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Abstract

Sediment transport in shallow waters occurs when the water flows over the bed for which the amount of generated
sediments can be determined from the transport mechanism caused by the consequent flow. Recently, investigating the
bedload and sediment transport using numerical models has been rapidly increased and various techniques have been
developed to quantify both the hydrodynamics and morphodynamics in these systems but not the stress distributions in
the deformed beds. In the present study, we propose a novel class of coupled finite element/finite volume methods to
resolve the effect of sedimentary shallow water flows on the internal stresses in bed topographies. The coupled model
employs the linear elasticity for the bed and the nonlinear shallow water equations for the water flow. Suspended
sediments are also taken into consideration in this study, and impacts of the erosion and deposition are modelled
using well-established empirical equations. The linear equations of elasticity are solved numerically using a finite
element approach on unstructured meshes, while the nonlinear shallow water equations are numerically solved using
a well-balanced finite volume method. We also introduce an accurate algorithm to sample forces on the interface
between the water flow and bed topography to be implemented as coupling conditions between finite volume cells
and finite element nodes. Distributions of stress fields in the bed topography due to erosion and sediment transport
by shallow water flows are presented for several test examples. The novel coupled model is stable, efficient, accurate,
well-balanced and it can be used for solving complex geometries. In addition, the proposed approach offers significant
advancements in understanding sedimentary processes in shallow water environments and the induced underground
stresses as a result of these processes.

Keywords: Sediment transport; Erodible beds; Stress analysis; Linear elasticity; Shallow water equations; Finite
element method; Finite volume method.

1. Introduction

In recent years, increasing emphasis has been dedicated to the modelling and simulation of erosion/deposition
characteristics in bed topographies by water flows since the knowledge of factors influencing erosion is useful in the
design of drainage, road cuts, embankments, ditches and other surfaces, see for example [1]. In fact, it is very impor-
tant to develop a complete understanding of stresses distributions in bed topographies due to erosion by water flows to
avoid failure such as during the installation of driven piles, see [2] among others. In this case, it is crucial getting the
sediment mass around the pile to resist the erosion and deposition effects. The complexity of this class of sediment-
failure models and the additional testing required to determine the different involved sediment parameters, minimize
their utility for geotechnical engineers in practice. Understanding the dynamics of erosion/deposition patterns and
sediment transport is also vital to predict the changes in coastal dynamics and evaluate the performance of coastal
structures [3]. It should be noted that the main goal of sediment transport analysis is to determine changes in the bed
level over time for the hydrodynamic systems including bays, rivers, estuaries, and other near-shore areas where water
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flow and bed topography interact [4]. Hence, the sediment stresses resulting from the erosion and deposition are of
paramount importance to geotechnics because it is a driver of geotechnical changes in soils. These stresses can also be
used to describe the forces applied to the topography surfaces which are transmitted into the bed to exert internal shear
stresses that result in the sediment deformation or fractures [5]. Furthermore, the sediment transport is an important
step in the process of soil erosion which depends on several hydraulic parameters including the mean flow velocity,
unit discharge and slope gradient, see for instance [6]. This requires a quantitative understanding of the relation be-
tween characteristics of the water flow and the fundamental sediment properties [7]. Many experimental techniques
have also been developed to quantify different parameters in sediment transport problems [8], as it is generally rec-
ognized that chemical, biological, and physical factors have a significant impact on the strength of the intertidal mud
flat. Nevertheless, it is not possible to assess these factors independently and forecast the bed strength with any degree
of accuracy [9]. Measuring the critical shear stress for erosion in the bed top layer is one of the well-established treat-
ments for this problem. This technique allows for the reconstruction of all the shear strength parameters within the
same overall parameter [10]. In practice, critical shear stress of the erosion, defined as the maximum shear strength of
the bed top layer, can be evaluated in the laboratory. However, these experimental tests tend to not properly reflect the
conditions of in-situ bed topographies. For instance, to qualitatively analyze the interactions between the eroded bed
resulting from the hydraulic processes and its deposition in the river, a flume test was employed in [8]. The coupling
relationship between the eroded bed and its transport and deposition in the river bed has also been studied in [11]
using a curved channel flume. The cohesive sediment experiences significant changes in sediment properties during
its storage, transportation, core, and laboratory analysis. These changes can significantly alter effects of the sediment,
despite physical experiments can qualitatively measure the amounts of material eroded and deposited within the close
domain [12]. Recently, different methodologies have been improved to address the challenge of developing stable and
accurate numerical methods for solving erosion/deposition effects in shallow water flows. Most of these approaches
employ approximate [13] or exact [14] forms of the eigenvalues of the Jacobian matrix associated with the considered
mathematical model. In [15], a first-order HLLC scheme was proposed and a wave-speed estimator was provided for
the Exner equation. The obtained results were affected by the numerical diffusion and fine meshes were required to
achieve accurate results. In [16], a finite volume method based on the Roe-type solvers was implemented for solving
shallow water waves over mobile beds. It has been shown in this reference that stable numerical results can be ob-
tained without the use of the computationally demanding schemes using the coupled Jacobian matrix. The numerical
study of a sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed was also
investigated in [17] using a Riemann solver.

Development of accurate description of fundamental sediment transport processes such as transport of solid par-
ticles in suspension, erosion and deposition is vital in developing a reliable numerical model to simulate dynamics of
the cohesive sediment transport. A study has been carried out in [18] to examine the stability of cohesive river banks
by determining the ratio of the driving forces to provide resistance on the collapse surface and it introduced a hypo-
thetical collapse model to be associated with the cohesive river banks. However, this model and the one investigated
in [6] neglect the impact of tensile fractures and hydrostatic pressure. As a consequence, an improved collapse model
has been proposed in [19] for the cohesive river banks which takes into account these effects of tensile cracks and it
assumes that the collapsed surface passes through the foot of bank slope. In [20], an augmented Roe approach was
implemented for the simulation of bedload transport using the shallow water equations coupled to a mass conservation
equation for the bed layer. A numerical model for depth-integrated hyper-concentrated and mud/debris shallow flows,
including variable-density and non-uniform solid-phase transport was also presented in [21]. The resulting system
of equations is formed by the conservation laws for the mass and momentum of the mixture, supplemented by the
mass conservation equation for the different sizes of suspended sediments in the water flow. In the present study,
we propose a fully coupled model for stress recovery in the bottom topographies induced by shallow water flows on
movable beds. The governing equations consist of the one-dimensional nonlinear hydro-morphodynamic system for
the water flow and bedload transport whereas for the bed deformation, the two-dimensional linear elasticity model has
been implemented. The coupled model also involves empirical equations for erosion, deposition and bedload along
with consistent transfer conditions at the interface between the solid bed and the water flow. As reported for shallow
water waves by static elastic deformations in [22, 23], distributions of frictional terms and the hydrostatic pressure are
used to sample horizontal and vertical forces at the interface between bed topographies and water bodies. Here, the
deformation in the bed topography is due to the frictional force and hydrostatic pressure distribution resulting from the
sediment transport and bedload. As a numerical solution for the coupled system, we use a well-balanced finite volume
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method to solve the sediment transport by shallow water flows and an unstructured finite element method for the stress
analysis. In addition, using a semi-implicit spatial integration of the bed friction in wet/dry control volumes on the
interface, we provide a new treatment of wet/dry fronts in the finite volume solution of sediment transport. Coupling
conditions at the interface are also investigated in this study for which a robust procedure for sampling forces and
transferring them from finite volume cells to finite element nodes are implemented. The performance of the proposed
coupled finite volume/element method is assessed using three well-established problems of sediment transport for
which experimental measurements of the free-surface and bed profiles are available. Numerical results presented in
this study demonstrate high resolution of the coupled finite volume/element method and confirm its capability to pro-
vide efficient and accurate simulations for stress fields induced by shallow water flows over deformed beds including
erosion and deposition effects. It should also be stressed that while general efforts have been concentrated to present
efficient numerical tools that allow solving sediment transport, to the best of our knowledge, stress distributions in the
bed topography for these models have not been considered.

The rest of the paper is organized as follows. Formulation of the coupled model for shallow water sediment trans-
port and the induced stresses is presented in section 2. Section 3 is devoted to the implementation of the numerical
methods used for the solution procedure. We consider a two-dimensional finite element method for the bed defor-
mations whereas a well-balanced finite volume method is implemented for the sediment transport. In section 4, we
present numerical results and examples for stress fields induced by shallow water flows on movable beds. Our new
approach is shown to enjoy the expected accuracy as well as the stability. Concluding remarks are summarized in
section 5.

2. Governing equations for the coupled model

In the current work, we suppose that the vertical component of the acceleration is negligible, the water flow is
almost horizontal, the pressure is hydrostatic, the gravity waves at the free surface are very long with respect to
both the mean flow depth and the wave amplitude, and the mixture of water species is non-reactive and vertically
homogeneous. In order to account for the accumulation of mass, resulting forces, and species within the control
volume, the considered governing equations are therefore derived by balancing the net inflow of mass, momentum,
and species through boundaries of a control volume during an infinitesimal time interval, see for example [24] and
further details are therein. In general, the model consists of momentum and mass conservation equations for the
water-sediment mixture and a set of mass conservation laws for bed and sediment materials. Hence, the equations
governing the mass conservation and the momentum flux balance are

∂h
∂t
+
∂ (hv)
∂x

=
E −D

1 − p
,

(1)
∂ (hv)
∂t
+
∂

∂x

(
hv2 +

1
2

gh2
)
= −gh

∂Z
∂x
−

(ρs − ρw)
2ρ

gh2 ∂c
∂x
−

(ρ0 − ρ)(E −D)v
ρ(1 − p)

− ghτ f ,

where x is the horizontal spatial coordinate, t the time variable, h(t, x) the water depth, Z(t, x) the bottom topography,
v(t, x) the depth-averaged water velocity, g the gravitational acceleration, p the porosity, ρw the water density, ρs the
sediment density, c the depth-averaged concentration of the suspended sediment, D and E are the deposition and
entrainment terms in downward and upward directions, respectively. In (1), ρ(t, x) and ρ0 are respectively, the density
of the water–sediment mixture and the density of the saturated bed defined as

ρ = ρw(1 − c) + ρsc, ρ0 = ρw p + ρs(1 − p), (2)

whereas τ f represents the friction force involving the Manning roughness coefficient Mb as

τ f =
M2

bv |v|
h1/3 . (3)

For modelling the mass conservation of species, we use the transport equation

∂(hc)
∂t
+
∂ (hvc)
∂x

= E −D, (4)
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and the bedload is updated using the following equation

∂Z
∂t
= −
E −D

1 − p
. (5)

Note that the entrainment flux E is mainly used to model the amount of bed sediment eroded into the water flow
due to the turbulence which is then transported by the flow, whilst the deposition flux D models the deposition of
this entrained sediment due to the gravity [25]. Although there are various formulae for modelling deposition and
entertainment which were empirically proposed based on fieldwork datasets or laboratory, none can be universally
applied due to the range and varying distribution of grain sizes. In the present study, we assume a non-cohesive
sediment and we use the empirical relation reported in [26] as

D = ωαc(1 − αcc)mc, (6)

where ω is the settling velocity of a single particle in tranquil water defined by [27]

ω =

√(
13.95µ
ρwds

)2

+ 1.09sgds −
13.95µ
ρwds

, (7)

with µ is the dynamic viscosity of the water, ds the averaged diameter of the sediment particles, and s the submerged
specific gravity of sediment given by

s =
ρs

ρw
− 1.

In (6), m is an exponent indicating the effects of delayed settling due to high sediment concentrations and it is evaluated
using the Reynolds number of the particles as

m = 4.45Re−0.1, with Re =
ωρwds

µ
. (8)

It should be mentioned that in order to guarantee that the concentration around the bed is not higher than the value of
(1 − p), the coefficient αc in (6) is computed according to [28] by

αc = min
(
2,

1 − p
c

)
.

For modelling the entrainment flux E, we consider the formulation presented in [26] which makes use of a turbulent
bursting outer-scale based function. This equation has also been implemented by other researchers [29, 30, 31, 32]
to calculate the entrainment flux for dam-break flows over erodible sediment beds. A simplified version of this
formulation is also presented in [33] as

E =


φ
θ − θcr

h
vd−0.2

s , if θ ≥ θcr,

0, otherwise,
(9)

where φ is a coefficient used to control the erosion forces and it is determined by

φ = φc
560 (1 − p) ν0.8

3 (sg)0.4 θcr
, (10)

with φc is a value that depends on the phenomenon to be simulated. Notice that the exponent m and the coefficient
φ were assumed constants in [26] however, to extend the applicability of our presented approach we consider a more
general formulation of these coefficients which cover a wide spectrum of erosion/deposition applications. Needless
to mention that the approach proposed in this study can accommodate other empirical expressions of erosion and
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Figure 1: Illustration of the coupled system used for modelling stress fields induced by shallow water flows on movable
beds.

deposition terms without any major conceptual modifications. Here, θcr is a critical value of Shields parameter for the
initiation of the sediment motion and θ is the Shields coefficient defined by

θ =
v2
∗

sgd
, (11)

with v∗ is the friction velocity defined using the Darcy-Weisbach factor f as [27]

v∗ =

√
f
8
|v|. (12)

Note that using this formula for the entrainment flux E, the initiation of motion for a sediment particle is expected to
occur when a non-dimensionalization of the shear stress defined by the Shields parameter θ, reaches a value above
the given critical threshold θcr. It should also be noted that the above equations involve different parameters in
their formulations which need calibration accordingly. This calibration process is among the difficulties related to
modelling sediment transport as it is problem-dependent and should be carried out to obtain the optimal values of the
parameters involved in the empirical formulae used for the erosion and deposition terms. In the present study, this
step has also been performed for the example with experimental measurements but not reported here for brevity in the
presentation.

For ease of representation, we reformulate the sediment transport equations (1), (4) and (5) in a conservative form
as

∂W
∂t
+
∂F(W)
∂x

= Q(W) + R(W) + S(W), (13)

where the vector of unknowns W, the flux vector F(W) and the differential source terms Q(W) are

W =



h

hv

hc

Z


, F(W) =



hv

hv2 +
1
2

gh2

hvc

0


, Q(W) =



0

−gh
∂Z
∂x
−

(ρs − ρw)
2ρ

gh2 ∂c
∂x

0

0


,
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whereas the non-differential source vectors R(W) and S(W) are defined as

R(W) =



E −D

1 − p

−
(ρ0 − ρ)(E −D)v
ρ(1 − p)

E −D

−
E −D

1 − p


, S(W) =



0

−g
M2

bv|v|
h1/3

0

0


.

The system (13) is hyperbolic with four real eigenvalues λk (k = 1, 2, 3, 4) given by

λ1 = 0, λ2 = v, λ3 = v −
√

gh, λ4 = v +
√

gh. (14)

Note that, in the characteristic analysis, the eigenvalues are determined primarily by the physical properties directly
affecting the wave propagation and mass transport, such as the flow velocity v and the water depth h. The density ρ
does not explicitly appear in the eigenvalues because the characteristic speeds are derived from the conservation laws
(mass, momentum) and physical properties (gravity, flow velocity) of the water-sediment mixture, rather than directly
from the density itself. However, the density appears in the corresponding eigenvectors and it influences the system
dynamics through its role in governing the fluxes and interactions within the equations, but its variability across the
domain does not directly alter the speeds at which disturbances propagate through the water flow.

In the present study, we are interested in the evaluation of stress fields generated in the bed topography due to the
considered sediment transport model. To this end, an additional set of equations is required for the stress analysis in
the xz-plane as illustrated in Figure 1. Assuming an isotropic elastic bed topography subject to external forces fx and
fz in the x- and z-direction, respectively, the constitutive relations are given by [34]

∂σx

∂x
+
∂τxz

∂z
= fx,

(15)
∂σz

∂z
+
∂τxz

∂x
= fz,

where τxz is the shear stress, σx and σz are the normal stress components in the x- and z-direction, respectively. In
(15), u = (ux, uz)⊤ is the displacement and ϵ is the infinitesimal strain tensor defined as

ϵ =
1
2

(
∇u + (∇u)⊤

)
. (16)

As for many applications in linear elasticity, we consider the following constitutive stress-strain relation

σ = D ϵ, (17)

where the stress vector σ and the constitutive matrix D are defined by

σ =


σx

σz

τxz

 , D =
E

(1 + ν)(1 − 2ν)


1 − ν ν 0

ν 1 − ν 0

0 0
1 − 2ν

2

 ,
with E is the Young’s modulus and ν is the Poisson’s ratio characterizing the bed material. In (15), the forces fx and
fz are generated by the erosion/deposition processes which occur on the bed due to the sediment transport and their
explicit expressions are given in the next section. Here, the equations (15) are solved in a two-dimensional bounded
domainΩ with a boundary ∂Ω and an interfacial boundary Γ between the water flow and the bed topography as shown
in Figure 1. Notice that the interface Γ between the water and bed varies within the time such that

Γ(t) =
{
(x, z) ∈ Ω : z = Z(t, x)

}
.
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On the boundaries, we use the following conditions

σ · n = 0, on Γ,
(18)

u = 0, on ∂Ω\Γ,

where n is the outward unit normal on Γ. Note that the above conditions ensure that Γ is the only moving boundary
part in the domain while all remaining parts are fixed solid walls. The deformation in the domain Ω is due to the
applied forces fx and fz on the boundary Γ obtained from the sediment transport model. Note that other boundary
conditions can also be incorporated in our system without major conceptual modifications. The coupled system is
solved using a splitting operator where equations for stress analysis and equations for sediment transport are computed
separately using the two-dimensional elastostatic equations (15) and the one-dimensional sediment transport equations
(13), respectively. The coupling between the two models is achieved through the interface Γ by updating the bed
topography Z(t, x) at each time step and applying frictional forces fx and fz generated from the sediment transport on
the boundary Γ. These interchange conditions are passed from the bed topography to the water flow and back during
the time process.

3. Hybrid finite volume/finite element solver

To solve the coupled equations for the considered sediment transport and elastostatic model we propose a hybrid
finite volume/finite element solver for which transfer conditions are transmitted on the interface Γ between the bed
topography and the water flow at each time step. Here, the sediment transport equations are solved using a well-
balanced finite volume method, and the elasticity equations are solved using an unstructured two-dimensional finite
element method. In this section, we also discuss the discretization of source terms and the wet/dry treatment in the
sediment transport equations along with the coupling conditions on the water-bed interface.

3.1. Finite volume solution of sediment transport
For the numerical solution of the sediment transport model (13), the finite volume method first proposed in

[29] is adopted in the present work. The method employs a class of flux-limiter schemes using the second-order
Lax–Wendroff method and a first-order Roe method. The method has been applied in [29] for solving dam-break
flows over erodible beds and it produced highly accurate results without nonphysical oscillations and excessive nu-
merical dissipation. However, as reported in [29], the method suffers from numerical instabilities requiring very small
time steps to be used in the simulations, it also fails to resolve strong friction terms, and it is not suitable for flows over
dry beds. To overcome these drawbacks, we propose in the present study new techniques to improve the numerical
stability of the method and to allow for strong friction forces and wet/dry fronts in the simulations. Thus, unlike
the previous work [29], the stability of the finite volume method is improved by adopting a splitting operator for
the time integration along with a third-order Runge-Kutta method. For the spatial discretization of the system (13),
we discretize the spatial domain into a set of control volumes [xi− 1

2
, xi+ 1

2
] with uniform size ∆x = xi+ 1

2
− xi− 1

2
and

xi = (i + 1
2 )∆x is the center of the control volume. Integrating the system (13) with respect to space over the control

volume [xi− 1
2
, xi+ 1

2
], we obtain the semi-discrete equations

dWi

dt
+
Fi+ 1

2
− Fi− 1

2

∆x
= Q(Wi) + R(Wi) + S(Wi), (19)

where Wi(t) is the space-averaged approximation of the solution W in the control volume [xi− 1
2
, xi+ 1

2
] at time t defined

by

Wi(t) =
1
∆x

∫ xi+ 1
2

xi− 1
2

W(t, x) dx,

and Fi± 1
2
= F(Wi± 1

2
) are the numerical fluxes in the cell interfaces x = xi± 1

2
at time t to be reconstructed in each control

volume. For the time integration of the semi-discrete equations (19), the time domain is divided into subintervals
[tn, tn+1] with length ∆tn = tn+1 − tn and we use the notation Wn to denote the value of a generic function W at time tn.
Hence, the proposed splitting operator consists of the following three steps:
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Step 1:

dW∗
i

dt
= R(W∗

i ), t ∈ (tn, tn+1],
(20)

W∗
i (tn) = Wi(tn).

Step 2:

dW∗∗
i

dt
+

F ∗∗
i+ 1

2
− F ∗∗

i− 1
2

∆x
= Q(W∗∗

i ), t ∈ (tn, tn+1],
(21)

W∗∗
i (tn) = W∗

i (tn).

Step 3:

dW∗∗∗
i

dt
= S(W∗∗∗

i ), t ∈ (tn, tn+1],
(22)

W∗∗∗
i (tn) = W∗∗

i (tn+1).

Note that in (21), the numerical fluxes are defined by F ∗∗
i± 1

2
= F(W∗∗

i± 1
2
). To complete the above time integration, the

explicit third-order Runge-Kutta scheme investigated in [35] is used for the three steps (20)-(22). Hence, to advance
the solution of an ordinary differential equation of the form (20), the Runge-Kutta scheme is carried out as

Wi
(1) = Wn

i + ∆tnR(Wn
i ),

Wi
(2) =

3
4

Wn
i +

1
4
Wi

(1) +
1
4
∆tnR(Wi

(1)), (23)

Wn+1
i =

1
3

Wn
i +

2
3
Wi

(2) +
2
3
∆tnR(Wi

(2)),

where we have dropped the asterisk from the variables in (20) for ease of the notation. It should also be stressed
that the Runge-Kutta method (23) is a convex combination of first-order Euler steps which exhibits strong stability
properties and it has been widely used for time integration of hyperbolic systems of conservation laws. It is also
clear that using the time stepping scheme (23), no nonlinear or linear systems of algebraic equations are needed to
be solved. In addition, the scheme (23) is Total Variation Diminishing (TVD), third-order accurate in time and stable
under the standard Courant-Friedrichs-Lewy (CFL) condition

∆tn ≤
∆x

max
i

(∣∣∣λn
1,i

∣∣∣ , ∣∣∣λn
2,i

∣∣∣ , ∣∣∣λn
3,i

∣∣∣ , ∣∣∣λn
4,i

∣∣∣) , (24)

where λn
k,i (k = 1, 2, 3, 4) are the eigenvalues defined in (29). It should be noted that as the spatial discretization is

second-order accurate in the present work, a second-order time integration scheme would be enough to guarantee
an overall second-order accuracy of the method. However, the third-order time stepping (23) is used here mainly to
allow larger time steps to be used in the simulations. Notice that numerical simulations have also been performed
using an explicit second-order Runge-Kutta scheme and the considered third-order scheme but not reported here for
brevity, and we have observed no improvements in the overall accuracy of the approach but the third-order scheme
can use time steps almost ten times larger than those used in its second-order counterpart for the same accuracy. It is
also worth noting that (24) is a necessary condition for the stability of any explicit time integration scheme used for
solving hyperbolic systems of conservation laws as (13). However, the stability region defined by the inequality (24)
differs from one method to another and the third-order scheme used in the current study belongs to a class of Strong
Stability Preserving (SSP) Runge-Kutta methods and it has been proven to have a larger stability region compared to
its second-order counterpart, see [36] for further discussions on SSP methods.

To finalize the spatial discretization (19), a numerical reconstruction of the fluxes F n
i± 1

2
and approximations of

source terms Q(Wi), R(Wi) and S(Wi) are required. In practice, this step can be achieved using any finite volume
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method developed in the literature for solving a hyperbolic system of conservation laws with source terms. In the
current study, we use a second-order finite volume method using limiters between Roe and Lax-Wendroff fluxes as
discussed in [29]. Notice that flux limiters can be applied using either the characteristic variables or the physical
variables in the hyperbolic systems of conservation laws. In our approach, we used the later reconstruction for its
simplicity and no differences have been detected in the results obtained using both reconstructions for the considered
examples. Discussions on the used flux-limiter method for sediment transport problems can be found in [29] and they
are omitted here. Hence, the numerical fluxes Fi+ 1

2
in (19) are computed as

Fi+ 1
2
= ϕi+ 1

2
F LW

i+ 1
2
+

(
1 − ϕi+ 1

2

)
F Roe

i+ 1
2
, (25)

with F Roe
i+ 1

2
is the numerical flux obtained using the Roe scheme as

F Roe
i+ 1

2
=

1
2

(
F(Wi+1) + F(Wi)

)
−

1
2
|A|

(
Ŵi+ 1

2

)
(Wi+1 −Wi) , (26)

where the averaged state Ŵi+ 1
2

is calculated as

Ŵi+ 1
2
=



hi + hi+1

2
√

hi vi +
√

hi+1 vi+1
√

hi +
√

hi+1
√

hi ci +
√

hi+1 ci+1
√

hi +
√

hi+1

Zi + Zi+1

2



, (27)

and the Roe matrix in (26) is defined as A = R|Λ|R−1 with

R =



−ĝh
ρs − ρw

2ρ
1 1

0
ρs − ρw

2ρ
v̂ λ̂3 λ̂4

−ĝĥc
ρs − ρw

2ρ
ĉ − 1 ĉ ĉ

ĝh − v̂2 0 0 0



, Λ =



λ̂1 0 0 0

0 λ̂2 0 0

0 0 λ̂3 0

0 0 0 λ̂4



, (28)

with λ̂k (k = 1, 2, 3, 4) are the four eigenvalues associated with the system (13) and given by

λ̂1 = 0, λ̂2 = v̂, λ̂3 = v̂ −
√

ĝh, λ̂4 = v̂ +
√

ĝh. (29)

where ĥ, v̂ and ĉ are water height, water velocity and sediment concentration calculated at the averaged state given in
(27). On the other hand, the numerical flux F LW

i+ 1
2

is obtained using the Lax-Wendroff scheme as

F LW
i+ 1

2
=

1
2

(F(Wi+1) + F(Wi)) −
∆x
2∆t

A
(
Ŵi+ 1

2

)
(F(Wi+1) − F (Wi)) . (30)
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(i) (ii) (iii) (iv)

Figure 2: Illustration of the four possible wet/dry cells considered in the finite volume solution.

In (25), ϕi+ 1
2
= ϕ

(
ri+ 1

2

)
is the limiter defined using an appropriate function ϕ of the ratio ri+ 1

2
measuring the upwind

to the local changes calculated locally for each component W of the vector W as

ri+ 1
2
=

Wi+1−q −Wi−q

Wi+1 −Wi
, with q = sgn

[
Λi+ 1

2

]
.

As a flux limiter function we consider the well-known van Leer function

ϕ(r) =
|r| + r
1 + |r|

. (31)

Note that by setting ϕ = 0 or ϕ = 1, the reconstruction (25) yields the first-order Roe method or the second-order
Lax-Wendroff method, respectively. In many applications in sediment transport, the Roe method would produce very
diffusive numerical solutions due to the first-order accuracy and the Lax–Wendroff method would generate numerical
oscillations due to the second-order accuracy. However, the flux-limited reconstruction (25) is a TVD method suc-
cessfully capturing shocks and providing non-oscillatory solutions for the sediment transport equations. It is worth
noting that the differential source term Q in (13) requires a careful numerical treatment such that discretizations of the
flux gradients Fi+ 1

2
and the source terms Q(Wi) are well balanced in (19) following the concept of C-property reported

in [29]. Hence, following similar formalism as in [29], the differential source terms Q(Wi) are approximated in our
method as

Q(Wi) =



0

g
hi+ 1

2
+ hi− 1

2

2
Zi+1 − Zi−1

2∆x
−

(ρs − ρw)
2ρi

g
hi+ 1

2
+ hi− 1

2

2

2
ci+1 − ci−1

2∆x

0

0


. (32)

It is evident that using the above approximation of the source term Q(Wi) in the discretization (19), the considered
finite volume method is well balanced and it satisfies the C-property.

Another challenging problem in the sediment transport is the treatment of dry areas within the computational
domain. The proposed finite volume method should be able to evaluate the evolution of sediment transport at different
changes in the water height including dry areas. In general, four cases may occur depending on the water availability
in the two adjacent cells namely, (i) both cells contain the water with a depth higher than zero (two wet cells) which
generate flux and momentum exchanges in these two cells, (ii) both cells are dry with water depths equal to zero, (iii)
one cell is wet and the second one is dry but the elevation of the dry cell is higher than the wet cell, and (iv) the water
height in the wet cell is higher than the elevation of the dry cell, see Figure 2 for an illustration of these four cases.
Similar cases were also considered in [37] for solving shallow water flows over dry fixed beds. Note that the mass
and momentum exchanges between the two considered cells are expected in the first and fourth cases and not in the
second and third cases. Thus, to allow this in the finite volume method, a wet/dry treatment is carried out by adjusting
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the water height as follows

h(t, x) =



hi, if ηi > Zmax,

1
2

(hi + Zi − Zmin) , if ηi > Zmin,

max (Zmin − Zi, 0) , if ηi < Zmin,

0, otherwise,

(33)

where ηi = hi + Zi is the water free-surface, Zmin and Zmax are the minimum and maximum elevations defined as

Zmin = min (Zi,Zi+1) , Zmax = max (Zi,Zi+1) .

It is worth mentioning that using the wet/dry treatment (33) in the finite volume solution, the water height, water
velocity and sediment concentration are set to zero in case of the two dry cells. It is also evident that the wet/dry
treatment (33) guarantees the positivity of the finite volume method. On the other hand, for small water depths, the
bed friction term τ f becomes dominant compared to the other terms in the momentum equation in (1). This is mainly
attributed to the definition of τ f in (3) which contains the term h

1
3 in the denominator. In this study, to overcome this

drawback a semi-implicit time integration of the source term S in (22) is implemented as

hn+1 − h̃
∆tn

= 0,
(34)

(hv)n+1 −
(̃
h̃v

)
∆tn

= −gM2
b

(hv)n+1 |̃v|(̃
h
) 4

3

,

where h̃ and ṽ are respectively, the water height and water velocity obtained from the first step (21) of the splitting
procedure. Solving for (hv)n+1 the second equation in (34) results in

(hv)n+1 =

(̃
h̃v

)
1 + ∆tngM2

b
|̃v|(̃
h
) 4

3

. (35)

Note that the wet/dry treatment (33) and the time integration of the friction term (35) are crucial for the numerical
stability of the proposed finite volume method solving sediment transport problems particularly for dam-break flows
over erodible dry beds.

3.2. Finite element solution of elasticity
In this section, a finite element method is used for solving the two-dimensional elasticity equations (15) using

quadratic elements on unstructured triangular meshes. As in most finite element methods, the variational formulation
of the strain energy in the spatial domain Ω is obtained by multiplying the first equation in (15) by a weight function
ϕx and integrate over the domain as∫

Ω

∂σx

∂x
ϕx dx +

∫
Ω

∂τxz

∂z
ϕx dx −

∫
Ω

fxϕx dx = 0.

Using the well known Green-Gauss theorem, the above equation yields∮
∂Ω

σxnxϕx dx −
∫
Ω

∂ϕx

∂x
σx dx +

∮
∂Ω

τxznzϕx dx −
∫
Ω

∂ϕx

∂z
τxz dx −

∫
Ω

fxϕx dx = 0,

where x = (x, z)⊤ and n = (nx, nz)⊤ is the outward unit normal on ∂Ω. Using the x-component of the traction
tx = σxnx + τxznz, the above equation can be reformulated as∮

∂Ω

txϕx dx −
∫
Ω

(
∂ϕx

∂x
σx +

∂ϕx

∂z
τxz

)
dx −

∫
Ω

fxϕx dx = 0. (36)
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Applying similar steps to the second equation in (15) gives∮
∂Ω

tzϕz dx −
∫
Ω

(
∂ϕz

∂x
τxz +

∂ϕz

∂z
σz

)
dx −

∫
Ω

fzϕz dx = 0, (37)

where tz = σznz + τxznx. By summing the two equations (36) and (37) we obtain∮
∂Ω

(txϕx + tzϕz) dx −
∫
Ω

( fxϕx + fzϕz) dx −
∫
Ω

(
∂ϕx

∂x
σx +

∂ϕx

∂z
τxz +

∂ϕz

∂z
σz +

∂ϕz

∂x
τxz

)
dx = 0,

which can be rewritten in a compact vector form as∫
Ω

ϕ̂ · σ dx =
∮
∂Ω

ϕ⊤ · t dx +
∫
Ω

ϕ⊤ · f dx, (38)

where ϕ = (ϕx, ϕz)⊤, t = (tx, tz)⊤, f = ( fx, fz)⊤ and ϕ̂ =
(
∂ϕx
∂x ,

∂ϕz
∂z ,

∂ϕx
∂z +

∂ϕz
∂x

)⊤
. For the finite element approximation of

the weak form (38), we first discretize the spatial domainΩ into a set of triangular elements such that the approximated
finite element solution is obtained in terms of the nodal values U j and the polynomial basis functions N j(x, z) as

u(x, z) =
Nd∑
j=1

U jN j(x, z), (39)

where Nd is the number of nodes in the computational mesh. Here, we implement quadratic triangular elements with
six nodes for which the element displacement ue = (ue

x, u
e
z)⊤ is obtained by

ue =

 Ne
1 0 Ne

2 0 . . . 0

0 Ne
1 0 Ne

2 . . . Ne
6





ux1

uz1

ux2

uz2
...

ux6

uz6


,

where Ne
j are the shape functions expressed in the local coordinates (ξ1, ξ2)⊤ as

Ne
1(ξ1, ξ2) = ξ2 (2ξ2 − 1) , Ne

2(ξ1, ξ2) = ξ1 (2ξ1 − 1) ,

Ne
3(ξ1, ξ2) = (1 − ξ1 − ξ2) (1 − 2ξ1 − 2ξ2) , Ne

4(ξ1, ξ2) = 4ξ2ξ1,

Ne
5(ξ1, ξ2) = 4ξ1 (1 − ξ2 − ξ1) , Ne

6(ξ1, ξ2) = 4 (1 − ξ2 − ξ1) ξ2.

Hence, once the elementary matrices are built and assembled into a global system of equations, the finite element
solution is obtained by solving a linear system of algebraic equations as

[K] {u} = { f } , (40)

where [K] is the global stiffness matrix, {u} the nodal displacement vector and { f } the force vector. It should be
stressed that we have used the constitutive stress-strain relation (17) to reconstruct the linear system (40) which is
solved for the displacement. In all our computations carried out in this study, the linear system (40) is solved using the
conjugate gradient algorithm with an incomplete Cholesky decomposition and a stopping criteria set to 10−8 which is
considered to be small enough to guarantee that the overall numerical errors are dominated by the method truncation
errors.
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Figure 3: Illustration of finite element and finite volume nodes at the interface and distribution of the horizontal and
vertical forces on the finite element nodes.

3.3. Transfer conditions at the bed-water interface

For the proposed model, coupling conditions are required to be transferred on the interface Γ at each time step
between both sediment transport and elasticity models. As illustrated in Figure 3, the finite element and finite volume
nodes on the interface do not in general coincide and therefore we employ a cubic spline interpolation to interchange
the solutions between the two classes of nodes. Here, at each time step, the finite volume solutions of the sediment
transport model are used to calculate the hydrostatic pressure and the friction distributions. These are then used to
sample the horizontal and vertical forces at the interface to be used in the finite element solutions of the elasticity
model. Thus, the horizontal force fx in the x-direction is calculated using the friction term as

fx = −gτn+1
f . (41)

Similarly, the vertical force fz in the z-direction is computed at each time step using the variation in the hydrostatic
pressure as

Pn+1 = −ρ0g
hn+1 − hn

∆tn
. (42)

Therefore, for each node of the three finite element nodes located on the interface Γ, the vertical force fz is recon-
structed using the integral form as [38]

f (1)
z =

∫ 1

−1
−

1
2
ξ (1 − ξ) Pn+1 ℏ

2
dξ ≈

ℏ
6

Pn+1,

f (2)
z =

∫ 1

−1

(
1 − ξ2

)
Pn+1 ℏ

2
dξ ≈

2ℏ
3

Pn+1, (43)

f (3)
z =

∫ 1

−1

1
2
ξ (1 + ξ) Pn+1 ℏ

2
dξ ≈

ℏ
6

Pn+1,

where ℏ is the length of the edge in the considered triangular element on the interface. Hence, once the element forces
f (1)
z , f (2)

z and f (3)
z are calculated according to (43), the global force fz to be applied in the z-direction is calculated by

accumulating the elemental forces on the overlapped nodes as illustrated in Figure 3. Note that it is easy to verify that
the element forces (43) satisfy the relation

f (1)
z + f (2)

z + f (3)
z = ℏPn+1.
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Algorithm 1 Hybrid finite element/finite volume for stress fields induced by shallow water flows on movable beds.

Require: E, ν, p, ρw, ρs, Mb, θc, T , Cr.
1: while tn ⩽ T do
2: Solve the shallow water equations using:
3: for each control volume

[
xi, xi+ 1

2

]
do

4: Compute the flux limiter numerical fluxes Fn
i+ 1

2
, following the equations (25)-(30).

5: Discrete the source term Qi using the well-balanced discretization (32).
6: Compute the solution in the first stage of the splitting Wn+1

i using (21).
7: Compute the solution in the second and third stages of the splitting Wn+1

i using (21) and (22).
8: end for
9: Compute the horizontal force fx using the bed friction according to (41).

10: Compute the vertical force fz using the hydrostatic pressure according to (42).
11: Assemble the stiffness matrix K for the elastostatic system using the finite element method (36)-(40).
12: Assemble the force vector f for the elastostatic system using the finite element method (36)-(40).
13: Update the linear system (40) for the displacement in the computational mesh.
14: Update the linear system (16) for the elastic strain in the computational mesh.
15: Update the linear system (17) for the stresses distributions in the computational mesh.
16: Update the displacement of the finite element nodes on the interface.
17: Update the time step ∆t according to the CFL condition (44).
18: Overwrite tn ←− tn + ∆t and go to step 2.
19: end while

In addition, since both the horizontal force fx and vertical force fz have negative signs, these forces are applied in the
negative x- and z-direction, respectively. In summary and for completeness, the coupled finite volume/finite element
method proposed in the present study for the stresses induced by shallow water flows on movable beds is carried out
in the steps described in Algorithm 1. It should be stressed that the system is fully coupled for which the coupling
conditions occur on the interface Γ between the two models. Here, given the computational domainΩ and the sediment
transport solutions at time t = tn, the sediment transport equations (13) are solved to obtain the water depth h, the water
velocity v, the sediment concentration c and the bed profile Z at next time t = tn+1. Then, these sediment variables are
employed to calculate the horizontal and vertical forces fx and fz using the equations (41) and (43), respectively. Next,
these forces are imposed on the interface Γ to solve the elasticity equations (15)-(17) on the original domain Ω at time
t = tn to obtain the stress distributions in the bed. Therefore, the sediment transport influences the stress distributions
and the bed deformation influences the water flow as well. Notice that the coupling between the two models occurs
through the boundary conditions applied to the bed-surface in the linear elasticity model by applying the friction force
computed in the shallow water model. Thus, the bed shear-stress τ f computed from Manning law is applied as a
boundary condition for the elastic model. More precisely, the friction force τ f is interpreted as the tangential stress on
the bed-surface and it acts as an external load in the finite element analysis. Hence, the force fx = −gτ f is used in the
elasticity model (15) which is applied to the surface of the bed as a traction boundary condition.

4. Numerical results and examples

To assess the performance of the proposed numerical models and computational methods we present results for
well-established problems for shallow water flows on movable beds and resolve distributions of the induced stress
fields. We also verify the numerical capability of these techniques to solve moving wet/dry fronts in shallow water
flows. In all our simulations presented in this section, the Courant number is fixed to Cr = 0.75 and the time step ∆tn
is dynamically adjusted at each time step according to the CFL stability condition (24) as

∆tn = Cr
∆x

max
(∣∣∣λn

1

∣∣∣ , ∣∣∣λn
2

∣∣∣ , ∣∣∣λn
3

∣∣∣ , ∣∣∣λn
4

∣∣∣ ) , (44)

14



Table 1: Reference parameters used in our simulations.

Quantity Reference value Quantity Reference value
E 10000 MPa ν 0.3
g 9.81 m/s2 Mb 0.025 s/m1/3

ρw 1000 kg/m3 µ 1.2 × 10−3 Ns/m2

p 0.67 θc 0.0145

where λ1, λ2, λ3 and λ4 are the four eigenvalues of the shallow water equations defined in (29). In all the computations
reported in this study unless mentioned otherwise, the selected values for the evaluation of the present techniques are
summarized in Table 1.

4.1. Verification of the well-balanced property

We first demonstrate that the proposed method preserves the correct steady-state solution and satisfies the well-
balanced property by considering a test problem similar to the examples investigated in [39]. Thus, the channel is
1000 m long subject to the following initial conditions

h(0, x) = 10 m − Z(0, x), v(0, x) = 0 m/s, and c(0, x) = 0,

with the initial bed is defined as

Z(0, x) =

sin2
(

(x − 300)π
200

)
, if 300 ≤ x ≤ 500;

0, elsewhere.
(45)

For this problem, we set E−D = 0, ρs = 1650 kg/m3, Mb = 0 and we display the results at the final time t = 238000 s
using 100 control volumes for the spatial discretization. In Figure 4, we present the water free-surface for this test
problem along with the errors calculated as differences between the simulated water free-surface and its exact value of
10 m. It is clear from these results that the water free-surface remains constant during the simulation times indicating
that the proposed method preserves the well-balanced property to the machine precision. This confirms that the
numerical scheme accurately maintains a balance between the flux gradients and the source terms, ensuring that a still
water surface remains unchanged throughout the simulation. This demonstrates the effectiveness of our numerical
method in preserving the well-balanced property, ensuring that the water free-surface does not deviate from its initial
state when it should theoretically remain constant. Note that this verification is crucial for ensuring the reliability of
the model in practical applications, where maintaining the correct water level over complex topography is essential.

4.2. Validation of the finite volume method solving shallow water flows on movable beds

To validate the well-balanced finite volume method used in the present study for shallow water flows on movable
beds, we compare the numerical simulations and experimental measurements for a dam-break problem over a dry
erodible bed. The experimental work was carried out at the university catholique de Louvain [40] and the same
setup is adopted in our simulations. In this experiment, the channel is 2.5 m long, 10 cm wide and a sidewall height
of 35 cm is used. The sediment bed is composed of cylindrical PVC pellets with a fixed diameter of 3.2 mm and
height of 2.8 mm which is equivalent to a spherical diameter of 3.5 mm. For this problem, the sediment particle size
ds = 1.72 mm, the sediment density ρs = 2630 kg/m3, the porosity p = 0.39 the erorion term E and deposition term
D are respectively defined in (9) and (6) with constant coefficients m = 2 and φ = 0.015. At the upstream, the water
level is raised to a depth of h0 = 10 cm above the bed bottom. The sluice gate is then quickly lifted using weight to
release the dam-break wave and pulley mechanism and the gate is verified to clear the water surface within 50 ms. The
generated flow patterns are filmed through the transparent sidewalls using fast CCD cameras operating at 200 frames
per second. For this experimental setup, two synchronized CCD cameras were available and the image sequences
resulting from separate runs are collected to produce profiles of the free-surface and bed. These measurements for the
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Figure 4: Water free-surface (left) and the coresponding errors (right) obtained using the well-balanced finite volume
method solving a steady problem over a non-flat bed at time t = 238000 s.

bed and water free-surface profiles are recorded at three different times t = 5t0, 7.5t0 and 10t0, with t0 =
√

h0

g
is the

hydrodynamic time scale and h0 being the initial upstream depth of water. For the numerical simulations, we solve
the sediment transport equations (13) equipped with the following initial conditions

Z(0, x) = 0 m, h(0, x) =


0.1 m, if x ≤ 1.25 m,

0 m, if x > 1.25 m,
v(0, x) = 0 m/s, c(0, x) = 0. (46)

The comparison between the numerical results and experimental data at the three considered times is depicted in
Figure 5. Here, a mesh with 200 control volumes is used in the simulations and profiles for the bed and water
free-surface are included in this figure. As expected, at initial time t = 0 s, the dam collapses and the hydraulic
problem consists of a shock wave traveling downstream and a rarefaction wave traveling upstream. It can clearly
be observed from these results that the erosion effects on the bed are accurately captured and a good agreement
between the numerical results and the experimental data are obtained. For further validations for this problem, a
comparison between the sediment concentration obtained using the proposed well-balanced finite volume method
and the corresponding numerical results reported in [41] is presented in Figure 6 at t = 0.25 s and t = 1 s. The
computed results illustrate similar trends for the sediment concentration at both times with less numerical diffusion in
the proposed well-balanced finite volume method compared to those results in [41]. Apparently, the overall features
of water flow and sediments for this erosional dam-break problem are accurately resolved using the well-balanced
finite volume method with no spurious oscillations appearing in the numerical results. Obviously, the computed
results verify the stability and the shock capturing properties of the proposed finite volume method while the wet/dry
treatment performs well for dam-break problems over dry beds with no need for heavily refined meshes.

4.3. Validation of the finite element method solving linear elasticity
To validate the unstructured finite element method, we consider the benchmark problem of linear elasticity studied

in [10]. Here, the experimental study involves the measurement of vertical stress that occurs due to loading of a footing
plate located on sand, along the centerline of a square footing at various depths of the sandy soil. The model tests were
performed using a square shape box having dimensions of B × B × B with B = 70 cm in the geotechnical laboratory of
the civil engineering department at the Cukurova University. The sides of the box were reinforced by steel profiles to
increase stiffness and two sides of the box consist of 8 mm thick glass plates and the other two sides are made of 20 mm
thick wooden plates. In this experiment, the sand bed was prepared with a uniform relative density of approximately
Dr = 65% and with the corresponding unit weight γ = 17.1 kN/m3. For this purpose, the glass plates of the test box
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Figure 5: Comparison between experimental results presented in [40] and numerical results obtained using the well-
balanced finite volume method solving a dam-break problem over a dry erodible bed at three different instants.

were scaled and each sand layer was compacted by a hand-held vibratory compactor up to the predetermined depths.
For calculating the vertical stresses in the soil, a static loading was applied to the centre of the model footing in the
vertical direction. The loading system used in the tests consisted of a 45 KN capacity mechanical jack supported
against the loading frame. A proving ring was used to measure the load values applied to the model plate. In this
model, a plate foot square is used in the test with a width of R = L = 150 mm, thickness of 20 mm and a vertical
stress of 47 kN/m2 capacity were implemented at the center of the square model. The vertical stresses that occur
during loading beneath the center of the square footings were measured using a 10 bar capacity, diaphragm type,
vertically mounted pressure transducer. For the numerical simulations, we run the finite element analysis on a mesh of
3694 elements and 6711 nodes solving the linear elasticity model (15) using the Young’s modulus E = 28000 kN/m2

and the Poisson’s ratio ν = 0.20. A comparison between the obtained numerical, analytical and experimental vertical
stresses at three different depths (l/R = 1.0 mm, l/R = 1.5 mm and l/R = 2.0 mm) are shown in Figure 7. Note that
the Boussinesq analytical solution [42] is one of the most frequently used to solve the stress problem by a point load
acting at the surface in a linearly elastic, homogeneous and isotropic space. According to this solution, the vertical
stress value ∆σz due to a point load Q at any vertical depth l and at a point of horizontal distance of r is given as

∆σz(r, l) =
3

2π

 1

1 +
( r

l

)2


5/2

Q
l
. (47)
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Figure 6: Numerical results for the sediment concentration obtained for the dam-break problem over a dry erodible
bed at two different instants.

Table 2: Mesh statistics and obtained results for stresses induced by the dam-break problem over erodible bed at time
t = 1.7 s. Here, the CPU times are given in seconds.

# elements # nodes max (Z) max (σz) max (σx) max (τxz) max (σ) CPU time
Mesh A 901 1886 -1.219 267.768 872.9 963.3 2511.5 5.3
Mesh B 1819 3762 -1.469 355.637 1159.3 1279.4 3335.6 11.7
Mesh C 3624 6701 -1.619 566.483 17847.8 15747.8 3413.6 34.1
Mesh D 7248 14751 -1.669 833.158 19245.0 18251.3 3723.1 71.6
Reference 39591 80036 -1.673 837.891 19268.2 18284.3 3797.4 812.2

Since the point load affecting the soil surface is not realistic and most of the loads are uniformly distributed, the above
equation can be reformulated to solve for the stresses induced from the distributed load as

∆σz(r, l) =
q

4π

 2RLl
(
R2 + L2 + 2l2

)
(
R2 + l2

)
(L2 + l2)

√
l2 + L2 + R2

+ tan−1

 2RLl
√

l2 + L2 + R2

−R2L2 + l2(R2 + L2) + l4


 , (48)

where q is the uniformly distributed load. It can be seen from the comparison in Figure 7 that experimental results are
in good agreement with numerical and theoretical results. In our simulations, the difference between the experimental
results and those obtained using the finite element method and the analytical equations is about 6.5 % and 9.5 %,
respectively. It should be noted for this example that the Boussinesq solution also gives smaller values than the
numerical and experimental studies. However, our numerical results are more improved than the results presented in
[10] as in our results, the experimental results are only 6.5 % greater than the results from our finite element model
using a relatively coarser mesh than the one used in [10]. It should also be stressed that the difference between the
experimental results and those reported in [10] is 14 %. This confirms the high accuracy of the proposed unstructured
finite element method for solving stress fields.

4.4. Stresses induced by a dam-break problem over erodible bed

In this example, we investigate the stresses generated by a dam-break problem over erodible bed using the pro-
posed coupled mode. In practice, these stresses are very important to be identified for different applications in soil
mechanics and geotechnics. For instance, road cuts are one of the very critical applications of these stresses. It is
very crucial to accurately identify the mass of soil that should be around, the rate of erodible and deposition soil,
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Figure 7: Comparison between experimental results presented in [10], theoretical and numerical results obtained using
the unstructured finite element method solving stresses in a foot square domain.

the amounts and center of stresses induced in order to avoid any soil failure within the time. In our simulations, the
computational domain is a channel 20 m long with a dam located at the center of the channel and characterized by the
following initial conditions

Z(0, x) = 0, h(0, x) =


2, if x ≤ 0,

0, if x > 0,
v(0, x) = 0, c(0, x) = 0. (49)

For this problem, the sediment particle size ds = 2.5 mm, the sediment density ρs = 2650 kg/m3, the erorion term
E and deposition term D are respectively defined in (9) and (6) with coefficients m and φ defined in (8) and (10),
respectively. The domain is discretized into 200 control volumes and at time t = 0 the dam breaks over the dry
erodible bed resulting in a shock wave travelling downstream and upstream causing substantial erosion on the bed.
The erosion effects are then passed to the bed through the interface leading to deformations in the bed. For this
example, a depth of 7 m is accounted for the bed which results in a rectangular domain 20 m long and 7 m deep
to be used for the stress analysis. To resolve the distribution of these stresses in the bed, we first perform a mesh
convergence study. To this end, we consider four unstructured meshes with different element and node densities as
shown in Figure 8. Notice that for accuracy reason, a denser mesh is used in the area where the erodibility occurs
whereas a coarser mesh is used otherwise in the domain. To calculate reference solutions for this problem we also
consider a very fine mesh in our simulations and it is not included in Figure 8 because of its density which results
in a heavily black plot. In Table 2, we summarize the number of nodes and elements in each mesh along with the
computational results obtained at the final time t = 1.7 s for the maximum deformation, maximum stresses and CPU
times.

In Figure 9 we display the bed profiles obtained at time t = 1.7 s using the considered meshes. It is clear
that large differences are detected between the results obtained using the coarse meshes Mesh A and Mesh B and
results obtained using the reference mesh. Increasing the density of elements in the meshes, Mesh C and Mesh D
generate similar bed profiles and the difference in results obtained on Mesh D and reference mesh becomes negligible.
This is also confirmed by the results listed in Table 2 for the maximum deformation max (Z) and maximum stresses
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Figure 8: Meshes used in the simulation of stresses induced by the dam-break problem over erodible bed.

max (σz), max (σx), max (τxz) and max (σ). Needless to mention that, refining the mesh results in an increase in
the computational cost, compare the CPU times for each mesh in Table 2. Therefore, Mesh D is used in the rest
of our simulations as it compromises between the accuracy and the computational cost required to solve the stress
fields for this dam-break problem over a movable bed. The main objective of this example is to investigate the stress
distributions in bed resultant from the erosion by dam-break flow. It should be stressed that in all of the previous
research on dam-break problems, the only measurable stress is the surface shear stress which does not give clear
information about the stress distribution inside the overall bed topography.

Figure 10 depicts the field patterns obtained for the two normal stresses σx and σz, the shear stress τxz and the
well known deviatoric stress σ. As expected, high stress distributions are generated in the area where erosion takes
place and then distributed horizontally and vertically throughout the bed. Note that the region where stresses are
distributed can give a clear idea of the location of the high and low stresses, which gives an indication of the safety
of these areas with regards to possibilities of the bed failure for different sediment transport scenarios. It is also
clear that the deformed bed has been accurately resolved using the unstructured finite element method. For example,
the symmetry of these stress distributions can also be clearly seen in Figure 10 and these stresses are correctly and
accurately captured for this sediment transport problem. It should be stressed that results from the proposed coupled
model should be compared with observations of laboratory free-surface flows and bed deformations for this problem.
However, there is no data available until now to carry out this comparison study. Thus, at the moment we can
only perform numerical simulations and verify that results are plausible and consistent for both hydraulic and stress
solutions.

For further investigations of the stress distributions in the bed and their evolution within time, vertical cross-
sections at the center of the domain x = 0 for the two main normal stresses σx and σz are illustrated in Figure 11. It
can be clearly shown from the results in this figure that the stress magnitudes increase as the time evolves. It is also
clear that the maximum horizontal and vertical stresses are detected at the final time t = 1.1 s when the erosion is the
highest. However, both stresses are minimal at the beginning of simulations where the erosion reaches its minimum
values. On the other hand, it can be clearly noted that the vertical stress attends higher values than its horizontal
counterpart which is consistent with the direction of erosion in this test example. To assess the accuracy of the
coupled model in dealing with the induced underground stresses, Figure 12 illustrates the time evolution of the shear
and deviatoric stresses at three different points A1, A2 and A3 located in the computational domain with coordinates
(0,−3), (0,−4) and (0,−5), respectively. Obviously, because of the symmetry in this problem, the deviatoric stress
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Figure 9: Comparison of bed profiles obtained for the problem of stresses induced by the dam-break problem over
erodible bed using different meshes at time t = 1.7 s.

is the highest at the point A1 and the lowest at the point A3. As time progresses, the deviatoric stress increases since
the erosion level becomes high. The opposite behaviour is noticed in the case of the shear stress, where the highest
value is obtained at the point A3 and the lowest value is at the point A1 while it can also be observed that the shear
stress is decreasing as the time increases. The proposed coupling model performs well for this dam-break problem
over erodible bed as it accurately captures the induced stresses without the requirement of complicated computational
techniques for representations of the erodible bed.

4.5. Stresses induced by a stream-flow problem over a trench
We consider in this test example a steady stream-flow over a trench to investigate the resultant stresses in the bed

topography using the proposed hybrid finite volume/finite element method. We also use this example to verify the
capability of the well-balanced finite volume method to predict bed evolution under the steady stream-flow conditions
using experimental measurements conducted at the Delft hydraulics laboratory and published in [43]. Here, the trench
is 30 m long and it has sides of 1V : 10H slopes located in the middle of the domain. Initially, the flow is at rest with
the water height set to h = 0.39 m and a velocity of v = 0.51 m/s prescribed as the upstream boundary condition. The
geometry of the trench and its initial conditions are depicted in Figure 13 for more clarifications. The erodible bed
is composed of fine sand with diameter ds = 0.115 mm, density ρs = 2650 kg/m3 and porosity p = 0.4. According
to the experimental work in [43], the Manning coefficient is set to Mb = 0.016 s/m1/3. For this problem, the erorion
term E and deposition term D are respectively defined in (9) and (6) with constant coefficients m = 2 and φ = 0.015.
In addition, to maintain the sediment equilibrium conditions in the upstream for which no scour or deposition occurs,
a sand with the same composition is fed at a constant rate of 0.04 kg/s/m. Therein, the suspended load transport rate
was estimated to be 0.03 ± 0.006 kg/s/m and the bedload transport rate of about 0.01 kg/s/m. In our simulations, the
computational domain is discretized into 200 control volumes. To achieve the steady flow conditions, the simulation is
performed in two stages. In the first stage, the numerical model is run to 900 s while the bed profile is maintained fixed.
After 900 s in the second stage, the sand is fed and the bed evolution occurs. In Figure 14, the obtained numerical
results for the bed profile at time t = 7.5 hr and t = 15 hr are compared to the experimental measurements. A good
agreement between the computational and experimental bed profiles can clearly be seen at the considered instants.
Both erosion and deposition effects have been numerically resolved using the proposed approach without introducing
non-physical oscillations or excessive numerical diffusion. Furthermore, the obtained results for the water free-surface
profile in Figure 14 also confirm the well-balanced characteristic of the finite volume method as this profile remains
flat at all times of the simulation.
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Figure 10: Snapshots of normal stresses σx and σz, shear stress τxz and deviatoric stress σ for the problem of stresses
induced by the dam-break problem over erodible bed at time t = 1.7 s.

Table 3: Mesh statistics and obtained results for stresses induced by the stream-flow problem over a trench at time
t = 7.5 hrs. The CPU times are given in minutes.

# elements # nodes max (Z) max (σz) max (σx) max (τxz) max (σ) CPU time
Mesh A 942 1995 -0.1365 490.5 1647.4 985.5 2333.2 4.6
Mesh B 1882 3817 -0.1645 540.6 1815.6 1086.2 2571.4 9.8
Mesh C 3694 6711 -0.1813 557.3 1871.6 1119.8 2650.8 21.5
Mesh D 7406 15149 -0.1884 570.9 1917.6 1147.3 2715.9 51.1
Reference 39591 80036 -0.1912 581.4 1932.4 1189.3 2782.7 538.0
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Figure 11: Vertical cross-sections of the normal stresses σx (left plot) and σz (right plot) obtained at different times
for the problem of stresses induced by the dam-break problem over erodible bed.

As observed in the above simulations, the water flow causes erosion and deposition in the trench which are ex-
pected to transmit internal stresses in the bed. Therefore, we investigate the stresses induced by this stream-flow
problem over the trench accounting for erosion and deposition effects. As in the previous example, we have also
performed a mesh convergence study using the four unstructured meshes shown in Figure 15. Note that, to avoid
refining the mesh everywhere in the computational domain, only the area subject to the deformation is refined in the
mesh. Thus, this would require less computational cost than considering a uniformly fine mesh in the simulations. We
also consider a very refined mesh as a reference for accuracy comparisons in this problem. In Table 3 we summarize
the number of nodes and elements in each mesh along with the computational results obtained at final time t = 7.5 hr
for the maximum deformation, maximum stresses and the CPU times. The bed profiles obtained at time t = 7.5 hr
using the five considered meshes are depicted in Figure 16. As it can be seen from these results, the bed profile
computed using the coarse meshes Mesh A and Mesh B are less accurate than the results obtained on the reference
mesh. Refining the mesh, the results obtained using Mesh C and Mesh D appear similar and the difference in results
obtained on Mesh D and reference mesh becomes negligible. These observations are also supported by the results
presented in Table 3 for the maximum deformation max (Z) and maximum stresses max (σz), max (σx), max (τxz) and
max (σ). Regarding the computational cost for these simulations, the CPU time in Table 3 also reveals an increase
in this cost as the mesh is refined. It can be clearly noted from these results that a mesh convergence is achieved in
the unstructured finite element method as the bed deformation using Mesh D and the reference mesh is noticeably
similar but with large differences in the computational cost. Based on these simulations, Mesh D is used in the rest of
our computations as it compromises between the accuracy and the efficiency required to solve the stress fields for this
stream-flow problem.

In Figure 17 we present the field patterns obtained for the two normal stresses σx and σz, the shear stress τxz and
the deviatoric stress σ at time t = 7.5 hr. For a better insight, only a part of the computational domain is displayed
in this figure. It is evident that the highest stresses are localized near areas with maximum deformations induced
by erosion and deposition effects whereas low stresses are distributed elsewhere in the computational domain. The
finite element method performs well in calculating the stresses in the bed and accurately capturing their effects due to
erosion and deposition caused by the steady stream flow. Unlike the previous sediment transport problem for which
only erosion occurred in the bed, in this problem both erosion and deposition take place and therefore the resultant
stresses exhibit different patterns than those observed for the dam-break problem. To further investigate these stress
distributions in the bed and their evolution within time, vertical cross-sections at the trench in x = 16.5 m for the two
main normal stresses σx and σz are depicted in Figure 18. It is also noticeable from these results that the computed
stresses increase as the time progresses which results in more deposition in the trench. At the final time t = 7.5 hr,
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Figure 12: Time evolution of the shear stress τxz (left plot) and the deviatoric stress σ (right plot) obtained at the
selected points A1, A2 and A3 for the problem of stresses induced by the dam-break problem over erodible bed.

Table 4: Mesh statistics and obtained results for stresses induced by the overtopping flow over a dyke at time t = 30 s.
The CPU times are given in minutes.

# elements # nodes max (Z) max (σz) max (σx) max (τxz) max (σ) CPU time
Mesh A 942 1995 0.7693 119.8 116.7 80.1 120.6 1.1
Mesh B 1882 3817 0.8425 138.9 139.7 89.5 141.9 2.5
Mesh C 3694 6711 0.9158 142.3 142.8 94.2 144.8 5.3
Mesh D 7406 15149 0.9304 145.8 150.0 96.7 150.9 12.4
Reference 37030 75745 0.9412 146.7 151.7 98.5 155.3 108.6

both stresses also reflect directions such that effects of the deposition in the upper direction are higher than effects of
erosion in the lower direction.

To further evaluate the performance of the proposed coupled model in resolving the stresses in this sediment
transport problem, we present in Figure 19 the time evolution of the shear and deviatoric stresses at three different
points B1, B2 and B3 located at different depth in the computational domain with coordinates (16.5,−2), (16.5,−3)
and (16.5,−4), respectively. It is clear that the highest deviatoric stresses are obtained at the gauge B1 which is the
nearest to the deformed bed surface whereas the lowest stresses are detected in the gauge B3 which is the farest from
the bed surface. The shear stresses exhibit different behavior at these gauges during the simulation time. This is
expected in sedimentary beds since the shear strength of granular soils increases within the depth because the weight
of the overlying material causes an increase in the effective stress on the bed particles. This results in a higher inter-
particle friction, which leads to an increase in the shear strength. The proposed coupled model performs well for this
stream-flow problem over a trench as the induced stresses are accurately resolved without requiring highly demanding
computational resources for the stress analysis of deformable beds.

4.6. Stresses induced by an overtopping flow over a dyke

Our final example consists of the problem of overtopping shallow water flows over erodible beds. It should be
noted that this is an example of a complex flow process that includes outburst flow, subcritical flow, supercritical flow,
and steady flow. Furthermore, because of the presence of upstream and downstream slopes, effects generated by the
bed slope are expected to alter the flow features in this case. Therefore, for risk management, it is also necessary to
predict the flow propagation and dyke erosion processes. As a result, this test is being conducted to ensure that the
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Figure 13: Illustration of the geometry and initial conditions implemented for the problem of stresses induced by the
stream-flow problem over a trench.

suggested model system can solve this sediment transport problem under complex hydraulic conditions while also
predicting morphological changes. In this example, we consider the experimental setup carried out in [43]. Thus, a
dyke is located in the middle of a flume of 35 m×1 m×1 m being 0.8 m in height, 1 m wide with a crest width of 0.3 m.
Initially, the upstream and downstream slopes of the dyke are 1V:3H and 1V:2.5H, respectively. The dyke is composed
of sand with a median diameter of 1.13 mm and the density of 2650 kg/m3. The erorion term E and deposition termD
are respectively defined in (9) and (6) with coefficients m and φ defined in (8) and (10), respectively. The bed material
porosity is 0.35 and the inflow discharge has a constant value of 1.42×10−3 m3/s. The initial reservoir level is 0.83 m
and the downstream water level is 0.03 m. The spatial domain is discretized in 200 control volumes and numerical
results are displayed at two different instants t = 30 s and t = 60 s. The comparison between the numerical results
and experimental data at the two considered times is shown in Figure 20. It is clear that the agreement between the
numerical simulations and experimental measurements in this figure is fairly good. In fact, profiles of the erodible
dyke are well predicted by the proposed numerical approach. Obviously, the computed results for the bed verify the
stability and the shock capturing properties of the well-balanced finite volume method. Overall, at t = 30 s, the model
predicts a bed profile in good matching with the measured results and a reasonably good agreement is also achieved
at t = 60 s, but a discrepancy is observed at the top of the dyke as a scour hole occurs in the observation, yet this area
is smooth in the numerical result and more severe scour is simulated at the downstream of the dyke crest.

Next, we turn our attention to investigate the stresses induced by this problem of stresses induced by an overtopping
flow over a dyke accounting for erosion and deposition effects. For this end, a mesh convergence study is first carried
out using a series of unstructured meshes with different numbers of nodes and elements as shown in Figure 21. As in
the previous example and in order to avoid refining the mesh everywhere in the computational domain, only the area
subject to the deformation is refined in these meshes. The corresponding statistics of nodes and elements in each mesh
along with the computational results obtained at time t = 30 s for the maximum deformation max (Z) and maximum
stresses max (σz), max (σx), max (τxz) and max (σ) and the CPU times are presented in Table 4. The obtained results
of the bed profiles at time t = 30 s are displayed in Figure 20 using the considered meshes along with the profile
obtained using the reference mesh. Large differences are clearly detected between results obtained using the coarse
meshes Mesh A and Mesh B and results obtained using the reference mesh. Refining the density of the elements in the
meshes Mesh C and Mesh D generate similar bed profiles and the difference between results obtained on Mesh D and
reference mesh becomes negligibly small. These observations can also be seen in the quantitative results summarized
in Table 4 but with an increase in the computational cost as the mesh is refined in the simulations. Taking all this into
account, a balance between accuracy and efficiency would benefit the Mesh D and therefore this mesh is used in the
rest of our computations of stresses induced by this problem of overtopping flow over a dyke.
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Figure 14: Comparison between experimental results presented in [43] and numerical results obtained using the
well-balanced finite volume method solving the stream-flow problem over a trench at time t = 7.5 hr (left plot) and
t = 15 hr (right plot).
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Figure 15: Meshes used in the simulation of stresses induced by the stream-flow problem over a trench.
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Figure 16: Comparison of bed profiles obtained for the problem of stresses induced by the stream-flow problem over
a trench at time t = 7.5 hrs.

Table 5: Percentage of the computational cost used by each stage of the coupled simulation, using the time for the
first 10 steps. The CPU times are given in seconds.

Mesh B Mesh D
Stage Algorithm CPU Percentage CPU Percentage

Sediment stage
Fluxes 0.00327 88.62% 0.01593 88.01%
RK3 0.00042 11.38% 0.00215 11.99%
Total 0.00369 100% 0.01810 100%

Stresses stage

Assemblage 0.0072 0.23% 0.0248 0.29%
Solver 3.1071 99.77% 8.5192 99.71%
Total 3.1143 100% 8.5440 100%

Total 3.1180 100% 8.5621 100%

In Figure 23 we depict snapshots of the two normal stresses σx and σz, the shear stress τxz and the deviatoric
stress σ at time t = 30 s. Under the considered sediment transport conditions, the maximum values of stresses
are located on the bed topography where the erosion takes place. It is clear that the deformed bed has also been
accurately simulated using the proposed hybrid finite volume/finite element method. For instance, the pick of these
stress distributions is well resolved and its location is correctly captured for this sediment transport problem. It should
also be mentioned that no mesh distortion has been detected in the results obtained for all test examples considered in
this study. Finally, Figure 24 exhibits the time evolution of the normal and deviatoric stresses at three different points
C1, C2 and C3 located at three different depth with the corresponding coordinates (20, 0), (20,−0.5) and (20,−1),
respectively. Again, the high stresses are obtained at the point C3 and the lowest stresses are at the point C1. As time
evolves, the normal stress σz linearly decreases at the selected points in the computational domain. The proposed
coupling model performs well for this problem of overtopping flow over a dyke and it accurately captures the induced
stresses on a relatively coarse mesh.

Analysis of computational cost has also been carried out in this test example. In Table 5 we summarize the com-
putational cost for simulations using the same parameters as before. Here, the computational cost is divided into two
stages: The first stage is the sediment transport stage which involves solving the system (1). This includes Fluxes, rep-
resenting the percentage of CPU time used for reconstructing the numerical fluxes in the solution of sediment transport
equations. RK3, indicating the CPU time allocated for advancing the sediment transport in time. The second stage
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Figure 17: Snapshots of normal stresses σx and σz, shear stress τxz and deviatoric stress σ for the problem of stresses
induced by induced by the stream-flow problem over a trench at time t = 7.5hrs.

focuses on solving the elastostatic equations (15), referred to as the stresses stage. This includes assemblage, repre-
senting the percentage of CPU time used for assembling vectors and matrices in the solution of the linear elasticity
problem. Solver, indicating the CPU time allocated for linear solver. The last column presents the total CPU time for
both stages combined. The main features reported in this table are on one hand, the sediment transport step requires
less computational cost compared to the CPU time needed for the stresses stage. On the other hand, more computa-
tional cost is required for simulations on Mesh D than on Mesh B. This is expected as the model adds more accuracy
to the solution by adding more degrees of freedom. As can be seen from Table 5, a considerable computational effort
goes into the linear solver solving the associated linear systems of algebraic equations. Therefore, reducing the CPU
time in the proposed method can be achieved by constructing more efficient preconditioned iterative solvers for these
linear systems.

5. Conclusions

A class of coupled numerical models has been proposed for the modelling and simulation of stress fields induced
by shallow water flows on movable beds. A hyperbolic system of four equations for balance laws with source terms is
employed for modelling combined hydrodynamics, morphodynamics, and suspended sediments. The linear equations
of elasticity are employed for the stress analysis in the bed topography. To close the system of governing equations,
well-established empirical formulae for the entrainment and deposition terms are implemented, along with linear
constitutive relations for stress and strain tensors. The coupling transfer conditions between the two models are
achieved through the interface between the water body and the bed topography by sampling the applied forces using
the hydrostatic pressure and the friction shear stress obtained from the sediment transport system. For the numerical
solution we developed a hybrid finite volume/finite element method which combines a well-balanced finite volume
scheme for the sediment transport system and an unstructured finite element solver for the stress analysis. We have
also considered a consistent treatment of wet/dry fronts along with a semi-implicit time integration of the bed friction
in wet/dry control volumes on the interface. The proposed algorithm satisfies the conservation property and achieves
excellent numerical balance between the gradient fluxes and the source terms for the coupled system. To examine
the performance of the designed models we have simulated three well-established benchmarks of sediment transport
problems. We have compared computational results to experimental data for the bed profiles and we also performed
stress analysis in the associated sedimentary beds. The results obtained have exhibited accurate predictions of both
hydrodynamics and morphodynamics with correct conservation properties and stable representations of stresses in
the movable beds. Although we have restricted our numerical simulations to the one-dimensional sediment transport
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Figure 18: Vertical cross-sections of the normal stresses σx (left plot) and σz (right plot) obtained at different times
for the problem of stresses induced by the stream-flow problem over a trench.

2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4 5 6 7

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 19: Time evolution of the shear stress τxz (left plot) and the deviatoric stress σ (right plot) obtained at the
selected points B1, B2 and B3 for the problem of stresses induced by the stream-flow problem over a trench.
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Figure 20: Comparison between numerical results and experimental measurements presented in [43] at time t = 30 s
(left) and t = 60 s (right) for the overtopping flow over a dyke.
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Figure 21: Meshes used in the simulation of stresses induced by the overtopping flow over a dyke.
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Figure 22: Comparison of bed profiles obtained for the problem of stresses induced by an overtopping flow over a
dyke using different meshes at time t = 30 s.

problems, the proposed techniques can be extended to model stress fields induced by shallow water flows over movable
beds in two space dimensions accounting for eddy viscosity, wind stresses and Coriolis forces. Furthermore, in
many practical problems in geotechnics, the stress-strain equations are not precisely defined by linear constitutive
relations. The presence of elastoplasticity in these applications can be conveniently described by nonlinear relations,
whose parameters are mainly inferred from experiments. This requires to include, in the governing partial differential
equations modelling the problem under study, a rational assessment of plasticity. Developing robust numerical tools
for solving these problems is of great interest. Another limitation of the sediment transport model used in the present
work is the failure to capture vertical dynamics of the water flow and sediment concentration, and for this class of
problems multilayer sediment transport models as those proposed in [44] are needed. In addition, in many sediment
transport applications, the bed is formed of different sediments with different material properties and different packing
distributions including erodible and non-erodible parts. The proposed approach can still apply for these applications
under the condition that a consistent model is used for the sediment transport accounting for heterogeneous beds such
as multilayered soils. In this case, a series of erosion and deposition formulae as those introduced in [45, 46] are
required for which the sediment transport model switches from one to another according to specific depths within the
bed. These and further issues are subject of future investigations. Future works will also be devoted to comparing the
resulting stress fields with experimental measurements. This comparison will help to assess how useful this class of
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Figure 23: Snapshots of normal stresses σx and σz, shear stress τxz and deviatoric stress σ for the problem of stresses
induced by induced by an overtopping flow over a dyke at time t = 30 s.
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Figure 24: Time evolution of the shear stress τxz (left plot) and the deviatoric stress σ (right plot) obtained at the
selected points C1, C2 and C3 for the problem of stresses induced by an overtopping flow over a dyke.

models is at the operational level.
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