝑊 ) ∣𝑊 ∈𝑏}.

Note that 𝖻𝖾𝗌𝗍(𝑎,𝑊 ∪ 𝑌 ) = 𝖻𝖾𝗌𝗍(2𝑉𝑎 ,𝑊 ∪ 𝑌 ), as 𝑎 represents 2𝑉𝑎 , and thus 𝖻𝖾𝗌𝗍(𝑎 ⊗𝑏, 𝑌 ) = 𝖻𝖾𝗌𝗍(2𝑉𝑎 ⊗𝑏, 𝑌 ). Using a similar 
argument, we can then show that 𝖻𝖾𝗌𝗍(2𝑉𝑎 ⊗𝑏, 𝑌 ) = 𝖻𝖾𝗌𝗍(2𝑉𝑎 ⊗ 2𝑉𝑏 , 𝑌 ). Since 2𝑉𝑥 = 2𝑉𝑎 ⊗ 2𝑉𝑏 , it follows that 𝖻𝖾𝗌𝗍(𝑎 ⊗𝑏, 𝑌 ) =
𝖻𝖾𝗌𝗍(2𝑉𝑥 , 𝑌 ) and thus 𝑎 ⊗𝑏 represents 2𝑉𝑥 . This completes the proof of Claim 28.1. ⋄

Finally, we prove the running time bound. Using induction, it follows that |𝑎 ⊗𝑏| ≤ 𝑝(𝑥)2 for any internal node 𝑥 with children 
𝑎, 𝑏. Hence, 𝑎 ⊗𝑏 can be computed in 𝑂(𝑝(𝑥)2 ⋅ 𝑛) time. Then, 𝑥 can be computed in 𝑂(𝑝(𝑥)2 ⋅ 𝑛2 log(𝗇𝖾𝖼1(𝑉𝑥)) + 𝗇𝖾𝖼1(𝑉𝑥) ⋅
𝑛2 log(𝗇𝖾𝖼1(𝑉𝑥)) + 𝗇𝖾𝖼1(𝑉𝑥)2) =𝑂((𝗇𝖾𝖼1(𝑉𝑥))4 ⋅ 𝑛2 log(𝗇𝖾𝖼1(𝑉𝑥))) time by Lemma 27. □

It was shown by Belmonte and Vatshelle [3] that 𝗇𝖾𝖼𝑑 (𝐴) ≤ |𝐴|𝑑⋅𝗆𝗂𝗆(𝐴). Combining their result with Theorem 28 immediately yields 
the following.

Theorem 29. Let 𝐺 be a graph on 𝑛 vertices with a rooted layout = (𝐿,𝛿). Then Subset Vertex Cover can be solved in 𝑂(𝗆𝗂𝗆𝐺() ⋅
𝑛4𝗆𝗂𝗆𝐺()+3 ⋅ log(𝑛)) time.

The following corollary is now immediate from the fact that circular-arc graphs have constant mim-width and a rooted layout of 
constant mim-width can be computed in polynomial time [3].

Corollary 30. Subset Vertex Cover can be solved in polynomial time on circular-arc graphs.

As interval graphs are circular-arc, Corollary 30 also holds for interval graphs, but we also note that the result for interval graphs 
already follows from Theorem 4.

7. Conclusions

Apart from giving a dichotomy for Subset Vertex Cover restricted to instances (𝐺,𝑇 ,𝑘) where 𝐺[𝑇 ] is 𝐻 -free (Theorem 8), 
we gave a partial classification of Subset Vertex Cover for 𝐻 -free graphs (Theorem 7). Our partial classification resolved two 
open problems from the literature and showed that for some hereditary graph classes, Subset Vertex Cover is computationally 
harder than Vertex Cover (if 𝖯 ≠ 𝖭𝖯). This is in contrast to the situation for graph classes closed under edge deletion. Hence, Subset 
Vertex Cover is worth studying on its own, instead of only as an auxiliary problem (as in [8]). In order to complete the classification 
of Subset Vertex Cover for 𝐻 -free graphs it remains to solve precisely the following open cases.

Open problem 1. Determine the computational complexity of Subset Vertex Cover for 𝐻 -free graphs, where

• 𝐻 = 𝑠𝑃2 + 𝑃3 for 𝑠 ≥ 2; or

• 𝐻 = 𝑠𝑃2 + 𝑃4 for 𝑠 ≥ 1; or
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• 𝐻 = 𝑠𝑃2 + 𝑃𝑡 for 𝑠 ≥ 0 and 𝑡 ∈ {5,6}.

Brettell et al. [8] asked what the complexity of Subset Vertex Cover is for 𝑃5-free graphs. In contrast, Vertex Cover is polynomial-

time solvable even for 𝑃6-free graphs [22]. However, the open cases where 𝐻 = 𝑠𝑃2 + 𝑃𝑡 (𝑠 ≥ 1 and 𝑡 ∈ {4,5,6}) are even open for

Vertex Cover on 𝐻 -free graphs (though a quasipolynomial-time algorithm is known [18,31]). So for those cases we may want to 
first restrict ourselves to Vertex Cover instead of Subset Vertex Cover, or aim for a quasipolynomial-time algorithm first.

We also note that our polynomial-time algorithms for Subset Vertex Cover for 𝑠𝑃2-free graphs and (𝑃2 + 𝑃3)-free graphs can 
easily be adapted to work for Weighted Subset Vertex Cover for 𝑠𝑃2-free graphs and (𝑃2 + 𝑃3)-free graphs. In this more general 
problem variant, each vertex 𝑢 is given some positive weight 𝑤(𝑢), and the question is whether there exists a 𝑇 -vertex cover 𝑆 with 
weights 𝑤(𝑆) =

∑
𝑢∈𝑆 𝑤(𝑢) ≤ 𝑘. In contrast, Papadopoulos and Tzimas [30] proved that Weighted Subset Feedback Vertex Set

is NP-complete for 5𝑃1-free graphs, whereas Subset Feedback Vertex Set is polynomial-time solvable even for (𝑠𝑃1 + 𝑃4)-free 
graphs for every 𝑠 ≥ 1 [29] (see also Theorem 5). The hardness construction of Papadopoulos and Tzimas [30] can also be used to 
prove that Weighted Odd Cycle Transversal is NP-complete for 5𝑃1-free graphs [9], while Subset Odd Cycle Transversal is 
polynomial-time solvable even for (𝑠𝑃1 + 𝑃3)-free graphs for every 𝑠 ≥ 1 [8] (see also Theorem 6).

Finally, we recall from Theorem 4 that Subset Vertex Cover can be solved in polynomial time on chordal graphs by using a 
reduction to Vertex Cover on perfect graphs and applying the linear programming method of [21]. However, it is not known if this 
algorithm is strongly-polynomial. In contrast, we gave a purely combinatorial algorithm for probe split graphs in Theorem 17 and 
for probe interval graphs in Corollary 30. This makes the following question interesting.

Open problem 2. Give a combinatorial algorithm for Subset Vertex Cover om the class of chordal graphs.

A standard approach for Vertex Cover on chordal graphs is dynamic programming over the clique tree of a chordal graph. However, 
a naive dynamic programming algorithm over the clique tree does not work for Subset Vertex Cover. This is because we may need 
to remember an exponential number of subsets of a bag (clique) and the bags can have arbitrarily large size. Hence, to solve Open 
Problem 2 new ideas are needed.
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