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A B S T R A C T

We propose Dual-Branch Network (DBNet), a novel deepfake detection framework that addresses key limita-
tions of existing works by jointly modeling 3D-temporal and fine-grained texture representations. Specifically,
we aim to investigate how to (1) capture dynamic properties and spatial details in a unified model and (2)
identify subtle inconsistencies beyond localized artifacts through temporally consistent modeling. To this end,
DBNet extracts 3D landmarks from videos to construct temporal sequences for an RNN branch, while a Vision
Transformer analyzes local patches. A Temporal Consistency-aware Loss is introduced to explicitly supervise
the RNN. Additionally, a 3D generative model augments training data. Extensive experiments demonstrate our
method achieves state-of-the-art performance on benchmarks, and ablation studies validate its effectiveness in
generalizing to unseen data under various manipulations and compression.
1. Introduction

The emergence of generative models has enabled widespread gen-
eration of advanced deepfakes for malicious impersonation and the
spread of misinformation. As deepfakes grow increasingly realistic
and accessible, reliable detection is urgently needed. However, cur-
rent forgery identification remains challenging due to limited labeled
datasets and lack of unified representations to capture faces’ rich
multi-modal nature. Additionally, deepfakes exhibit subtle temporal
inconsistencies that frame-level analysis fails to identify. To robustly
address these pressing issues, we propose Dual-Branch Network (DB-
Net), a novel solution that leverages both 3D-temporal and fine-grained
texture modeling in an end-to-end trainable framework to provide
comprehensive spatial–temporal forgery detection against emerging
deepfake threats.

Existing deepfake detection approaches can broadly be categorized
into image-level methods analyzing individual frames through static
analysis [1–12] and video-level techniques considering temporal fea-
tures to model dynamics over sequences [13–22]. However, both cat-
egories exhibit limitations. While video-level approaches leverage se-
quences, they do not fully capture dynamics from intrinsic properties of
3D facial attributes. Furthermore, approaches extracting hand-crafted
spatial or temporal features [23] lack flexibility, failing to generalize
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across manipulation techniques as attackers intentionally modify tar-
geted cues. Specifically, prior work extracts iris color [23] but forgers
can easily avoid this. There remains a need for data-driven multi-modal
methods dynamically modeling appearance and dynamics through la-
tent 3D representations to achieve robustness against a wide range of
adversarial attacks.

Recent works have explored improving deepfake detection via new
architectures like Vision Transformers leveraging self-supervision to
capture long-range dependencies across frames [24,25], and RNN-
based analysis of 2D landmark sequences extracted from videos [16,
21]. While ViTs achieve high accuracy, they require large amounts of
data and computations. Landmark-based methods are sensitive to vari-
ations that obscure keypoints. Inspired by the successful 3D decomposi-
tion in [19,20], it is important to encode facial structure and dynamics
explicitly within a unified latent representation, rather than separately
modeling appearance and motion. However, existing approaches still
lack methods holistically leveraging both modalities through a spe-
cialized architecture optimized on intrinsic 3D facial attributes. This
remains a problem in achieving robustness against diverse manipula-
tions.

Meanwhile, existing methods aim to improve generalization through
domain adaptation [26] and multi-task learning [8,24,27]. However,
vailable online 4 February 2025
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attributes are modeled independently without capturing intrinsic cor-
relations between expressions, poses and identities through the under-
lying 3D facial structure. Liu et al. [12] focus exclusively on margins,
risking errors with complex backgrounds. Data augmentation, as dis-
cussed in [6,7], typically involves static 2D manipulations, which may
ack the necessary variability. Ideally, a data-driven paradigm could
ynamically encode coupled attributes within a unified latent space, en-
bling self-supervised learning of constraints between variation factors
hrough an explicit modeling of semantics. This may allow techniques
o realistically extrapolate beyond training distributions without exten-
ive data, improving generalization capabilities for addressing the gap
n robust fake image detection.

We propose Dual-Branch Network (DBNet), a novel multi-modal
framework to holistically model intrinsic 3D facial properties and ad-
ress current limitations. Unlike prior work extracting landmarks and
extures independently [19,21], DBNet leverages both within a unified
atent 3D representation optimized through end-to-end training. Our
NN classifier encodes 3D shape dynamics rather than static landmarks

o overcome limitations of face reconstruction under variations. Mean-
hile, a Vision Transformer (ViT) with Patch Discriminator captures

ine-grained textures at localized levels to complement global analysis.
everaging FENeRF [28], our data-driven approach synthesizes training

examples by directly editing latent codes representing attributes in a 3D
face manifold. This enables infinite sample generation to model intrin-
sic correlations, optimized by our novel Temporal Consistency-aware
Loss. We hypothesize that by synergistically combining modalities in
this way, DBNet addresses gaps in robust detection. Through end-to-
end training on 3D properties, we aim to validate our hypothesis and
advance the field of forgery detection. Our main contributions are:

1. We leverage FENeRF to dynamically synthesize training data
through disentangled editing of 3D facial identities, poses and
expressions within a latent space, enhancing model robustness
over static augmentation.

2. We propose Dual-Branch Network (DBNet), a novel multi-modal
framework that synergistically leverages complementary 3D ge-
ometric and localized texture representations optimized through
end-to-end training.

3. We introduce a specialized Temporal Consistency-aware Loss to
supervise the RNN classifier, enhancing its ability to capture
subtle dynamic patterns indicative of manipulations.

4. We conduct extensive ablation studies and evaluate on multiple
datasets to validate the effectiveness, robustness and general-
ization of our data-driven spatiotemporal modeling approach
against various attacks.

2. Related work

We provide context on deepfakes and existing detection strate-
gies, originally stemming from generative facial synthesis. Deepfakes
have advanced using increasingly sophisticated techniques. Current
approaches include image-based and video-based methods, each with
limitations in comprehensive spatiotemporal analysis. Neural radiance
fields like FENeRF [28] enable disentangled editing of attributes within
a latent space capturing underlying 3D facial semantics. This provides
background on syntheses, generative modeling and prior work mo-
ivating our dual-branch DBNet framework for robust fake detection
hrough holistic representation of intrinsic properties.

2.1. Deepfake generation

Early methods posed constraints like fixed pose [29], migrating
faces across similar poses only. Three-dimensional representations ad-
dressed this by enabling reenactment across arbitrary poses [30–32],
though realism suffered without corresponding regions [33]. Deepfakes
beginning with FaceShifter [34] and GAN-based techniques [35,36]
2

m

improved realism through self-supervised learning of intrinsic face
properties and scene context. However, they remain constrained by
limited, homogeneous training data. Uncommon expressions or poses
from unseen identities challenge generalizability. For detection, gener-
ated faces may not be reliably distinguished based on appearance alone,
as techniques capture photorealism across seen data. Detectors must
therefore leverage higher-order inconsistencies like temporal dynamics
poorly represented in restricted datasets. This implies challenges for
existing approaches reliant on posed attributes.

2.2. Deepfake detection

Image-Level Deepfake Detection Early image-level approaches
xploited spatial artifacts but suffered from overfitting and neglecting

temporal cues [1,23,34,37,38]. More recent works aimed to learn
generalized features across representations rather than focusing on
pecific manipulations [2,3]. While others emphasized modeling global
elations in spectral domains to capture nonlocal inconsistencies [4,5].

Some methods localized manipulated regions through attention
maps [39,40] or identity features [41] to inform decisions. More
recently, techniques leveraged local perturbations [10] and cross-modal
learning [11] to improve robustness against various fake qualities. Liu
et al. [12] explored distributed systems to address dataset biases. How-
ever, image-level analysis remains limited due to neglecting important
temporal dynamics between frames indicative of manipulations. Ad-
dressing this gap through modeling intrinsic spatiotemporal properties
is crucial for robust deepfake detection.

Video-Level Deepfake Detection Early works started analyzing
emporal cues in isolation [13–16] like mouth movements [22] or

eyeblinks [42,43], lacking a holistic approach. Recent methods jointly
modeled spatial–temporal relationships via inconsistency learning [44],
3D/Transformers encoding dependencies [45,46]. Some introduced at-
tention/relational learning with dynamic masking [17] or dual-branch
usion [18]. Additionally, a few leveraged rich 3D structures through

component decomposition/selection [19,20,47] or geometric feature
enhancement [21].

However, analyzing modalities in isolation or focusing on localized
rtifacts limits generalization against complex manipulations. Most
rior arts also constrain detection to specific manipulation types.
he key gap remains in methodologies offering generalized detec-
ion through joint spatiotemporal modeling of intrinsic relationships
ithout such constraints. Our work aims to address these challenges

hrough a holistic learning framework.
Deepfake Detection with Vision Transformer ViTs demonstrated

success across vision tasks [48–50]. Many early works applied ViTs
o deepfake detection [45,51], achieving competitive performance
ut sacrificing efficiency. More recent methods leveraged ViTs’ long-
ange modeling through two-branch architectures [5,52] or auxiliary

tasks [24] to capture multi-domain inconsistencies.
However, each approach has limitations, such as only targeting

dentity [41] or disrupting frame continuity [53]. Bai et al. [24] re-
quired muscle annotations while Khormali et al. [54] ignored effi-
iency. UIA-ViT [55] and FA-ViT [25] also demand large datasets. Re-

sizing frames in TALL-Swin [56] risks losing spatial details. This high-
lights the need for ViT-based methods balancing performance, general-
izability and efficiency without constraints or additional data require-
ments. While achieving progress, gaps remain in holistically addressing
aforementioned challenges through joint spatiotemporal modeling.

2.3. Data augmentation

Overfitting remains a challenge, where dropout helps but data aug-
mentation plays a crucial role in enriching distributions. Early works
applied basic 2D transformations [57,58] with limitations in generating
iverse varieties beyond original datasets. Some explored temporal
anipulations like dropout, repetition and blending [59] or random
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erasing of frames/regions [58,60,61] for video representations. How-
ever, temporal modifications do not introduce new poses or identities.
Generative models were also used, such as Transformers conditioned
on noise [62] or reference images [27] to synthesize data. However,
ariability remained limited. 3D decomposition implicitly augmented
ata [20] but relied on reconstruction accuracy.

A key gap is the inability to dynamically synthesize infinite varieties
f poses and identities beyond original samples. 3DMM-based recon-
truction [63] generates rotated faces but depends on precise landmark
etection. This highlights the need for a data-driven 3D generator
uited for limited monocular face datasets. Inspired by advances in 3D
ace analysis [20], we aim to synthesize samples through 3D recon-
truction. We leverage FENeRF [28], an implicit neural representation
rained on images and maps. By editing attributes in its disentangled
atent space, FENeRF supports unlimited generation without multi-view
onstraints, informing our augmentation approach.

Specifically, FENeRF [28] builds upon NeRF [64], which achieves
igh fidelity 3D reconstruction through attribute editing but relies
n multi-view inputs requiring large datasets. FENeRF addresses this
imitation with an implicit neural representation trained on paired
mages and maps. By directly modeling the 3D generator rather than
itting 3DMMs, FENeRF supports dynamic editing of attributes in latent
pace, enabling unlimited augmentation tailored for face datasets that
rimarily contain monocular views.

3. Method

We propose Dual-Branch Network (DBNet) for face forgery detec-
tion, as shown in Fig. 1. DBNet leverages a 3D generator pretrained
with FENeRF to encode identity, pose, and expression in shape and
exture latent codes 𝑧𝑠 and 𝑧𝑡, respectively. These codes are utilized
o reconstruct facial geometry and address overfitting through data
ugmentation. DBNet extracts landmark coordinate sequences 𝐴 and
ifference sequences 𝐵 over time from a suspicious video 𝑉 . An RNN
odel 𝑅(⋅) analyzes the temporal dynamics by taking 𝐴 and 𝐵 as input

o produce a probability 𝑔 = 𝑅(𝐴, 𝐵) of suspiciousness. Concurrently, a
ision Transformer 𝑉 𝑃 𝐷(⋅) independently analyzes the spatial features

rom the entire video 𝑉 to output another probability 𝑣 = 𝑉 𝑃 𝐷(𝑉 ). The
edicated branch for extracting 3D facial landmarks, along with their
patial coordinates and temporal differences, is integral to DBNet’s de-
ign, enhancing robustness. This architecture enables effective 3D data
ugmentation, providing additional insights. By leveraging comprehen-
ive 3D representations through FENeRF, DBNet’s dual-branch structure
ntegrates 3D information with traditional cues, significantly improving
orgery detection performance. This approach surpasses conventional
ethods that rely on basic data augmentations like Cutout or Erase,

nsuring that the 3D data informs both the RNN and Vision Transformer
omponents. Ultimately, the integration of the probabilities 𝑔 and 𝑣
hrough weighted fusion, characterized by 𝑃 = 𝜃 ⋅ 𝑔 + (1 − 𝜃) ⋅ 𝑣, allows
BNet to leverage both temporal consistency and spatial understand-

ng. This comprehensive assessment of spatial–temporal cues leads to
obust detection through DBNet.

3.1. 3D editable face for data augmentation

We leverage the FENeRF technique [28] to generate editable 3D
faces for data augmentation. FENeRF represents faces in a latent space
hat disentangles identity, pose, and expression attributes through a
ovel 3D-aware generator. Using two decoupled latent codes, it pro-

duces view-consistent and locally-editable portrait images with spatial-
aligned 3D volumes and shared geometry. This enables programmatic
editing of 3D facial geometry in the latent domain to synthesize addi-
tional training samples with diverse pose and identity configurations
eyond the original dataset. To ensure temporal consistency in gen-

erated videos, we apply the same modifications uniformly across all
3

frames of a video, maintaining the shape and identity to reflect the
same person throughout. Different augmentation strategies, such as
altering only expression or both shape and expression, are applied
across videos to ensure dataset diversity. Unlike conventional 2D im-
age manipulations, FENeRF’s approach through intrinsic 3D structural

odeling is crucial. Dynamically augmenting the data by editing 3D
ttributes through FENeRF facilitates improving the model’s generaliza-
ion against overfitting. This addresses the critical challenge of robustly
etecting faces across various poses, lighting conditions, and identities
ot present in the original training distribution for forgery detection.
ote that FENeRF-generated samples differ from deepfakes as they
re designed for controlled augmentation of training data, improving
etection capabilities by varying facial attributes. While these synthetic
amples are technically ‘fake’, their purpose is to enhance model robust-
ess, not to deceive. In contrast, deepfakes use advanced techniques to
reate misleading content for deceptive purposes.

FENeRF trains a generator producing 3D face models. It takes two
isentangled latent codes - a texture code 𝑧𝑡 for appearance and a shape
ode 𝑧𝑠 for geometry. These disentangled codes are crucial for robust-
ess, allowing changes to looks without impacting structure. Separating
𝑡 and 𝑧𝑠 enables FENeRF to edit traits independently through its
isentangled editing. This facilitates generating extensive training data
y varying the disentangled codes separately, improving the model’s
bility to detect manipulated faces across different poses and identities.
he generator is formulated as:

𝐺 ∶ (�̂� , 𝑑 , 𝑧𝑠, 𝑧𝑡, 𝑒𝑐 𝑜𝑜𝑟𝑑 ) → (𝜎 , 𝑐 , 𝑠). (1)

where the input landmarks 𝑋 are calibrated to �̂� using Kalman filter-
ing [65], while 𝑑 and 𝑒𝑐 𝑜𝑜𝑟𝑑 represent viewing direction and the learned
positional feature. The outputs 𝜎, 𝑐, 𝑠 represent the density, color, and
semantic fields capturing 3D structure. Specifically, 𝜎 is the viewpoint-
independent density field, 𝑐 is the color field defined by 𝑧𝑡, and 𝑠 is
the semantic field defined by 𝑧𝑠, enabling precise and independent
manipulation of facial attributes such as identity and expression.

Once trained, the FENeRF generator can synthesize additional sam-
les by editing the disentangled codes 𝑧𝑠 and 𝑧𝑡 to induce variations
n attributes. This mitigates overfitting without disrupting 3D face
eometry. Internally, it represents faces as density 𝜎, color 𝑐, and
emantic 𝑠 fields. Crucially, 𝑧𝑠 and 𝑧𝑡 can be edited independently:
odifying 𝑧𝑠 alters shape while keeping texture via 𝑧𝑡 constant, and

ice versa. Stereo rendering reconstructs images and semantics by
ccumulating color 𝐶(𝑟), defined as the line integral of 𝑐 weighted by
and transmittance 𝑇 in Eq. (2), and semantics 𝑆(𝑟) in Eq. (3) along

camera rays. Using separate equations ensures changes to one attribute,
like texture with 𝑧𝑡, do not inadvertently impact shape defined by 𝑧𝑠,
preserving photo-realism.

𝐶(𝑟) = ∫

𝑡𝑓

𝑡𝑛
𝑇 (𝑡)𝜎(𝑟(𝑡))𝑐(𝑟(𝑡), 𝑑)𝑑 𝑡 (2)

Similarly, equation (3) defines 𝑆(𝑟) as a line integral of semantic 𝑠
weighted by 𝜎 and 𝑇 .

𝑆(𝑟) = ∫

𝑡𝑓

𝑡𝑛
𝑇 (𝑡)𝜎(𝑟(𝑡))𝑠(𝑟(𝑡), 𝑑)𝑑 𝑡 (3)

Transmittance T(t) captures density integration along the ray. In
ractice, we approximate Eqs. (2) and (3) in a discretized form fol-
owing NeRF [64]. The generator trained on CelebAMask-HQ and

FFHQ datasets is used to reconstruct FaceForensics++ (FF++) faces,
enerating additional data through disentangled shape/texture code
nterpolation. This data augmentation aids our method in generalizing
o detect various manipulated images by expanding the training distri-

bution while respecting geometric constraints. Fig. 3 visualizes example
generated faces.
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Fig. 1. Overview of the DBNet architecture. (a) The input video is processed to extract landmark coordinate sequences 𝐴 and difference sequences 𝐵 over time. (b) The Dual-Branch
layer contains two distinct classifiers: an RNN classifier (c) analyzes the temporal dynamics by taking 𝐴 and 𝐵 as input, while a Vision Transformer classifier (d) analyzes the
spatial features by taking image patches as input. Both classifiers output probabilities of suspiciousness, which are fused to classify the input video.
3.2. Detection

Our detection model leverages both temporal dynamics and spa-
tial texture cues for comprehensive face forgery analysis. Alongside
the RNN classifier that encodes temporal geometric sequences from
3D facial landmarks, a Vision Transformer with Patch Discriminator
(VPD), i.e. ViT+PD, independently examines localized textures at a
fine-grained level. The VPD operates by dividing the input facial im-
ages into small patches and processing them through a transformer
architecture to capture subtle, spatially-distributed texture inconsisten-
cies that may indicate manipulation. This fine-grained spatial analysis
complements the RNN’s temporal modeling, as texture anomalies can
provide crucial evidence of face forgeries that may not be apparent
from solely analyzing dynamic facial movements. The outputs from the
RNN and VPD classifiers are then fused, enabling a holistic understand-
ing that integrates both temporal and spatial perspectives for robust
face forgery detection. This end-to-end trainable framework that jointly
leverages 3D facial dynamics and localized texture representations aims
to achieve comprehensive detection capabilities against diverse forgery
attacks.

3.2.1. Face preprocessing
The preprocessing stage begins by segmenting the input video into

𝐷 clips of length 𝐿 frames. It then uses the DLIB face detector [66] to
precisely extract the facial regions-of-interest (ROIs) from each frame
by locating faces. The extracted ROIs are cropped and resized to serve
as input to both the VPD classifier and the 3D landmark generation
process. Obtaining accurate 3D facial landmarks is crucial for analyzing
face geometric properties. While methods like 3DDFA [67] can directly
4

estimate 3D landmarks from 2D images by leveraging 3D Morphable
Models (3DMM) [63] and Principal Component Analysis (PCA), we
opt for the FENeRF approach [28]. FENeRF utilizes a 3D spatial align-
ment to correlate the landmarks with corresponding facial semantics,
preserving the high-frequency geometric details essential for compre-
hending the structural integrity of the face. Although this prioritizes
accuracy over computational speed, the enhanced 3D representation
provided by FENeRF is crucial for the subsequent spatio-temporal
analysis in our face forgery detection framework.

The coordinates of the 𝛼-th landmark in the 𝑖th frame are rep-
resented as a 3D vector 𝑝𝛼𝑖 = [𝑥𝛼𝑖 , 𝑦𝛼𝑖 , 𝑧𝛼𝑖 ]𝑇 , where 𝑥𝛼𝑖 , 𝑦𝛼𝑖 , 𝑧𝛼𝑖 denote
the Cartesian coordinates. This preprocessing extracts facial regions
and identifies 3D landmarks to facilitate our detection of spatial and
temporal inconsistencies through downstream RNN and transformer
classifiers.

3.2.2. RNN classifier
To effectively capture the subtle temporal artifacts indicative of

face manipulations, such as unnatural expressions and movements, we
leverage 3D facial landmarks as a key input. The 3D landmarks provide
a detailed geometric representation of the face, including shape, posi-
tion, and depth information, offering a more comprehensive description
of the facial dynamics compared to 2D landmarks. Recognizing the
strength of Recurrent Neural Networks (RNNs) in modeling tempo-
ral sequences and dependencies in video data, we employ an RNN
classifier that takes the 3D facial landmark sequences as input. By
analyzing the temporal patterns and inconsistencies exhibited in these
3D geometric features, the RNN classifier is well-suited to identify the
telltale signs of face manipulation, which often manifest as transient
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and time-dependent artifacts introduced during the forgery process.
This RNN-based approach allows our model to effectively detect these
ubtle temporal anomalies that frame-level analysis may miss, making
t a crucial component in our holistic face forgery detection framework.

As in Fig. 1, the RNN classifier models and analyzes temporal
equences of 3D facial landmark coordinates detected from each frame.

It extracts two input sequences — the Coordinate Sequence 𝐴 rep-
resenting facial movement patterns, and the Difference Sequence 𝐵
representing speed patterns. These are fed into a combination of RNN
modules (denoted as 𝑅𝑐 and 𝑅𝑑) and MLP to estimate the likelihood
of manipulation by detecting any abnormal movements or temporal
discontinuities in landmark trajectories over the video. By capturing
dynamics from 3D geometry over time, this component analyzes subtle
inconsistencies to aid our detection of face forgeries from temporal cues
in videos.

We utilize the 3D facial landmarks 𝑝𝛼𝑖 = [𝑥𝛼𝑖 , 𝑦𝛼𝑖 , 𝑧𝛼𝑖 ]𝑇 detected
from each frame. To construct inputs, the landmarks sequence 𝐿𝑖 =
[𝑝1𝑖 , 𝑝2𝑖 ,… , 𝑝𝑛𝑝𝑖 ]𝑇 , where 𝑛𝑝 represents the number of landmarks, is used
o generate the feature vector 𝛼𝑖 ∈ R3×𝑛𝑝 for each frame 𝑖 through:

𝛼𝑖 = [𝑥1𝑖 , 𝑦1𝑖 , 𝑧1𝑖 , 𝑥2𝑖 , 𝑦2𝑖 , 𝑧2𝑖 ,… , 𝑥𝑛𝑝𝑖 , 𝑦𝑛𝑝𝑖 , 𝑧𝑛𝑝𝑖 ]𝑇 (4)

The Coordinate Sequence 𝐴 ∈ R𝑛𝑙×𝑛𝑠𝑎 is constructed by stacking 𝛼𝑖
ver all frames as:

𝐴 = [𝛼1, 𝛼2,… , 𝛼𝑛𝑠𝑎 ]𝑇 (5)

where 𝑛𝑙 denotes the number of coordinate values per frame and 𝑛𝑠𝑎 is
the total number of frames. This sequence 𝐴 is input to the RNN module
𝑅𝑐 , producing the feature 𝐹𝐴 = 𝑅𝑐 (𝐴) representing facial dynamics. 𝐹𝐴
s then fed to an MLP and softmax to compute the probability 𝑃𝐴 of

being fake through:

𝑃𝐴 = Softmax(𝑀 𝐿𝑃 (𝐹𝐴)) (6)

The second feature vector 𝛽𝑖 represents speed of facial movements
etween adjacent frames. Specifically, as in the following equation,

𝛽𝑖 is obtained by computing coordinate differences between facial
landmarks in frames 𝑖 and 𝑖 + 1.

𝛽𝑖 = 𝛼𝑖+1 − 𝛼𝑖 (7)

The Difference Sequence 𝐵 ∈ R𝑛𝑙×𝑛𝑠𝑏 contains 𝛽𝑖 over all frame pairs
using Eq. (8), where 𝑛𝑠𝑏 is the total number of pairs.

𝐵 = [𝛽1, 𝛽2,… , 𝛽𝑛𝑠𝑏 ]𝑇 (8)

𝐵 is input to RNN module 𝑅𝑑 , producing feature 𝐹𝐵 = 𝑅𝑑 (𝐵)
modeling speed patterns to capture temporal discontinuities. 𝐹𝐵 is fed
to an MLP and softmax to compute probabilities 𝑃𝐵 using:

𝑃𝐵 = Softmax(𝑀 𝐿𝑃 (𝐹𝐵)) (9)

The final output g of our RNN classifier averages probabilities 𝑃𝐴
and 𝑃𝐵 , i.e., 𝑔 = (𝑃𝐴+𝑃𝐵)∕2, to jointly analyze coordinate and speed tra-
jectories for robust forgery detection, integrating spatial dynamics from
𝑃𝐴, which reflects facial movement patterns, with temporal changes
from 𝑃𝐵 , capturing speed inconsistencies. This combined approach
enhances the model’s sensitivity to subtle manipulations that might be
overlooked when examining each trajectory separately.

3.2.3. Temporal consistency-aware loss
Existing works typically use the binary cross-entropy loss for train-

ing, which disregards important temporal cues in video sequences by
reating each frame independently. This limits generalization to new
orgery types exhibiting subtle landmark trajectory changes over time.

e propose a Temporal Consistency-aware Loss (TCL) to address this.
CL explicitly captures the dynamics of facial landmark sequences, a
ey indicator of forgeries, thereby improving the RNN classifier’s per-
ormance. Unlike cross-entropy, it does not solely optimize for binary
lassification. TCL also accounts for intra-class variations to enhance
5

the model’s ability to detect unseen manipulation techniques by better
dhering to the inherent properties of temporal face data. Through di-
ect modeling of landmark motion patterns, our loss function enhances

training to leverage temporal consistency as an important forgery cue.
Our proposed loss contains two main components: Coordinate Se-

quence Loss (CSL) and Difference Sequence Loss (DSL). The CSL, de-
noted as 𝐿𝐶 , aims to capture subtle differences in facial coordinate
atterns between genuine and fake sequences. It measures the MAE
istance between the 𝐹𝐴 features of real and fake videos.

The MAE is sensitive to even minor deviations in the coordinates,
which is crucial for detecting the spatial changes that can occur in
manipulated videos.

𝐿𝐶 = MAE(𝐹𝐴−real, 𝐹𝐴−fake) (10)

where 𝐹𝐴−real and 𝐹𝐴−fake refer to the 𝐹𝐴 features of genuine and
forged videos, respectively. CSL prompts the model to discern co-
ordinate alterations induced by manipulation. Such spatial cues are
important indicators of forgery artifacts. By focusing on the spatial
arrangement of facial features, CSL helps the RNN to identify subtle
spatial discrepancies that are indicative of manipulations.

Similarly, DSL, denoted as 𝐿𝐷, leverages MAE to quantify differ-
nces in 𝐹𝐵 features representing landmark speed patterns.

𝐿𝐷 = MAE(𝐹𝐵−real, 𝐹𝐵−fake) (11)

Since facial movements are smooth and follow certain physiological
onstraints, any unnatural changes in speed or acceleration can be

indicative of forgery. DSL complements CSL by additionally capturing
temporal inconsistencies in speed dynamics, aiding accurate forgery
detection. Together, these loss terms directly model key spatial and
temporal characteristics to effectively train our model.

In addition to CSL and DSL, we introduce a Periodic Consistency
oss (PCL) denoted as 𝐿𝑝𝑒𝑟𝑖𝑜𝑑 𝑖𝑐 . This measures the consistency between
andmark speed patterns of the current frame and neighboring frames
sing MAE.

𝐿𝑝𝑒𝑟𝑖𝑜𝑑 𝑖𝑐 = MAE(𝐹𝐵−cur, 𝐹𝐵−next) (12)

where 𝐹𝐵−cur and 𝐹𝐵−next refer to the 𝐹𝐵 features of the current and
ubsequent frames, respectively. PCL enhances robustness to temporal
nconsistencies induced by manipulations by enforcing periodic con-

sistency in landmark movements. Facial expressions and movements
exhibit inherent rhythms and patterns like blinking that are too regular,
oo frequent, or even absent, which are not typically replicated in

manipulated videos.
The overall Temporal Consistency-aware Loss 𝐿𝑇 𝐶 combines CSL,

SL and PCL with weighting 𝜆1, 𝜆2 and 𝜆3:

𝐿𝑇 𝐶 = 𝜆1𝐿𝐶 + 𝜆2𝐿𝐷 + 𝜆3𝐿periodic (13)

The hyperparameters 𝜆1 = 0.25, 𝜆2 = 0.25, and 𝜆3 = 0.5 in the Tem-
poral Consistency-aware Loss (TCL) were determined through empirical
tuning to balance spatial (𝐿𝐶 ), temporal (𝐿𝐷), and periodic (𝐿𝑝𝑒𝑟𝑖𝑜𝑑 𝑖𝑐)
features during training. The equal weighting of 𝜆1 and 𝜆2 emphasizes
learning from spatial and temporal inconsistencies, enhancing model
robustness, while the higher 𝜆3 prioritizes periodic consistency to detect
subtle temporal anomalies indicative of manipulations. This strategic
weighting ensures a comprehensive understanding of the dynamics in
effective face forgery detection.

3.2.4. VPD classifier
While 3D landmarks effectively model facial dynamics, they alone

are insufficient to discern textures indicative of manipulations. Tradi-
tional CNNs operating on full images also incur high computational
costs. We propose utilizing a Vision Transformer with Patch Discrim-
inator (VPD) classifier to complement our approach. The VPD brings a

unique capability to analyze spatial hierarchies within image patches
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as input, capturing both global and local features that are essential for
nderstanding the context and details of facial expressions and textures.

By independently analyzing localized textures, the VPD extracts
omplementary static spatial representations to our RNN’s modeling of

dynamics. This dual approach ensures that both the temporal sequence
of facial movements and the spatial details within specific moments
are thoroughly examined, providing a more holistic understanding of
otential manipulations. It aids detection by identifying subtle inconsis-
encies not discernible from landmarks or entire images alone. The joint
odel leverages both global motion patterns and fine-grained local cues

or comprehensive and efficient forgery analysis.
The VPD classifier employs a Vision Transformer (ViT) for feature

extraction from input image patches. Unlike traditional usage, our ViT
omits the final MLP and softmax layers. In addition, we introduce a
sparse input strategy where only two frames are sampled from each 2-
second video clip. This increases efficiency while maintaining accuracy.
Specifically, we choose the first frame of each second and divide them
into non-overlapping patches 𝑇 ∈ R𝑛𝑝×𝑛𝑝 . 𝑇 is input to the ViT to obtain
initial features 𝑇 ′ ∈ R𝑛𝑝×𝑛𝑝×𝑑 , where 𝑑 is the dimension of each patch
feature. We downsample 𝑇 ′ to 𝑇 ′ ∈ R𝑝×𝑑 . The Patch Discriminator
𝑃 𝐷(⋅) is then applied to assign a manipulation probability �̂�𝑖 to each
patch to capture the local inconsistencies that may indicate forgery.

�̂� = 𝑃 𝐷(𝑇 ′) = [�̂�1,… �̂�𝑝] (14)

Finally, average pooling integrates the patch predictions to gen-
erate the overall classification result 𝑣 as follows. This integration of
ocal patch analyses contributes to the overall detection by provid-
ng a detailed view of the spatial distribution of potential manipula-
ions. This fine-grained analysis aids detection by modeling subtle local

inconsistencies.

𝑣 = 1
𝑝

𝑝
∑

𝑖=1
�̂�𝑖 (15)

To improve robustness and enable fine-grained detection, we im-
lement a patch-level data augmentation technique denoted as 𝑃 𝐿(⋅).
iven real/fake clips 𝐷𝑟𝑒𝑎𝑙∕𝑓 𝑎𝑘𝑒, two frames 𝐼𝑖 ∈ 𝐷 are randomly

elected and their KNN matches 𝐼 ′𝑖 found from the corresponding
atasets. The frames {𝐼1, 𝐼2, 𝐼 ′1, 𝐼 ′2} are divided into patches 𝑇 . Back-
round patches are removed and proportions shuffled at 40% realism,
ielding the blended patch set 𝑀 = 𝑃 𝐿(𝑇 ) ∈ R𝑛𝑝×𝑛𝑝 . 𝑀 is input to our
PD classifier denoted as 𝑉 𝑃 𝐷(⋅). For the 𝑖th patch in the 𝑗th frame,

its prediction is given by:

�̂�𝑖𝑗 = 𝑉 𝑃 𝐷(𝑀) (16)

We employ a binary cross-entropy loss 𝐿𝑏 at the patch level for
training.

𝐿𝑏 = − 1
𝑁

1
𝑚

𝑁
∑

𝑖=1

𝑚
∑

𝑗=1
[𝑣𝑖𝑗 log(�̂�𝑖𝑗 ) + (1 − 𝑣𝑖𝑗 ) log(1 − �̂�𝑖𝑗 )] (17)

where 𝑣𝑖𝑗 is the ground truth label. This formulation enhances robust-
ess to local artifacts through fine-grained modeling and balanced data

augmentation.

3.2.5. Final prediction
Our detection model achieves the final prediction 𝑃 through a

weighted fusion of the individual outputs 𝑔 and 𝑣 from the RNN
lassifier and VPD classifier. This is formulated as:

𝑃 = 𝜃 ⋅ 𝑔 + (1 − 𝜃) ⋅ 𝑣 (18)

where 𝑔 and 𝑣 encode the temporal geometric cues and localized
textures respectively. The learnable parameter 𝜃 determines the con-
tribution of each classifier to 𝑃 . This simple yet effective mechanism
ggregates their complementary strengths. The RNN classifier captures
ynamic patterns, while the VPD analyzes finer inconsistencies. Di-
ectly fusing features from these classifiers with a fully connected
6

c

layer, as initially tested, did not yield satisfactory results due to the
ismatch in feature dimensions and content. By optimizing 𝜃, our
odel combines 𝑔 and 𝑣 to improve classification, facilitating robust
etection by jointly leveraging 3D-temporal and texture modeling.

This integration generates a synergistic enhancement in forgery
detection capabilities. The VPD supplies a distinct set of spatial fea-
ures that augment the RNN’s analytical process. For example, upon
dentifying a localized textural anomaly, the VPD can alert the RNN to

focus its analysis on the dynamics within that area, searching for related
ovement irregularities. This collaborative mechanism also addresses
PD’s challenge in detecting subtle dynamic changes over time, which
re effectively identified by the RNN’s temporal analysis.

4. Experiments

4.1. Datasets

To rigorously evaluate our method, we leverage four prominent
ublic facial datasets. Comprehensive benchmarking against datasets
imulating diverse attacks aids in designing detection techniques robust
o emerging threats.

The Deepfake Detection Challenge dataset (DFDC) [68] contains
1133 authentic videos and 4080 synthetic videos generated using Deep-
Fake, GAN-based and traditional techniques. Its scale and breadth
of manipulations develop robust models. Celeb-DeepFake version 1
(CDF1) [69] comprises 408 genuine videos and 795 Deepfake videos.
As an early dedicated benchmark, it established baseline performance
measurements for the field. An extension, Celeb-DF version 2 (CDF2)
[69] advances the challenge with 590 real and 5639 manipulated
videos. Comparison to CDF1 gauges generalization against higher-
uality Deepfakes. FaceForensic++ (FF++) [38] incorporates 1000

original videos and alterations using Deepfakes (DF), Face2Face (F2F),
FaceSwap (FS), NeuralTextures (NT) at three resolutions, namely orig-
nal (raw), HD (c23), and LD(c40). It assesses manipulations and com-
ression artifacts. For training, we utilize FF++’s diverse manipulations
nd degradations. CDF1 and CDF2 serve as hold-out tests to track
rogress versus advancing Deepfake technologies over time. Precise
ataset definitions strengthen experimental reliability and real-world
ranslatability.

4.2. Implementation details

Precisely documenting model configurations allows reproducibility
nd fair analysis. In pre-processing, 𝐿 is set to 60 and video clips are
ropped to 224×224 after resizing to standardize input size.

The RNN classifier adopts a stacked GRU architecture. Between the
input and GRU, the dropout rate 𝑑 𝑟1 is set to 0.25 based on prior
works [16]. Additional dropout layers utilize 𝑑 𝑟2=0.5 for regulariza-
tion. The Adam optimizer uses a learning rate of 0.001 and batch size
of 1024. Training occurs for 500 epochs to optimize sequence modeling.

In the VPD classifier, the Vision Transformer (ViT) divides inputs
into 14×14 patches before projecting each to a 192-dimensional embed-
ding space. The Patch Discriminator’s Adam parameters mirror the RNN
at 0.001 learning rate and 1×10−6 weight decay. Its batch normalization
and LeakyReLU activation facilitate texture learning. Only 40 epochs
suffice due to the shallow discriminator design.

4.3. Evaluation

4.3.1. Comparison with state-of-the-art
We compare our proposed method DBNet with other state-of-the-

rt approaches on multiple publicly available datasets for facial forgery
detection. Specifically, we consider the FaceForensics++ (FF++) [38]
dataset for in-distribution evaluation where models are trained and
tested on the same dataset distribution. To test the generalization
apability, we evaluate on other out-of-distribution datasets including
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Table 1
Performance on In-Datasets and Cross-Datasets. Our models are trained on FaceForen-
sics++ and tested on various datasets. Our model performs best on DFDC, CDF1, and
CDF2.

Method Year in-set cross-set

FF++ DFDC CDF1 CDF2

Xception [38] 2019 94.86 69.70 62.30 65.50
F3-Net [2] 2020 98.10 67.45 63.57 68.69
Face X-ray [6] 2020 98.52 70.04 72.98 74.22
FTCN [45] 2021 99.73 74.01 – 75.58
LRNet [21] 2021 99.67 74.82 70.77 71.49
FD2Net [20] 2021 98.76 67.70 – 70.10
M2TR [5] 2022 97.84 69.94 68.57 69.94
E2E Learning [71] 2022 99.34 75.99 – 74.62
UIA-ViT [55] 2022 99.33 69.28 74.33 69.41
3DFS [47] 2022 97.19 70.57 – –
FM-Net [19] 2023 98.70 72.35 – 72.04
F2Trans [4] 2023 99.74 70.39 76.29 77.61
CADDM [72] 2023 99.50 – 80.27 76.75
TALL-Swin [56] 2023 99.87 76.78 79.39 –
TI2Net [73] 2023 99.75 72.03 66.64 68.22
DBNet Ours 99.28 77.01 80.50 78.45

Deepfake Detection Challenge (DFDC) [68], Celeb-DF v1 (CDF1) and
Celeb-DF v2 (CDF2) [69], presenting a variety of challenges due to their
unique data distributions and potential variations in forgery techniques.
FF++ is one of the largest and most influential datasets containing over
1000 real and manipulated videos (spliced into frames). DFDC, CDF1
and CDF2 datasets contain manipulated videos generated by different
techniques, providing more challenging cross-dataset evaluations. We
utilize the AUC score to evaluate the predictive performance as it
accounts for true positive and false positive rates in a balanced manner.

As in Table 1, our DBNet achieves competitive AUC performance
compared to state-of-the-art methods on the FF++ in-distribution test
set, demonstrating the effectiveness of jointly modeling dynamics and
textures. Our AUC score on the FF++ dataset, while not the highest,
reflects the influence of facial landmark detection accuracy on our
model, as more precise landmark detection enhances feature extraction
and classification quality. We currently utilize DLIB [70] for its efficient
and accurate landmark detection capabilities, which also allow for easy
implementation. As in Table 2, the performance of various models indi-
cates a direct correlation between landmark accuracy and AUC scores,
further confirming its critical role in our implementation. Improving
this will be a focus in future work.

Our method’s robustness is demonstrated by its leading performance
in cross-dataset detection, effectively handling sophisticated and di-
verse forgeries. When testing on out-of-distribution datasets, DBNet
consistently outperforms other approaches, obtaining AUC scores of
77.01% on DFDC, 80.50% on CDF1, and 78.45% on CDF2. This val-
idates that leveraging 3D coordinates and localized textures enables
our model to better extract discriminative features transferable to dif-
ferent data distributions. Its architecture leverages 3D coordinates and
localized textures, enabling it to capture key features of facial forgeries
that are consistent across different datasets. The model’s exposure to
a diverse range of examples during training, possibly through data
augmentation and regularization techniques, could have contributed
to its ability to generalize effectively. In summary, the superior cross-
dataset generalization ability of DBNet underscores the robustness and
efficacy of our approach for facial forgery detection. The dual-branch
network design and specialized losses comprehensively exploit intrinsic
properties of facial attributes for this challenging task.

4.3.2. Analysis of data augmentation using FENeRF
This section analyzes and compares the effectiveness of our pro-

posed FENeRF data augmentation against Random-Erase and Face-
Cutout. Random-Erase [60] repaints groups of pixels of different shapes
on an image using face landmark information while Face-Cutout [58]
7

Table 2
AUC Scores across Facial Landmark Detection Models.

Method AUC Score

OpenFace [74] 99.05
DLIB [70] 99.28
MGCNet [75] 99.34
3DDFA V2[67] 99.59
3DDFA V3[76] 99.72

Fig. 2. Example of the Face-Cutout and Random-Erase method. (a) represents the
original fake face, while (b), (c), and (d) represent the cutouts of the mouth, eyes,
and nose respectively. (e) represents the Random-Erase method.

Fig. 3. FENeRF’s work on the FF++ dataset. (a) represents the original unaugmented
fake face with no data enhancement, (b) modified shape and expression information,
(c) modified shape information, (d) modified shape and pose information, and (e)
simultaneously modified shape, expression, and pose information.

further refines this approach by randomly selecting face landmarks and
uses convex hull to obtain polygons, strategically choosing the largest
mask based on pixel differences (Fig. 2). While they modify shape
by masking landmarks, FENeRF reconstructs 3D faces conditioned on
landmarks 𝑋, view 𝑑, and latent codes 𝑧𝑠, 𝑧𝑡 representing shape and
texture respectively as defined in Eq. (1). This enables editing of
not just shape (via 𝑧𝑠) but also expression (via 𝑧𝑠) through the 3D
representation. Additionally, poses can be modified by rotating 3D
faces, infeasible with Face-Cutout (Fig. 3). Incorporating Random-Erase
and Face-Cutout after generating FENeRF samples could potentially
enhance model performance, and we plan to explore this combination
in future work.

We assess facial manipulation detection accuracy using Area Un-
der the ROC Curve (AUC) scores on the DFDC, CDF1, and CDF2
datasets, as reported in Table 3 for models trained on augmented Facial
Forensics++ (FF++) images. While all tested augmentation techniques,
including the 2D transformations from the Albumentations library that
included techniques like RandomCutOut, RandomHorizontalFlip, and
Rotate, demonstrated moderate improvements, our proposed Facial
Expression Natural Augmentation with Representation Flow (FENeRF)
achieved consistent and significant gains across all tested datasets
and architectures. Notably, with 20% additional augmented samples,
FENeRF provided AUC improvements of up to 5.5% over baseline
methods like Xception, F3-NET, and FM-NET, highlighting its ability
to generalize across different model architectures. The improvements
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Table 3
AUC scores (%) of different models under various data augmentation techniques tested
on DFDC, CDF1, and CDF2 datasets.

Methods Testing datasets

DFDC CDF1 CDF2

Xception [38] 69.40 62.30 65.59
Xception+Erase [60] 71.93 65.08 68.21
Xception+Cutout [58] 72.11 66.24 68.87
Xception+FENeRF (10%) 73.62 68.01 70.18
Xception+FENeRF (20%) 74.25 68.88 70.84
F3-NET [2] 67.45 63.57 68.69
F3-NET+Erase [60] 71.08 65.99 71.78
F3-NET+Cutout [58] 70.92 66.48 72.12
F3-NET+FENeRF (10%) 71.65 67.62 73.10
F3-NET+FENeRF (20%) 72.19 68.51 74.03
FM-NET [19] 72.35 70.99 72.04
FM-NET+Erase [60] 73.96 72.15 74.01
FM-NET+Cutout [58] 73.44 73.00 74.22
FM-NET+FENeRF (10%) 74.59 74.87 76.18
FM-NET+FENeRF (20%) 75.03 75.59 76.87
Ours 72.55 75.21 78.45
Ours+Erase [60] 75.02 76.14 80.41
Ours+Cutout [58] 75.64 77.37 80.29
Ours+FENeRF (10%) 76.97 80.17 81.15
Ours+FENeRF (20%) 77.01 80.50 81.57

remain prominent in the more challenging CDF2 dataset, showcasing
the effectiveness of FENeRF in handling diverse manipulation artifacts.

To systematically analyze the influence of augmented data quan-
ity, we experimented with different proportions of FENeRF-augmented
amples. A 10% augmentation ratio already yielded substantial gains,
mproving AUC scores by up to 4.8%, while a 20% ratio further
trengthened detection capabilities across all models, maintaining the
ositive trend. This consistent improvement across DFDC, CDF1, and
DF2 highlights FENeRF’s ability to generate training samples that bet-
er capture 3D facial subtleties, such as expression and pose variations,
hich are critical for enhancing manipulation detection. For example,
M-NET, which already achieved strong baseline results, exhibited
arked improvements when augmented with FENeRF, with AUC scores

ncreasing by up to 4.8% on the CDF2 dataset. These results indicate
hat FENeRF is not only effective but also scalable across different
odel architectures and datasets.

FENeRF’s ability to disentangle and edit multiple facial attributes
such as identity, expression, and pose in the latent space allows it
to generate challenging yet realistic augmented samples, setting it
apart from simpler techniques like Random-Erase and Cutout, which
primarily modify shapes by masking landmarks. This capability leads to
 more diverse and representative training set, significantly enhancing
odels’ classification and generalization abilities. The strong perfor-
ance of models like FM-NET and ‘‘Ours’’ across all datasets, including

the challenging CDF2, further validates the effectiveness of FENeRF
in improving robustness against diverse manipulation techniques. In
onclusion, the results demonstrate that FENeRF does not only bridge
he gap between 2D augmentation and realistic 3D transformations

but also establishes a benchmark for improving manipulation detection
through innovative data augmentation strategies.

4.3.3. Effect of 3D coordinates
We investigate the impact of utilizing 3D facial landmark repre-

sentations in our approach. To objectively assess this, we remove the
VPD classifier and directly compare performance using only 2D vs
3D coordinates as input to the RNN branch. Table 4 reports the AUC
scores achieved on DFDC, CDF1, and CDF2 datasets. We observe an
mprovement of 1.15% on DFDC, 3.18% on CDF1, and 3.72% on CDF2

when 3D coordinates are employed instead of the conventional 2D
coordinates. This validates the effectiveness of explicitly modeling the
intrinsic 3D geometry captured by our landmark representation.
8

Table 4
AUC scores (%) of LRNet(2D) and our method (w/o VPD) tested on DFDC, CDF1, and

DF2 datasets. The best results are boldfaced.
Methods Testing datasets

DFDC CDF1 CDF2

LRNet(2D) [21] 74.82 75.21 71.49
Ours (w/o VPD) 75.97 78.39 75.21

Prior works such as LRNet [21] exclusively rely on 2D landmarks
cropped from images, which lack crucial depth information retained in
our 3D coordinates. By encoding variation across the third dimension,
our approach provides richer cues benefiting the dynamic modeling
task. The strong AUC scores observed in CDF1 and CDF2 further empha-
size the robustness of our 3D representation in diverse and challenging
scenarios.

The results highlight 3D coordinates as a favorable input for the
RNN, empowering robust temporal sequence learning. In particular, the
consistent performance across all datasets, including the challenging
CDF2 dataset, demonstrate the adaptability and generalizability of our
approach. In summary, the results conclusively demonstrate the value
of leveraging 3D structural information over simple 2D landmarks. This
enhances our framework’s capability for comprehensive spatiotemporal
analysis and forgery detection across multiple datasets.

4.3.4. Robustness to video compression
Given the prevalence of compression artifacts in real-world videos,

e evaluate our approach’s resilience against this source of variability.
Fig. 4 reports AUC scores on the FF++ dataset compressed at levels
c23 and c40, achieved by our model versus state-of-the-arts M2TR,
TALL-Swin, F3Net, and FM-Net.

At the lightly compressed c23 level, TALL-Swin exhibits the best
accuracy of 99.87%. However, as seen from the steeper performance
drop at c40, it is significantly impacted by compression. In contrast, our
method demonstrates the highest c40 AUC of 94.53%, dropping only
4.75% from c23. This validates our greater robustness to compression
artifacts introduced by the encoding process. Our localized patch-level
training helps filter out redundant high-frequency components while
focusing on semantic-level manipulations. Specifically, the degradation
value of our model is reduced from 5.36% to 4.75%. This imbues the
bility to distinguish intrinsic variabilities from external distortions,
nabling stable operation even under heavy compression. Other works
elying on global features or isolated patterns remain comparatively
usceptible. In summary, through quantitative comparisons, we verify
ur approach withstands quality degradation better than peers. This
esilience stems from effective modeling at localized granularities,
onferring an imperative trait for real-world applicability challenged
y diverse levels of compression in video collections.

4.3.5. Robustness to different manipulation types
We evaluate our model’s robustness across diverse manipulation

techniques. Table 5 reports accuracy on each FaceForensics++ method
when trained only on the remaining three. Our model achieves the
highest average accuracy of 89.31%, outperforming Xception [38], F3-
Net [2], MASDT [77], and FD2Net [20]. Notably, while FM-Net [19]
attains the best performance on the FS dataset (83.67%), our method
urpasses it on two out of the four manipulation methods, including
he challenging NT dataset where we achieve 80.31%, marking a
ignificant improvement over all competitors. This demonstrates the
obustness imparted by our multi-modal representation.

Through end-to-end optimization of latent semantic cues, our ap-
proach is better equipped to capture subtle irregularities introduced
across a wide spectrum of manipulations. This is further evidenced by
our model’s balanced performance across all four manipulation types,

highlighting its generalization capabilities compared to prior works.
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Fig. 4. AUC scores (%) of different methods under video compression. The orange
and blue bars respectively denote the model’s performance under c40 and c23 video
compression levels. Additionally, the green bar represents an ablation study using
the entire image input instead of patch-based input. Our model demonstrates the
most robust performance, with the least degradation across these varying compression
conditions.

Table 5
Quantitative results (ACC) on the FaceForensics++ (LQ) dataset with four manipulation
methods: DeepFakes (DF), Face2Face (F2F), FaceSwap (FS), and NeuralTextures (NT).
The best results are boldfaced.

Method Train on remaining three

DF F2F FS NT Avg

Xception [38] 98.56 90.17 63.44 69.98 80.54
F3-Net [2] 98.94 91.33 63.27 76.15 81.58
MASDT [77] 97.84 96.27 67.89 78.23 85.06
FD2Net [20] 98.51 89.01 68.60 71.11 81.81
FM-Net [19] 99.45 94.64 83.67 79.22 89.23
Ours 99.37 96.38 81.19 80.31 89.31

In contrast, methods like Xception and FD2Net show noticeable weak-
nesses on FS and NT, while MASDT achieves competitive performance
on F2F but lags behind on other manipulations.

FENeRF augmentation and VPD analysis improve the model’s ability
to distinguish subtle differences by highlighting underlying inconsis-
tencies. The inclusion of VPD enhances our model’s robustness across
diverse manipulations and ensures thorough analysis of augmented
samples, contributing to superior performance. Table 4 clearly high-
lights the performance drop when VPD is excluded, reinforcing its
contribution to improved detection capabilities, as shown in Table 1.
While data augmentation enriches the training data, VPD ensures better
identification of subtle irregularities.

In summary, the results reinforce that our method withstands di-
verse forgery techniques better than competitors. This robustness comes
from its capacity to holistically comprehend intrinsic facial properties
across multiple modalities and manipulation types, achieving superior
performance consistently.

4.4. Ablation study

4.4.1. Effect of dual-branch network (DBNet)
We perform ablation studies to analyze our model. Table 6 reports

results on FF++ c40 for variants using VPD classifier alone, RNN
classifier alone, and the full Dual-BranchNet.

Interestingly, the VPD classifier achieves competitive 93.67% AUC
and 92.58% accuracy, highlighting localized textures as potent cues.
However, the RNN (93.99% AUC) surpasses VPD, validating 3D dy-
namics as superior. Crucially, fusing both modalities, our full model
accomplishes balanced top results — 94.53% AUC and 93.20% accu-
racy. No isolated modality is comprehensive; only a joint represen-
tation achieves optimal generalizability. Notably, training time com-
parisons are illuminating — our VPD classifier completes in 10 h
compared to 21 h for Xception [38], matching efficacy 50% faster
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Table 6
Ablation study on the efficacy of our model variants on FF++ c40. We report the AUC
(%) and ACC (%) to quantify the effectiveness of incorporating the RNN and VPD
components in isolation and in tandem.

RNN VPD AUC ACC

– ✓ 93.67 92.58
✓ – 93.99 92.61
✓ ✓ 94.53 93.20

Table 7
AUC scores (%) of loss function variants (CSL, DSL, PCL) on FF++ c40.

BCE CSL DSL PCL AUC

✓ – – – 93.32
✓ ✓ – – 94.03
✓ – ✓ – 94.10
✓ – – ✓ 94.21
✓ ✓ ✓ – 94.35
✓ ✓ – ✓ 94.45
✓ – ✓ ✓ 94.50
✓ ✓ ✓ ✓ 94.53

through patch-focused efficiencies. Our RNN is even more economical
at 3 h.

In summary, the DBNet design proves favorable, leveraging com-
plementary strengths through effective fusion outperforming any single
specialized modality. This validates benefits of multimodal modeling
while improving training efficiency.

4.4.2. Effect of temporal consistency-aware loss
We conduct ablation experiments to evaluate our loss function’s

effectiveness. Table 7 reports AUC for models trained with different
BCE+TCL sub-loss combinations on FF++ c40. Inclusion of any indi-
vidual sub-loss (CSL: spatial, DSL: temporal, PCL: periodic) improves
performance by ∼ 1%, validating their distinct contributions. Com-
bining multiple losses achieves further gains, with the full BCE+TCL
achieving top 94.53% AUC – a significant 1.21% relative increase over
BCE alone. This clearly demonstrates TCL’s ability to comprehensively
supervise the RNN, enhancing learned representations. By jointly mod-
eling consistency across frames, it guides the model to focus on subtle
dynamics indicative of manipulations rather than isolated artifacts.

Recognizing the limitations of standard classification losses in ad-
dressing the unique challenges of face forgery detection, our framework
introduces a specialized Temporal Consistency-aware Loss (TCL). Prior
works have shown that naively training a spatio-temporal network
with a binary cross-entropy (BCE) loss can lead the model to rely on
‘‘easy’’ but unreliable manipulation artifacts, failing to uncover the
full scope of forgery clues [59]. Furthermore, optimizing each training
sample equally, as in the traditional BCE framework, makes it difficult
to effectively capture the underlying temporal complexities in facial
expressions, which is crucial for robust generalization [78]. In contrast,
the TCL is designed with a deeper understanding that facial forgery
detection transcends conventional classification — it requires a pro-
found comprehension of the subtle, time-evolving patterns in genuine
facial dynamics. By explicitly incorporating multifaceted consistency
measures to constrain the RNN training process, the TCL loss function
empowers the model to better exploit the temporal information embed-
ded in the 3D landmark sequences, leading to superior performance in
detecting a diverse range of face manipulations.

4.4.3. Effect of the mixing ratio in the VPD
We investigate the impact of manipulating the mixing ratio 𝑟 of

real to total patches fed to the VPD classifier during training. Fig. 5
plots the AUC scores achieved on various datasets for ratios consid-
ered between 0.3–0.7. The results clearly show that extreme ratios,
whether heavily biased towards real or fake faces, negatively impact
performance. This validates that an imbalanced distribution of data
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Fig. 5. AUC scores (%) achieved on various datasets for different ratios (𝑟). The blue
line delineates the performance on the DFDC dataset, whereas the red line corresponds
to that on the FF++ dataset. The x-axis signifies the varying values of the ratio 𝑟, while
the ordinate corresponds to the respective AUC scores.

impedes the classifier’s ability to distinguish manipulations accurately.
Interestingly, ratios closer to 0.5 produce superior results, with 0.4
achieving the best AUC in most cases. A slightly higher proportion of
fake faces provides informative irregularity cues without overwhelming
the classifier. This observation aligns with the objective of detecting
fake samples. In summary, the quantitative evaluation proves that
neither heavily skewed nor perfectly balanced mixing yields optimal
outcomes. An intermediate ratio of 0.4–0.5 real to total patches elicits
the most robust and discriminative learning within the VPD framework
for the task. This finding provides useful guidance on configuring the
training data presentation.

4.5. Limitations

While our approach enhances robustness and generalization, several
limitations remain. The pre-processing strategies of FENeRF augmenta-
tion and 3D landmark extraction increase training overhead. Per-frame
reconstruction and separate model passes during inference also induce
latency issues. Moreover, interpreting the temporal patterns learned
by the RNN and evaluating on more diverse data remain challenging.
Addressing efficiency, transparency, broad evaluation and multimodal
encoding through techniques like audio integration can help address
such challenges and realize this framework’s full potential for practical
large-scale deployment. Nonetheless, our work contributes meaningful
advances and provides promising directions for continued progress on
this important task.

5. Conclusion

We propose DBNet, a multimodal framework for face forgery de-
tection that leverages both spatial and temporal artifacts. It integrates
an RNN and VPD classifier operating on 3D landmarks and local
textures respectively, and employs a novel temporal consistency loss to
supervise the RNN. Additionally, FENeRF-based 3D data augmentation
reinforces representation learning. Extensive evaluations demonstrate
DBNet achieves state-of-the-art robustness and generalization abilities.
While pre-processing overhead and latency remain open challenges, our
work establishes promising directions towards large-scale, real-time de-
ployment through continued optimization of computational efficiency
and multisensory encoding. Overall, DBNet makes meaningful advances
on the critical task of face manipulation detection with room for
exciting future work.
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