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Abstract

The accurate forecasting of solar flares is considered a key goal within the solar physics and space weather
communities. There is significant potential for flare prediction to be improved by incorporating topological fluxes
of magnetogram data sets, without the need to invoke three-dimensional magnetic field extrapolations. Topological
quantities such as magnetic helicity and magnetic winding have shown significant potential toward this aim, and
provide spatiotemporal information about the complexity of active region magnetic fields. This study develops
time series that are derived from the spatial fluxes of helicity and winding that show significant potential for solar
flare prediction. It is demonstrated that time-series signals, which correlate with flare onset times, also exhibit clear
spatial correlations with eruptive activity, establishing a potential causal relationship. A significant database of
helicity and winding fluxes and associated time series across 144 active regions is generated using Space-Weather
HMI Active Region Patches data processed with the Active Region Topology (or ARTop) code that forms the
basis of the time-series and spatial investigations conducted here. We find that a number of time series in this data
set often exhibit extremal signals that occur 1–8 hr before a flare. This publicly available living data set will allow
users to incorporate these data into their own flare prediction algorithms.

Unified Astronomy Thesaurus concepts: Solar flares (1496); Solar active region magnetic fields (1975); Space
weather (2037)

1. Introduction

The forecasting of solar eruptions is one of the most
important practical issues in solar physics. Energetic particles
from solar flares can damage/degrade the electronic compo-
nents aboard satellites, while coronal mass ejections (CMEs)
have crucial impacts on critical infrastructure such as radio
communication, GPS signaling, and power grids. A recent
international collaboration performed a systematic comparison
of existing flare forecast methods (as well as developing the
statistical and methodological tools for this comparison)
(K. Leka et al. 2019a, 2019b). These methods are based on
analyzing photospheric magnetograms, which provide informa-
tion on the structure of the Sun's magnetic field as it passes
from the interior into the solar atmosphere. The efficacy of the
results is briefly summarized by the following text from
K. Leka et al. (2019a):

“Regarding the results, generally speaking, no method works
extraordinarily well; but we demonstrate that a fair number of
methods consistently perform better than various no-skill
measures, meaning that they do show definitive skill across
more than one metric.”

Similarly, M. K. Georgoulis et al. (2021) stated:
“In spite of being one of the most intensive and systematic

flare forecasting efforts to-date, FLARECAST has not managed
to convincingly lift the barrier of stochasticity in solar flare
occurrence and forecasting: solar flare prediction thus remains
inherently probabilistic.”

In short, what these two studies reveal is that while
significant progress has been made, there is still room for
improvement.
Magnetic topology, which can be quantified by the magnetic

helicity as a measure of the flux-weighted entanglement of a
magnetic field, has long been used as a diagnostic tool in the
analysis of solar active regions, e.g., E. Pariat et al. (2005,
2006, 2017), A. Nindos et al. (2003), Y. Liu & P. Schuck (2012),
K. J. Knizhnik et al. (2015), E. R. Priest et al. (2016),
F. P. Zuccarello et al. (2018), P. Vemareddy (2019), L. Liu
et al. (2019), R. Wang et al. (2018), R. Jarolim et al. (2023), and
K. Moraitis et al. (2024). The near perfect conservation of
magnetic helicity in the corona means one can estimate the helicity
content of active region fields from observational data (magneto-
gram data) via helicity fluxes at the photosphere (E. Pariat et al.
2005; S.-H. Park et al. 2010, 2021; P. Vemareddy 2019;
M. Korsós et al. 2020; K. Alielden et al. 2023).
Recently, two of the authors of this study demonstrated the

efficacy of a related quantity, the magnetic winding: the
entanglement of the field measured without flux weighting,
which can also be estimated from observational magnetogram
data (C. Prior & D. MacTaggart 2020). It was shown to provide
the first direct and unambiguous evidence of preexisting
twisted field structure emerging into the solar corona
(D. MacTaggart et al. 2021). It was also shown that imbalances
in current-carrying magnetic entanglement of developing active
region fields presaged the onset of flaring in a set of active
regions (B. Raphaldini et al. 2022, 2023) and, in addition, that
significant localized variance in these signatures often trailed
large X-class flares by ≈7 hr, providing evidence of the
potential for individual flare prediction. Finally in O. Aslam
et al. (2024), it was shown that spikes in the input of magnetic
winding correlated consistently both temporally and spatially
with the onset of CMEs in 28 of 30 active regions.
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To promote the routine use of both magnetic helicity and
winding flux estimation, Active Region Topology (ARTop;
K. Alielden et al. 2023) was released, an open-source software
that can calculate both helicity and winding fluxes as well as
various combinations and decompositions of these quantities.
The package provides time series of the net values of these
fluxes and also spatiotemporal time series of their density
distributions in the regions. The aim of this study is to
establish, based on a much expanded data set, the potential
predictive efficacy of combinations of information produced by
both the magnetic winding and helicity fluxes via ARTop with
a particular focus on the spatial aspect of these distributions. In
short, the ARTop package was aimed at generating meaningful
spatiotemporal time series from this data, and this study aims to
provide guidance as to how it might be used for flare
prediction.

In Section 2, we present the methods adopted and data set
analyzed in this study. In Section 4, a number of potential
predictive quantities are investigated using three example active
regions, while a more comprehensive data set is explored in
Section 5. Finally, our conclusions are presented in Section 6.

2. Methodology

Following a similar procedure to that outlined in O. Aslam
et al. (2024), we utilize two open-source codes, which are
detailed below, to investigate how solar eruptions may be
predicted. The first code calculates magnetic helicity and
magnetic winding input rates at the photosphere and is written
in C++ and python while the second code is an autonomous
low-coronal CME detection code written in IDL. In the
following subsections, the details of these two codes are
summarized, while the full details on their respective methods
can be found in K. Alielden et al. (2023) and T. Williams &
H. Morgan (2022).

2.1. Active Region Topology

ARTop (K. Alielden et al. 2023) is an open-source tool for
studying the input of topological quantities into solar
active regions at the photospheric level. ARTop utilizes
vector magnetograms (J. T. Hoeksema et al. 2014) from the
Helioseismic and Magnetic Imager (HMI; J. Schou et al. 2012)
aboard the Solar Dynamics Observatory in the form of Space-
Weather HMI Active Region Patches (SHARP) to create maps,
time series, and other metrics derived from input rates of
magnetic helicity and magnetic winding fluxes (see C. Prior &
D. MacTaggart 2020 for a detailed summary of their meaning
and importance in solar applications). The flux of magnetic
helicity has long been considered an important quantity in the
study of active regions and solar flares (A. A. Pevtsov et al.
2003; S.-H. Park et al. 2008; P. Vemareddy 2021; M. Korsós
et al. 2022; Y. Liu et al. 2023), the winding is a relativity novel
quantity, which has been shown to have additional predictive
efficacy (C. Prior & D. MacTaggart 2020; D. MacTaggart et al.
2021; B. Raphaldini et al. 2022; O. Aslam et al. 2024).

This study does not use all of the quantities calculated by
ARTop and so the following only provides a brief overview of
the critical quantities that are directly used here. The
fundamental geometrical quantity considered is the rotational
motion of field line footpoints at the photospheric surface P.
Let x(t) = (x1, x2) and y(t) = (y1, y2) represent the position
vectors in P of two field lines intersecting P at a time t. The

mutual angle Θ(x, y) of the two field line intersection points in
P is given by
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Its rate of rotation can be written as the in-plane motion of the
footpoints u(y) = (dy1/dt, dy2/dt), which is estimated using the
DAVE4VM method (P. W. Schuck 2008), and a vector
r = y − x, joining the two points as
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The magnetic winding input rate /d dt , associated with a
point x in the photospheric plane P, is the average winding of
that point with all other field line motions y(t) ä P:
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and the field line helicity input rate /d dt is the winding
weighted by the magnetic flux:
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The minus signs represent the fact that P is the lower boundary
of the domain in which the active region field exists (so the
normal to P is opposite to the normal of that domain). As
discussed in detail in C. Prior & D. MacTaggart (2020), this
helicity input rate is the same as the relative helicity rates
calculated in studies of photospheric helicity fluxes (S.-H. Park
et al. 2008; P. Vemareddy 2021; M. Korsós et al. 2022; Y. Liu
et al. 2023), and we simply emphasize its geometric under-
pinning. ARTop also provides the spatially integrated winding
dL/dt and helicity dH/dt inputs as
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from which the time-integrated inputs can be calculated as
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Approximate helicity conservation implies that H(t) should be a
good estimate of the amount of helicity in the active region
field above the photosphere (M. A. Berger 1984), and this
manuscript focuses on how crucial this estimation can be for
flare prediction, a fact which has previously been observed in
other studies (B. LaBonte et al. 2007; S.-H. Park et al. 2008;
R. Jarolim et al. 2023; S. H. Garland et al. 2024). It was shown
in C. Prior & D. MacTaggart (2020), D. MacTaggart et al.
(2021), B. Raphaldini et al. (2022), and O. Aslam et al. (2024)
that the winding provides distinct and complementary informa-
tion to the helicity, as the flux weighting in the helicity means it
is dominated by magnetic field with a strong vertical
component and twisted nature (i.e., the main poles) while the
winding is largely dominated by the strong (dominantly)
transversal field near the polarity inversion line (i.e., the top of
sheared arcades or bald patch field).
Field line velocities can be estimated from magnetogram

data by assuming ideal motion (E. Pariat et al. 2005). Under
this assumption, the motion u(x) of the point of intersection of
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a field line and the photosphere can be written in terms of the
field B and the plasma velocity v(x) (decomposed into out-of-
plane vz and in-plane v∥ components) as

( ) ( ) ( )
( )

( ) ( ) u x v x
x
x

B x u u
v

B
, 7z

z
b e= - = +

where ub represents the plasma moving the field line ideally in-
plane (braiding if adding to the winding), and the second term
ue represents the emergence/submergence of field. The
velocity has implicit B dependence as it is determined by
DAVE4VM using the magnetic field data. We highlight that
this inversion has a crucial parameter associated with it. The
magnetic field must be smoothed for the least-square matrix
used in the inversion of the DAVE4VM method to be well
defined; we term it velocity smoothing (VS) in ARTop. VS is
the width (number of pixels) of the window surrounding the
point of interest used to locally average the field. The velocity
and helicity values can be significantly affected by this choice
(P. W. Schuck 2008; Y. Bi et al. 2018; K. Alielden et al. 2023).
The work presented here develops quantities whose predictive
efficacy are as independent of this choice as possible.

The final critical quantities to introduce are those on which
our metrics are based. It is possible to decompose the field into
a potential part and a “current-carrying” part, i.e., the
Helmholtz decomposition:

( ) ( ) ( ) ( )B B Bt t t . 8p c= +

The potential part is uniquely determined by the Bz distribution
on the photospheric boundary (B. Raphaldini et al. 2022;
K. Alielden et al. 2023; see a discussion on the method used),
which then gives Bc(t) from the observed in-plane components.
Using these two fields, one can calculate current-carrying
helicity and winding fluxes, /d dtc and /d dtc , and potential
fluxes, /d dtp and /d dtp . Then, since we expect flaring to
occur when there is a (local) imbalance toward current-carrying
topology, ARTop calculates the following δ quantities:
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which is positive if there is an imbalance toward current-
carrying winding/helicity flux. In B. Raphaldini et al. (2022)
and K. Alielden et al. (2023) it was shown the δ fluxes were
only affected a small amount by the choice of VS; by contrast,
it had quite a significant effect on the rates /d dtc , /d dtc ,
/d dtp , and /d dtp . This study provides further evidence that

quantities based on the δ quantities are far more consistent with

regards to flare prediction signals than the rates /d dt and
/d dt themselves. In what follows, for the sake of notational

brevity, we denote all rates with a dash, i.e., /d dt¢ = 
or /L d L dtd d¢ = .

2.2. ALMANAC

As with O. Aslam et al. (2024), we also employ the
Automated Detection of CoronaL MAss Ejecta origiNs for
Space Weather AppliCations (ALMANAC) code (T. Williams
& H. Morgan 2022) when focusing on specific events in time-
series data to identify potential CMEs. ALMANAC, unlike
many widely adopted CME detection methods, does not rely
upon coronagraph data, but instead utilizes data from the
Atmospheric Imaging Assembly (J. R. Lemen et al. 2012). The
main advantage of ALMANAC is that it does not require
geometrical fitting to approximate the CME source location in
the low solar corona. Subsequently, the code does not
inherently have large uncertainties due to projection effects
caused by fitting a simple “wire-frame” of a three-dimensional
object mapped in two dimensions. As such, ALMANAC
provides a reliable low-coronal CME origin that is obtained
independently of any helicity/winding signatures from the
earlier phases of an eruption.
To detect potential Earth-directed CMEs, ALMANAC first

crops the map size to eliminate off-limb contributions and
standardizes the intensity across an 8 hr image sequence by
thresholding intensities and normalizing the data values. It is
then smoothed through convolution and subtracted from the
normalized data to create a high-bandpass and time-filtered
image sequence. Each time step of the time-filtered data is then
divided by the median of the absolute values of the unfiltered
data to eliminate contribution from “static” structures such as
active regions. The method employs a series of Boolean masks
to isolate connected clusters of pixels associated with a
potential eruption, and spatiotemporal smoothing of these
masks helps avoid the segmentation of regions. The first time
step in which a region of sufficient size and duration is
identified is used as the CME onset time, while the center of
mass for the masked pixels at that time provides the central
location for the CME. Full details of the method can be found
in T. Williams & H. Morgan (2022).

3. Data Set

In Section 4, we initially analyze a subset of three active
regions (Table 1). These examples are used to highlight some
critical aspects underlying the construction of the new metrics
presented in this work, before investigating some of the
conclusions from this set on a much larger sample of 144
SHARP regions (see the Appendix for details). The 144
SHARP regions are curated from the data set outlined in
A. Hollanda et al. (2021), where we ensured a number of
X-class flaring regions are included. For the other regions

Table 1
SHARP Regions Investigated with Flare Information Provided by the Heliophysics Event Knowledgebase

NOAA Active SHARP Number Largest Flare No. X-class No. M-class No. C-class First Observation
Region Flares Flares Flares Time (UTC)

11158 377 X2.2 1 3 24 2011/02/10 22:58:11
11302 892 X1.9 2 15 30 2011/09/21 12:34:20
12673 7115 X9.3 3 12 20 2017/08/28 08:58:43
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included in this study, they have been sampled at somewhat
regular time intervals to ensure an even coverage across the
solar cycle. As the data set developed for this manuscript is a
living data set, it will continually evolve as more of the regions
outlined by A. Hollanda et al. (2021) are processed with
ARTop. Of the 144 SHARP regions analyzed, 65 regions are
considered to be flaring with a further 79 nonflaring regions. In
this work, a region is considered to be flaring if an X-ray class
flare of C1.0 or above is recorded in the Heliophysics Event
Knowledgebase (HEK; N. E. Hurlburt 2022). Subsequently,
the data set presented in this manuscript contains 1228 flares,
which will continue to grow as more active regions are added
to the living data set. An active region is sampled with a
cadence of 720 s for the entire duration it is visible within the
HMI data. This does mean that some regions will include
periods where the position(s) exceed longitudes of ±60° with
respect to the central meridian. However, for the examples we
focus upon in more detail, all of the analyses are conducted
when the regions are within these longitudinal bounds. From
these examples that we focus upon in greater detail in
Section 4, two are what may be considered “classic” examples,
such as AR 11158 and AR 12673, for their predictable behavior
and propensity for large eruptions. The three regions we
highlight to demonstrate new quantities that could potentially
aid flare prediction are all distinctly different.

AR 11158 begins as a pair of aligned bipoles. As it evolves,
the inner poles of each bipole are seen to interact and rotate,
forming a more complex morphology. The topological proper-
ties of this region have been discussed in numerous studies
(K. Tziotziou et al. 2013; E. Lumme et al. 2019; J. K. Thalmann
et al. 2019; M. Korsós et al. 2022; R. Jarolim et al. 2023), while
B. Raphaldini et al. (2022) provided a detailed comparison of
the ARTop time-series analysis of this region in relation to those
studies. These precise dynamics are not directly relevant to the
results presented here, suffice to say all studies note significant
helicity injection due to the mutual rotation of the inner poles
and their subsequent interaction.

For the first 120 hr of AR 12673 observations, it is a single
positive polarity pole, which undergoes a sudden emergence of
positive and negative magnetic field, with the negative field
wrapping around the active region, forming multiple strong
polarity inversion lines that expand rapidly as a new emergent
field “pushes” the existing field into opposite polarity
structures. As with AR 11158, the topological properties of
this region have been discussed in numerous studies
(K. Moraitis et al. 2019; D. J. Price et al. 2019; J. K. Thalmann
et al. 2019; P. Vemareddy 2019; K. Kusano et al. 2020;
M. Korsós et al. 2022), and a detailed comparison of the
ARTop time-series analysis of this region by comparison to
those studies is conducted in B. Raphaldini et al. (2022). The
analysis of a large spike in the winding flux time series just
prior to the two-large X-class flares that were shown to
spatially coincide with a flux rope in a nonlinear force-free field
extrapolation of this region performed by K. Kusano et al.
(2020) is of particular interest. It was shown that the spike
coincided with a downflow (negative velocity plasma flow) in a
region with a highly concentrated shear.

As for AR 11302, this is largely bipolar with some parasitic
negative polarity field in the center of the region that
encompasses a portion of the positive polarity field. As the
region evolves, the positive polarity disperses into a diffuse

field, with the negative polarity pole bifurcating into several
smaller “poles” before it is swept beyond HMI's field of view.
These three regions provide a varied basis upon the

conditions for flaring to occur, and thus serve as the initial
testing for the feasibility of quantities to be flare predictors. The
three active regions (Table 1) are then analyzed to quantify the
flaring in relation to the parameters discussed throughout
Section 4. In Section 5, we further explore these parameters on
a more complete data set that is detailed in the Appendix.

4. Determination of Meaningful Quantities

4.1. Velocity Smoothing and Downsampling

In this subsection, the focus is on differences detected when
utilizing different parameter values within the ARTop code. To
highlight these differences, we focus on the large eruption
associated with NOAA AR 11158, which led to an X2.2 solar
flare and sympathetic CME 4 minutes later that was detected in
SOHO/LASCO data (O. Aslam et al. 2024), as indicated in
Figure 1 on various ARTop derived time series. In addition to
this large eruption, ALMANAC also detected two smaller
CMEs that occurred 1.25 hr prior to, and 1.67 hr post the X2.2
eruption, respectively. This is one example, from a set of 30
events in O. Aslam et al. (2024), of a CME event that was
shown to be presaged by a significant spike in the rate ¢ .
These spikes were also correlated to key magnetic structures in
extrapolations of the field; hence, they are shown to be
physically meaningful.
As is discussed in Section 2.1, ARTop utilizes the

DAVE4VM method to calculate velocity from noisy magneto-
gram data, which employs a VS. The value of VS represents a
padding of typically between 11 and 20 pixels (P. W. Schuck
2008; D. MacTaggart et al. 2021) surrounding the pixel for
which a velocity is being determined. In K. Alielden et al.
(2023, their Figure 5), an example is shown for values of
VS = 12 and 20 pixels that indicates no significant difference
in the general behavior of the time series for the topological
quantities calculated. In B. Raphaldini et al. (2022), it was
found, however, that some quantities derived from these
calculations can show significant differences depending on this
choice. The finding from B. Raphaldini et al. (2022) is that the
quantity d ¢ is relatively consistent with this value, a finding
we elaborate on here. In Figure 1, we highlight differences in
the time at which a peak is seen for VS = 12 (green) and 20
(orange) pixels in the magnetic winding rate over both of its
decompositions into current-carrying and potential compo-
nents. The most notable difference here is the example of ¢
(and c¢ ) utilizing VS = 20, which display significant peaks
prior to the eruptions that are not captured until post-eruption
for VS = 12 pixels (gray circles in Figure 1). As with
K. Alielden et al. (2023), Figure 1 highlights that the down-
sampling factor, D applied to increase the processing speed of
ARTop has negligible effects on these quantities (blue, D = 1;
orange, D = 3).
In Figure 1, the input rates of d ¢ , ¢ , c¢ , and p¢ for various

choices of the parameters VS and D are presented. Crucially,
this indicates that d ¢ is not particularly sensitive to the choice
of VS and D made during data processing with ARTop, as all
three time-series exhibit temporally coincident peaks that are
immediately before the X2.2 flare and CME (pink circle in
Figure 1). Unlike the other magnetic winding parameters

4

The Astrophysical Journal, 980:102 (21pp), 2025 February 10 Williams, Prior, & MacTaggart



shown, all time series typically peak and trough at the same
time often with similar magnitudes. There are, however,
instances such as Time ≈ −6.5 hr and ≈−4.5 hr where the
peak (trough) in the data processed with VS = 12 (cyan circles
in Figure 1) is larger than the peaks (troughs) seen for the two
VS = 20 calculations.

Since the choice of the parameter VS is somewhat arbitrary
(and has taken numerous different values in the literature), we
make the decision to base the metrics we develop in what
follows on the parameter δL, which is the least sensitive to this
choice. This decision was validated by verifying that the
database of physically meaningful spikes in O. Aslam et al.
(2024) also exhibits spikes in d ¢ at the same times found in
this study.

4.1.1. Decomposing d ¢ and d ¢

The main implication of the result shown in Figure 1 is that
the decomposition of magnetic winding (and magnetic helicity)
into components for current-carrying and potential topology is
sensitive to the parameter VS. Given the lack of sensitivity of
d ¢ to these parameters, we instead split d ¢ and d ¢ into
positive and negative components whereby positive (negative)
would indicate that the dominant input of topology at the
photospheric level is current-carrying (potential) topology. This
is achieved by turning Equations (9) and (10) into conditional

expressions, such that

( )

, if 0
0, otherwise,

, if 0
0, otherwise,

11
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d d d
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Thus, these decompositions can be used to focus solely on
the net input of either current-carrying-dominant topology
( cd ¢ , cd ¢ ) or potential-field-dominant topology ( pd ¢ , pd ¢ ) at
the photosphere (rather than allowing the two to cancel as in
the series d). It has previously been demonstrated that it is the
current-carrying component of ¢ that is likely responsible for
disrupting an existing magnetic field in the solar atmosphere
that leads to an eruption (as in E. Pariat et al. 2017; B. Raph-
aldini et al. 2022) and so we will consider time series of based
upon cd ¢ and cd ¢ here.
In Figure 2, cd ¢ time-series plots are shown for three

example SHARP regions over 72 hr periods that include a
range of C- to X-class flares, which are used to highlight some

Figure 1. Shown here is the time-series evolution for topological quantities cd ¢ , ¢ , c
¢ , and p

¢ before and after the X2.2 flare and sympathetic CME of AR 11158 for
various velocity smoothing (VS) and downsampling (D) values. All plots are normalized with respect to their largest value. The X2.2 flare start time has been taken as
Time = 0, which is indicated in black with the CME onset times reported by ALMANAC shown in red. The gray, pink, and cyan circles denote the peaks discussed in
the manuscript where spikes are (or not) shifted due to the choice of VS. Blue series correspond to VS = 20, D = 1; orange series correspond to VS = 20, D = 3;
while green series represent VS = 12, D = 3 for the d ¢ (top left), ¢ (top right), c

¢ (bottom left), and p
¢ (bottom right) time series.
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of the properties of this quantity with regards to the potential
for flare prediction. A 3 hr running mean and corresponding 2σ
envelope are calculated for each series, which are used to
determine significant spikes/peaks in the time series that could
lead to an eruption (B. Raphaldini et al. 2022; O. Aslam et al.
2024). Here, a spike, or an extremal event, is defined as a point
in time when the time series in question exhibits a value outside
the 2σ envelope.3

Focusing first on NOAA AR 11158, we see there are eight
spikes during Time = 30−55 hr (magenta squares) that are not
followed by flaring within 6−12 hr of a spike, while the
majority of spikes indicated beyond this time either precede
large M- and X-class flares or they are followed by multiple
smaller C-class eruptions within 6−12 hr. This suggests one
needs additional information to determine if such spikes in a
time series are (potentially) meaningful. To this end, analysis of
the time-integrated quantities d and d (Figure 3) reveals that
the spikes are only followed by flares (within a 6−12 hr period)
after there has been a significant cumulative input of current-
carrying helicity. One possible interpretation of this observa-
tion is that the spikes in cd ¢ seen between Time = 30–55 hr
(Figure 2) are not meaningful, as there is insufficient complex
overlaying magnetic field structure to disrupt and initiate
flaring. We investigate this particular period in more detail later
when assessing spatial correlations between events.

This observation is supported by the activity in the case of
AR 12673; we highlight a period between 180 and 250 hr
where we see in Figure 3 that there has already been significant
net current-carrying helicity input δH. In this case, almost all
spikes can be correlated with a flare given a window of
approximately 6 hr. We now focus on one specific set of signals
within this window. First between ≈203 hr and ≈210 hr,
where there are relatively large spikes (magenta circles) in the
time series that exceed their 2σ envelope (but no flares until
≈213 hr to ≈220 hr), whence there are two C-class and two
X-class flares; the largest apparent gap in this series between a
set of spikes and a flare. This contrasts significantly to the
period before, 180–200 hr, where there is a relatively steady
occurrence of both smaller spikes and flares. These highlight
the possibility of a pause in activity during which significant
buildup of topology leads to the two significant X-class flares.
We investigate this period in more detail later in the study
when we focus on spatiotemporal correlations.
For AR 11302 (bottom panel of Figure 2), the first X-class

flare emitted occurs during the “buildup” phase of the active
region (around 21 hr), which is denoted by the fact that the
cumulative winding (Figure 3) continually increases until time
≈70 hr, after which point the gradient flattens and a “steady-
state” is reached (such as is discussed in B. Raphaldini et al.
2022). Initially, this event appears somewhat unusual, as our
rough assumption from the previous examples is that active
regions require time to develop complex topology before larger

Figure 2. Time-series plots for cd ¢ (blue) with a running mean of 3 hr (orange)
and 2σ envelope (gray) for three SHARP regions preceding M- (dashed green)
and X-class (dashed red) solar flares. For context, C-class flares are also shown
(dashed pink). Each plot is normalized with respect to the maximum spike in
the time series.

Figure 3. The time-integrated quantities d ¢ (blue) and d ¢ (orange) calculated
for active regions NOAAs 11158, 11302, and 12673. The shaded gray regions
indicate the 72 hr observation windows shown in Figure 2 for each active
region. The large increases seen in the winding accumulation, and to a lesser
extent helicity accumulation, toward the end of the observed time for
AR 11302 and AR 12673 are caused by projection effects in the SHARP data
due to the active regions exceeding longitudes of 60°.

3 It is worth noting that the selection of the envelope is somewhat arbitrary,
with B. Raphaldini et al. (2022) utilizing 3σ, while O. Aslam et al. (2024)
demonstrates that 2σ is a reliable threshold for a sample of 30 different active
regions.
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eruptions occur. However, ARTop does not observe AR 11302
from its initial emergence as the active region rotates into view
already partly developed, meaning the time-integrated inputs
are not truly reflective of the total amount of helicity/winding
injected into the region. This provides an example for one of
the potential issues with building a predictive flaring model
from photospheric topology inputs alone. That is, if an active
region comes into view by rotation whereby a significant
portion of the active region emergence phase has already
occurred, then some additional function or method must be
used to approximate the complex topology that has already
been inputted into the solar atmosphere. One such possible
method would be to use nonlinear force-free field extrapola-
tions to estimate the topology in the region as early as possible
as in R. Jarolim et al. (2023). From the standpoint of eventually
developing a live predictive flare model, the fact there is a lull
in flaring (Time ≈ 20−50 hr) is also of interest. It seems the
first X-class flare may have resulted in a significant decrease of
complex topology above the photosphere, and so one might
infer that additional complexity must be rebuilt again prior to
additional eruptions occurring. Thus, when building a live
predictive flare model based on helicity/winding calculations,
one would need to account for the decrease in complex
magnetic field within the active region after an eruptive event,
as this is something that cannot be accounted for from
photospheric calculations alone. However, it might be possible
to estimate/account for the loss of complex field from the size
of the flare alone with the adoption of additional quantities
explored later in this manuscript and machine learning.

Later in the AR 11302 time series, when significant current-
carrying helicity has been injected into the region, we see
another interesting feature of these time series: There are some
relatively small-amplitude spikes (green triangles) that precede
relatively strong M- and X-class flares. By contrast, we later
see three “small” and one “large” spike (cyan triangles) that are
seen to precede a burst of four M-class flares in an ≈4 hr
period. There does not seem to be a clear correlation between
the magnitude of a spike and the magnitude of the flare
following it. We do note, however, in the case of the X-class
flare, that prior to this event at ≈69 hr there is a significant
input of Ld ¢ about 10 hr prior. This could potentially indicate
that if information is included from a larger time window, there
may have been some indication of the potential for a large flare.
We shall explore this event in more detail later in the study.

4.1.2. Discussion

From these example calculations, we have seen a number of
interesting properties that will be investigated further in the rest
of the study.

1. There are very often extremal spikes in the rates of
current-carrying-dominant topology input, cd ¢ and cd ¢ ,
in a period up to 12 hr prior to flaring, with 69.7% of cd ¢
spikes, and 65.3% of cd ¢ spikes preceding flares in the
three example regions.

2. These spikes correlate better to flaring activity when there
has been a significant buildup of (non potential field)
helicity in the region. For example, when helicity
accumulation exceeds 1 × 1019 Mx2, spikes preceding
flares increase to 78.5% and 76.9% for cd ¢ and cd ¢ ,
respectively.

3. If the initial emergence phase of the region is not captured
in the data, it may be necessary to invoke additional
information to estimate the helicity in the field when it
emerges into view.

4. The magnitude of these spikes alone does not seem to
correlate well with the size of the flare, which lies in its
6 hr post-spike window. Subsequently, more information
is required to make specific predictions on flare magnitude.

4.2. The Input and Loss of Magnetic Topology

As this manuscript has detailed in Section 4.1.1, the excess
current-carrying topology for magnetic helicity and magnetic
winding was shown to be a promising candidate as a flare
precursor. However, these metrics alone do not provide
information on whether the fluxes associated with these
quantities seen at the photospheric level are due to a new
magnetic field emerging from within the solar interior, or
whether it is because of a disturbance in the solar atmosphere
that causes the existing field to be “pushed” to the photospheric
level and/or below. The significance of knowing this
information is that it may allow for more interpretation/
understanding of the signals (significant spikes) produced by
the ARTop time series. To this end, the current-carrying
components of the delta measures for winding and the helicity
can be combined with the line-of-sight velocity to form, vz cd ¢ ,
and vz cd ¢ that quantify the speed and direction of magnetic
topology input at the photosphere. While the quantities cd ¢ and

cd ¢ are themselves fluxes (rates of input), they represent
horizontal motion of field lines, so this quantity combines
information about the vertical rise of the fluid transporting the
field, with this information about the in-plane motion. Large
spikes (dips) in these quantities indicate rapidly emerging
(submerging) fluxes at the photospheric level.
In Figure 4 we show three time series of the quantity vz cd ¢

to highlight some of its properties. For AR 11158 (top panel),
there are multiple emergence and submergence events that
follow each other in quick succession during the buildup phase
(i.e., time < 60 hr or with a larger time gap 37 and 42 hr). The
submergence events are indicative of motions occurring within
the solar atmosphere that push topology down to the photo-
spheric level, indicating that some of the topology buildup seen
in Figure 2 could be due magnetic structure already emerged
through the photosphere. Similarly, in the cd ¢ time series for
AR 12673 (Figure 4), there are multiple pairs of opposing-sign
spikes, some of which are coincident with the X-class flares or
(temporally) contain M-class flares. Spatial maps for vz cd ¢ are
shown (Figure 5) for an example submergence and reemer-
gence of the first X-class flare in the AR 12673 time series
(whose spatial location is indicated with a green plus). It is
clear from these successive maps that material is pushed to the
photospheric level or lower in a localized region around
( )114 , 8 -  by this flare, which then rebounds and pulls more
photospheric material/field into the solar atmosphere, in the
vicinity of the second X-class flare (location indicated by the
green triangle). These events are discussed in more detail in
Section 4.3.2. In a similar vein, the upflow/downflow events
can be seen in AR 11302 at times ≈40 hr, ≈50 hr, and
≈70−75 hr in the bottom panel of Figure 4, with the latter
event preceding M-class flares.
These phases of emergence and submergence causing

winding topology to be seen at the photospheric level are
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likely separate or interconnected structures where the emer-
gence/submergence of one structure leads to buffeting of
magnetic field, causing neighboring structures to emerge and
submerge. As is highlighted in the AR 11158 vz cd ¢ time
series, it appears that a period of emergent topology is required
to induce flaring, and so focusing upon the net sign of

emergence/submergence may provide additional insight to the
likelihood of flaring within flare prediction models.

4.3. Spatial Significance of Temporal Spikes

The results from Figures 2 and 4 indicate that excess current-
carrying topology quantities (e.g., cd ¢ ) have the potential to be

Figure 4. The time-series plots for the combined quantity, vz cd ¢ focusing upon the period leading up to the onset of flaring for AR 11158 and the X2.2 and X9.3
flares in AR 12673. The 3 hr running means (orange) and 2σ envelope (gray) are also shown along with the times of C- (dashed pink), M- (dashed green), and X-class
(dashed red) flares.

Figure 5. AR 12673 vz cd ¢ maps that correspond to the submergence and reemergence of topology seen for the first X-class flare (green plus) at time = 216 hr (first
dashed red line in Figure 4). The position of the second X-class flare is also indicated (green triangle).
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precursive metrics for flaring, provided enough complex
magnetic topology has been built up in the solar atmosphere.
The variation in time frame for these precursors ranges between
virtually immediate to potentially providing several hours of
warning about the possibility of eruptive events taking place.
This subsection analyses the spatial distribution of these two
types of warnings, focusing on some of the X-class flares for
the active regions given in Table 1.

4.3.1. AR 11158: Spatially Meaningful Spikes

In Figure 6, time series are presented for the current-carrying
parameters for both winding and helicity prior to the X2.2 flare
and a coincident CME that is detected in LASCO data.
Furthermore, within the 12 hr period shown, ALMANAC
detected two additional CMEs, the first of which is preceded by
significant cd ¢ spikes seen at time ≈ 94 and 97 hr (magenta
squares). The first spike of the two indicated by magenta
squares here is caused by a submergence event (negative vz cd ¢
at this time), indicating that a change in atmospheric topology
caused the magnetic field to be pushed down to the
photospheric level, highlighting how vz cd ¢ may be utilized
to infer/capture information about the topological behavior
above the photosphere. There is a spike (green square) at
98.4 hr that just precedes the coincident flare and CME. There
is also an earlier spike in vz cd ¢ about 1 hr before the first cd ¢
spike that indicates an emergence event. For the helicity
parameters, vz cd ¢ exhibits two spikes between 94 and 96 hr
(blue squares), while in the hour leading up to the first CME,

cd ¢ has a sharp decrease before the first, small CME takes
place, with the input rate being somewhat constant before this.
A similar trend is also seen with the X2.2 flare and associated
CME, though the decline is coincident with the two eruptions
in this example.

In Figure 7, the surface maps for one vz cd ¢ (a), three cd ¢
(b), two vz cd ¢ spikes (c) highlighted in Figure 6 are shown.
The CME at time ≈ 97.5 hr and the event composing an X2.2
flare and CME shortly afterward are denoted by the green
triangle and green plus, respectively. The two first cd ¢ spikes
occur prior to the first small CME captured by ALMANAC
(green triangle); the spatial maps of the fluxes cd ¢ and vz cd ¢
for these times are shown in rows 1 and 2 of Figure 7(b). We
see the primary input of topology occurs in the vicinity of

( )29 , 20 -  just to the right and below the location of the first
CME (triangle). The CME captured by ALMANAC propagates
in a northerly direction across the solar disk, which, along with
the center of mass for the first frame of detection, is why the
authors believe these winding signatures contributed to the first
eruption. In Figure 7(c), the cd ¢ and vz cd ¢ input rates at the
photosphere (temporally between the first two cd ¢ maps of
Figure 7(b)) indicate that topology is not only being built up at
( )29 , 21 -  , where the strong winding flux up was seen, but
also either side of the location of the later X2.2 flare and CME,
with a much stronger contribution in vz cd ¢ at ( )35 , 20 -  .
Chronologically, the last maps (bottom panels of Figure 7(b))
reveal large-scale input of topology in the vicinity of the X2.2
flare and CME. The winding contribution for this event has
been well documented in O. Aslam et al. (2024).
Solely analyzing cd ¢ and cd ¢ in this instance indicates some

precursive warning on the potential for eruptions with up to
≈3 hr lead-time for the small CME and X2.2 flare events.
However, the inclusion of vz cd ¢ provides further advanced
warning. Prior to time = 94 hr, there are four spikes in cd ¢ —

denoted by the cyan squares in Figure 6—that do not exceed
their 2σ envelope due to previous signatures (although only
just). The last of these spikes is associated with strong vz
values, and subsequently, vz cd ¢ is able to provide an
additional 0.8 hr warning due to the low velocities associated
with the other spikes resulting in a smaller 2σ envelope. We see
in Figure 7(a) that these occur in the same location as the spikes
in the first two rows of Figure 7(b) and can be attributed to the
first CME event (green triangle). These events occur up to 7 hr
before the CME, indicating some earlier warning could be
detectable in the time series.

4.3.2. AR 12673: Destabilizing Events

In Figure 8, large coincident spikes in cd ¢ , and vz cd ¢ can be
seen (magenta square), which precede a CME detected by
ALMANAC by ≈4 hr. Second, coincident spikes are seen
shortly before the X2.2 flare and CME (green square);
additionally, a solitary spike in cd ¢ (cyan square) that occurs
before the slowly rising filament eruption that immediately
precedes, and potentially triggers, the X9.3 flare is also seen.
For the helicity, there is again some warning to the first CME,
though much later and smaller in magnitude than the winding

Figure 6. Left: time-series plots for vz cd ¢ (blue) and cd ¢ (orange) from the same period as Figure 1 with the corresponding 2σ envelopes denoted by the shaded
regions of the same colors. Right: time-series plots for vz cd ¢ (green) and cd ¢ (magenta) from the same period as left with the corresponding 2σ envelopes denoted by
the shaded regions of the same colors. The X2.2 flare is indicated by the black vertical line and the three CMEs detected by ALMANAC are shown in red.
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Figure 7. (a) HMI magnetogram and spatial maps for cd ¢ and vz cd ¢ that corresponds to the fourth cyan square in Figure 6. (b) Spatial maps for cd ¢ (left) and vz cd ¢
(right) corresponding to the spikes denoted by the blue squares in Figure 6. (c) The maps for cd ¢ (left) and vz cd ¢ (right) corresponding to the spikes denoted by the
magenta and green squares in Figure 6. The second (third) row corresponds to the surface maps immediately before the first (second) eruption. The positions of the
first and second CMEs detected by ALMANAC are shown by the green triangle and the green plus in all panels, respectively.

Figure 8. Left: time-series plots for vz cd ¢ (blue) and cd ¢ (orange) for the hours leading to, and including, the X2.2 and X9.3 flares (times ≈ 216 and 219 hr) with the
corresponding 2σ envelopes denoted by the shaded regions of the same colors. Right: time-series plots for vz cd ¢ (green) and cd ¢ (magenta) from the same period as
Figure 1 with the corresponding 2σ envelopes denoted by the shaded regions of the same colors. The X-class flares are indicated by the black vertical lines, and the
three CMEs detected by ALMANAC are shown in red.
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signature (≈209.5 hr compared to ≈211 hr). Interestingly, cd ¢
has a spike exceeding its 2σ envelope that is cotemporal with
the winding signature spikes, which then further increases after
the X2.2 flare and CME (orange triangles). For vz cd ¢ (and
vz cd ¢ ), there is a prominent submergence during the eruption
that is immediately followed by an emergence with both these
events exceeding their envelopes in vz cd ¢ and vz cd ¢ (orange
triangles).

Following the magnetic field model of D. J. Price et al.
(2019) for AR 12673, there are two separate flux ropes that
reside close to one another that (1) closely match the
submerging/reemerging winding signatures, and (2) are the
structures that are responsible for the X2.2 flare and
CME. The first row of Figure 9 shows the winding maps for

cd ¢ and vz cd ¢ , which reveal that the large spike denoted
by the magenta square in Figure 8 is the result of a large region
of strong topology primarily emerging at the photos-
pheric level. Following the modeling of this region by
D. J. Price et al. (2019), the strong emergence seen here
between ( )112 117 , 13 10 -  -  -  is a low-lying null point
that emerges between two preexisting, overarching flux ropes,
further increasing the complexity of the magnetic field for the
active region. Thus, when additional topology emerges beneath
the flux ropes, as shown in the middle row just prior to the X2.2
flare and CME, and then in the bottom row just prior to the
X9.3 flare, the events follow shortly after, as the emerging
structures destabilize an already complex field.

4.3.3. AR 11302: Consequential and Inconsequential Spikes

For AR 11302, we focus upon the X1.9 flare (≈69 hr). In the
hours leading up to this event, the topological input has
numerous significant potential contributions, as can be seen, for
example, between time ≈ 62 hr and 69 hr in both the cd ¢ and

cd ¢ plots (Figure 10). Additionally, unlike the other regions
showcased in this manuscript, the X1.9 flare at ≈69 hr is
preceded by relatively small spikes in both the winding and the
helicity parameters, when compared to the rest of the time
series (see Figure 2). We note these plots also exhibit relatively
flat gradients during this period. The spatial distributions
associated with these four spikes (magenta and green squares in
Figure 10), are shown spatially in Figure 11(b). For the first two
snapshots, shown in the first two rows of Figure 11(b), we see
spatially that the concentrations of winding parameters are
within the locality of the X1.9 flare, which is indicated by the
lime green plus. By contrast, the latter two snapshots
immediately before the eruption do not seem to have a spatial
correlation with the event, as shown in the bottom two rows of
Figure 11(b). Furthermore, it appears they are only seen as
significant spikes due to the paucity of current-carrying
topological input in the period prior. Subsequently, the warning
about the X1.9 eruption is more physically meaningful from the
spatiotemporal investigation of vz cd ¢ than cd ¢ alone here.

Focusing upon the smaller spikes; in the first case (row 3),
there are no strong spatial signatures in cd ¢ or vz cd ¢ . By
contrast, in the second case (row 4), there is a signature seen at
( )287 , 13  (Figure 11(b), snapshot 4) that shows some spatial
agreement with the strong helicity inputs show in Figure 11(c).
These correspond to the spikes (blue squares in Figure 10) seen
in vz cd ¢ , which do appear more significant in relation to the
rest of the time series. Looking at the extended flare series in
Figure 2, there are C- and M-class flares between 70 and 80 hr.
Thus, it is possible that the second patch of helicity centered at

approximately ( )283 , 12  contributed to these later events (as
potentially did the winding), and the temporal coincidence with
the X1.9 flare is down to chance—a warning for any potential
predictive method based off of these quantities.
Then, if we consider the combination of parameters ∣ ∣v Bz z

(Figure 11(a)), a measure of speed of input/removal of flux, we
see a spike at 67.2 hr (magenta square), a significant spike in
the rate. As with the winding signatures seen at time = 33 hr
(Figure 4), the input of flux is centered around the location of
the X1.9 flare, and so the spikes seen at both of these times are
likely meaningful due to the spatiotemporal proximity to
eruptions. Both of these observations indicate that in carefully
monitoring related quantities, context may be added to the
spikes seen in the winding series.
The main implications of this subsection are that the winding

and, to a lesser degree, helicity spikes in the time series are
likely a good indicator for the onset of solar eruptions within a
given region of the Sun. When analyzed, the signatures of these
spikes show strong spatial agreement with the eruptions, as has
also been demonstrated for CMEs by O. Aslam et al. (2024).
However, the magnitude of the spikes alone, as highlighted by
the results for AR 11302, are not likely to be indicative of the
magnitude or number of (sympathetic) eruptions.

4.4. Time-series Kurtosis: Gauging the Importance of Spikes

As this manuscript highlighted in Figure 2, AR 11302
exhibits spikes that precede X-class flares, which, when
compared to the 2σ envelope, are significant, yet when
compared to other spikes in their respective time series, the
magnitudes of the spikes appear relatively inconsequential,
especially when compared to the X-class magnitude flare that
follows shortly after them. One additional quantity we consider
in this study is the kurtosis of the ARTop derived time series.
Kurtosis is a statistical quantity used to characterize the relative
“fatness” of the tails for a probability distribution compared to
the mean of the distribution (K. Pearson 1905). Rapid increases
in the excess kurtosis have been shown to be an important
precursor to system bifurcations (or critical transitions) in a
number of fields—for example, in ecological systems
(V. Dakos et al. 2019), climate (N. Boers 2018), the economy
(C. Sevim et al. 2014), and medicine (L. Chen et al. 2012).
Having explored the spatial distributions of these small

spikes in Section 4.3 (e.g., Figure 11), it is difficult to
determine from visual inspection whether an input of new
topology could contribute to a magnetic reconnection event in
the form of a large flare, by comparison to the much more
pronounced examples seen for AR 11158 and AR 12673.
While this may be something a machine learning model could
be trained to determine—something that is beyond the scope of
this study—we feel further statistics are likely required that
assess the recent behavior of an active region. One we explore
here is the excess kurtosis of a given time series, calculated
utilizing a kernel width of 3 hr. Examples of this quantity are
calculated for the time series of cd ¢ and ∣ ∣v Bz z for AR 11302
and are shown in Figure 12 during the same observation
window as is shown in Figure 2. Values >0 indicate that there
is a larger skew in the recent behavior of the given series
toward the tails of the series values, by comparison to a normal
distribution. That is to say, the series is exhibiting relatively
extremal behavior, something that could potentially indicate a
system destabilizing and having an increased propensity that
some form of eruption may take place.
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Figure 9. Three snapshots of the cd ¢ and vz cd ¢ spatial maps from the times corresponding to the three winding spikes that are highlighted by the squares in Figure 8.
The position of the X2.2 flare, which erupts just after snapshot 2, is denoted by the lime green plus, while the X9.3 flare position (erupts after snapshot 3) is shown by
the lime green triangle. The magnetogram data from this period is shown for spatial reference.
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In these two instances of the excess kurtosis time series
shown in Figure 12, its value can be seen to periodically switch
between being leptokurtic (excess > 0) and platykurtic (excess
< 0), with both being leptokurtic dominant, suggesting that
generally, the 3 hr kernel for these quantities has larger tails
than a normal distribution. For the X-class flare in AR 11302,
we can see that the relative magnitude of the cd ¢ excess
kurtosis spikes prior to this event (magenta square) has a
comparable magnitude to other spikes seen throughout the time
series—something that is in stark contrast to the relative size of
the cd ¢ spikes at the same time (green triangles in Figure 2). It
is also worth mentioning that the spike shown here is not the
only one that exceeds the 1σ envelope in the few hours
immediately before the X-class flare where only minuscule
winding signatures are seen (Figure 2; green triangles), as there
is a cluster of spikes that exceed this envelope in the period
leading to the flare, and so we have only highlighted one of the
larger spikes immediately before the X1.9 flare (≈62−69 hr in
Figure 12; magenta squares). In the excess kurtosis for ∣ ∣v Bz z , a
similar result to that shown in Figure 11(a) is seen, whereby the
spike preceding the flare is one of largest seen across the entire
observation window, providing further indication that a
potentially large eruption may take place.

In summary, evaluating the excess kurtosis of the time series
may provide valuable additional weighting to spikes seen in the
original time series when predicting the likelihood of flaring.
Individual spikes seen in quantities such as cd ¢ , provide a
glimpse into the instantaneous behavior of the region, while
quantities such as the accumulative helicity provide the long-
term topology input into a region. The running excess kurtosis
complements these statistics by assessing the recent behavior of
the region, and quantifying the “tailedness” or extremal nature
of its recent behavior. As we have shown in this subsection, a
sudden rise in the excess kurtosis could be a key factor in
classifying the likely magnitude of a flare.

5. Preliminary Investigations into Forecasting Efficacy

In this section, the focus is on how consistently the quantities
outlined in Section 4 may be used to predict the likelihood of
flaring. These results should be seen only as a preliminary
indication into how frequently spikes in the aforementioned

time series correlate with flare activity, rather than the
development of a live predictive diagnostic, which is beyond
the scope of this study. The aim is to give users an indication to
the consistency of each time series with regards to spikes
correlating with flares and also how other parameters like the
time-integrated δH might be used to classify spikes as
meaningful, as discussed in Section 4.
For this, we first analyze the three example regions;

AR 11158, AR 11302, and AR 12673 before utilizing a more
comprehensive data set (see the Appendix). We define a
score, S:

( ) ( )S X X
1

2
, 13s f= +

where Xs and Xf are the percentage of spikes preceding flares
within a number of hours (Xs), and the percentage of flares
following a spike within a number of hours (Xf), respectively.
The first quantity, Xs, quantifies the likelihood a flare being
identified with a given spike (in some given metric) within a
given period: is this metric good at indicating flares? The
second quantity, Xf, attempts to quantify how often a spike can
be expected to precede a given flare in a specific period. It is
necessary to consider that some metrics, for example, may
generate a vast number of spikes and capture almost all flares,
but in doing so, too often yield spikes not associated with
flares, which would render the metric ineffective. Ideally, the
measure will be maximized by metrics that only produce
meaningful spikes and do so as consistently as possible.
A weighted score is also defined as Sw, which accounts for

the number of spikes and flares within a region. This metric
assigns greater importance to regions where flaring is more
prominent, but has no dependency on the magnitude of the
events. The weighted score is defined by
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where subscript i indicates the SHARP patch. Nsi and Nfi are the
total number of spikes and flares for that region, respectively. If
S and Sw provide similar results for a quantity across a number

Figure 10. Left: time-series plots for vz cd ¢ (blue) and cd ¢ (orange) in region AR 12673 for the hours leading to, and including, the X1.9 flare with the corresponding
2σ envelopes denoted by the shaded regions of the same colors. Right: time-series plots for vz cd ¢ (green) and cd ¢ (magenta) from the same period as Figure 1 with
the corresponding 2σ envelopes denoted by the shaded regions of the same colors. The X1.9 flare is indicated by the solid black vertical line, while the M1.9 flare is
shown as a dashed black vertical line, and the solitary CME detected by ALMANAC is shown in red.
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of active regions, it is indicative that the quantity is not biased
toward predicting flaring for particular regions over others.
However, should Sw drastically exceed S for example, this
would indicate a metric is outperforming for active regions
with more flare activity, and we should trust it less for less
active regions.

5.1. Example Regions

As outlined in Section 4, the quantities determined from
ARTop, namely cd ¢ , cd ¢ , vz cd ¢ , vz cd ¢ , and ∣ ∣v Bz z often have
spikes that precede flaring, and so the aim here is to quantify
the reliability of spikes in these quantities before an eruption.
As with the previous Sections, we utilize 3 hr running means
and 2σ envelopes for all of the quantities analyzed. As has
already been noted in Section 4, some of the earlier spikes in
the time series do not lead to flaring, and this typically seems to

be when insufficient helicity accumulation has taken place
through the photosphere. Consequently, we also quantify the
percentage of spikes preceding flares (Xs) and flares preceded
by spikes (Xf) with and without a cutoff for the helicity
accumulation in Table 2. When employing the helicity cutoff, if
a spike exceeding the 2σ envelope is seen in, for example cd ¢ ,
but the total helicity accumulation for that active region is
below the cutoff, then it is considered to be inconsequential and
is omitted from the statistics. Finally, we consider 3, 6, and
12 hr search windows over which we correlate spikes and
flares; one would expect that with an increasing search window
size that S and Sw would also increase, but in that case, it is less
likely one could expect a direct causal relationship between the
spike and the flare. We have seen above that it is possible to
correlate spikes spatially within periods of up to 9 hr, and so the
12 hr search window here is used to provide some insight into
how the metric changes with increased window size.

Figure 11. (a) ∣ ∣v Bz z time series of AR 11302 in the hours leading up to the X1.9 flare. The magnetogram and ∣ ∣v Bz z maps are plotted for the time indicated by the
magenta square. (b) Four sets of snapshots of the cd ¢ and vz cd ¢ spatial maps from the times corresponding to the four winding spikes that are highlighted by the
magenta and green squares in Figure 10. (c) Two sets of snapshots corresponding to the times of the blue squares prior to the X1.9 flare in Figure 10. The position of
the X1.9 flare, which erupts at ≈69 hr, is denoted by the lime green plus in all of the surface maps.
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First, we focus on the values of Xs and Xf, which are
presented in Table 2 for five quantities and their respective
excess kurtoses for the three example regions. We focus on
these quantities rather than S and Sw to get an idea of how
performance in the two quantities varies. As one would expect,
the greater the search duration for a flare (spike) following
(preceding) a spike (flare), the larger the percentage of matches
seen for Xs (Xf). Without a helicity cutoff, the Xs values show
that ≈35%−47% of spikes are typically followed by a flare
within 3 hr, while ≈29%−56% of flares are preceded by
spikes (Xf). As that window is broadened to 6 hr and then to
12 hr, Xs and Xf increase with the best scores becoming 69.7%
and 85.4%, respectively. However, it is worth noting that only

cd ¢ and the excess kurtoses have a sufficient number of spikes
to be able to “capture” all of the flares from the example
regions. When applying a helicity cutoff of 1 × 1019 Mx2, Xs

may improve by as much as 19% ( ∣ ∣v Bz z ; 12 hr); however, a
more typical improvement is ≈7%−8%: spikes are more
efficient at correlating with flares. This improvement, however,
is to the detriment of Xf, which typically decreases ≈1%−2%:
fewer flares are caught. Additionally, the total number of spikes
(Ns) decreases, which is a positive outcome for cd ¢ and the
excess kurtoses, as they still exceed the total number of flares
(Nf) for the three example regions. This does however further
reduce the forecasting efficacy of the other quantities, as their
Ns values further decrease below Nf.

We highlight that there are some quantities for which
Ns < Nf, that is, fewer predictive spikes than there are flares
(relatively high Xs and low Xf). These will tend to perform

worse with a cutoff, while those for which Ns > Nf are
candidates for improvement. Intriguingly, while it is only cd ¢
of the raw quantities that has Ns > Nf, marking it as a key
quantity in this data set, the excess kurtosis of all of the
explored quantities has this property.

5.2. Flare Prediction on Large Data Set

We now turn our attention to the full data set given in the
Appendix. For this, a number of combinations of the
parameters that define spikes are tested, namely, the running
mean period, the standard deviation envelope size (outside of
which the signal must rise to yield a spike), and the helicity
cutoff, which further refines the definition of a meaningful
spike or signal (Table 3). The results for the best 10 performing
combinations (largest value of the mean S S

2
w+ ) are shown in

Tables 4–6, calculated on the 65 SHARP regions that undergo
flaring. As above, search windows within 3, 6, and 12 hr of a
spike are considered for linking spikes to flares. Ns is also
provided for each quantity and parameter combination to show
the number of false-positive detections in the 79 SHARP
regions that have no associated flare activity (we focus on this
data shortly).
Immediately, it is apparent that regardless of the period after

a spike that is being analyzed (i.e., is there a flare?), it is cd ¢ or
quantities derived from this that consistently have the best
scores for both measures S and Sw. As with Table 2, S, Sw, and
S S

2
w+ all improve in their accuracy as indicators for flaring

when the search window is increased to 12 hr. Although, the
increase here is ≈20%, whereas for the three example regions,
with numerous, high-energy eruptions, a value of ≈30% was
obtained. We also note that scores are slightly down on the
values found for our three example regions (e.g., S for 3 hr goes
from 47% down to 38%). We also reflect on the fact the Sw
scores are consistently higher than their unweighted counter-
parts. Many of the regions included have only smaller C-class
flares and/or only one or two flares. Subsequently, it is clear
that the metrics investigated here are providing more mean-
ingful value in more flare-rich regions.
On shorter timescales, particularly within 3 hr of a spike

(Table 4), cd ¢ occupies four of the top 10 scores, and as with
the example shown in Figure 12, the excess kurtosis calcula-
tions also provide comparatively good scores along with
vz cd ¢ . As the search window size increases, the parameters in
the top 10 lists become more varied, with the velocity
combinations and their excess kurtoses becoming more
prevalent.

5.2.1. False Positives

Perhaps unsurprisingly due to the nature of S and Sw, the
majority of top 10 scores do not include a helicity cutoff and
prefer smaller running mean envelopes, σ. Increasing these two
parameters drastically reduces the number of false-positive
detections seen in the nonflaring regions (Ns in Tables 4–6). For
example, cd ¢ calculated (Table 4) with a running mean of 3 hr,
σ = 1.5, and a helicity cutoff of 1 × 1018 Mx2 yields scores of
S = 0.311, Sw = 0.406, and 0.359S S

2
w =+ , while only having

Ns = 2672 across the 79 nonflaring region compared to
Ns = 4752 without the cutoff. However, as outlined earlier,
when Sw significantly exceeds S for a metric, this suggests that
the metric is outperforming for larger, more active SHARP

Figure 12. Excess kurtosis plots for cd ¢ and ∣ ∣v Bz z are shown in blue, with their
respective 3 hr running means (orange) and 1σ envelopes shaded blue
indicated. The y = 0 line (dashed gray) indicates the value for a normal
distribution. As with previous Figures, M- and X-class flares are indicated by
the dashed vertical green and red lines, respectively. The spikes indicated by
the magenta squares correspond to some of the larger peaks seen during the
period prior to the flare where there are only minuscule peaks in the winding
time-series data (Figure 2; green triangles).
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regions, and should be considered less effective for less active
SHARP regions.

We now focus on nonflaring regions whose metric
performance is represented by the quantity Ns, in effect the
number of errors made. It is found that higher helicity cutoffs
reduced the number Ns at the cost of significantly lower S and
Sw on the flaring regions. The quantities shown here are grossly
unreliable for nonflaring regions with thousands of false
positives across the data set. While this manuscript demon-
strates that there is clear merit to the topological quantities in
regards to spikes preceding flare activity. It may be that a
balance could be realized by combining various metrics with
more stringent thresholds/cutoffs and employing some form of
neural network to predict flaring based on all of the metrics
produced—a significant endeavor beyond the scope of this
study.

The final point we make in this study is that a productive
approach to the issue of the metrics being significantly

misleading for nonflaring regions, might be to try to use the
data to first classify regions as flaring or not. If one could
identify the regions that do and do not flare, then the metrics
could be applied to make individual flare predictions, and the
above results indicate they have some potential in that regard,
especially in the more active regions that have X-class flares. In
Figure 13, we see a scatter plot for all 144 SHARP regions’
maximum values for accumulated (time-integrated) cd ¢ and

cd ¢ . Each region is color-coded depending on the classification
of the maximum flare magnitude associated with that region;
X-class (red), M-class (orange), C-class (green), and nonflaring
(blue). As one would expect, there is a strong correlation
between the maximum accumulated cd ¢ and cd ¢ values given
that magnetic winding is derived from magnetic helicity.
However, for the flaring regions, there does appear to be a
positive trend in the amount of topology accumulated and the
maximum magnitude of flare seen. More explicitly, all of the
active regions with associated X-class flares are situated to the
upper-right quadrant of the scatter plot, as are (proportionally)
more of the active regions with M-class and C-class flares. If
maximum accumulated values exceeding 6 × 1015 cm4 and
1 × 1020 Mx2 are seen for cd ¢ and cd ¢ , respectively, then there
is a high probability of the region flaring (according to this data
set) with only three nonflaring regions exceeding these values
from our data set, while all regions with X-class flares are
captured. Additionally, visual inspection of the nonflaring
region(s) in question, such as the three randomly selected
regions shown in the panels on the right of Figure 13, reveals
that many nonflaring regions are either small or in their

Table 2
Percentage of Spikes Preceding Flares, Xs, and Flares with Spikes Preceding them, Xf, across the Three Example Regions

No Helicity Cutoff Applied

Quantity Xs Ns
Xf Nf

3 hr 6 hr 12 hr 3 hr 6 hr 12 hr

cd ¢ 0.470 0.566 0.697 236 0.556 0.756 0.848 190

cd ¢ 0.380 0.502 0.653 166 0.371 0.549 0.737 190

vz cd ¢ 0.383 0.494 0.652 163 0.383 0.608 0.790 190

vz cd ¢ 0.356 0.518 0.648 156 0.349 0.574 0.749 190

∣ ∣v Bz z 0.402 0.512 0.608 113 0.291 0.537 0.735 190
( )Kurt cd ¢ 0.428 0.551 0.644 291 0.474 0.702 0.803 190
( )Kurt cd ¢ 0.359 0.512 0.646 261 0.423 0.688 0.854 190
( )vKurt z cd ¢ 0.470 0.600 0.669 265 0.401 0.721 0.842 190
( )vKurt z cd ¢ 0.399 0.539 0.616 289 0.477 0.681 0.850 190
( ∣ ∣)v BKurt z z 0.452 0.546 0.668 269 0.433 0.677 0.835 190

Helicity Cutoff of 1 × 1019 Mx2 Applied

Quantity Xs Ns
Xf Nf

3 hr 6 hr 12 hr 3 hr 6 hr 12 hr

cd ¢ 0.554 0.654 0.785 207 0.545 0.728 0.814 190

cd ¢ 0.469 0.631 0.769 134 0.355 0.521 0.698 190

vz cd ¢ 0.462 0.597 0.743 138 0.366 0.575 0.751 190

vz cd ¢ 0.465 0.694 0.806 118 0.327 0.540 0.716 190

∣ ∣v Bz z 0.564 0.688 0.791 92 0.280 0.514 0.707 190
( )Kurt cd ¢ 0.519 0.658 0.738 257 0.474 0.691 0.787 190
( )Kurt cd ¢ 0.400 0.569 0.714 231 0.406 0.655 0.821 190
( )vKurt z cd ¢ 0.527 0.671 0.736 239 0.379 0.688 0.803 190
( )vKurt z cd ¢ 0.487 0.633 0.723 250 0.471 0.658 0.822 190
( ∣ ∣)v BKurt z z 0.512 0.611 0.728 243 0.422 0.649 0.802 190

Table 3
List of Parameter Scans Performed

Run. Mean. σ Helicity Cutoff
(hr) (Mx2)

3 1.5 0
6 2.0 1 × 1018

9 2.5 1 × 1019

12 3.0 1 × 1020
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decaying phases. As such, they exhibit diffuse magnetograms
with no prominent concentrations of magnetic flux. This
“diffusiveness,” particularly for large SHARP patches, may
explain how large accumulations of winding and helicity are
not always associated with flares. That is, modest concentra-
tions of topology are inputted over large areas. Subsequently,
the localized concentrations required to create complex
magnetic field configurations within the solar atmosphere that
can become perturbed and trigger a reconnection event are not
met, and no flaring occurs. There are numerous existing
methods for classifying regions (P. S. McIntosh 1990;
L. Kashapova et al. 2021), and in some cases, those that are

automated (L. S. de Oliveira & A. L. S. Gradvohl 2020), which
could be combined with these maximum cd ¢ and cd ¢ values to
separate out flaring and nonflaring regions. We hope that by
making this data set available, other researchers could
effectively address this question.
In summary, the results presented in Section 5 provide a

valuable first step in transforming the ARTop topology
calculations into predictive metrics for solar eruptions. Within
flaring active regions, ≈40%−60% of spikes and flares can be
associated to one another, with cd ¢ providing the most
promising results/scores.

Table 5
Ten Best-performing Statistics in Both S and Sw across All 65 SHARP Regions Analyzed with Flare Activity within 6 hr of a Spike

Quantity Run. Mean σ Helicity Cutoff S Sw ( )S SW
1

2
+ Ns

(hr) (Mx2) (Nonflaring)

cd ¢ 3 1.5 0 0.467 0.527 0.497 4752

vz cd ¢ 3 1.5 0 0.456 0.497 0.476 3712

( )vKurt z cd ¢ 3 1.5 0 0.447 0.5 0.473 7942

cd ¢ 6 1.5 0 0.446 0.496 0.471 4499

vz cd ¢ 3 1.5 0 0.447 0.482 0.465 4192

( ∣ ∣)v BKurt z z 3 1.5 0 0.427 0.494 0.461 7741
( )vKurt z cd ¢ 3 1.5 0 0.429 0.484 0.457 7796

cd ¢ 3 2 0 0.428 0.485 0.456 2655

cd ¢ 3 1.5 1 × 1018 0.385 0.528 0.456 2672

( )Kurt cd ¢ 3 1.5 0 0.417 0.487 0.452 7475

Table 6
Ten Best-performing Statistics in Both S and Sw across All 65 SHARP Regions Analyzed with Flare Activity within 12 hr of a Spike

Quantity Run. Mean σ Helicity Cutoff S Sw ( )S SW
1

2
+ Ns

(hr) (Mx2) (Nonflaring)

cd ¢ 3 1.5 0 0.536 0.598 0.567 4752

vz cd ¢ 3 1.5 0 0.535 0.585 0.56 3712

cd ¢ 6 1.5 0 0.529 0.587 0.558 4499

( ∣ ∣)v BKurt z z 3 1.5 0 0.53 0.585 0.557 7741
vz cd ¢ 3 1.5 0 0.533 0.579 0.556 4192

cd ¢ 3 2 0 0.519 0.593 0.556 2655

∣ ∣v Bz z 3 1.5 0 0.529 0.582 0.556 4314
( )vKurt z cd ¢ 3 1.5 0 0.529 0.581 0.555 7942
( ∣ ∣)v BKurt z z 3 2 0 0.524 0.58 0.552 4001
( )vKurt z cd ¢ 3 2 0 0.526 0.577 0.551 4117

Table 4
Ten Best-performing Statistics in Both S and Sw across All 65 SHARP Regions Analyzed with Flare Activity within 3 hr of a Spike

Quantity Run. Mean σ Helicity Cutoff S Sw ( )S SW
1

2
+ Ns

(hr) (Mx2) (Nonflaring)

cd ¢ 3 1.5 0 0.376 0.408 0.392 4752

cd ¢ 3 1.5 1 × 1018 0.311 0.406 0.359 2672

cd ¢ 6 1.5 0 0.33 0.354 0.342 4499

vz cd ¢ 3 1.5 0 0.325 0.344 0.335 3712

( )vKurt z cd ¢ 3 1.5 0 0.308 0.359 0.333 7942
( ∣ ∣)v BKurt z z 3 1.5 0 0.301 0.362 0.331 7741

vz cd ¢ 3 1.5 0 0.321 0.337 0.329 4192

cd ¢ 3 1.5 0 0.303 0.348 0.326 4797

cd ¢ 3 2 0 0.314 0.337 0.325 2655

( )vKurt z cd ¢ 3 1.5 0 0.31 0.34 0.325 7796
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6. Conclusions

This manuscript presents analysis on the quantities cd ¢ , cd ¢ ,
vz cd ¢ , vz cd ¢ , ∣ ∣v Bz z (and their accumulated and kurtosis
values) as calculated by the ARTop package, and assess their
potential efficacy for flare prediction. They are applied to time
series of flaring across 144 (65 flaring; 79 nonflaring) active
regions contained within SHARP data sets. A region is
considered to be flaring in this study if it has a reported
X-ray flare class equal to, or exceeding C1.0 within HEK. The
key findings from this study are listed as follows:

1. The δ measures of the winding and helicity rates provided
by the ARTop package, which measure the net imbalance
of current-carrying over potential field derived topologi-
cal fluxes, greatly reduces the dependence on the VS
parameter, which is used when creating velocity maps
from magnetogram data using the DAVE4VM method.
As this work highlights, more frequently employed
topological quantities like the helicity and winding fluxes
are sensitive to this choice, and depending on the values
selected, this may mean photospheric signatures are not
detected until after an eruption has occurred.

2. Constructing time series ( cd ¢ and cd ¢ ) composed of only
the current-carrying-dominant parts of the δL and δH
fluxes produced time series whose extremal values,
spikes (those outside of two standard deviations from
the running mean over a suitable window) show
significant temporal correlation with the timing of flares.
When these signals are only classified as meaningful if a
significant amount of net current-carrying helicity δH has
been accumulated in the region, this correlation improves
significantly. It is further shown that a number of the

spikes showed a spatiotemporal correlation with the sites
of X-class flares, which are cotemporal with CME events.
This provides evidence that these spikes can provide
physically meaningful signals.

3. Across the parameter scans for the metrics investigated in
this work, it seems that cd ¢ is the topological quantity
with the greatest potential for forecasting flaring events
on its own (based on spiking activity of the quantities
examined during this study). Additionally, we found
there is some benefit to adopting an helicity cutoff when
determining if a spike should be counted as a meaningful
event. We hypothesize that the cutoff acts as a means of
quantifying whether there is a sufficient complex
magnetic field residing above the photosphere for new
topology input to destabilize existing structures to cause
reconnection events. Such an adoption yielded approxi-
mately half the number of false-positive spikes in
nonflaring regions for cd ¢ with other, more stringent
cutoffs, reducing this much further, albeit at the cost of
further reduced efficacy for predicting flares. We present
evidence that some algorithm that could deduce whether
a region is likely to flare would allow the quantities
derived in this study to form the basis for a predictive
methodology for individual flare events.

4. The majority of the parameter combinations presented in
the data set (except cd ¢ ) do not generate more spikes than
there are flares for the subset of three regions
(ARs 11158, 11302, and 12673), which are analyzed in
detail. However, a similar spike-based analysis of the
excess kurtosis for these metrics improved their ability to
identify flares, becoming more comparable to cd ¢ , while
also increasing the number of spikes such that there are

Figure 13. Left: log–log scatter plot for maximum values of accumulated cd ¢ and cd ¢ for the 144 SHARP regions analyzed. Color is coded based on the class of the
maximum flare magnitude given by the legend. Right: three typical magnetograms from nonflaring SHARP regions that have been chosen at random for display.
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more spikes than the number of flares. The excess
kurtoses provide a compliment to the short-term (i.e.,

cd ¢ , cd ¢ , ∣ ∣v Bz z , etc.) and long-term (accumulated
winding and helicity) metrics determined by ARTop, by
providing a medium-term memory of the time series. It is
also shown in Section 4.4 that the kurtosis of the time
series might be used in conjunction with the cd ¢ time
series to anticipate the magnitude of a flare (predictive
signal).

The data set used for this manuscript is publicly available as
a pickle file along with some sample Jupyter Notebooks on
how to process the data.4 This is a living database and will
continually grow as more regions are processed with the
ARTop code. This database will form the basis of a predictive
model to further test the efficacy of topology calculations when
it comes to forecasting the likelihood and potential magnitude
of flaring events. As mentioned earlier, there are currently a
large number of false-positive spikes, especially in nonflaring
regions, though it may be possible to segregate flaring and
nonflaring regions based on the ratio of maximum accumulated
winding and helicity and/or the visual appearance of

magnetogram data, i.e., how diffuse/complex the region is.
The issues identified here will be addressed in a future study.
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Appendix

Here, the full list of 144 SHARP regions used for this study
are given in Table 7. A breakdown on the largest flare size, as
well as the total number of X-, M-, and C-class flares is given
for each region. In total, 65 regions exhibit flaring, with a
further 79 regions being flare free.

4 Github: https://github.com/DrTomWilliams/Machine-Learning-Flare-
Dataset.
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Table 7
SHARP Regions Investigated with Flare Information Provided by HEK

NOAA
Active
Region

SHARP
Number

Largest
Flare

No.
X-class
Flares

No.
M-class
Flares

No.
C-class
Flares

11069 8 M1.2 L 1 7
11070 14 L L L L
11071 17 L L L L
11072 26 L L L L
11076 43 L L L L
11073/77 45 L L L L
11079 49 M1.0 L 1 L
11080 51 C1.2 L L 1
11081 54 M2.0 L 1 5
11086 83 L L L L
11087 86 C3.4 L L 5
11096 116 L L L L
11098 131 L L L L
11105 156 C3.3 L L 2
11114 219 L L L L
11116 221 L L L L
11121/23 245 M5.4 L 3 18
11130 274 L L L L
11132 285 L L L L
11136 316 L L L L
11138 318 C1.3 L L 1
11141 325 C1.9 L L 1
11143 335 L L L L
11148 347 L L L L
11151 354 L L L L
11155 366 L L L L
11156 367 L L L L
11158 377 X2.2 1 5 54
11160/

61/62
384 M1.3 L 4 20

11165 394 M5.3 L 6 24
11172/75 421 C1.6 L L 2
11173 429 L L L L
11179 436 L L L L
11176/78 437 M1.4 L 3 13
11177 438 L L L L
11198 527 L L L L
11199 540 C6.5 L L 5
11206 572 L L L L
11209 589 L L L L
11211 590 L L L L
11212 595 L L L L
11214/17 602 L L L L
11221 619 L L L L
11219/24 622 C5.9 L L 2
11223 625 C1.4 L L 2
11242 686 L L L L
11245/53 700 L L L L
11248/

53/57
705 L L L L

11258 713 L L L L
11273 799 L L L L
11281 824 L L L L
11283 833 X2.1 2 5 13
11291 851 L L L L
11300 875 L L L L
L 877 C9.6 L L 15
11302 892 X1.9 2 15 31
11311 926 L L L L
11314/19 940 M1.3 L 2 32
11318 956 L L L L
11327 982 L L L L

Table 7
(Continued)

NOAA
Active
Region

SHARP
Number

Largest
Flare

No.
X-class
Flares

No.
M-class
Flares

No.
C-class
Flares

11326 990 L L L L
11339/48 1028 X1.9 1 11 47
11341/42 1041 M1.1 L 1 3
11357 1080 C1.8 L L 3
11373 1170 L L L L
11380/87 1209 M4.0 L 3 11
11385 1232 L L L L
11398 1303 L L L L
11397 1312 L L L L
11416 1389 C1.5 L L 1
11420 1399 L L L L
11429/30 1449 X5.4 3 14 36
11434 1464 L L L L
11437 1480 L L L L
11446 1497 L L L L
11450 1528 C3.1 L L 5
11463 1558 C8.9 L L 5
11456 1564 L L L L
11460/64 1578 C3.7 L L 5
11464 1594 L L L L
11466/68 1603 M1.0 L 1 4
11469/73 1611 C2.6 L L 12
11476 1638 M5.7 L 11 84
11477/78 1644 L L L L
11488 1688 L L L L
11523 1863 L L L L
11527/28 1877 C5.0 L L 7
11531 1886 C1.7 L L 2
11546 1942 L L L L
11547 1943 L L L L
11548 1946 M5.5 L 5 11
11549 1948 L L L L
11554 1962 C7.6 L L 5
11562 1990 C8.4 L L 2
11560 1993 M1.6 L 1 17
11561 1997 L L L L
11565 2007 C2.3 L L 2
11568 2017 C1.7 L L 1
11572 2036 L L L L
11591 2121 L L L L
11598 2137 X1.8 1 3 23
11601 2158 L L L L
11613/17 2191 M6.0 L 5 15
11628/29 2262 C5.7 L L 3
11630 2270 C5.5 L L 2
11631/32 2291 C1.4 L L 6
11640 2337 C4.0 L L 6
11651 2348 L L L L
11664 2425 L L L L
11668 2436 L L L L
11682 2501 L L L L
11680 2504 L L L L
11696 2560 C2.2 L L 2
11719 2635 M6.5 L 2 13
11737 2711 L L L L
11748 2748 X3.2 3 3 18
11752 2754 C1.3 L L 3
11768 2832 L L L L
11784 2922 C1.1 L L 1
11796 2976 L L L L
11809 3028 C4.9 L L 9
11821 3079 L L L L
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Table 7
(Continued)

NOAA
Active
Region

SHARP
Number

Largest
Flare

No.
X-class
Flares

No.
M-class
Flares

No.
C-class
Flares

11824 3097 L L L L
11835 3122 L L L L
11881 3309 L L L L
11892 3353 L L L L
11905 3420 C3.3 L L 6
11916 3448 C3.3 L L 6
11930 3515 C1.8 L L 3
11942 3560 L L L L
11967/

72/75
3686 M6.6 L 23 66

11978 3741 L L L L
11996 3813 M9.3 L 4 10
12009 3853 L L L L
12024 3907 C2.4 L L 1
12036/

37/43
3999 M7.3 L 1 27

12050 4075 C1.1 L L 1
12066 4131 L L L L
12089 4231 L L L L
12111 4328 L L L L
12192 4698 X3.1 6 32 72
12268/

70/79
5107 M2.1 L 6 31

12297 5298 X2.1 1 22 92
12673 7115 X9.3 4 26 52
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