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Abstract

Simulations of solar phenomena play a vital role in space-weather prediction. A critical computational question for
automating research workflows in the context of data-driven solar coronal magnetic field simulations is quantifying
a simulation's burn-in time, after which a solar quantity has evolved away from an arbitrary initial condition to a
physically more realistic state. A challenge to quantifying simulation burn-in is that the underlying solar processes
and data, like many physical phenomena, are non-Markovian and exhibit long memory or persistence and,
therefore, their analysis evades standard statistical approaches. In this work, we provide evidence of long memory
in the nonperiodic variations of solar quantities (including over timescales significantly shorter than previously
identified) and demonstrate that magnetofrictional simulations capture the memory structure present in
magnetogram data. We also provide an algorithm for the quantitative assessment of simulation burn-in time
that can be applied to nonstationary time series with long memory. Our approach is based on time-delayed mutual
information, an information-theoretic quantity, and includes a small-sample bias correction.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Solar physics (1476); Time series analysis
(1916); Bootstrap (1906); Magnetohydrodynamical simulations (1966)

1. Introduction

Understanding the evolution of solar active regions is vital
for space weather prediction. The effects of severe space
weather are highlighted in the current UK Risk Register, with
reasonable worst-case scenarios resulting in significant primary
impacts that include disruptions to power systems, satellite
navigation, telecommunications, aviation, and ground-based
digital components; increased background radiation doses at
high altitudes and in space; and increased risk of on-orbit
collisions of tracked objects.3 Simulations of the solar coronal
magnetic field play an essential role in mitigating these risks by
supporting decision-making; for example, by following the
formation and eruption of magnetic flux ropes, which have
been linked to filament eruptions and coronal mass ejections
from the Sun (e.g., G. P. S. Gibb et al. 2014; S. L. Yardley et al.
2018), and by defining eruptivity criteria based on coronal
magnetic field evolution (e.g., F. P. Zuccarello et al.
2015, 2018; P. Pagano et al. 2019; O. E. K. Rice &
A. R. Yeates 2023) or as boundary conditions for space
weather modeling (e.g., D. Rodkin et al. 2017; P. Pagano et al.
2018; S. Gonzi et al. 2021). Since it is currently difficult to
measure the coronal magnetic field directly, assumptions must
be made about the initial state of the corona in such
simulations. In many cases, it is assumed that there is an
initial ramp-up or burn-in phase, before a simulation evolves
away from its (arbitrary) initial condition to a more realistic,
self-consistent state. This assumed burn-in time varies from on
the order of 1 hr, for small-scale, quiet-Sun (QS) simulations
(K. A. Meyer 2013), to one or more days in active-region-scale

simulations (P. Pagano et al. 2019) and to weeks to months in
global-scale simulations (P. Bhowmik et al. 2022). Typically,
the burn-in time is estimated by the user, based on prior
experience and knowledge of the simulation method, rather
than algorithmically.
The present work develops a systematic approach to

quantifying the simulation burn-in for a particular family of
data-driven coronal magnetic field simulations in solar physics,
where the user is interested in the burn-in time following the
initial condition or indeed the timescale after which the
simulation state at an arbitrary time, t, has been “forgotten.”
The simulations considered here use a magnetofrictional
relaxation method to evolve the coronal magnetic field through
a series of nonlinear force-free equilibria in response to
photospheric motions based on observed magnetogram data
(e.g., A. A. van Ballegooijen 2000; D. H. Mackay 2011;
K. A. Meyer 2013; D. J. Price et al. 2019; J. T. Hoeksema et al.
2020; K. Barczynski et al. 2022; A. R. Yeates & P. Bhowmik
2022). The method is computationally inexpensive compared
to magnetohydrodynamic (MHD) simulations, which means
that large numbers of simulations can be run relatively quickly,
e.g., to investigate the coronal magnetic field evolution of many
observed magnetogram series (S. L. Yardley et al. 2021), to
explore the effects of different terms in the evolution equations
(D. H. Mackay & A. R. Yeates 2021; D. H. Mackay &
L. A. Upton 2022), or to generate training and validation sets
for machine learning methods. Based on observed magneto-
gram data, we consider localized simulations of both the QS
and solar active regions. We also consider cycle-length or
longer global coronal simulations (A. R. Yeates 2014;
V. Aslanyan et al. 2024), which would be prohibitively
expensive with MHD methods. All these simulations are time-
dependent, enabling us to follow the continuous evolution of
scalar-valued quantities (i.e., time series) derived from the 3D
magnetic field. Simulation-based quantities, such as the total
magnetic energy and electric current, help one to understand
the evolution of an active region (G. P. S. Gibb et al. 2014;
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D. H. Mackay & A. R. Yeates 2021) and to identify possible
signatures of eruptive behavior (P. Pagano et al. 2019;
P. Bhowmik et al. 2022; O. E. K. Rice & A. R. Yeates
2022). We also consider quantities that can be calculated
directly from observational magnetogram data, such as the total
absolute flux through the photosphere.

Our algorithmic approach is informed by the presence of
persistence or long memory, which we identify in all time
series of the solar quantities considered. Time series with long
memory are characterized by slowly decaying or persistent
autocorrelations; that is, observed values at distant time points
are correlated (J. Beran et al. 2013). This global statistical
dependence indicates self-similar activity over the timescale of
interest and is an important feature of the data-generating
process for predictive modeling. Persistence is ubiquitous in
complex systems across the physical sciences (e.g., see the
surveys by S. Panchev & M. Tsekov 2007 and S. Salcedo-Sanz
& J. Del Ser 2022). Quantifying persistence is vital for various
tasks, including forecasting (M. G. Ogurtsov 2004) and
predictive modeling (F. Maddanu & T. Proietti 2022),
analyzing sensitivity, and correcting statistical estimators.
Fundamentally, this knowledge elucidates the underlying
system's dynamics, thereby contributing scientific insights
about observations and simulations of the Sun.

The analysis of persistence is of longstanding interest in
solar physics (B. B. Mandelbrot & J. R. Wallis 1969a;
A. Ruzmaikin et al. 1994; R. W. Komm 1995; F. Lepreti et al.
2000; M. G. Ogurtsov 2004), with a recent resurgence from
considering the effects of the solar cycle on climate change
(K. Rypdal & M. Rypdal 2012; M. Rypdal & K. Rypdal 2012).
These studies find evidence of long memory in solar activity
using various proxy data sets spanning different timescales,
from as short as 20 days up to a few thousand years. The
seminal work of B. B. Mandelbrot & J. R. Wallis (1969a)
identifies long memory in solar activity based on mean monthly
sunspot numbers over the period 1749–1948 using a rescaled-
range (Hurst) analysis. A. Ruzmaikin et al. (1994) and
F. Lepreti et al. (2021) use cosmogenic radionuclide data as
a proxy for solar activity and find evidence of long memory
over longer timescales (periods between 100 and 3000 yr),
while R. W. Komm (1995), using Mount Wilson differential
rotation measurements, and F. Lepreti et al. (2000), using the
daily averaged intensity of optical flares, find evidence of long
memory in data over shorter timescales (20 days to several
years). Related work, in M. Adams et al. (1997), studies the
complexity of synthetic and observational magnetograms for
solar active regions to identify possible signatures for flare
activity using fractal dimension, a measure of complexity
connected to measures of persistence. A physical mechanism
for persistence in solar records, connected to the random
variations in the solar dynamo, is proposed in A. Ruzmaikin
et al. (1994), and observational evidence consistent with this
mechanism is identified in A. A. Ruzmaikin et al. (2000).

From a simulation standpoint, the existence of long memory
suggests specific tools to automate decisions regarding the
quality of simulated data. We propose, in Section 4, an
algorithm for quantitatively determining when outputs from a
magnetofrictional simulation have reasonably “forgotten” the
simulation's initial potential field state. This algorithm is based
on information-theoretic measures of dependence, as opposed
to variance-based measures, to remain applicable in the
presence of long memory and nonstationarity. Such algorithms

can also be used to automate other research workflows, such as
data subsetting for training/testing physics-informed neural
networks and other domain-aware statistical surrogate models,
an area of growing interest in the solar physics community (see,
e.g., A. Asensio Ramos et al. 2017, 2023; S. Rahman et al.
2023). Moreover, the burn-in algorithm might apply to other
nonequilibrium systems (arising from long memory or other
sources of nonstationarity) where quantifying the transitions
between states is of interest.
The statistical methods utilized in our persistence analysis rely

both on standard time-series methods, which are well established
in the solar physics community (P. Song & C. T. Russell 1999),
and more specialized methods for long memory (J. Beran 1994;
J. Beran et al. 2013). The typical approach to quantifying
persistence is to propose a candidate long-memory model for the
data-generating process and then to fit model parameters that
capture the strength of the long-range dependence. The most
common candidate in the geophysical community is the fractional
Gaussian noise (FGN) model, obtained by fractional differencing
of a Brownian motion and then discretizing. The FGN model has
a memory parameter H, often referred to as the Hurst exponent,
which can be estimated, e.g., using rescaled-range analysis
(B. B. Mandelbrot & J. R. Wallis 1969b; A. W. Lo 1991),4 or
detrended fluctuation analysis (DFA; C. K. Peng et al. 1994).5

An alternative class of long-memory models, more common in
statistics and econometrics, involve the fractionally integrated
process of C. W. J. Granger & R. Joyeux (1980) and
J. R. M. Hosking (1981), which is obtained by fractional
integration of a discretized Brownian motion. The parameter of
interest is the fractional integration order d, which can be
estimated using log-periodogram regression methods
(J. Geweke & S. Porter-Hudak 1983; P. M. Robinson 1995a)
and likelihood methods (H. R. Kuensch 1987; P. M. Robinson
1995a; K. Shimotsu & P. C. B. Phillips 2005; K. Shimotsu
2010). The two memory parameters are related by the linear
relationship H = d + 0.5 (see J. Geweke & S. Porter-Hudak
1983),6 which has been shown to hold empirically in stationary
regimes (L. Ding et al. 2021). Here, we favor the fractionally
integrated assumption, as our data are available at regular
intervals, the model is easily extended to explicitly include
short-term memory (a primary objection to the FGN model),
and robust estimators are available in nonstationary regimes.
The remainder of the paper is outlined as follows. In the next

section, we review the magnetofrictional simulations and
quantities that will be analyzed. In Section 3, we recall long-
memory models and associated inference methods. We utilize
these models and methods to quantify the persistence in time
series of solar quantities for the QS, solar active regions, and a
global simulation. Based on the presence of long memory, we
develop an algorithmic approach to quantifying simulation
burn-in based on the time-delayed mutual information (TDMI)
in Section 4. The key burn-in time calculation is provided in
Algorithm 2, together with a small-sample bias correction in
Algorithm 1. Additional statistical background and a list of the
softwares utilized are provided in Appendices A–D.

4 The form presented in B. B. Mandelbrot & J. R. Wallis (1969b) is a
corrected version of the rescaled-range analysis initially introduced by
H. E. Hurst (1951).
5 Although we caution that DFA introduces uncontrolled bias and is
inappropriate for nonstationary processes (R. M. Bryce & K. B. Sprague 2012).
6 Theoretically, the spectral density of an FGN process with H ä (0, 1) is
related to that of a fractionally integrated process by H = d + 0.5, with
d ä (−0.5, 0.5).
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2. Magnetofrictional Simulations

Magnetofrictional methods have been used extensively in
data-driven simulations of the Sun's coronal magnetic field,
from shorter-term, localized simulations over hours or days,
following regions of the QS (e.g., K. A. Meyer 2013;
K. Barczynski et al. 2022; L. R. Bellot Rubio &
M. C. M. Cheung 2022) and active regions (e.g.,
D. H. Mackay 2011; P. Pagano et al. 2019; S. L. Yardley
et al. 2021), to long-term simulations of the global corona over
months or years (e.g., A. R. Yeates 2008; P. Bhowmik et al.
2022; D. H. Mackay & L. A. Upton 2022; V. Aslanyan et al.
2024). There are several advantages to magnetofrictional
methods over other types of solar physics simulations. (i)
Observed photospheric magnetograms can be used directly as a
lower-boundary condition to drive the evolution of the coronal
magnetic field.7 (ii) Magnetofrictional methods produce a
continuous time evolution of the coronal magnetic field in
response to photospheric motions, allowing for a memory of
connectivity and the buildup of electric currents and free
magnetic energy. This is in contrast to models such as potential
field or nonlinear force-free field extrapolation methods (see,
e.g., the models compared in C. J. Schrijver 2006), which
produce time-independent extrapolations of the coronal magn-
etic field from each magnetogram. (iii) Magnetofrictional
simulations are much less computationally expensive to run
than MHD simulations, allowing for global coronal simulations
over whole solar cycles (A. R. Yeates 2014, 2024) and
explorations of the parameter space (O. E. K. Rice &
A. R. Yeates 2022, 2023).

The idea of the magnetofrictional method is that the coronal
magnetic field, B, evolves through a series of quasi-static,
nonpotential equilibria in response to a changing (photo-
spheric) lower boundary. In this paper, we will consider two
different implementations of the magnetofrictional method.
The first is a model in a Cartesian coordinate system, where the
lower-boundary evolution is determined by tracking a region of
the solar photosphere over time in observed magnetogram data
and remapping it to Cartesian coordinates. The second is a
global model in a spherical coordinate system, where the
lower-boundary evolution is given by a surface flux transport
(SFT) model that incorporates active regions determined from
observed magnetograms. An SFT model typically includes a
source term for newly emerging magnetic flux regions, an
advective velocity incorporating the observed large-scale flows
of differential rotation and meridional flow, and a diffusive
term approximating the effect of supergranulation on magnetic
flux dispersal (see, e.g., N. R. Sheeley 2005; A. R. Yeates et al.
2023 for reviews of SFT models). The photospheric lower-
boundary evolution for both implementations will be discussed
in Section 2.1 and the coronal evolution in Section 2.2.

2.1. Photospheric Observations and Evolution

Four simulations are considered in this paper, covering
different spatial and temporal scales. These are summarized in
Table 1 (along with a toy model, discussed in Section 2.3). The
first three simulations are driven by observed magnetogram
regions that have been extracted from full-disk observations of
the Sun and remapped to a Cartesian coordinate system. The
first simulation is driven by magnetogram observations of a QS

region, taken by the Helioseismic and Magnetic Imager (HMI)
Instrument (J. Schou et al. 2012) on board the Solar Dynamics
Observatory (W. D. Pesnell et al. 2012). A region of size
512 × 512 pixels was extracted from full-disk line-of-sight
magnetogram observations between 22:03:05 UTC on 2022
March 16 and 02:57:05 UTC on 2022 March 17. The region
was cut out and derotated using the Joint Science Operations
Center (JSOC) export tool.8 The pixel size of HMI magneto-
grams at this time was approximately 364 km on the solar
photosphere and the cadence of the data is 45 s. The QS
magnetogram series consists of 393 magnetograms and covers
a period of just under 5 hr.
Standard cleaning procedures were applied to prepare the

magnetograms for use in simulations (see, e.g., K. A. Meyer
2013; G. P. S. Gibb et al. 2014). To reduce noise and remove 5
minute oscillations, the magnetograms were smoothed in time
by averaging using a Gaussian kernel, with τ = 2 the number
of frames over which the weighting falls by 1/e (see the
Appendix of G. P. S. Gibb et al. 2014). The remaining noise in
the data set was estimated by fitting a Gaussian to a histogram
of pixel values, giving σB = 6.9 G as the Gaussian half-width at
half-maximum. Pixels of magnitude less than 2σB were set to
zero. An example of a cleaned QS magnetogram can be seen in
Figure 1(a).
The second simulation is of NOAA Active Region 10977

(henceforth, AR10977), which has been studied extensively
using magnetofrictional simulations (e.g., D. H. Mackay 2011;
G. P. S. Gibb et al. 2014; D. H. Mackay & A. R. Yeates 2021).
A 127 × 127 pixel region was extracted from magnetogram
data observed by the Michelson Doppler Imager (MDI)
instrument (P. H. Scherrer et al. 1995) on board the Solar
and Heliospheric Observatory (SOHO; V. Domingo et al.
1995), between 12:51:01 UTC on 2007 December 2 and
22:23:01 UTC on 2007 December 10, consisting of 121
magnetograms. The cadence of MDI's magnetograms is
96 minutes and the pixel size is approximately 1386 km.
Similar cleaning was applied to the magnetograms, with the
additional steps of the magnetograms being corrected for flux
imbalance, so that the coronal simulation can be carried out in a
closed domain (see, e.g., D. H. Mackay 2011 or G. P. S. Gibb
et al. 2014 for full details), and each frame being interpolated to
a 256 × 256 pixel grid, to run the coronal simulation at a higher
resolution than the original data (new pixel size ≈692 km), to
reduce numerical diffusion. An example cleaned magnetogram
from AR10977 can be seen in Figure 1(b).
The third simulation is of NOAA AR11680, extracted from

HMI magnetogram observations between 12:59:18 UTC on
2013 February 25 and 12:59:18 UTC on 2013 March 2. The
observations used were the 720 s HMI magnetograms from
JSOC. The region extracted is 512 × 384 pixels in size and
consists of 601 frames. The pixel size of the HMI magnetograms
at this time was approximately 362 km. Cleaning was applied as
described for the QS simulation above. An example cleaned
magnetogram from AR11680 can be seen in Figure 1(c).
The fourth simulation models the global solar corona, so

cannot directly use magnetogram observations, since these only
show the Earth-facing side of the Sun. Instead, an SFT model
simulates the evolution of the Sun's global photospheric
magnetic field. The initial condition for the SFT is HMI
radial-component pole-filled Carrington map 2097

7 Subject to standard data preparation methods, such as noise subtraction and
flux imbalance correction; see Section 2.1.

8 http://jsoc.stanford.edu
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(X. Sun 2018), from 2010 May to June. Figure 2 shows this
initial map alongside an example map of the photospheric
magnetic field from later in the simulation. Newly emerging
active regions are determined automatically from the HMI/
SHARP database (M. G. Bobra et al. 2014), for inclusion in the
SFT simulation. See A. R. Yeates & P. Bhowmik (2022) for
full details of the SFT method and flux emergence procedure
used (for simplicity here, we neglect any additional twist/
helicity in the emerging regions). The simulation covers Solar
Cycle 24, over a period of 10 yr, with 1072 emerging regions
(run T0 from A. R. Yeates 2024). The quantities in this paper
are calculated every 10 simulation time steps, giving an
average cadence of 83.9 s. On the other hand, emerging active
regions are assimilated only at a cadence of 24 hr, with each
region emerging by applying a steady electric field over 24 hr.
Therefore, we consider time series downsampled to a cadence
of approximately 24 hr in the present analysis.

2.2. Coronal Models

The general equation for the evolution of the coronal
magnetic field in both the Cartesian and spherical implementa-
tions of the magnetofrictional method is

( )¶
¶

= ´ +
A

v B N
t

, 1

where A is the magnetic vector potential, B = ∇ × A, and N is
a nonideal term representing unresolved smaller-scale turbulent
motions (A. A. van Ballegooijen 2000). We set N = 0 in the
localized Cartesian model. In the global spherical model, N is
modeled by fourth-order hyperdiffusion, which smooths
gradients in α, while preserving the magnetic helicity density
A · B (A. A. van Ballegooijen & S. R. Cranmer 2008):

∣ ∣
· ( ∣ ∣ ) ( )h a=  N

B
B

B , 2h2
2

where α = j · B/|B|2 is the twist of the magnetic field with
respect to the corresponding potential magnetic field extra-
polation, j = ∇ × B is the electric current density, and
ηh = 1011 km4 s−1.

The magnetofrictional velocity is assumed to be proportional
to the Lorentz force:

( )
n

=
´

+v
j B

v
B

, 3
2 out

where ν is the friction coefficient and B = |B|. In the Cartesian
model, vout = 0 and the friction coefficient is constant, such that
1/ν = 3000 km2 s−1. In the global model, ( )/=v ev r R rout 0

11.5 ,
where v0 = 100 km s−1, er is the unit vector in the radial
direction, and Re is the solar radius. This represents the effect of
the solar wind on the upper corona. In the global model, the
friction coefficient varies with magnetic field strength, colatitude,
θ, and radius, r, and is given by ∣ ∣ ( )/n n q= B r sin0

2 2 2 , with
ν0 = 2.8 × 105 s. On the photosphere, the magnetofrictional
velocity is set to zero in both models. See K. Barczynski et al.
(2022) for further details of the Cartesian model and
A. R. Yeates & P. Bhowmik (2022) and A. R. Yeates (2024)
for further details of the the global model.
The initial condition for each model is a potential field

extrapolation from the first frame of the corresponding
photospheric data. In theory, the initial condition could also
be defined using a linear or nonlinear force-free extrapolation
method (see, e.g., T. Wiegelmann & T. Sakurai 2021 for a
review of such methods). In practice, the twist parameter α
must be estimated for these extrapolation methods, either from
vector magnetograms or observations of coronal structures.
Such approaches are subject to their own uncertainties, e.g., in
the disambiguation of horizontal magnetic fields (T. R. Metcalf
et al. 2006), or due to spatial downsampling (J. K. Thalmann
et al. 2022), and are typically more successful in strong-field
regions and/or where coherent coronal structures can be
observed. In the present study, we are interested in how long it
takes for each simulation to “forget” its initial condition, not the
form of the initial condition, so the simpler potential field
extrapolation is sufficient for our needs.

2.3. Toy Model

We created a “toy model” for comparison with the
simulations described above. A series of 201 synthetic
“magnetograms” was generated, each of size 256 × 256 pixels.
For each synthetic magnetogram, a 16 × 16 pixel grid of
squares of side 16 was randomly generated, with uniformly
distributed values of −1, 0, or 1. Figure 1(d) shows the first
synthetic magnetogram in the series. Since each synthetic
magnetogram is independent of every other in the series, we
expect any time series of quantities derived from this model not
to display evidence of persistence. We compute a potential field
extrapolation from each of the synthetic magnetograms, but it
would not be meaningful to run a magnetofrictional simulation

Table 1
Grid, Time Step (For Data Assimilation, i.e., Observed Magnetograms in Cartesian Cases or Active Region Insertion in the Global Case), and Boundary Condition

Information for Each Simulation

Simulation Grid Cells Boundary Conditions
Magnetogram
Frames Time Step Spatial Resolution

QS 512 × 512 × 256 Periodic in x- and y-directions, open top. 393 45 s 364 km
AR10977 256 × 256 × 256 Closed in x- and y-directions, closed top. 121 96 minutes 692 km
AR11680 512 × 384 × 384 Closed in x- and y-directions, open top. 601 12 minutes 362 km
Solar Cycle 24 360 × 180 × 60 Periodic in longitudinal direction, closed in latitudinal

direction, open at source surface Rss = 2.5 Re.
L 1 daya 1° (≈1930 km) at r = Re,

θ = 90°.
Toy model 256 × 256 × 256 Closed in x- and y-directions, open top. 201 N/A N/A

Note.
a In the global simulation, 1 day is the frequency at which newly emerging active regions may be assimilated. The full 3D coronal magnetic field is output once per
27 days, while quantities such as the total magnetic energy are output with a mean frequency of once per 83.9 s.
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with this synthetic series, due to the independence of each
magnetogram from the next.

2.4. Solar Quantities

We are interested in several scalar-valued quantities
calculated over time. These quantities can depend on the
evolution of the 3D magnetic field together with the
observational data (simulation-based) or on the observational
data alone (observation-based).

1. Total flux. The total magnetic flux through the photo-
sphere is given by

( )òF = B dS, 4
S

jtot

where j= z in the Cartesian simulations and j= r in the
spherical simulation. S is the photospheric surface area.

The simulations that are flux-balanced (AR10977 and the
global simulation) have equal amounts of positive and
negative magnetic flux through the photosphere, so their
total flux is 0.

2. Total absolute flux and open flux. The total absolute flux
through the photosphere is

∣ ∣ ( )òF = B dS, 5
S

jabs

with j as above. For the spherical simulation, we also
compute the absolute flux through the outer boundary at
r = 2.5 Re, given by

∣ ∣ ( )òF =
=

B dS, 6
r R

ropen
ss

which is known as the “open flux.”

Figure 1. Initial cleaned magnetogram for each localized simulation: (a) QS; (b) AR10977; and (c) AR11680. The black and white regions indicate the negative and
positive magnetic field, respectively. The QS magnetogram is saturated at ±30 G and the active region magnetograms at ±100 G. (d) Shows a “toy model,” described
in Section 2.3, saturated at ±1 unit.
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3. Total magnetic energy. The total magnetic energy (erg) of
the simulated coronal magnetic field at each time step is
given by

∣ ∣ ( )òp
= BW dV

1

8
, 7

V
tot

2

where V is the volume of the simulation domain.
4. Potential field magnetic energy. For the Cartesian

simulations, we compute the potential field magnetic
energy, which is the total magnetic energy of the potential
magnetic field, Bpf, extrapolated from the same boundary
conditions as the nonpotential field at each time (see
Table 1):

∣ ∣òp
= BW dV

1

8
.

V
pf pf

2

A potential field is the minimum energy state for given
boundary conditions, so Wpf(t)�Wtot(t) for all t.

5. Free magnetic energy. The free magnetic energy is the
amount of magnetic energy in the coronal volume in
excess of the potential field magnetic energy, given by

( )= -W W W . 8free tot pf

This is typically considered to be energy that is available
for release, e.g., due to a solar flare.

6. Mean electric current density. The mean electric current
density in the simulation is given by

∣ ∣
( )

ò

ò
á ñ =

 ´ B
J

dV

dV
. 9V

V

This is an indicator of nonpotentiality, as well as a useful
diagnostic quantity for identifying eruptive behavior in
global simulations (V. Aslanyan et al. 2024).

We plot time series of solar quantities for the active regions,
QS, and Solar Cycle 24 in Figure 3 and quantities for the toy
model in Figure 4. Note that not all quantities are calculated for
every simulation. For example, the potential field magnetic
energy (and hence the free magnetic energy) requires the
extrapolation of a potential magnetic field at every time step of
the simulation, which would be time-consuming for the 10 yr
long Solar Cycle 24 simulation. We find similar results in our
persistence analysis across each solar quantity within a
simulation, and several solar quantities can be compared across

all simulations (e.g., the total magnetic energy and total
absolute flux).

3. Solar Quantities Exhibit Long Memory

In this work, we view the outputs of data-driven solar
physics simulations as stochastic. Although the coronal models
in Section 2.2 are deterministic, the magnetofrictional method
assimilates observational magnetogram data through time.
These observational data—see Figures 1 and 2—are a source
of both aleatoric uncertainty, i.e., natural and random variation
that is irreducible, and epistemic uncertainty, e.g., arising from
measurement errors and missing data. Due to observational
limitations, many epistemic uncertainties, such as those arising
from inaccessible data, are also irreducible for solar simula-
tions. Therefore, we regard each solar quantity in Section 2.4 as
inherently stochastic and consider each as a stochastic process,
{Y(t)}t � 0, a collection of random variables indexed by time.
We analyze time series, or sequences of recorded observations
{Y(t1) = y(t1), K,Y(tn) = y(tn)}, through (equidistant) discrete
times t = t1,K, tn, typically [ ]Î ¼ Ìt n0, 1, , 0 (see, e.g., the
monographs by J. D. Hamilton 1994; P. J. Brockwell &
R. A. Davis 1991; G. E. P. Box et al. 2015), as displayed in
Figure 3.
This stochastic perspective provides additional tools for

understanding and analyzing the strength and persistence of
various physical processes that underpin the simulation, such as
the memory of flux connectivity, which is a key feature of
magnetofrictional methods. For instance, we anticipate that
simulated observations made closer together in time may be
more strongly associated than those made farther apart.
Figure 5 displays scatter plots of the free magnetic energy at
time t against lagged versions at time t− h, for h = 1, 2, K, 9
time steps (defined in Table 1), for an active region and QS
simulation. Although the cadences of the data assimilation and
the timescales over which each simulation evolves differ,
Figure 5 displays qualitative evidence that the sample
correlations (a measure of linear association) remain high at
moderate to high lag distances. Moreover, the time series in
Figure 3 are characterized by long excursions or local trends, in
contrast to the stationary time series for the toy model in
Figure 4. All of these features suggest some level of
predictability about the underlying process. In the next section,
we recall the statistical concept of long memory required to
make the observation of long-range correlations precise.

Figure 2. Example magnetograms from the global spherical simulation: (a) the initial Carrington map, smoothed to an appropriate resolution; and (b) at a later time
near solar maximum, as generated by the SFT model. The black and white regions indicate the negative and positive magnetic field, respectively. The magnetograms
are saturated at ±10 G.
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3.1. Characterization of Long Memory

Long memory or persistence in a time series is marked by
significant long-range dependence among observations (see,
e.g., J. Beran 1994; J. Beran et al. 2013). For a stationary time

series, persistence is characterized in the time domain by
autocorrelations ρ(h), a function of the time lag h, that decay
algebraically to zero,

( ) ( )r  ¥-h h h, as , 10d2 1

for d ä (0, 0.5), i.e., slower than geometrically
(J. R. M. Hosking 1981).9 From Equation (10), we observe
that long memory is an asymptotic property of the data-
generating process. In the frequency domain, Equation (10) is
equivalent to the spectral density function f (·) being unbounded
for frequencies, λ, near zero—that is,

( ) ∣ ∣ ( )l l l - +f , as 0 . 11d2

In Equations (10) and (11), d is a parameter that captures
“long memory,” “persistent autocorrelation,” or “long-term
dependence.”
The implied spectral densities of the solar quantities from

Section 2.4 exhibit the hallmarks of long memory. In Figure 6,
we plot periodograms, i.e., the log-estimated spectral density
for the demeaned series versus frequency, using a fast Fourier
transform; for the sample rate fs, the spectral density scaling is

Figure 3. Time series of solar quantities for AR11680 (a), AR10977 (b), and QS (c), based on data-driven magnetofrictional simulations including the free magnetic
energy, total magnetic energy, potential field magnetic energy, total flux, total absolute flux, and mean current density. Time series of solar quantities for global
simulations over Solar Cycle 24 (d), from 2008 December to 2019 December, including the total absolute flux, open flux, total magnetic energy, and mean current
density. The magnetofrictional method's initial condition results in nonphysical predictions, which can be observed in the free magnetic energy and mean current
density values of zero at simulation time zero.

Figure 4. Time series of quantities for the toy model including total flux, total
absolute flux, and potential field magnetic energy; note the absence of local
trends or excursions compared to the time series in Figure 3.

9 Further details about autocorrelations can be found in Appendix A.
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1/fs and the frequency λ has been matched to the timescale of
the series (cycles per hour or cycles per unit time). For
stationary time series, the periodogram with scaling 1/fs is a
density over (−fs/2, fs/2), whose integral is the variance of the
series. However, long-run estimates of the periodogram for a
long-memory process will have an infinite density at frequency
zero, consistent with Equation (11). We observe such blowup
in the implied periodograms of the free magnetic energy and
total absolute flux for AR11680 (Figures 6(a) and (b)),
AR10977 (Figures 6(a) and (d)), and QS (Figures 6(a) and
(f)), and in the mean current density and total absolute flux in
Solar Cycle 24 (Figures 6(g) and (h)). Hence, solar quantities
derived both from observed magnetograms (total absolute flux)
and magnetofrictional simulations (free magnetic energy)
exhibit behavior consistent with long memory. This contrasts
sharply with the bounded behavior observed in the period-
ogram for the toy model in Figure 7, which is constant.

Although it is possible to attempt to fit the parameter d in
Equations (10) and (11) directly, a more robust approach is to
consider a class of generative time-series models that capture
the desired power-law behavior of the spectral density.
Notably, a fractionally integrated process of order d ä (0,
0.5) has the spectral density of Equation (11); see, e.g.,
J. Geweke & S. Porter-Hudak (1983).10 Fractionally integrated
processes are related to FGN (see Section 1) and are extended
by autoregressive fractionally integrated moving average
models, first introduced independently by C. W. J. Granger
& R. Joyeux (1980) and J. R. M. Hosking (1981; see also the
modern monographs by J. Beran 1994; P. J. Brockwell &
R. A. Davis 1991; J. Beran et al. 2013). We let I(d) denote the
class of fractionally integrated process of order Îd .

3.2. Memory Parameter Inference

Typical inference approaches in the context of I(d) processes
rely on the spectral density of the series. Within such
approaches, likelihood methods involve the numerical mini-
mization of a likelihood function, which for time series takes
the form of the Whittle likelihood (H. R. Kuensch 1987;
P. M. Robinson 1995a). In the analysis below, we present

inferences using the exact local Whittle (ELW) estimator
(K. Shimotsu & P. C. B. Phillips 2005). Possible alternatives
include the two-step ELW estimator (K. Shimotsu 2010),
which uses tapers to extend the range of consistency, and the
modified local Whittle estimator of Hou and Perron (J. Hou &
P. Perron 2014). These likelihood estimators are all semipara-
metric, in that they do not require estimating intermediate
parameters relating to short memory in the system (that is, they
estimate the parameter d only). Assuming that our time series
are observations from the class I(d) processes, we will quantify
the nature and strength of the persistence over the timescale of
the simulation by inferring the parameter d.
For the sake of comparison with other studies, we also

present the log-periodogram estimator of Geweke and Porter-
Hudak (GPH; J. Geweke & S. Porter-Hudak 1983;
P. M. Robinson 1995a), a rescaled-range (R/S-AL) estimator
(A. A. Annis & E. H. Lloyd 1976; R. Weron 2002), and a DFA
(C. K. Peng et al. 1994). GPH estimates d based on ordinary
least-squares estimates of the slope parameter in a linear
regression of the log-periodogram on a deterministic regressor;
alternatively, one could consider the McCloskey and Perron
estimator, which is reported to be robust to low-frequency
contamination (A. McCloskey & P. Perron 2012). R/S-AL is
an estimator for the Hurst exponent H in the FGN model
(B. B. Mandelbrot & J. R. Wallis 1969b), with the Anis–Lloyd
correction for small-sample bias. In our tables and figures, we
report the corresponding value ˆ ˆ= -d H 0.5 (where we adopt
the typical use of “hats” to distinguish estimated quantities),
with the caveat that the latter relation is only validated for
stationary regimes, i.e., d ä (−0.5, 0.5). The DFA parameter
α ≈ H and we report ˆ â= -d 0.5, noting that α is anticipated
to overestimate H in nonstationary regimes (where H ≈ α − 1;
J. W. Kantelhardt et al. 2002). We further caution that DFA
introduces uncontrolled bias and may be inappropriate for
nonstationary series (R. M. Bryce & K. B. Sprague 2012).
While ELW can be applied directly to estimate any Îd ,

GPH and R/S-AL are in principal for stationary series with
d ä (−0.5, 0.5). We recall that an I(d) process is difference-
stationary, in that it can be differenced d times to obtain a
stationary white-noise process. As our ELW estimates typically
suggest d > 0.5, we utilize our ELW estimate d̂ to determine a
suitable number of integer differences for each series. To have
a fair comparison of the estimators (see Remark 1), we apply

Figure 5. Lag plots of the free magnetic energy for AR11680 (a) and QS (b) indicating high levels of correlation r at moderate lags. Each lag plot includes a local
polynomial regression (LOESS) fit, using a second-degree polynomial with smoothing parameter α = 0.75.

10 Further details about fractionally integrated processes can be found in
Appendix B.
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GPH and R/S-AL to data preconditioned with the indicated
difference filter; GPH and R/S-AL applied to preconditioned
data are recorded as GPH* and R/S-AL*.11

The estimation methods considered in our persistence
analysis are summarized in Table 4. In the next section, we
identify quantitative evidence of long memory in our solar
quantities using these inference procedures.

3.3. Quantitative Evidence of Long Memory

We display estimates d̂ for a range of solar quantities for
regional and global simulations in Figure 8 (see also Table 2).
Estimates for the memory parameter all exceed ˆ >d 0.5,

indicating the existence of long memory in these time series
over the timescales of the simulation (respectively, hours to
days, in Figures 8(a)–(c), and years, in Figure 8). The
identification of long memory in simulation-based quantities
and over timescales of hours to days is a new finding in solar
physics. We observe in Figure 8 that the estimated persistence
strengths are largely consistent across the solar quantities
within each simulation. In particular, the observation-based
solar quantities (e.g., absolute flux) are comparable to the
simulation-based quantities (e.g., free magnetic energy),
demonstrating that magnetofrictional simulations capture the
memory structure present in magnetogram data. Across
simulations, the persistence estimates for AR11680 and
AR10977 exceed the estimates for QS, which in turn all
exceed the estimates for Solar Cycle 24. In contrast, the
estimates for the toy model in Figure 9 suggest ˆ =d 0,
consistent with a 1D white noise.
Previous studies of solar records have identified long

memory in nonperiodic variations over a wide range of
timescales, from 20 days to 3000 yr (see, e.g.,
B. B. Mandelbrot & J. R. Wallis 1969a; A. Ruzmaikin et al.
1994; R. W. Komm 1995; F. Lepreti et al. 2000;
M. G. Ogurtsov 2004). These studies have tended to rely on
Hurst rescaled-range analysis or DFA and on a variety of
different proxies for solar activity. B. B. Mandelbrot &
J. R. Wallis (1969a) look at monthly sunspot activity from

Figure 6. Periodograms for the free magnetic energy and total absolute flux of AR11680 (a) and (b), AR10977 (c) and (d), and QS (e) and (f), and for the mean current
density and total absolute flux for Solar Cycle 24 (g) and (f). Each demonstrates blowup for frequencies near zero, consistent with long memory (see the similar
spectral behavior in Figure 15(b)).

Figure 7. Periodogram for the toy model, where the lack of blowup near zero
contrasts with the periodograms in Figure 6.

11 An alternative to estimating the integrated order that uses unit root testing is
described in Appendix C.
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1749 to 1948 and estimate a high Hurst index H ≈ 0.93;
A. Ruzmaikin et al. (1994) consider Carbon-14 data from
dendrochronology records from the period 6000 BC to
1950 AD and estimate H ≈ 0.8 over timescales from 100 to
3000 yr; and R. W. Komm (1995) considers daily differential
rotation measurements from 1967 to 1992 and estimates
H ≈ 0.83 over timescales of 20 days to 11 yr. F. Lepreti
et al. (2000) consider both the daily averaged intensity of
optical flares from 1976 to 1996 and daily averaged sunspot
numbers from 1951 to 1996 and find H = 0.74 ± 0.02 over
timescales of 24 to 450 days and H = 0.76 ± 0.01 over
timescales of 20 to 350 days, respectively.

Using the heuristic H = d + 0.5, the persistence strength we
observe in the present study of regional and global simulations
exceeds those identified in previous studies by a large
margin.12 There are several explanations for this phenomenon.
First, we are considering solar quantities that are integrals of
the magnetic field and anticipate that integrated quantities
would yield higher persistence estimates (i.e., the free magnetic
energy will have a higher level of persistence than the magnetic
field, especially over the sunspot or flare numbers). Second, we
utilize higher-cadence data than previous studies (owing in part
to our access to modern magnetogram data), and down-
sampling is anticipated to have a degrading effect on the
estimated persistence strength. Third, the Hurst R/S and DFA
methods may consistently underestimate the true persistence
strength for nonstationary time series. For this last point, we
turn to a simple numerical experiment in Remark 1 to illustrate
this bias.

Remark 1 (Nonstationarity Bias). The GPH, Hurst R/S, and
DFA methods may consistently underestimate the true persistence
strength for nonstationary time series with |d| > 0.5. In
Figure 10, we present density estimates for a data-generating
process with known d= 1.6 using DFA, ELW, GPH, R/S-AL,
GPH*, and R/S-AL* (i.e., also with second-difference
preconditioning). The density estimates are based on 1000
simulated I(d = 1.6) series of length N= 5000. Even for very
large time series, the GPH, DFA, and R/S-AL estimates are
biased—the highest likelihood does not correspond to 1.6. One

should further keep in mind that the reported DFA,
ˆ â= -d 0.5, is assumed to overestimate the persistence in
nonstationary regimes.

4. Quantifying Simulation Burn-in Time

Quantifying a simulation's burn-in time, or the time required
for a solar quantity to have sufficiently “forgotten” the
simulation's initial state, is a critical computational question
for automating research workflows in solar physics. For
example, in data-driven magnetofrictional simulations, the
choice of the initial 3D force-free magnetic field is somewhat
arbitrary and a source of uncertainty, because routine 3D
magnetic field observations of the Sun's corona are currently
unavailable. We observe in Figures 3(a) and (c) that the initial
potential field induces starting values of the free magnetic
energy that are nonphysical, in the sense that they are zero-
valued. In this context, the burn-in time is the time after which
a solar quantity, such as the free magnetic energy, has evolved
away from the initial potential field to a physically more
realistic nonpotential state.
A similar challenge arises in molecular dynamics simula-

tions, where the equilibrium statistics of a molecular system are
calculated from simulations initiated from atypical (i.e.,
nonequilibrium) configurations (A. Grossfield et al. 2018). In
such systems, correlations—e.g., the decay of particle velocity
autocorrelation functions (ACFs; see, e.g., G. A. Pavliotis
2014; B. Leimkuhler & C. Matthews 2015)—are often used to
assess the mixing or equilibration time. For example, advanced
equilibration time detection algorithms exist for molecular
dynamics that maximize the number of effectively uncorrelated
samples in the simulation time span used to compute
equilibrium statistics (J. D. Chodera 2016), and these are
important for eliminating starting condition bias. A key
difference in solar simulations is that the underlying time
series exhibit long memory (Section 3) and will, therefore, have
no characteristic decorrelation time.
Presently, we demonstrate an information-theoretic approach

for calculating simulation burn-in time based on mutual
information. Mutual information is a measure of dependence
between random variables that quantifies the amount of shared
information gained about one variable from observing the other
(T. M. Cover & J. A. Thomas 2006). Mutual information can

Figure 8. Estimates of persistence in (a) AR11680, (b) AR10977, (c) QS, and (d) Solar Cycle 24 indicate long memory (i.e., ˆ >d 0.5). The levels of persistence across
all solar quantities in active regions are higher than in QS, which in turn are higher than in Solar Cycle 24 (see Table 2 for full details; a summary of the estimators is
given in Table 4).

12 For the studies reported above, the implied values of d are, respectively,
d ≈ 0.43, d ≈ 0.3, d ≈ 0.33, d ≈ 0.24, and d ≈ 0.26.
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be applied to time series with long memory, where correlation-
based tools would be inappropriate.

4.1. TDMI

In our specific context, we are interested in the mutual
information between probability distributions generated by the
time series of a solar quantity. That is, for Y, we consider Y[0:t],
the distribution of which is given by the occupation density
over (Y(0), K, Y(t)). The TDMI of Y (also known as the
average mutual information) considers the mutual information
between the lagged distributions Y[τ:t] and Y[0:t−τ]. For each τ,
the TDMI quantifies the information we already possess about
Y[τ:t] if we already know Y[0:t−τ]. TDMI has been successfully
used for investigations of nonlinear and complex phenomena,
including the statistical analysis of nonlinear dynamics
(J. A. Vastano & H. L. Swinney 1988; H. Kantz &
T. Schreiber 2003) and in causal inference for nonlinear
systems (S. Li et al. 2018).
Formally, the TDMI for y is a function of the lags (time

steps) τ, given by
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, and
[ ]t

fY t:
represent the joint and

marginal densities for the path distributions over [0: t − τ] and
[τ: t], respectively. The TDMI has the important property that I
(τ)� 0 is strictly nonnegative, with equality if and only if
Y[0:t−τ] and Y[τ:t] are independent—that is, if Y over the interval

Table 2
Details of ELW, GPH*, R/S-AL, and DFA Estimators for Persistence in Observation-based and Simulation-based Solar Quantities for Regional and Global

Simulations All Satisfying ˆ >d 0.5, Indicating the Presence of Long Memory (See Figures 8 and 9)

ELW GPH*
R/S-AL* DFA

Simulation Quantity d̂ seˆ · ( ˆ)d d2 d̂ seˆ · ( ˆ)d d2 d̂ d̂

AR11680 Free magnetic energy 1.08 (0.89, 1.27) 1.61 (1.3, 1.93) 1.16 1.18
AR11680 Potential field energy 1.13 (0.94, 1.31) 1.53 (1.19, 1.87) 1.13 1.47
AR11680 Total magnetic energy 1.14 (0.96, 1.33) 1.41 (1, 1.82) 1.12 1.50
AR11680 Total absolute flux 1.13 (0.94, 1.31) 1.32 (1.05, 1.58) 1.13 1.43
AR11680 Total flux 1.07 (0.89, 1.26) 0.90 (0.66, 1.15) 1.01 1.24
AR11680 Mean current density 0.78 (0.6, 0.97) 1.41 (1.13, 1.69) 1.08 0.94
AR10977 Free magnetic energy 1.12 (0.93, 1.31) 1.66 (1.31, 2) 1.21 1.38
AR10977 Potential field energy 1.71 (1.53, 1.9) 2.20 (1.93, 2.47) 2.08 1.26
AR10977 Total magnetic energy 2.00 (1.81, 2.19) 2.26 (1.92, 2.6) 2.07 1.20
AR10977 Total absolute flux 1.66 (1.48, 1.85) 2.00 (1.67, 2.33) 1.99 1.27
QS Free magnetic energy 0.91 (0.79, 1.03) 0.95 (0.74, 1.16) 1.01 1.08
QS Potential field energy 1.11 (0.99, 1.24) 1.19 (1, 1.37) 1.31 1.20
QS Total magnetic energy 1.11 (0.99, 1.23) 1.12 (0.94, 1.3) 1.28 1.11
QS Total absolute flux 1.03 (0.91, 1.15) 0.95 (0.78, 1.12) 1.08 1.09
QS Total flux 1.15 (1.02, 1.27) 1.12 (0.92, 1.33) 0.95 0.68
QS Mean current density 0.85 (0.73, 0.98) 1.22 (1.09, 1.35) 1.19 1.08
Toy Model Potential field energy −0.19 (−0.35, −0.03) -0.27 (−0.53, −0.01) −0.40 −0.24
Toy Model Total absolute flux −0.08 (−0.23, 0.08) -0.10 (−0.35, 0.14) 0.11 −0.02
Toy Model Total flux 0.14 (−0.02, 0.3) 0.27 (0.03, 0.52) −0.11 0.18
Solar Cycle 24 Total absolute flux 0.91 (0.85, 0.97) 0.87 (0.79, 0.95) 0.94 0.95
Solar Cycle 24 Open flux 0.75 (0.69, 0.81) 0.75 (0.67, 0.82) 0.89 0.77
Solar Cycle 24 Total magnetic energy 0.73 (0.67, 0.79) 0.74 (0.67, 0.82) 0.87 0.76
Solar Cycle 24 Mean current density 0.84 (0.78, 0.89) 0.81 (0.72, 0.89) 0.90 0.90

Figure 9. Estimates of persistence for the toy model. In contrast to Figure 8,
these are not significantly different from zero, suggesting a white-noise model.

Figure 10. Bootstrapped KDEs for the persistence parameter d̂ , based on 1000
simulated I(d = 1.6) series of length 5000, illustrate the bias in DFA, GPH, and
R/S-AL for nonstationary time series, in contrast to the ELW method, which
selects the correct value, d = 1.6, with high likelihood. If the appropriate
difference filter is known a priori (in this case, two differences), the bias can be
mitigated for GPH and (to a lesser extent) R/S-AL.
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[0: t − τ] provides no information about Y over the interval
[τ: t].

The densities required in Equation (12) can be estimated
using kernel density estimates (KDEs), a nonparametric
approach to estimating a probability density function that has
improved statistical properties over histogram binning (see,
e.g., the monograph by T. Duong 2018 and references therein).
For an independent and identically distributed (iid) sample (Xi,
K, Xn) from a common k-dimensional density f, the general
form of a KDE is

ˆ ( ) ( ) ( )å= - Î-

=

x b x X xf n K; , , 13X b
i

n

i
k1

1



where Kb is a kernel smoothing function (an integrable function
with unit integral), with smoothing bandwidth b (a symmetric,
positive, definite k × k matrix of smoothing parameters). The
bandwidth b is the key parameter that impacts the quality of the
estimates. For our study, we utilize the (data-driven) plug-in
selector of T. Duong (2010) for unconstrained bandwidths, a
class of bandwidths recommended for most data analysis in
M. P. Wand & M. C. Jones (1993), and a standard Gaussian
kernel.13

A plug-in estimator for Equation (12) using KDEs is then
given by
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for a time series { ( )}= ¼y ti i n0, , , where we have omitted
subscripts when obvious from the context. The estimator
of Equation (14) may perform poorly for short time series;
a similar problem is noted for the calculation of the
transfer entropy, a quantity related to Equation (12),
where corrections based on a permutation-based resampling
related to bootstrapping are introduced to mitigate small-
sample bias (R. Marschinski & H. Kantz 2002; A. Papana
et al. 2011).

To calculate an effective TDMI, one approach (borrowing
from the calculation of transfer entropy) is to randomly shuffle
the components of the series [̃ ]t-y t0: , where the permutation is
chosen uniformly at random from the set of all possible
permutations. The random shuffle theoretically destroys all
dependence between [̃ ]t-y t0: and y[τ:t], thus any observed
nonzero mutual information is an artifact of the finite sample
size, which is expected to decrease to zero as the number of
permutations utilized increases. We consider the shuffle
correction:
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which averages M plug-in estimators of Equation (14) with
a random permutation [̃ ]

( )
t-y t

m
0: in place of y[0:t−τ]. The

correction is detailed in Algorithm 1. Other corrections are
also possible; a block bootstrap correction is utilized for
transfer entropy in T. Dimpfl & F. J. Peter (2012) and
investigating generalizations to long-memory time series
might be interesting.
An analysis of the local minima of the effective TDMI,

ˆ ( ) ˆ ( ) ˆ ( ) ( )t t t= -I I I , 16eff shuffle

can be used to identify the simulation burn-in time.
Specifically, the first local minimum,

{ ˆ ( ) ˆ ( ) } ( )t t t t= ¢ =  >I Imin : 0 and 0 , 170 eff eff

corresponds to the first time lag for which y[0:t−τ] is minimally
informative of y[τ:t] (conversely, y[τ:t] represents maximal
information beyond the knowledge we have from y[0:t−τ]).
We take the corresponding simulation time,

( )= >tt t t , 1800*

as our simulation burn-in. This burn-in criterion is a reasonable
choice to represent the first time at which y(t

*

) has “forgotten”
y(t0) and mirrors the criterion used in equilibrium systems—
namely, the first lag at which the ACF decays to zero. As in the
nonlinear dynamics literature (H. Kantz & T. Schreiber 2003),
we take for granted that such a minimum will exist. The full
procedure for calculating the simulation burn-in time is
summarized in Algorithm 2.
Although it is possible to compute the TDMI over the whole

time range of the simulation, in most instances, it will not be
necessary. To reduce computational overhead, the calculation
of the TDMI can be carried out over a window,

[ ] [ ]( ) Ìt t0: 0: ,W n n

a subset of the time range, provided it includes the solar
quantity's transition to a nonpotential state. One approach to
choosing the window would be to first calculate a potentially
biased estimate of ˆ ( )tI and then use the observed first
minimum to calculate the effective TDMI over a window about
twice the range.
We comment that there are alternative approaches to

calcating Equation (12) that replace KDEs with other
representations of the path distribution of the time series.
These include symbolization, or converting the path-space
distribution into a categorical variable (M. Staniek &
K. Lehnertz 2008), and closely related binning procedures
(e.g., H. Kantz & T. Schreiber 2003), which create a histogram
rather than a smooth representation of the path-space distribu-
tion. However, using symbolization or histograms in place of
KDEs would necessitate the adoption of various approaches to
attenuate the bias introduced by the choice of anchor points,
such as additional sensitivity analyses, averaging several
shifted estimators, and/or the use of hexagonal bins for joint
densities.

13 See Appendix D for the additional software packages utilized for density
estimation.
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Algorithm 1. Shuffle (Small-sample Bias Correction for TDMI)

Input: Time series {y(ti)}, for i = 0, K, n
Input: Time lag τ

Input: Number of replicates M
Output: Bias correction Îshuffle at lag τ

1: For each m = 1, K, M do
2: Random shuffle ˜ { ( ) ( )}[ ]

( ) t¬ ¼ -t-y y y tPermute 0 , ,t
m

0:

3: Estimate densities ˆ
[̃ ]
( )

[ ]t t-
f y y,t

m
t0: :
, ˆ

[̃ ]
( )

t-
f y t

m
0:

, and ˆ
[ ]t

fy t:
>Using KDEs (13)

4: Plug-in estimator ˆ ˆ ( ˜ )( )

˜
[ ]
( )

[ ]

ˆ ( ˜ )

ˆ ( ˜ ) ˆ ( )
[ ]
( )

[ ]

[ ]
( )

[ ]

[ ]
( )

[ ]
å å¬ t t-

t t

t t

t t
-

-

-
I f y y, logm

y y
t

m
t

f y y

f y f y0: :

,

t
m

t

t
m

t

t
m

t
0: :

0: :

0: :

>Following (15)

5: End for

6: Mean ˆ ˆ( )å¬ -

=

I M I
m

M
m

shuffle
1

1

7: return Îshuffle

Algorithm 2. Simulation Burn-in Time

Input: Time series {y(ti)}, for i = 0, K, n
Output: Simulation time t

* ä {t0, K, t = tn}
1: For each lag τ = 1, K, W(n)2: >E.g., W(n) = n for short regional simulations
2: Estimate densities ˆ

[ ] [ ]t t-
fy y,t t0: :

, ˆ
[ ]t-

fy t0:
and ˆ

[ ]t
fy t:

>Using KDEs (13)

3: Calculate ˆ ( )tI >Using plug-in estimator (14)
4: ˆ ( )t ¬I 0correction

5: If correction then
6: Calculate ˆ ( )tIcorrection >E.g., using Algorithm 1
7: End if
8: Effective TDMI ˆ ( ) ˆ ( ) ˆ ( )t t t¬ -I I Ieff correction >Following (16)
9: End for

10: Local minima { ˆ ( ) ˆ ( ) }t t t¬ = >
¢ 

I I: 0 and 0eff eff

11: First local minimum t ¬ min0  >Following (17)
12: Simulation time ¬ tt t 0* >See (18)
13 Return Burn-in time t

*

4.2. Burn-in Time for Magnetofrictional Simulations

In determining the simulation burn-in, we consider a single
key solar quantity from each simulation related to the
nonpotentiality of the simulation. For the regional simulations
AR10977, AR11680, and QS, that quantity is the free magnetic
energy; for Solar Cycle 24, it is the mean current density. For
the toy model, it is not meaningful to run a magnetofrictional
simulation, since each “magnetogram” is unrelated, therefore
we choose the potential field magnetic energy. On the left, in
Figures 11–13, we plot the TDMI profiles calculated using
Algorithm 2 with the location of the first minimum, τ0
(Equation (17)), for both uncorrected (i.e., none) and shuffle-
corrected profiles, with the latter using Algorithm 1 with
M= 30. On the right, in Figures 11–13, we plot the time series
and the burn-in time; the portion of the series used to reckon
the burn-in time is highlighted in black. As prescribed in
Algorithm 2, we select a window (a function of the length of
the series n) over which to calculate the burn-in time that we
believe to contain the transition to the nonpotential state. For
the relatively short active regional simulations AR10977 and
AR11680, we select the window W(n) = n = 121 (i.e., the
whole series); for the QS, we select W(n) = ⌊0.306 n⌋ = 120;
for Solar Cycle 24, we select W(n) = ⌊. 104n⌋ = 365 (i.e.,
the first year); and for the toy model, we select W
(n) = ⌊0.6n⌋ = 120. These window selections guarantee that

the TDMI profiles displayed on the left in Figures 11–13 are
calculated with kernel densities containing at least 60 samples
each. The first minima and burn-in times are summarized in
Table 3.
Across Figures 11(a), (c), and (e), Figure 12(a), and

Figure 13(a), we note that the general shapes of the
uncorrected and shuffle-corrected TDMI profiles are largely
coherent, with the shuffle-corrected TDMI curves satisfying
the nonnegativity property (even for a small number of
shuffles M= 30). The burn-in time for AR10977 in
Figure 11(b) is approximately 2 days, and there is a rather
large disparity between the first minima observed using the
uncorrected and shuffle-corrected TDMIs, owing to the
overall flatness of the profiles. On the one hand, the suggested
burn-in time may be viewed as overly conservative, due to the
simulation start time coinciding with the potential field
increasing and then decreasing rapidly over approximately
50 hr (starting around simulation hour 25). On the other hand,
any interesting phenomena occurring near the simulation start
should be viewed with caution, due to their temporal
proximity to the initial potential state. AR10977 is undergoing
emergence during roughly the first 40 hr of the simulation,
which can be seen in the increasing total absolute flux in
Figure 3(b). The free magnetic energy increases during this
time, as energy is injected into the simulation by the emerging
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flux, but it levels off around the peak in total absolute flux.
The free magnetic energy begins to increase again at around
60 hr, this time due to a shearing motion between the positive
and negative polarities of the active region during flux
cancellation. In the case of AR10977, it is impossible to
decouple the initial evolution of the active region from the

initial potential state without additional experiments or
simulations. For AR11680 in Figure 11(d), the burn-in time
is approximately 1 day; for QS in Figure 11(b), it is
approximately 10 minutes; and for Solar Cycle 24 in
Figure 12(b), it is approximately 50 days. The burn-in time
for the toy model in Figure 13(b) is instantaneous, as

Figure 11. For the regional simulations, the automated burn-in time calculated using Algorithm 2 provides a conservative estimate of when the free magnetic energy
has transitioned away from the initial potential state. Left: the TDMI profiles calculated for the free magnetic energy with the first minimum lag (Equation (17)). Right:
the free magnetic energy with the associated burn-in time; the window used for calculating the burn-in time is the portion of the path highlighted in black. See also
Table 3.

Figure 12. For Solar Cycle 24, the automated burn-in time calculated using Algorithm 2 provides a conservative estimate of when the mean current density has
transitioned away from the initial potential state. (a) The TDMI profiles calculated for the mean current density with the first minimum lag (Equation (17)). (b) The
mean current density with the associated burn-in time; the window (first year) used for calculating the burn-in time is the portion of the path highlighted in black. See
also Table 3.

Figure 13. As expected, given the absence of a nonpotential state, Algorithm 2 produces a relatively flat TDMI profile for the toy model, with an almost instantaneous
first minimum in (a) and burn-in time corresponding to the second step in (b); the window (first year) used for calculating the burn-in time is the portion of the path
highlighted in black. See also Table 3.
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expected, given the absence of a nonpotential state from the
white-noise construction of the “magnetogram” data for the
model. Overall, the TDMI provides a systematic approach to
quantifying simulation burn-in that is largely consistent with
the assumed burn-in times for these regions used by other
authors that are based on prior experience and knowledge of
the simulation method (see, e.g., K. A. Meyer 2013;
P. Pagano et al. 2019; P. Bhowmik et al. 2022).

5. Conclusion

We provide Algorithm 2 for determining burn-in times for
solar coronal magnetic field simulations that are consistent with
the assumed burn-in times employed in previous studies
(K. A. Meyer 2013; P. Pagano et al. 2019; P. Bhowmik et al.
2022). Our algorithmic approach relies on the TDMI, the
mutual information between the path-space distributions
induced by lagged versions of a time series. This informa-
tion-theoretic quantity is calculated using a simple plug-in
estimator built from KDEs. Together with Algorithm 2, we also
provide a small-sample bias correction, Algorithm 1, based on
permutation resampling.

The information-theoretic measure of discrepancy in our
burn-in algorithm is necessitated by the presence of long
memory in solar quantities. We quantify persistence in the
nonperiodic variation in time series of solar quantities, using
fractionally integrated models and inference procedures
popular in econometrics. We identify long memory (d > 0.5)
in regional simulations related to AR11680 and AR10977 and
in QS and global simulations related to Solar Cycle 24. The
persistence analysis uses magnetofrictional simulations, a novel
proxy of solar activity in the context of persistence analysis. In
particular, we identify that levels of persistence in observation
and simulation-based solar quantities are comparable, suggest-
ing that magnetofrictional studies capture the memory structure
in the observational data used to drive the simulations.

In the future, we plan to extend the study to consider the
burn-in time for a more extensive sample of simulations. This
will allow us to investigate, for example, the impact of active
region evolution (e.g., flux emergence, cancellation, and
rotation and shearing motions), in an effort to decouple these
effects from the burn-in time calculation. In principle, this
could form the basis for a rule of thumb for burn-in time in
magnetofrictional simulations of the solar corona. Further, the
burn-in algorithm presented here may be applied to other
nonequilibrium systems, including, for example, MHD

simulations, and perhaps also to simulations of open systems
in molecular dynamics.
In this study, we observed that the magnetofrictional

simulations (perhaps unsurprisingly) captured the memory
structure present in the magnetogram data. It will be of interest
to investigate the memory structure in independent observa-
tional proxies of solar activity, such as the total solar irradiance
and F10.7 cm radio flux, which can be compared directly to the
solar quantities derived from simulations. We noted in
Remark 1 that for highly persistent times series, some
estimators traditionally used in the physical sciences (such as
Hurst rescaled-range analysis, log-periodogram estimators, and
DFA) may provide biased estimates for persistence strength.
An interesting and useful exercise would be to redo such
analyses using the more robust approaches outlined here.
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Appendix A
Autocorrelations

Autocorrelation measures the linear dependence of a time
series with its own lagged values. The autocorrelation of a time
series is the Pearson correlation between the series at different
times as a function of the time lag:

( ) ( )r = +h y ycorr , .t t h

For a stationary (i.e., a weakly stationary, covariance
stationary, or second-order stationary) time series yt, the
sample ACF is given by

ACF( )
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mean. Similarly, the partial ACF (PACF) measures the
correlation of a time series, with its own lagged observations,
with the linear effect of the intervening lags removed:
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where ˆ+yt h (respectively, ŷt) denotes the regression of yt+h

(resp., yt) on {yt+h−1, yt+h−2, K, yt+1}:
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The ACF and PACF can be readily estimated from data for
stationary time series provided that h= n, and their calculation
is automated in most statistical software packages. For
stationary series, the ACF and PACF decay are related to the
short-memory components in an autoregressive moving
average (ARMA) model, following the Box–Jenkins approach

Table 3
First Minimum, τ0 (Equation (17)), and Corresponding Burn-in times,
t
*

(Equation (18)), for Regional, Global, and Toy Model Simulations,
Using Both Uncorrected (i.e., None) and Shuffle-corrected TDMI Profiles

(see Algorithms 1 and 2)

None Shuffle (M = 30)

Simulation and Solar Quantity τ0 t* τ0 t*

AR10977, free magnetic energy 26 40.0 hr 34 52.8 hr
AR11680, free magnetic energy 24 23.0 hr 25 24.0 hr
QS, free magnetic energy 16 0.18750 hr 16 0.18750 hr
Toy model, potential field magnetic

energy
3 2 steps 3 2 steps

Solar Cycle 24, mean current density 53 52 days 49 48 days
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to time-series analysis (G. E. P. Box et al. 2015). In Figure 14,
the slow decay of the implied (or empirical) ACFs for the free
magnetic energy in AR11680, AR10977, and the QS suggests
that the autocorrelations persist over relatively long timescales
in each simulation. In Figure 14(d), a single time series
simulated from an I(d = 1.6) process is plotted together with
the implied ACF, to illustrate the slowly decaying autocorrela-
tions (see the ACFs in Figures 14(a)–(c)). Note that the
autocorrelation is not defined for nonstationary processes, such
as I(d) processes with |d| > 0.5 (the variance is infinite).

Appendix B
Fractionally Integrated Processes

Fractionally integrated processes are a popular class of
generative time-series models with spectral densities exhibiting
power-law behavior. Notably, a fractionally integrated process
of order d ä (0, 0.5) has the spectral density of Equation (11);
see, e.g., J. Geweke & S. Porter-Hudak (1983). While long
memory could theoretically be approximated by an ARMA
model or ARMA( )p q, process (a perhaps more familiar
generative model in time-series analysis), the high orders of
p and q required would pose a challenge for parameter
estimation (P. J. Brockwell & R. A. Davis 1991). Assuming
that our time series are from the class of fractionally integrated
candidate models, we will seek to infer the parameter d for

each, thereby quantifying the nature and strength of the
persistence over the timescale of the simulation.
Fractionally integrated processes are formed by fractionally

integrating a stationary white noise. A fractionally integrated
process { ( )} ÎY t t 0 of order d, denoted Y(t) ~ I(d), is given by

( ) ( ) ( ) ( ) ( )=  = -- -Y t Z t L Z t1 , B3d d

where Z is white noise, i.e.,{ ( )} ÎZ t t 0 is a sequence of iid zero-
mean random variables with unit variance, L is the lag operator
LZ(t) = Z(t − 1) for t > 1, and the fractional integration
operator is given by

( ) ( )
( ) ( )å- =
G +
G G +

-

=

¥

L
k d L

d k
1

1
,d

k

k

0

for any ( )Î -¥d , 1

2
, d ≠ 0, −1, −2, K , where Γ is the

Gamma function. Thus, any Y(t) ~ I(d) can be expressed as a
sum of white noises:

( ) ( )å y= -
=

¥

Y t Z t k ,
k

k
0

where the coefficients ψk = Γ(k + d)/(Γ(d)Γ(k + 1)) are
obtained from the expansion of (1 − L)−d. In particular, we say
that a process Y(t) is difference-stationary if it can be
fractionally differenced d times to obtain a stationary white-

Figure 14. The slow decay of the implied ACF for the free magnetic energy in (a) AR11680, (b) AR10977, and (c) the QS provide qualitative evidence of long
memory. A single time series from an I(d = 1.6) model is displayed in (d) for comparison. Values outwith the white-noise-based 95% confidence bands are
significantly different from zero (the bands are the normal quantile divided by the square root of the number of samples). Note that the autocorrelation is defined only
for stationary processes.
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noise process:

( ) ( ) ( ) ( ) ( )å p=  = - = -
=

¥

Z t Y t L Y t Y t k1 ,d d

k
k

0

where πk = Γ(k − d)/(Γ( − d)Γ(k + 1)).
The model of Equation (B3) can be extended to all d by

summing and differencing. If X ~ I(j), where j ä [−0.5, 0.5),
then the process Y(t) obtained by cumulative summing,

( ) ( )å= Î
=

Y t X j t, ,
j

t

0
0

satisfies Y(t) ~ I(d) for d = j + 1, i.e., Y(t) is a fractionally
integrated process with order d ä [0.5, 1.5). Likewise, the
model can be extended to negative integer d by differencing.
Consequently, for d > 0, we view Y(t) as a fractionally
integrated process, and if d < 0, we view it as a fractionally
differenced process in this context.

The class of fractionally integrated processes has important
properties depending on the parameter d. From standard facts
about Gaussian distributions, for Y(t) = ∇−dZ(t) with

N( ) ( )Z tiid 0, 1~ , we observe that if d ä (−1, 0.5), then the
fractionally integrated process is also Gaussian:

N( ) ( ( ) ( ))/G - G -Y t d d0, 1 2 12~ . In J. R. M. Hosking
(1981), it is shown that for d ä (−0.5, 0.5), the process
Y(t) ~ I(d) is stationary and invertible (i.e., it can be expressed
as a convergent sum of past values of the process). For d ä (0,
0.5), the spectral density of Y(t) ~ I(d) follows Equation (11).
Processes with d > 1 are of integrated order, which is related to
the existence of unit roots; shocks to unit root processes have
more permanent effects (rather than rapid reversion to an
equilibrium state), which is consistent with our understanding
of the behavior of solar processes.

In Figure 15, we generate sample paths of an I(d = 1.6)
process with variance scaling σ2 = 1058. In Figure 15(a), we
display 50 positive simulated series of length 120 to give a
sense of the range of behaviors of such processes. In
Figure 15(b), we display the highlighted simulated series and

its periodogram to observe the blowup for frequencies near
zero in the implied spectral density. In the next section, we
outline inferential procedures for estimating d.

Appendix C
Unit Root Tests

The integrated order of a process can be roughly estimated
by using two sequences of unit root tests with complementary
hypotheses. The first test is the Augmented Dickey–Fuller,
which considers the null hypothesis that the series has a unit
root against a stationary alternative (D. A. Dickey &
W. A. Fuller 1979; S. E. Said & D. A. Dickey 1984). The
second test by Kwiatkowski, Phillips, Schmidt, and Shin
(D. Kwiatkowski et al. 1992), considers the null hypothesis that
the series is stationary around a deterministic trend. One then
formulates a sequence of hypotheses to test the increasing order
of whole-number differences for each series until the null
hypothesis on nonstationarity is rejected and the null hypoth-
esis on stationarity is retained, respectively. If an exact
agreement is not reached, one should conservatively choose
the smaller number of differences. We do not anticipate the
integrated order being a whole number, but this procedure
provides a systematic means of determining the number of
differences to take to compare methods that are not robust
against nonstationarities (without relying upon the ELW
estimator or similar). This approach for estimating the
integer-integrated order is automated by the ndiffs command
in the R package forecast (R. J. Hyndman &
Y. Khandakar 2008).

Appendix D
Software Utilized

The R packages used for memory parameter inference are
summarized in Table 4.
The R package ks contains tools for univariate and

multivariate KDE, including plug-in estimators for uncon-
strained bandwidth selectors (T. Duong 2007).

Figure 15. (a) Paths for 50 positive simulated I(d = 1.6) series of length 120 demonstrate the behavior of the process. (b) For a single I(d = 1.6) simulated series,
observe the relative blowup of the spectral density near frequency zero, as in Equation (11); see also the similar spectral behavior near zero in Figures 6(b), (d), and (f).
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Table 4
Estimators for d

Estimator Full Name Indication References R Package Parameters Notes

ELW Exact local Whittle All d, if optimization covers interval width less
than 9/2.

K. Shimotsu & P. C. B. Phill-
ips (2005)

LongMemoryTS m Requires mean estimation, but can use
initial value.

GPH Geweke and Porter-
Hudak estimator

Based on the regression equation using the peri-
odogram function as an estimate of the spectral
density.

J. Geweke & S. Porter-Hu-
dak (1983)

LongMemoryTS or
fracdiff

m or δ d > 0.5 requires differencing.

R/S-AL Anis–Lloyd-cor-
rected R/S
statistics

R over S Hurst exponent H, with small-sample
bias correction; report d = H − 0.5.

A. A. Annis & E. H. Lloyd
(1976); R. Weron (2002)

pracma Box size d > 0.5 requires differencing.

DFA Detrended fluctua-
tion analysis

DFA α, which is related to α ≈ H (overestimates
H in nonstationary regimes); J. W. Kantelhardt
et al. (2002); report d = α − 0.5.

C. K. Peng et al. (1994) nonlinearTseries Window size
range and
number

DFA introduces uncontrolled bias and may
be inappropriate for nonstationary series;
R. M. Bryce & K. B. Sprague (2012).

Note. m is a bandwidth parameter specifying the number of Fourier frequencies used for the estimation, usually ⌊1 + T δ⌋, where 0 < δ < 1 and T is the length of the series. For DFA, 20 windows were selected from the
range 10, 300.
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