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1 Introduction

Self-dual Yang-Mills (SDYM) and self-dual gravity (SDG) provide very fruitful toy models
for the study of perturbative gauge theory and gravity, respectively. For example, their
tree-level amplitudes vanish above three points, while their loop-level amplitudes are rational
functions at one loop and vanish at higher loops [1–4], reflecting the underlying classical
integrability [5–14]. Moreover, they admit simple Lagrangians in terms of scalar fields [13, 15–
18] which make colour/kinematics duality [19, 20] manifest [21, 22], and play a fundamental
role in twistor theory [23, 24].

In recent years, the study of SDYM and SDG in non-trivial backgrounds has seen
considerable interest. This includes radiative backgrounds [25–28], (Anti-)de Sitter space [29–
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31], Eguchi-Hanson space [32, 33], self-dual black hole backgrounds [34, 35], and cosmological
backgrounds [36]. In [30], SDYM and SDG in Anti-de Sitter space (AdS4) were shown to
admit a simple Lagrangian description in terms of scalar fields. Since the action of SDYM is
conformally invariant and AdS is conformally flat, the Lagrangian is the same as in flat space,
although there are nontrivial boundary conditions. On the other hand, the Lagrangian for
SDG is expressed in terms of a certain mathematical structure known as a Jacobi bracket [37–
40], which has also appeared in [36, 40], making a property known as colour-kinematics duality
manifest. The Jacobi bracket reduces to the well-known Poisson bracket in the flat space
limit. It had previously been observed in [41, 42] that the colour-kinematics duality in flat
space encodes the Lw1+∞ algebra encountered in celestial holography [43, 44]. The Jacobi
bracket identified in [30] corresponds to a deformation of the Lw1+∞ algebra. Presumably,
this deformation is equivalent to the deformation subsequently found in [40, 45], although
the connection is unclear at present.

In this paper, we will continue the investigation of SDYM and SDG in AdS4, with the
long-term goal of developing new theoretical tools for the study of AdS/CFT and cosmology1

The immediate questions we would like to address are what form do the boundary correlators
take in the self-dual sector, and how to set up a systematic expansion around it, i.e. going
beyond the self-dual sector. We address these questions by first constructing the lightcone
actions for YM and Einstein gravity in AdS4, and showing how the self-dual sectors embed
into them. One intriguing implication of these actions, which are written in terms of positive
and negative helicity fields, is that they do not contain all-plus or all-minus three-point
vertices. As a result, all-plus and all-minus correlators can only arise from boundary terms.
The first hints of this possibility were observed at three points in axial gauge [51], although
it is very nontrivial to see it in this gauge.

After clarifying how the scalar Lagrangians for SDYM and SDG arise from lightcone
Lagrangians of the full theories, we proceed to derive their Feynman rules in AdS momentum
space, and compute their tree-level boundary correlators up to five points. As a warm-up, we
first consider a massless φ3 theory in half of flat space (whose kinetic term can be mapped
to a conformally coupled scalar theory in AdS4 using a Weyl transformation). Remarkably,
we find that the Feynman diagrams of SDYM and SDG can be reduced to φ3 correlators,
by applying certain differential operators to each interaction vertex. This is suggestive of a
double copy structure, although we are still far from a systematic understanding. Encouraged
by the simplicity of the Feynman diagrams, we then look at their soft limits and discover
another surprise: they take a universal-looking form similar to the one recently found in full
YM and gravity [52], which involves an energy derivative acting on lower-point diagrams.
This structure may arise from asymptotic symmetries analogous to those underlying the soft
limits of scattering amplitudes [53, 54] or cosmological correlators [55, 56].

The paper is organised as follows. In section 2, we derive lightcone actions for YM and
gravity in AdS4, and demonstrate how the SDYM and SDG scalar actions found in [30]
arise. In section 3, we derive the Feynman rules for the scalar actions, and in section 4 we
compute boundary correlators and show that they take a very simple form when expressed

1Note that cosmological wavefunction coefficients in dS4 can be obtained from boundary correlators in
AdS4 by Wick rotation [46–48]. More recently, it was shown that in-in correlators can also be computed in
terms of Witten diagrams in Euclidean AdS [49, 50].
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in terms of φ3 correlators acted on by certain differential operators. We then compute soft
limits in section 5, and present our conclusions and future directions in section 6. There
are also a number of appendices which present additional details. In appendix A, we write
explicitly the boundary terms accumulated when deriving the lightcone action for positive
and negative helicity fields from the standard Yang-Mills action; we do not repeat the exercise
for gravity. In appendix B, we provide the lightcone action for gravity in AdS4 using an
alternative coordinate system to the one in the main text, which may be more suitable for
some applications. In appendix C, we present five- and six-point computations in SDYM
and SDG. Finally, appendix D describes the spinor-helicity formalism for AdS4 correlators in
lightcone gauge, lifts the 3-point scalar correlator of SDYM to a spinning correlator, and shows
that this gives the 3-point correlator of full YM up to a boundary term. In that appendix, we
also present spinorial expressions for other correlators SDG and SDYM correlators although
the relation to spinning correlators is not investigated.

2 Light-cone actions

In this section, we derive the ‘bulk’ light-cone gauge actions of Yang-Mills theory and Einstein
gravity and identify the terms corresponding to the self-dual sector. By ‘bulk’, we mean
that we will not describe here boundary terms in the action (leaving that for appendix A,
and only in the case of Yang-Mills theory). Our goal is to clarify how the self-dual sectors
are part of the full theories.

Ultimately, we want to consider a perturbative expansion on the AdS4 background,
given in Poincaré coordinates by

ds2
AdS = R2

z2

(
−dudv + (dx1)2 + (dx2)2

)
, (2.1)

where
z = u− v

2 , (2.2)

and R is related to the cosmological constant as

Λ = − 3
R2 . (2.3)

We will also use the complex coordinates

w = x1 + ix2 , w̄ = x1 − ix2 . (2.4)

Nevertheless, we will proceed on a more general background until it becomes convenient
to be specific.

2.1 Yang-Mills

The ‘bulk’ action for Yang-Mills theory on (A)dS4 matches that on flat spacetime obtained
in ref. [57], because of the conformal invariance of the action. Nevertheless, we review here
the derivation as a warm-up to the gravity case, and also to highlight our notion of helicity.
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The action is

SYM[Aµ] = −1
4

∫
d4x

√
|g| tr FµνF µν , (2.5)

where we define the field strength as

Fµν = ∂µAν − ∂νAµ + igYM[Aµ, Aν ] . (2.6)

We will suppress the coupling constant in the following. It can be trivially reinstated by
rescaling the gauge field and the action.

For any conformally flat metric,

ds2 = e2Ω(x)(−dudv + dwdw̄) , (2.7)

the action gives

SYM[Aµ] = 1
2

∫
d4x tr

[
F 2

uv + F 2
ww̄ + 2

(
FuwFvw̄ + Fuw̄Fvw

)]
. (2.8)

Notice that the dependence on the conformal factor dropped out due to Weyl invariance.
Imposing now light-cone gauge,

Au = 0 , (2.9)

which implies Fuµ = ∂uAµ , we obtain

SYM[Av, Aw, Aw̄] = 1
2

∫
d4x tr

[
(∂uAv)2 + 2(∂uAw)(−∂w̄Av + i[Av, Aw̄])

+ 2(∂uAw̄)(−∂wAv + i[Av, Aw]) + 2(∂uAw∂vAw̄ + ∂uAw̄∂vAw) + F 2
ww̄

]
.

(2.10)

Up to boundary terms, we can rewrite this action as

SYM[Av, Aw, Aw̄] = 1
2

∫
d4x tr

[(
∂uAv −

1
∂u

(
∂u∂wAw̄ − i[∂uAw, Aw̄] + (w ↔ w̄)

))2

−
(

∂wAw̄ −
i

∂u
[∂uAw, Aw̄] + (w ↔ w̄)

)2
− 4Aw∂u∂vAw̄ + F 2

ww̄

]
.

(2.11)

We note the appearance of the inverse derivative with respect to u, which is typical of
light-cone gauge actions. It can be defined via the following differential equation:

∂u

( 1
∂u

f(x)
)

= f(x) . (2.12)

Now, since Av appears quadratically in the action, we can integrate it out exactly, and we
are left with the terms in the second line. Further manipulation of those terms, up to total
derivatives in the integrand, leads to

SYM[Aw, Aw̄] = 2
∫

d4x tr
(

Aw□Aw̄ − iAw ∂u[∂w

∂u
Aw̄, Aw̄]− iAw̄ ∂u[∂w̄

∂u
Aw, Aw]

− [∂uAw, Aw̄] 1
∂2

u

[∂uAw̄, Aw]
)

.

(2.13)
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In our conventions, Aw̄ (Aw) represent the positive (negative) helicity fields. In appendix A,
we collect all the boundary terms accumulated between the expressions (2.10) and (2.13),
assuming that there is a boundary at z = u−v

2 = 0, which will be the case of interest in
this paper.

Finally, the action for self-dual Yang-Mills theory is obtained by keeping only the terms
linear in the negative helicity field, which therefore becomes a Lagrange multiplier:

SSDYM[Aw, Aw̄] = 2
∫

d4x trAw

(
□Aw̄ − i∂u

[∂w

∂u
Aw̄, Aw̄

])
. (2.14)

Redefining

Aw̄ = ∂uΦ , Aw = − 1
∂u

Φ̄ , (2.15)

we can write

SSDYM[Φ, Φ̄] = 2
∫

d4x tr Φ̄
(
□Φ− i

[
∂wΦ, ∂uΦ

])
. (2.16)

Ref. [21] observed that the derivative in the interaction term leads to Feynman rules where
the kinematic part of the vertex is the structure constant of the Lie algebra of area-preserving
diffeomorphisms in the (u, w) null plane. This algebra mirrors the colour algebra, making
manifest the colour-kinematics duality in the self-dual sector of Yang-Mills theory.

One crucial observation is that the procedure above defines an off-shell notion of helicity
that is inherited from flat space. The positive helicity part of our gauge field has components
(0, Av, 0, Aw̄), while the negative helicity part has components (0, Av, Aw, 0). We will discuss in
appendix D the associated polarisation vectors, which are distinct from those used e.g. in [51].

2.2 Einstein gravity

We now deal with the much more elaborate case of gravity, starting from the Einstein-
Hilbert action,

SG = 1
2κ2

∫
d4x

√
|g| (R− 2Λ) , (2.17)

where κ =
√

8πGN , R is the Ricci scalar and Λ is the cosmological constant. We will
present the light-cone gauge action expressed in terms of positive and negative helicity fields.
The perturbative expansion in flat spacetime has long been worked out; see e.g. [58, 59].
However, despite significant earlier work [60] (where we find a small discrepancy), this is to
our knowledge the first complete derivation on an (A)dS4 background.

We will begin the discussion without specifying a background and eventually specialize
to flat and AdS background. We follow the approach described in appendix C of [59] by
choosing light-cone coordinates (u, v, x1, x2) such that the light-cone gauge is defined by

guu = gui = 0 , (2.18)
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for i = 1, 2. These are only three conditions, so we are left with a fourth gauge choice to
be made later. The components of the metric can be written as

gµν =


0 −eF 0 0
−eF gvv gv1 gv2

0 gv1 eGγ11 eGγ12
0 gv2 eGγ12 eGγ22

 , (2.19)

where F and G are real functions, and γij is a real, symmetric matrix of unit determinant.
The determinant of the metric is, therefore,

g = −e2(G+F ) , (2.20)

and the inverse metric is

gµν =


guu −e−F gu1 gu2

−e−F 0 0 0
gu1 0 e−Gγ22 −e−Gγ12
gu2 0 −e−Gγ12 e−Gγ11

 . (2.21)

Some components of the metric can be integrated out in the action, similarly to what we
saw previously in the Yang-Mills case, where we integrated out Av.

To proceed with this, it is convenient to express certain components of the metric in
terms of components of the inverse metric as follows:

gvv = e2F (−guu + eG
(
guiγijgju)

)
, gvi = eF +Ggujγji . (2.22)

After this substitution, the action depends only on the quantities appearing in (2.21). Now,
the action can be written as

SG = 1
2κ2

∫
d4x

√
|g| (guuRuu + 2guvRuv + 2guiRui + gijRij − 2Λ) . (2.23)

Up to total derivatives in the integrand (whose identification requires making use of the
unit-determinant property of γij), this action depends on guu only through the explicit
appearance of this quantity in the expression above. This means that guu is a Lagrange
multiplier enforcing the constraint Ruu = 0. The latter takes the explicit form

∂uF ∂uG− 1
2(∂uG)2 − ∂2

uG + 1
4∂uγij ∂uγij = 0 , (2.24)

where γij denotes the matrix inverse of γij .
We recall that we have one more gauge choice left, which we will choose to relate F and

G in order to simplify the equation above. However, the most convenient gauge choice turns
out to depend on the background we want to expand on — flat space or (A)dS — so we will
leave this for a later stage. Now, we turn our attention to the two quantities gui: one can
check that the action’s dependence on these is quadratic. Therefore, these two quantities can
be integrated out exactly by substituting their equations of motion, which take the form

∂u(e2G−F γij∂u(eF guj)) = Ni , (2.25)

– 6 –
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where
Ni = eG

(1
2∂uγjk∂iγjk − ∂u∂i(F + G) + ∂iF∂uG

)
+ ∂k(eGγjk∂uγij) . (2.26)

These two equations can be checked to be equivalent to the constraints Rui = 0. The equations
can be solved formally by introducing the inverse derivative with respect to u, which leads to

gui = e−F 1
∂u

(
γijeF−2G 1

∂u
Nj

)
. (2.27)

Inserting this solution back into the action, performing a number of integrations by parts,
and using the unimodularity of γij yields

SG = 1
2κ2

∫
d4x

[
eG
(

2∂u∂vF + ∂u∂vG− 1
2∂vγij ∂uγij

)
− eF γij

(
∂i∂jF + 1

2∂iF ∂jF − ∂iF ∂jG− 1
4∂iγ

kl ∂jγkl + 1
2∂iγ

kl ∂kγjl

)
−1

2eF−2Gγij 1
∂u

Ni
1
∂u

Nj − 2Λ eF +G
]

.

(2.28)
This agrees with equation (C-10) of [59], with the exception of the factor of 2 on the first
term and the inclusion of the cosmological constant. We reiterate that numerous boundary
terms associated to integrations by parts have been dropped.

From here onward, we will specify the background we are expanding on, reviewing first
the flat space case, and introducing then the (A)dS case.

Expansion around flat space. Considering the metric (2.19), the Minkowski solution
corresponds to

F = − ln(2) , G = 0 , gvv = gvi = 0 , γij = δij . (2.29)

Hence, we should ensure that when the metric perturbations are turned off, we retrieve
these values. To expand the action (2.28) around flat space, we will now fix the remaining
gauge freedom by setting

F = 1
2 G− ln(2) . (2.30)

This gauge choice reduces the constraint (2.24) to

∂2
uG = 1

4∂uγij ∂uγij , (2.31)

which we can solve formally as

G = 1
4

1
∂2

u

(∂uγij ∂uγij) . (2.32)

With this substitution, the action (2.28) depends only on the unit-determinant matrix γij .
We will perturb around the flat metric by setting

γij =
(
eκH

)
ij

, (2.33)
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where
H =

(
h11 h12
h12 −h11

)
. (2.34)

Note that H being real, symmetric and traceless, corresponds to γ being real, symmetric
and having unit determinant. The components of H can be recast with

h = 1√
2

(h11 + ih12) , h̄ = 1√
2

(h11 − ih12) , (2.35)

which represent the positive and negative helicity degrees of freedom, respectively. Now, we
can expand the action perturbatively in κ to any desired order. We note that, from (2.32),
we obtain

G = − 1
∂2

u

(∂uh ∂uh̄)κ2 +O(κ4). (2.36)

Keeping only terms linear in κ in the action for brevity, we obtain

SG =
∫

d4x

[
1
4 h̄□h + κ√

2
∂2

uh̄

(
∂w

∂u
h

∂w

∂u
h− h

∂2
w

∂2
u

h

)

+ κ√
2

∂2
uh

(
∂w̄

∂u
h̄

∂w̄

∂u
h̄− h̄

∂2
w̄

∂2
u

h̄

)
+O(κ2)

]
,

(2.37)

where □ = ηµν∂µ∂ν , and we remind the reader that

w = x1 + ix2 , w̄ = x1 − ix2 . (2.38)

This action agrees with (C-15) and (C-16) of [59]. Higher-point terms in the light-cone action,
starting with the four-point contribution at order κ2, are messy.2 Nevertheless, we verified
that the complete action satisfies the basic properties:3

SG|h̄=0 = 0 , (2.39)
δSG

δh̄
|h̄=0 = 1

4□h + κ√
2

∂2
u

(
∂w

∂u
h

∂w

∂u
h− h

∂2
w

∂2
u

h

)
, (2.40)

and analogously under complex conjugation. The relevance of these properties is that beyond
the cubic vertices (order κ), the action has only vertices of the type h̄h̄ · · ·hh, i.e., all four-
and higher-point vertices have at least two fields of each helicity. Therefore, considering the
Feynman rules, a tree-level correlator of the type h̄hh · · ·h (with a single h̄) is constructed
solely with cubic vertices h̄hh, and therefore lies in the self-dual sector of the theory. These

2Some improvements can be made with field redefinitions that do not affect the quadratic and cubic
pieces [59]. An alternative approach would be to start with the quadratic and cubic pieces, and try to construct
higher-point contributions mandated by the Lorentz algebra; see e.g. [61–63] for related work.

3To verify this, it is convenient to note that:

γij = cosh(κ
√

2hh̄) δij + sinh(κ
√

2hh̄)√
2hh̄

Hij , Hij = 1√
2

(
h + h̄ i(h̄− h)

i(h̄− h) −h− h̄

)
.

– 8 –
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basic properties apply also when we consider the perturbative action around AdS, to be
studied below. Beyond the self-dual sector, a tree-level four-point correlator of the type h̄h̄hh

requires as usual all vertices up to four points (h̄hh, h̄h̄h, h̄h̄hh), although tricks may be
possible due to it being close to the self-dual sector; see e.g. [21] for MHV amplitudes.

The action of self-dual gravity (here with Λ = 0) is obtained by keeping only the terms
linear in h̄. Redefining h =

√
2 ∂2

uϕ and h̄ =
√

2 1
∂2

u
ϕ̄, we can write

SSDG[ϕ, ϕ̄] = 1
2

∫
d4x ϕ̄

(
□ϕ + 4κ(∂u∂wϕ ∂u∂wϕ− ∂2

uϕ ∂2
wϕ)

)
= 1

2

∫
d4x ϕ̄

(
□ϕ− 4κ{{ϕ, ϕ}}

)
, (2.41)

where we use the notation

{{f, g}} = 1
2εαβ{Παf, Πβg} , (2.42)

with
{f, g} = 1

2εαβ(ΠαfΠβg −ΠαgΠβf) = ∂wf ∂ug − ∂uf ∂wg (2.43)

and
Π = (Πv, Πw̄) = (∂w, ∂u) . (2.44)

This action agrees, up to conventions, with ref. [64]. The double-bracket notation here
emphasises the double copy relating SDG to SDYM: the Fourier-space vertex in SDG (with
Λ = 0) is the square of the kinematic part of the SDYM vertex [21].

Expansion around (A)dS. For concreteness, we focus on AdS, but the dS case follows
from the usual analytic continuation. To start with, we must make a choice. Considering the
Poincaré patch, we must decide whether the ‘bulk’ z coordinate in the conformal factor is
associated to the light-cone coordinates (u, v), or is instead in (x1, x2). The latter choice turns
out to be simpler for deriving an action. However, we will follow here the former choice to
match the conventions of [30], and will leave the other choice to appendix B for completeness.

We want to expand about the AdS4 metric (2.1), which we repeat here for convenience:

ds2
AdS = R2

z2

(
−dudv + (dx1)2 + (dx2)2

)
, (2.45)

where
z = u− v

2 , (2.46)

and R is related to the cosmological constant as

Λ = − 3
R2 . (2.47)

The coordinates above cover the Poincaré patch z > 0, with z = 0 defining the AdS boundary.4
Comparing to the metric (2.19), the AdS solution corresponds to

F = ln
(

R2

2z2

)
, G = ln

(
R2

z2

)
, gvv = gvi = 0 , γij = δij . (2.48)

4We note that the Poincaré patch covers the entire AdS spacetime in Euclidean signature, in contrast with
Lorentzian signature.
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Hence, we should ensure that when the metric perturbations are turned off, we retrieve
these values. It is convenient to express

G = ln
(

R2

z2

)
+ G̃ , F = ln

(
R2

2z2

)
+ F̃ . (2.49)

The constraint (2.24) is now given by

∂2
uG̃− ∂uF̃ ∂uG̃ + 1

2(∂uG̃)2 + 2
u− v

∂uF̃ − 1
4∂uγij∂uγij = 0 . (2.50)

Similarly to the flat space case, in order to simplify this constraint, we make now the final
gauge choice by setting

F̃ = 1
2 G̃ . (2.51)

The constraint reduces to

∂2
uG̃ + 1

u− v
∂uG̃− 1

4∂uγij∂uγij = 0 , (2.52)

which has the solution

G̃ = 1
4

1
∂u

( 1
u− v

1
∂u

(
(u− v)∂uγij∂uγij

))
. (2.53)

For the unit-determinant matrix γij , we proceed exactly as we did in flat space, by expanding
it according to (2.33)–(2.35) in terms of positive and negative helicity fields, h and h̄. This
leads now to

G = ln
(

R2

z2

)
+ 1

4
1
∂u

( 1
u− v

1
∂u

(
(u− v)∂uh∂uh̄

))
κ2 +O(κ4) . (2.54)

At this stage, we can fully express the action (2.28) in terms of h and h̄. Expanding the
action in κ, we obtain for the first few orders, up to integration by parts,

SG|κ−2 = SAdS , SG|κ−1 = 0 , (2.55)

and, recalling the coordinates (2.38), we have also

SG|κ0 =
∫

d4x

[
2R2

(u− v)2 (∂uh∂vh̄ + ∂vh∂uh̄)

−2R2(u− v)2 1
∂u

( 1
(u− v)2 ∂u∂w̄h

) 1
∂u

( 1
(u− v)2 ∂u∂wh̄

)
−2R2(u− v)2 1

∂u

( 1
(u− v)2 ∂u∂wh

) 1
∂u

( 1
(u− v)2 ∂u∂w̄h̄

)]
,

(2.56)

SG|κ1 = κ√
2

∫
d4x ∂2

uh̄

[
4R2

(u− v)2
∂w

∂u
h

∂w

∂u
h

− 4R2(u− v)2h
1
∂u

(
1

(u− v)4
∂2

w

∂u
h

)

+16R2(u− v)∂w

∂u
h

1
∂u

( 1
(u− v)4

∂w

∂u
h

)
+12R2(u− v)4 1

∂u

( 1
(u− v)4

∂w

∂u
h

) 1
∂u

( 1
(u− v)4

∂w

∂u
h

)]
+ C.C. ,

(2.57)
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where the last line corresponds to the terms hh̄h̄, which are the complex conjugate of the
preceding terms h̄hh. The comments about higher-point terms (order κ2 and higher) that
we made for the Λ = 0 case apply here too.

The self-dual truncation of the theory is obtained by keeping the pieces linear in h̄, which
are SG|κ0 and the h̄hh part of SG|κ1 . It is convenient to make the field redefinition

h =
√

2 ∂u

((
∂u −

4
u− v

)
ϕ

)
, h̄ =

√
2 1

∂2
u

ϕ̄ . (2.58)

We then find the action for self-dual gravity with Λ ̸= 0,

SSDG = 2
∫

d4x

[√
|gAdS| ϕ̄

(
□AdS + 2

R2

)
ϕ− 4κ ϕ̄ {{ R

u− v
ϕ,

R

u− v
ϕ}}∗

]
. (2.59)

This expression, which matches the one inferred in [30] from the self-dual equations of motion,
employs the following notation: we define

{{f, g}}∗ = 1
2εαβ{Παf, Πβg}∗ (2.60)

where the deformed Poisson bracket is

{f, g}∗ = 1
2εαβ(ΠαfΠ̃βg −ΠαgΠ̃βf) (2.61)

with
Π = (Πv, Πw̄) = (∂w, ∂u) , Π̃ = (Π̃v, Π̃w̄) = (∂w, ∂u −

4
u− v

) . (2.62)

We also denote □AdSϕ = g−1/2∂µ
(√

ggµν∂νϕ
)
, where gµν is the AdS4 background metric (2.45).

Note that the kinetic term corresponds to that of a conformally coupled scalar, which can
be mapped to a massless scalar in half of flat space.5 Regarding the interaction term, its
fully explicit form is

{{f, g}}∗ = 1
2
[
∂2

uf ∂2
wg + ∂2

ug ∂2
wf
]
− ∂u∂wf ∂u∂wg

+ 1
u− v

[
∂u∂wf ∂wg + ∂wf ∂u∂wg − (∂2

wf ∂ug + ∂uf ∂2
wg)

]
.

(2.63)

As explained in [30], we can obtain this interaction from the one in SDYM by replacing the
colour commutator with the deformed Poisson bracket, which encodes the colour-kinematics
duality.

Finally, notice that, in (2.58), the leftmost field redefinition can be written as h =
κΠw̄Π̃w̄ϕ. We have checked that, by setting h̄ = 0 in our metric ansatz, we obtain

gµν = gAdS
µν + 4R2

(u− v)2


0 0 0 0
0 − R2

(u−v)2 guu 0 κΠ(vΠ̃w̄)ϕ

0 0 0 0
0 κΠ(vΠ̃w̄)ϕ 0 κΠ(w̄Π̃w̄)ϕ

 . (2.64)

This reproduces the metric ansatz used in [30], except for guu, which is a Lagrange multiplier
in our original action, to be fixed by the equations of motion such that we obtain κΠ(w̄Π̃w̄)ϕ

for that component.
5Notice the relation: √g ϕ̄

(
□AdS + 2

R2

)
ϕ = 4R2 ϕ̄

u−v
(∂w∂w̄ − ∂u∂v) ϕ

u−v
.
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3 Feynman rules

We follow the conventions of [30] and work in Euclidean AdS4 (EAdS):

ds2 = dt2 + dz2 + dx2 + dy2

z2 , (3.1)

where 0 < z <∞ is the radial coordinates in the Poincare patch and from now on, we set R = 1,
i.e. Λ = −3. It will be convenient to introduce light-cone coordinates, which we define as

u = it + z , w = x + iy ,

v = it− z , w̄ = x− iy .
(3.2)

In these coordinates, the metric becomes

ds2 = 4(dwdw̄ − dudv)
(u− v)2 . (3.3)

We define the dot product between kµ = (kt, kx, ky, kz) and xµ = (t, x, y, z) as6

k · x = tkt + zkz + xkx + yky

= uku + vkv + wkw + w̄kw̄ .
(3.4)

In section 4, we will compute Witten diagrams of SDYM and SDG whose external
legs end on the boundary of AdS (z = 0). The purpose of this section is to present the
Feynman rules for these computations. We consider Fourier modes labelled by 3-momenta
k⃗ = (kt, kx, ky). In order to make the comparison to massless fields in flat space more
transparent, it is convenient to define associated 4-momenta kµ = (kt, kx, ky, kz), chosen to
be null. In EAdS, this corresponds to assigning

kz = i|⃗k| , where |⃗k| =
√

k2
t + k2

x + k2
y . (3.5)

This quantity |⃗k| shall often be referred to as the energy of the particle. Notice that we have
translational invariance along the boundary, resulting in conservation of the 3-momentum:

n∑
i=1

k⃗i = 0 , (3.6)

where n is the number of external legs. There is, however, no momentum conservation along
the z-direction. We denote the sum of energies for a subset of legs as

kij...l = ki + kj + . . . + kl , (3.7)

and the total energy of an n-point diagram as

k123...n =
n∑

i=1
ki , with ki = |⃗ki| . (3.8)

The flat space limit corresponds to taking E → 0 [65, 66]. In this limit, a Witten diagram will
develop a pole in k123...n, and the coefficient of the leading pole corresponds to a Feynman
diagram in flat space.

6Using (3.2), we can derive the relation between the momenta in light-cone variables and in Cartesian
variables:

ku = 1
2(−ikt + kz), kv = 1

2(−ikt − kz), kw = 1
2(kx − iky), kw̄ = 1

2(kx + iky).
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3.1 φ3 theory

A useful toy model to consider is a massless φ3 theory in 4-dimensional Euclidean flat space
with a boundary at z = 0:7

Lφ3 = 1
2∂µφ∂µφ− 1

6φ3 (3.9)

As we will see later, the Witten diagrams of SDYM and SDG can be related to those of φ3

theory in flat space. The propagators for this theory are given as8

Bulk-Boundary : φ(z, k) = e−kz ,

Bulk-Bulk : G(z1, z2, k) = 1
2k

(
e−k|z1−z2| − e−k(z1+z2)

)
,

(3.10)

where k = |⃗k| = −ikz. Here, we have dropped plane wave factors of the type eik⃗·x⃗ correspond-
ing to directions x⃗ = (t, x, y) along the boundary, which — due to translational invariance in
those directions — will merely give rise to 3-momentum conservation in the correlator.9 In
contrast, the existence of the boundary at z = 0 breaks momentum conservation along the
z-direction, even in flat space, due to the boundary conditions. In particular, the bulk-bulk
Green’s function satisfies Dirichlet boundary conditions, vanishing as z1 → 0 and as z1 →∞
(similarly for z2). This Green’s function admits the following convenient representation:

G(z1, z2, k) = 1
π

∫ ∞

−∞

dω

ω2 + k2 sin(ωz1) sin(ωz2) . (3.11)

The propagators are diagrammatically expressed as

Bulk-Boundary:
z

k
, Bulk-Bulk:

z1 z2
k .

We will sometimes suppress the explicit z-dependence in the diagrams. The interaction

7Alternatively, in view of the relation in footnote 5, one can think of this setting as having a scalar φ̃ = z φ

whose kinetic term is that of a conformally coupled scalar in AdS. Then, the potential term is ∼ √g z φ̃3.
Under a conformal mapping to flat space, we obtain the theory (3.9). See e.g. section 2 of [67].

8The derivation of scalar propagators in AdS momentum space can be found in [68, 69] so we refer the
reader to those papers for more details.

9For each propagator, there is an implicit plane wave factor of the type eik⃗·(x⃗1−x⃗2).
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vertex is given as

= 1 .

For each interaction vertex, we need an integration
∫∞

0 dz(· · · ) over the z-location of the
vertex. We will provide various examples in the next section. As alluded to previously,
integrations over the boundary merely enforce the associated 3-momentum conservation.

Notice we have set the coupling constant to unity. This is because we are only going to
consider tree-level diagrams, and the dependence on the coupling constant is straightforward
to restore (coupling constant to the power n − 2 at n points).

3.2 SDYM

The Lagrangian for SDYM, reviewed in section 2.1, is given as

LSDYM = tr
[
Φ̄
(
□Φ + i[∂uΦ, ∂wΦ]

)]
. (3.12)

We remind the reader that it takes the same form as in flat space, because AdS is conformally
flat and the action of SDYM is Weyl invariant.10 Hence, we can trivially map the AdS
problem to half of flat space with a boundary at z = 0 using a Weyl transformation, as
previously discussed.

Looking at the quadratic piece of the Lagrangian, we see that the propagators take the
same form as in (3.10). The bulk-to-boundary propagators are

Φ(z, k) = e−kz, Φ̄(z, k) = e−kz, (3.13)

but we should note that in SDYM the propagators see a different chirality from each end, i.e.

Φ(z, k) =

+

−
z

k
, Φ̄(z, k) =

−

+
z

k
. (3.14)

10Interestingly, while the latter property is broken by quantum effects in full Yang-Mills theory, results from
the scattering amplitudes literature suggest that the property holds for SDYM also at quantum level [70, 71].
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Recalling the relation between scalar and gluon fields in (2.15) and the bulk-to-boundary
propagators for scalar fields in (3.13), we can immediately read off the bulk-to-boundary
propagators for components of the gluon field:

Aw̄(z, k) = ku e−kz , Aw̄(z, k) = 1
ku

e−kz , (3.15)

where we recall that ku = 1
2(−ikt + kz) = i

2(k − kt).
The bulk-to-bulk propagator is again the Green’s function

GSDYM(z1, z2, k) = 1
2k

(
e−k|z1−z2| − e−k(z1+z2)

)
= 1

π

∫ ∞

−∞

dω sin(ωz1) sin(ωz2)
ω2 + k2 , (3.16)

which is now diagrammatically denoted as

GSDYM(z1, z2, k) =
+ −

k z2z1 . (3.17)

The interaction term in the Lagrangian (3.12) contains spacetime derivatives. In practice,
we will consider colour-ordered correlators, so we suppress the colour data.11 We will write
the vertex as

V SDYM
z (P, Q) = ∂uP ∂wQ− ∂wP ∂uQ

=

P +

Q+

R−
+
−
−

z .
(3.18)

Here, P and Q denote bulk-to-boundary or bulk-to-bulk propagators and the propagator
R will just multiply V SDYM

z (P, Q), so that we have the cases V SDYM
z (Φ, Φ), V SDYM

z (G, Φ),
and V SDYM

z (G, G). We suppress in our vertex notation a negative helicity leg R, which is
not differentiated according to the Lagrangian in (3.12). Given the translational invariance
along the boundary direction, we can simply substitute boundary derivatives with boundary
momenta:

∂uP = 1
2(−i∂t + ∂z)P 7→ 1

2(kt + ∂z)P , ∂wP 7→ ikwP . (3.19)

11This means that we suppress the colour dependence δa1a2 from the Green’s function and fa1a2a3 from
the cubic vertex, as usual. By a colour-ordered correlator at tree level with ordering 12 · · ·n, we mean the
coefficient of tr(T a1 T a2 · · ·T an ) in the complete correlator.
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It is the z-dependence that requires more care. The subscript z in Vz indicates the z-coordinate
of the interaction, and the rules include that we integrate over z independently for each
interaction. Again, this will become clearer in the explicit examples to be worked out later.
Based on whether P and Q in (3.18) are bulk-to-boundary or bulk-to-bulk propagators, and
going into Fourier 3-space as in (3.19), we write down explicitly the three cases:

V SDYM
z (Φ1, Φ2) = −Φ1 (X1,2) Φ2 , (3.20)

where we define Xi,j = X(ki, kj), with

X(ki, kj) = kiukjw − kiwkju = i

2 ((ki − kit)kjw − kiw(kj − kjt)) ; (3.21)

V SDYM
z (Φ1, G(z, z∗, q)) = −Φ1

(
X(k1, q) + i

2k1w(q + ∂z)
)

G(z, z∗, q) ; (3.22)

and

V SDYM
z (G(z, z1, q1), G(z, z2, q2)) =

−G(z, z1, q1)
(

X(q1, q2) + i

2
(
q1w(q2 +−→∂z)− q2w(q1 +←−∂ z)

))
G(z, z2, q2) , (3.23)

with the derivatives acting left or right as indicated by the arrows. We note that the operator
acting on the two arguments of V SDYM

z is always the same, but the result is simpler when it acts
on a bulk-to-boundary propagator, because (k + ∂z)e−kz = 0. That is, we can write in general

V SDYM
z (Pq1 , Qq2) = −Pq1

↔
X (q1, q2) Qq2 , (3.24)

where
↔
X(q1, q2) = X(q1, q2) + i

2
(
q1w(q2 +−→∂z)− q2w(q1 +←−∂z)

)
. (3.25)

3.3 SDG

The Lagrangian for SDG, reviewed in section 2.2, is

LSDG = √g ϕ̄(□AdS + 2)ϕ− 4 ϕ̄

{{
ϕ

u− v
,

ϕ

u− v

}}
∗

, (3.26)

where we set the coupling κ to unity, and recall that

{{f, g}}∗ = 1
2
[
∂2

uf ∂2
wg + ∂2

ug ∂2
wf
]
− ∂u∂wf ∂u∂wg

+ 1
u− v

[
∂u∂wf ∂wg + ∂wf ∂u∂wg − (∂2

wf ∂ug + ∂uf ∂2
wg)

]
.

(3.27)

While SDG is not conformally invariant, the kinetic term does correspond to that of a
conformally coupled scalar, which can be mapped to a massless scalar in half of flat space
(see footnote 5). For this reason, the propagators match those in (3.10) up to a factor of the
bulk coordinate z. In particular, the bulk-to-boundary propagators are given as

ϕ(z, k) = ze−kz , ϕ̄(z, k) = ze−kz , (3.28)
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which we will denote diagrammatically as

ϕ(z, k) =

+

−
z

k
, ϕ̄(z, k) =

−

+
z

k
. (3.29)

Plugging (3.28) into the first relation in (2.58), we can read off the associated bulk-
to-boundary propagator for h:

h(k, z) = −
√

2 ku (i + kuz) e−kz , (3.30)

associated to the Bunch-Davies vacuum. Similarly, consistency of the second relation in (2.58)
with (3.28) implies the following bulk-to-boundary propagator for h̄:

h̄(k, z) = −
√

2 k−3
u (i + kuz) e−kz. (3.31)

This indicates that we may wish to normalise the propagators differently to connect more
readily to standard graviton correlators in the full (parity-invariant) theory, though we will
not pursue this here.

The bulk-to-bulk propagator is given as

GSDG(z1,z2,k) = z1z2
2k

(
e−k|z1−z2|−e−k(z1+z2)

)
= z1z2

π

∫ ∞

−∞

dω sin(ωz1)sin(ωz2)
ω2+k2 , (3.32)

and is diagrammatically denoted as

GSDG(z1, z2, k) =
+ −

k z2z1 . (3.33)

The interaction vertex of the action (3.26) is given as

V SDG
z (P, Q) = {{P/z, Q/z}}∗ ,

≡

P +

Q+

R−
+
−
−

z ,
(3.34)
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where P, Q, R are propagators, and the integration over z is done separately, just like for
the SDYM case. Again, the rule (3.19) can be used to take advantage of the translational
invariance along the boundary directions. Analogously to the expression (3.24) for SDYM,
we obtain for SDG

V SDG
z (Pq1 , Qq2) = 1

2

(
Pq1

z

)↔
X(q1, q2)2 + i

↔
X(q1, q2)

z
(q2w − q1w)

(Qq2

z

)
, (3.35)

where the derivatives in
↔
X(q1,q2)

z do not act on the z in that particular denominator.12 This is
precisely the ‘deformed double copy relation’ between the SDYM vertex (3.24) and the SDG
vertex, observed in [30]. Notice that it applies at the level of z-integrands of Witten diagrams.

4 Correlators

In this section, we will compute three- and four-point correlators using the Feynman rules
obtained in the previous section. We will show that they can be recast in terms of φ3

correlators in flat space with a boundary. From the Feynman rules for SDYM and SDG, it is
clear that only diagrams with a single minus leg can arise at tree-level, while at loop-level only
one-loop all-plus diagrams can occur (where plus and minus refer to barred and un-barred
scalar fields, respectively).

Before proceeding, let us recall that the flat space limit of Feynman diagrams in AdS is
obtained by taking the total energy k12...n → 0 [65]. In particular, we find that the Feynman
diagrams of SDYM have simple pole in the energy while those of SDG have a leading pole of
order n− 1, and the coefficients of these poles correspond to flat space Feynman diagrams.
On the other hand, it is well-known that the scattering amplitudes of these theories vanish
for n > 3. This implies after summing over all AdS diagrams for a given correlator, the
coefficient of k−1

12...n and kn−1
12...n must vanish in SDYM and SDG, respectively. We explicitly

verify this property in appendix D.

4.1 φ3 theory

Let us begin by computing 3-point and 4-point correlators of φ3 theory in half flat space
with a boundary at z = 0 using the Feynman rules in section 3.1.

3 points. The 3-point correlator for this theory is obtained from a contact diagram:

A3 =

1

2

3 =
∫ ∞

0
dze−(k1+k2+k3)z = 1

k123
. (4.1)

12To be fully explicit,
↔
X(q1,q2)

z
= X(q1,q2)

z
+ i

2

(
q1w

1
z
(q2 +

−→
∂z)− q2w(q1 +

←−
∂z) 1

z

)
, and we have also

↔
X

(q1, q2)2 = X(q1, q2)2 − 1
4

((
q1w(q2 +

−→
∂z)
)2 +

(
q2w(q1 +

←−
∂z)
)2 − 2q1wq2w(q1 +

←−
∂z)(q2 +

−→
∂z)
)

.
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Notice that the integral over z is cut-off at the boundary, z = 0. This results in the pole
1/k123. The residue of this pole is one, corresponding to the tree-level 3-point amplitude.
Following [72], we will denote the 3-point graph above as

1

2

3 = •
k123

. (4.2)

In other words, the single bold dot •
x

means 1
x . We will make use of this stick graph

representation later on in the paper.

4 points. Next, let us consider the following s-channel exchange diagram:13

A
(s)
4 =

3

4

2

1

k⃗12

=
∫ ∞

0
dzdz′e−k12zG(z, z′, kI)e−k34z′ , (4.3)

where kI =
∣∣⃗k12

∣∣. The full tree-level correlator is obtained by summing over all three channels.

In the stick-graph notation this is denoted as • •
k12 k34

kI . We perform the integral

in (4.3) by substituting the expression for the bulk-to-bulk propagator given in (3.10), and
by first performing the z integrals and then the ω integral. We obtain

• •
k12 k34

kI = 1
π

∫ ∞

−∞

dωω2

(ω2 + k2
12)(ω2 + k2

34)(ω2 + k2
I ) = 1

k1234ELER
, (4.4)

where EL = k12 + kI , and ER = k34 + kI . To obtain the final equality, we evaluated the
residues of the ω integral at the poles in the upper-half plane. We have again suppressed the
trivial dependence of the momentum conservation along the boundary, δ3(k⃗1 + k⃗2 + k⃗3 + k⃗4).

The scattering amplitude can be obtained by taking the residue at the total energy
pole k1234, which results in

lim
k1234→0

A
(s)
4 = 1

k2
I − k2

12
, (4.5)

where we recognise the usual four-dimensional Lorentz-invariant Mandelstam variable s

appearing in the denominator.
13Note that the full tree-level 4-point correlator is obtained by summing over s, t, and u channels.
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4.2 SDYM

Now we turn to SDYM correlators using the Feynman rules presented in section 3.2.

3 points. At three points, we have the following diagram:

1+

2+

3− +
−
−

(4.6)

We restate the interaction vertex (3.20) here for convenience:

V SDYM
z (Φ1, Φ2) = −X1,2 Φ1 Φ2 , (4.7)

where

Xi,j = kiukjw − kiwkju . (4.8)

With the bulk-to-boundary propagators (3.13), we obtain the following result for the (colour-
stripped) correlator:

A3
(
1+, 2+, 3−

)
=
∫ ∞

0
dz V SDYM

z (Φ1, Φ2)Φ̄3

= −
∫ ∞

0
dze−(k1+k2)z(k1uk2w − k1wk2u)e−k3z

= −X1,2
k123

= −X1,2 •
k123

.

(4.9)

The final result is proportional to the boundary three-point function of φ3 theory in (4.1).
The flat space limit is obtained by taking the residue of the total energy pole:

lim
k123→0

k123A3 = −X1,2 , (4.10)

which is the expected result; see e.g. [21].
In appendix D, we explain how to lift the scalar 3-point function in (4.9) to a spinning

correlator, and show that it agrees with the 3-point function of full YM in light-cone gauge
up to a boundary term.
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4 points. Next, let us consider the following 4-point exchange diagram:14

A(s)
4 =

3+

4−

2+

1+

k⃗I

−
−

+ −
+

− (4.11)

This diagram is given by (stripping off the colour factor)

A(s)
4 (1+, 2+, 3+, 4−) =

∫ ∞

0
dz1dz2 V SDYM

z1 (Φ1, Φ2)V SDYM
z2 (G, Φ3)e−k4z2 . (4.12)

Note that the vertex on the left acts on two bulk-to-boundary propagators, as in (3.20),
whereas the vertex on the right acts also on a bulk-to-bulk propagator, as in (3.22). Using
the representation of the bulk-to-bulk propagator in (3.16) then gives

V SDYM
z2 (G12, Φ3) = 1

2π

∫ ∞

−∞
dω

sin(ωz1)
ω2 + k2

I

·
(
(−2X3,4 − ik3wk34) sin(ωz2) + ik3w ω cos(ωz2)

)
e−k3z2 , (4.13)

where kI was defined below (4.3). Integrating over the z variables, and then performing the
ω integral by summing over residues in the upper half plane, finally gives15

A(s)
4 (1+, 2+, 3+, 4−) = X1,2X3,4

k1234ELER
= X1,2X3,4 • •

k12 k34

kI , (4.14)

where EL,R are defined below (4.4).
Note that the final result is obtained by dressing the φ3 correlator in (4.4) with kinematic

structure constants (3.21) associated with each vertex. Moreover, the residue at the total
energy pole matches with the result expected from the flat space Feynman rules. However,
when summing over the other channels (see appendix D), the flat space amplitude vanishes due
to on-shell kinematic cancellations, so the full correlator has no energy pole. Computations
at five and six points for SDYM can be found in appendix C.

4.3 SDG

Finally, in this section we will compute three and four-point SDG correlators using the
Feynman rules in section 3.3.

14Note that the full tree-level color-ordered correlator is obtained by summing over s and t channels.
15One important difference with respect to flat space is that we now have X1+2,3 ̸= X3,4, namely

X1+2,3 = X1,3 + X2,3 = X3,4 + 1
2(k1z + k2z + k3z + k4z)k3w = X3,4 + i

2k1234 k3w ,

due to the lack of momentum conservation along the z-direction.
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3 points. We must compute the following diagram at three points:

M3 =

1+

2+

3− +
−
−

(4.15)

The 3-point vertex in SDG can be represented as in (3.35), which leads in the present case to

V SDG
z (ϕ1, ϕ2) = e−k12z

z
X1,2

(
zX1,2 − i(k1w − k2w)

)
. (4.16)

We are left with the following z integral:16

M3
(
1+, 2+, 3−

)
=
∫ ∞

0
dz V SDG

z (ϕ1, ϕ2)ϕ̄3

= X1,2

∫ ∞

0
dz
(
zX1,2 − i(k1w − k2w)

)
e−k123z

= X1,2

(
X1,2
k2

123
− i

k123
(k1w − k2w)

)
= −X1,2D̂12

( 1
k123

)
≡ −X1,2

(
D̂1,2 •

k123

)
,

(4.17)

where D̂1,2 = X1,2 ∂k123 + i(k1w − k2w) is a differential operator acting on the three-point φ3

correlator in (4.1). Note that the derivative is with respect to the sum of external energies
entering the vertex, which in this case is k123. We will find similar differential operators
appearing at higher points, where the derivative will once again be with respect to a sum
of external energies.

The flat space limit is obtained from the residue of the leading pole in the energy:

lim
k123→0

k2
123M3 = X2

1,2 , (4.18)

which is the expected flat space result. Comparing to (4.10), we verify that in flat space the
double copy is realised by squaring X12, which can be thought of as the structure constant of
a kinematic algebra. On the other hand, comparing (4.17) to the SDYM correlator in (4.9),
we see that the double copy in AdS is realised by inserting the differential operator D̂1,2,
which acts on the φ3 correlator. This reduces to introducing a second copy of X1,2 when
we take the residue at the leading pole, as in (4.18).

16It is convenient to perform these integrals using integration by parts, as we demonstrate this for other
examples in appendix C.
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It is interesting to note that the differential operator satisfies a Jacobi identity. If we
define the following object,

M [1, 2, 3] = D̂1,2D̂1+2,3

=
(
X1,2∂k123 + i(k1w − k2w)

)(
X1+2,3∂k123 + i(k1w + k2w − k3w)

)
,

(4.19)

where X1+2,3 = X1,3 + X2,3, it is easily checked that for any function f(k123), we have(
M [1, 2, 3] + M [2, 3, 1] + M [3, 1, 2]

)
f(k123) = 0 . (4.20)

This encodes the Jacobi identity pointed out in [30]. We will find, however, that this does
not apply directly to the 4-point correlator.

4 points. Next we look at the following s-channel exchange diagram:17

3+

4−

2+

1+

k

−
−

+ −
+

− (4.21)

This is given by

M(s)
4

(
1+, 2+, 3+, 4−

)
=
∫ ∞

0
dz1dz2V SDG

z1 (ϕ1, ϕ2)V SDG
z2 (G12, ϕ3)(z2e−k4z2)

= 1
32π

X12

∫ ∞

−∞

dω

ω2 + k2

∫ ∞

0
dz1dz2e−k12z1−k34z2

(
z1X12 − i(k1w − k2w)

)
sin(ωz1)

×
[

sin(ωz2)
{
2ω2z2k2

3w − 2 (−2iX34 + k3wk34)
(
z2(−2iX34 + k3wk34) + 2(k4w + 2k3w)

)}
+ 4k3wω cos(ωz2)

{
z2
(
− 2iX34 + k3wk34

)
+ k4w + 2k3w

}]
.

(4.22)

After performing the z1 and z2 integrals, we obtain

M(s)
4

(
1+, 2+, 3+, 4−

)
= X1,2X3,4

4π

∫ ∞

−∞

dωω2

ω2 + k2
I

{
2ik12X1,2
ω2 + k2

12
+ (k1w − k2w)

}{
−2ik34X3,4

ω2 + k2
34

+ (3k3w + k4w)
}

× 1
(ω2 + k2

12)(ω2 + k2
34)

17Note that the full tree-level 4-point correlator can be obtained by summing this diagram over all
permutations of the positive helicity legs. Since the left vertex is symmetric under exchange of the two external
legs (which follows from (3.27)), this simply reduces to a sum over s, t, and u channels.
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= X1,2X3,4
4π

∫ ∞

−∞

dωω2

ω2 + k2
I

D̂1,2D̂3,4

( 1
(ω2 + k2

12)(ω2 + k2
34)

)
= 1

4X1,2X3,4D̂1,2D̂3,4

( 1
k1234ELER

)
= 1

4X1,2X3,4D̂1,2D̂3,4 • •
k12 k34

k , (4.23)

where kI was defined below (4.3), D̂1,2 = X1,2∂k12 + i(k1w − k2w), and D̂3,4 = X3,4∂k34 −
i(3k3w + k4w). Notice that the derivatives in (4.23) are with respect to external energies
at each vertex, which we take to be independent of the exchanged energy kI . This can
be formally justified by considering an off-shell correlator where the external energies are
not equal to the magnitudes of boundary momenta [73]. To obtain the third equality, we
pulled the derivative operators out of the integrand and identified the remaining integral
with the 4-point φ3 exchange diagram evaluated in (4.4). We note that the precise form of
our derivative operators is not universal in the way that we presented them, i.e. they are
not obtained from each other (and from those seen earlier at 3 points) by trivial relabelling.
This is an issue that deserves further study. The representation we find is reminiscent of
the differential representation for AdS correlators in [74]. It would be interesting to relate
those differential operators to the much simpler ones arising here.

In the flat space limit, there is only a contribution from the term with two derivatives
in (4.23), which gives cubic pole in the total energy:

lim
k1234→0

k3
1234M

(s)
4 = −1

2
X2

1,2X2
3,4

k2
I − k2

12
, (4.24)

which is consistent with the expected flat space limit, the denominator becoming the usual
Mandelstam variable s. Looking at the SDYM result in (4.14), we see that the SDG correlator
can be obtained by inserting differential operators at each vertex. In the flat space limit, this
reduces to squaring the kinematic numerator X1,2X3,4. It would be interesting to derive (4.23)
from a systematic double copy prescription. Note, however, that (4.24) corresponds to a single
channel, and the complete SDG correlator at four points does not have a cubic energy pole,
as we show in appendix D. A computation at five points in SDG can be found in appendix C.

5 Soft limits

In flat space, the scattering amplitudes of gluons and gravitons have the following universal
soft limits found long ago by Weinberg [75]:

lim
kµ

n+1→0
An+1 =

 ∑
h=1,n

ϵ · kh

kn+1 · kh
+ . . .

An , (5.1)

lim
kµ

n+1→0
Mn+1 =

(
n∑

h=1

(ϵ · kh)2

kn+1 · kh
+ . . .

)
Mn , (5.2)

where An and Mn refer to n-point gluon and graviton amplitudes, respectively, and . . . are
subleading in the soft momentum. These soft theorems have been extended to higher orders
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in the soft momentum [76] and more recently interpreted as Ward identities of asymptotic
symmetries [77].

In this section, we will analyse soft limits of SDYM and SDG Feynman diagrams in
AdS4 and show that they exhibit structure similar to the soft limits of YM and GR in AdS
recently found in [52, 78]. In particular, the soft limits give rise to Weinberg-like soft factors,
where the soft pole is replaced by an energy derivative. We expect that this similarity can be
turned into a direct identification once we work out the precise uplift of our correlators to
those studied in these references. The universal-looking structure we describe suggests an
underlying symmetry analogous to the asymptotic symmetries that give rise to the Weinberg
soft theorems [53]. It would be interesting to explore whether it is possible to adapt Λ-BMS
symmetry [79] or cosmological soft theorems [55, 56, 80] to self-dual theories in AdS.

We first consider the toy example of φ3 theory in flat space and then show how the
soft limits generalize to SDYM and SDG in AdS. For each of these theories we will first
illustrate how the soft limits work at three and four points and then compute the soft limit
for the following general class of diagrams:

Class I: lim
k⃗→0

...

k⃗

. (5.3)

We refer to these as class I diagrams. One also consider other types of diagrams such as
class II diagrams:

Class II: lim
k⃗→0

...
...

k⃗

. (5.4)

Note that class I diagrams give rise to the Weinberg soft theorems for scattering amplitudes
in flat space whereas class II diagrams contribute to the subleading soft theorem [76, 81, 82].
Soft limits of class I diagrams in AdS are distinguished from those of higher class diagrams
because they contain higher-order poles in the total energy and therefore dominate if one
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takes the flat space limit after taking the soft limit. This was demonstrated in full YM and
GR in [52] and we find similar results for self-dual theories in this paper. Moreover, soft limits
of class I diagrams in dS have been derived from Ward identities associated with certain
asymptotic symmetries, as we discuss in the end of this section. Generalizations of these soft
limits to gravity coupled to matter and the extent to which they are universal were recently
explored in [78]. We will therefore focus our analysis on class I diagrams. That the soft limit
of higher class diagrams in self-dual theories do not exhibit higher-order poles in the total
energy can be seen using a similar analysis to the one for full YM and GR in [52].

Before discussing the soft limits of n-point diagrams we pause to discuss the nature of
two-point functions, since these will arise from the soft limit of three-point functions. In
particular, they can be obtained from a bulk perspective by plugging two bulk-to-boundary
propagators into the kinetic term of the action [46], or from the boundary perspective using
the conformal Ward identities in momentum space [83, 84]. Using either point view, one finds
that the two-point functions of scalar operators with scaling dimension ∆ in d dimensions
is proportional to k2∆−d, where k is the energy of either operator. In this paper, all the
theories we consider are described at the level of the kinetic term by conformally coupled
scalars in AdS4, which corresponds to ∆ = 2 and d = 3. Hence, the two-point functions in
all cases will scale linearly in the energy. Moreover, looking at the kinetic terms for SDYM
and SDG in (3.12) and (3.26), respectively, we see that the 2-point functions must connect
scalars of opposite chirality which lift to spinning fields of opposite helicity. While this
is consistent with the usual conventions for propagators used in the scattering amplitude
literature, this is different than the convention used for cosmological correlators in [51],
where 2-point functions are nonzero for fields of the same helicity. We explain the origin
of this difference in appendix D.

5.1 φ3 theory

Let us first demonstrate how the soft limit works for some simple examples in φ3 theory.

3 → 2. Taking the limit k⃗3 → 0 of A3 in (4.1) gives

lim
k⃗3→0

A3 = 1
k12

= 1
2k2

= 1
2k2

∂k2A2 , (5.5)

where we noted that in the soft limit k1 becomes equal to k2 (since k⃗1 becomes −k⃗2 by
boundary momentum conservation), and fixed the normalisation of the 2-point function
such that A2 = k2.

4 → 3. Now consider the taking the limit k⃗4 → 0 in the 4-point exchange diagram in (4.4).
This gives

lim
k⃗4→0

A4 = 1
2k3k2

123
= − 1

2k3
∂k3A3 , (5.6)

where we recall the 3-point function given in (4.1) and noted that in the soft limit kI =∣∣∣⃗k34
∣∣∣→ k3. Let us now pause to discuss the physical interpretation of (5.6). First recall that
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when we take the flat space limit of the 4-point diagram in (4.4) we get

lim
k1234→0

A4 = 1
k1234

1
k⃗2

34 − k2
34

, (5.7)

where we have the usual pole in the total energy and recognize the is the usual standard
Lorentz-invariant Mandelstam variable kµ

34k34µ in the denominator. If we now take the soft
limit kµ

4 → 0, we obtain

lim
k⃗µ

4 →0
lim

k1234→0
A4 = 1

k123

1
2k3 · k4

, (5.8)

where we now have a three-point energy pole, k123, and k3 · k4 is the usual Weinberg soft pole.
Now let us take the soft limit followed by the flat space limit of (4.4). Using (5.6), we see that

lim
k1234→0

lim
k⃗4→0

A4 = 1
2k3k2

123
. (5.9)

Hence, we now get a double pole in k123 which arises from acting with ∂k3 on the three-point
function in (5.6). Using energy conservation at four points which arises from taking the flat
space limit, we may then write the double pole in k123 as a single pole in k123 times a pole in
the energy of the soft leg k4. This shows that the flat space limit does not commute with
the soft limit. From this we also see that the analogue of a Weinberg soft factor in AdS is
an energy derivative which gives a double pole in the energy. Similar statements apply to
YM and GR correlators [52] and as we see later, to SDYM and SDG.

We will now generalise the relations in (5.5) and (5.6) to all multplicity for class I diagrams.

Class I. Consider a general class I diagram in the φ3 theory:

F
φ3(I)
n+1 ≡

...

k⃗s

k⃗

y⃗
F φ3

n
, (5.10)

where k⃗s is the boundary momentum of the leg we will take soft, k⃗ is the boundary momentum
of an adjacent hard leg, and by momentum conservation y⃗ = k⃗+ k⃗s, and the gray blob denoted
by F φ3

n is a generic n-point sub-diagram. From the Feynman rules given in (3.10) we have

F
φ3(I)
n+1 =

∫ ∞

0
dz1dz2F φ3

n (z1)G(z1, z2, y)e−(k+ks)z2 . (5.11)
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In the limit k⃗s → 0, y⃗ = k⃗ and we can expand the Green functions up to the leading order in ks:

lim
k⃗s→0

F
φ3(I)
n+1 =

∫ ∞

0
dz1dz2G(z1, z2, k)F φ3

n (z1)e−kz2 . (5.12)

We can then perform the integral over z2 by using the following identity:∫ ∞

0
dz2G(z1, z2, k)e−kz2 = z1

2k
e−kz1 . (5.13)

We then obtain

lim
k⃗s→0

F
φ3(I)
n+1 = − 1

2k
∂k

∫ ∞

0
dz1F φ3

n (z1)e−kz1 . (5.14)

This equation can be diagrammatically expressed as

lim
k⃗s→0

...

k⃗s

k⃗

y⃗
F φ3

n
= − 1

2k
∂k

...
y⃗ = k⃗

F φ3
n

. (5.15)

In the following sections, we will see that similar structure arises in the soft limit of
SDYM and SDG diagrams. Note that the energy derivative also arises in the soft limit
of full YM and GR boundary correlators [52] and plays the role of the Weinberg soft pole
for scattering amplitudes.

5.2 SDYM

Let us proceed as we did in the φ3 theory and first look at some simple examples. For
simplicity we shall study the colour-stripped correlator and denote the rest of the correlator
as An with n denoting the number of external legs.

3 → 2. Consider the 3-point function given in (4.9). By taking the soft limit of leg 2,
i.e, k⃗2 → 0 we obtain

lim
k⃗2→0

A3(1+, 2+, 3−) = X1,2
2k1

= −X1,2
2k1

∂k1A2(1+, 3−) , (5.16)

where we have normalised the 2-point function such that A2(1+, 3−) = k1. It is also natural
to ask what happens upon taking the soft limit of a minus helicity field. After taking
k⃗3 → 0 in (4.9) we obtain

lim
k⃗3→0

A3(1+, 2+, 3−) = X1,2
2k1

. (5.17)
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In this case, we do not obtain a correlator in SDYM, as it corresponds to a two-point function
with both helicities positive. In appendix D, we will show that after lifting the three-point
SDYM scalar correlator to a spinning correlator, the soft limit in (5.16) becomes finite, while
the one in (5.17) (which gives rise to a correlator that does not occur in SDYM) goes to zero.

4 → 3. Let us recall the 4-point result in (4.14):

A(s)
4

(
1+, 2+, 3+, 4−

)
= X1,2X3,4

k1234ELER
. (5.18)

Taking the soft limit k⃗3 → 0 then gives

lim
k⃗3→0

A(s)
4

(
1+, 2+, 3+, 4−

)
= X1,2X3,4

2k4k2
124

= −X3,4
2k4

∂k4A3
(
1+, 2+, 4−

)
, (5.19)

where we noted that EL = k12 +
∣∣∣⃗k34

∣∣∣ → k124 and ER = k34 +
∣∣∣⃗k34

∣∣∣ → 2k4 Hence, in the
soft limit we obtain the same type of structure that we found in the 3 → 2 soft limit,
notably a kinematic structure constant Xi,j times an energy derivative acting on a lower-point
correlator. An energy derivative also arises in soft limit of the φ3 theory, as shown in the
previous subsection.

We get a similar result when taking one of the other positive helicity legs soft. For
example if we take leg 1 soft we obtain,

lim
k⃗1→0

A(s)
4

(
1+, 2+, 3+, 4−

)
= −X1,2

k2
∂k2A3(2+, 3−, 4+) . (5.20)

On the other hand, we take the soft limit of the leg with negative helicity we obtain

lim
k⃗4→0

A(s)
4 (1+, 2+, 3+, 4−) = X1,2X3,4

k2
123k3

, (5.21)

which gives an all-plus three-point correlator which does not exist in SDYM theory.

Class I. We now compute the soft limit of a general class I diagram:

F
SDYM(I)
n+1 = ...

k⃗s

k⃗

y⃗

+

−+

+

F SDYM
n

. (5.22)
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where the blob is a generic subdiagram in SDYM. Using the Feynman rules in section 3.2
we have the following expression for the diagram above:

F
SDYM(I)
n+1 =

∫ ∞

0
dz1dz2F SDYM

n (z1)V SDYM
z2 (G, Φs)e−kz2 , (5.23)

where V SDYM
z (G, Φs) is obtained from (3.18) and is given as

V SDYM
z2 (G, Φs) = 1

π

∫ ∞

−∞

dω sin(ωz1)
ω2 + y2

[
f1 sin(ωz2) + i(ks)wω cos(ωz2)

]
e−ksz2 , (5.24)

where f1 = −2Xk,ks − ik(ks)w .
In the limit k⃗s → 0 we have y⃗ = k⃗ and obtain

lim
k⃗s→0

F
SDYM(I)
n+1

= 1
π

∫ ∞

0
dz1F SDYM

n (z1)
∫ ∞

−∞

dω sin(ωz1)
ω2 + k2

∫ ∞

0
dz2
[
f1 sin(ωz2) + i(ks)wω cos(ωz2)

]
e−kz2 .

(5.25)

We now evaluate the z2 integrals by using∫ ∞

0
dz2 sin(ωz2)e−kz2 = ω

ω2 + k2 ,

∫ ∞

0
dz2ω cos(ωz2)e−kz2 = kω

ω2 + k2 . (5.26)

and are left with the following ω-integral:

lim
k⃗s→0

F
SDYM(I)
n+1 = 1

π

∫ ∞

0
dz1F SDYM

n (z1)
∫ ∞

−∞

dω

(ω2 + k2)2
[
f1 + i(ks)wk

]
ω sin(ωz1) . (5.27)

The factor in the square bracket simplifies to f1 + i(ks)wk = −2Xk,ks .
Finally, the ω integral can be performed by the method of residues resulting in

lim
k⃗s→0

F
SDYM(I)
n+1 = 1

2k1
Xks,k

∫ ∞

0
dz1z1F SDYM

n (z1)e−kz1

= − 1
2k

Xks,k∂k

∫ ∞

0
dz1F SDYM

n (z1)e−kz1

= −Xk,ks

2 ∂kF SDYM
n .

(5.28)

For n = 3, (5.28) reduces to (5.19). This relation can be diagrammatically summarized as

lim
k⃗s→0

...

k⃗s

k⃗

y⃗

+

−+

+

F SDYM
n

=−Xks,k

2k
∂k

...
y⃗ = k⃗

−

+

+

F SDYM
n

.

(5.29)
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There is a similar formula when the soft leg is adjacent to a leg with positive helicity:

lim
k⃗s→0

...y⃗

+

+ +

−

k⃗

k⃗s

F SDYM
n

= −Xksk

2k
∂k ...

+

−

y⃗ = k⃗
+ F SDYM

n
.

(5.30)

5.3 SDG

Let us begin by computing the soft limit of three and four-point SDG diagrams evaluated
in section 4.

3 → 2. The soft limit of the 3-point function given in (4.17) is given by

lim
k⃗2→0

M3(1+, 2+, 3−) = −i
X1,2k1w

2k1
= −X1,2k1w

2k1
∂k1M2(1+, 3−) , (5.31)

where we normalise the 2-point function such that M2(1+, 3−) = k1.

4 → 3. We can similarly evaluate the soft limit of the four-point function in (4.23) and obtain

lim
k⃗3→0

M(s)
4

(
1+, 2+, 3+, 4−

)
= X1,2X3,4k4w

2k4
D̂1,2

( 1
k2

124

)
= −X3,4k4w

2k4
∂k4M3

(
1+, 2+, 4−

)
,

(5.32)

where we recall that EL = k12 +
∣∣∣⃗k34

∣∣∣→ k124, ER = k34 +
∣∣∣⃗k34

∣∣∣→ 2k4, and the three-point
correlator in (4.17). Hence, in the soft limits we once again find an energy derivative acting
on a lower-point correlator as we found for SDYM in (5.19) and the φ3 theory in (5.6). As
we explained in section 5.1, this encodes the analogue of the Weinberg soft factor in AdS.

In the following section we examine the soft limit for a general n-point function and
show that this structure generalizes.
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Class I. Now we consider a general class I diagram:

F
SDG(I)
n+1 = ...

k⃗s

k⃗

y⃗

+

−+

+

F SDG
n

, (5.33)

where the F SDG
n is a generic n-point subdiagram in SDG. The expression for this diagram

is given as

F
SDG(I)
n+1 = 1

8

∫
dz1F SDG

n (z1)z1

∫ ∞

0
dz2
[ ˜̃Gz2g1 + G̃(z2g2 + g3) + G(z2g4 + g5)

]
e−k2z2 , (5.34)

where

g1 = (ks)2
w ,

g2 = 4i(ks)w
(
yw(ks)u − yu(ks)w

)
,

g3 = 2(ks)w
(
− yw + (ks)w

)
,

g4 = 4
(
yu(ks)w − yw(ks)w

)2
,

g5 = 4i
(
(ks)w − yw)(qu(ks)w − yw(ks)u

)
,

(5.35)

with the functions

G = 1
π

∫
dω

ω2 + y2 sin(ωz1) sin(ωz2) ,

G̃ = 1
π

∫
ωdω

ω2 + y2 sin(ωz1) cos(ωz2) ,

˜̃G = 1
π

∫
ω2dω

ω2 + y2 sin(ωz1) sin(ωz2) .

There is a huge simplification that occurs upon taking the soft limit k⃗s → 0, where we see that
g1, g2, g3 ∼ O(k2

s) and g3, g5 ∼ O(ks). Using this simplification and various manipulations
similar to the SDYM case, the contribution to F

SDG(I)
n+1 in the soft limit takes a fairly

simple form,

lim
k⃗s→0

F
SDG(I)
n+1 = − 1

2k
kwXk,ks∂k

∫ ∞

0
dz1F SDG

n (z1)z1e−kz1 = − 1
2k

kwXk,ks∂kF SDG
n . (5.36)
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This can be diagrammatically summarized as

lim
k⃗s→0

...

k⃗s

k⃗

y⃗

+

−+

+

F SDG
n

=−kwXk,ks

2k
∂k

...
y⃗ = k⃗

−

+

+

F SDG
n

.

(5.37)

One can perform a similar analysis when the soft leg is adjacent to another positive-helicity
leg to obtain

lim
k⃗s→0

...y

+

+ +

−

k⃗

k⃗s

F SDG
n

= −kwXksk

2k
∂k ...

+

−

y⃗ = k⃗
+ F SDG

n
.

(5.38)

It has previously been shown that soft limits of (A)dS correlators can be derived from the
Ward identities corresponding to asymptotic symmetries.18 For example, Ward identities
for large diffeomorphisms have been used to used to derive the soft limits of cosmological
correlators [46, 55, 56, 80]. In these approaches, it was found that the soft limit gives
lower-point correlators acted on by a derivative with respect to a hard momentum and
similar structures have recently been derived for AdS correlators from a diagrammatic
perspective [52, 78]. In this paper, we have found similar structure arising in the soft limit
of Witten diagrams of SDYM and SDG in AdS4, so it would be interesting to explore if
this can be derived from some underlying symmetry. In terms of how much the symmetry
interpretation extrapolates away from self-dual theories, we remark that the soft theorems in
(A)dS take a different form from the usual treatment in flat space [77]. In this sense, they
are more similar to the proposal in [85, 86], which incorporates a projection to a universal
subsector even for sub-leading effects beyond the SD sector.

Indeed, it has recently been shown that the scattering amplitudes of SDYM and SDG
enjoy an infinite dimensional symmetry known as a Lw1+∞ symmetry that is encoded in

18CC would like to thank Radu Moga and Kostas Skenderis for useful discussions on this subject.

– 33 –



J
H
E
P
0
1
(
2
0
2
5
)
1
7
2

their soft and collinear limits [43] and recent work has demonstrated that this symmetry has
an analogue in AdS4 [30, 40, 45], although its implications for correlation functions have yet
to be understood. It is therefore natural to expect that the elegant structures we find in the
SDYM and SDG correlators can at least be partial explained by such symmetries, and we
leave this investigation for future work. Indeed, in the soft limit of SDYM diagrams (5.29)
we see the appearance of Xka,kb

factors which correspond to the structure constants of a
kinematic algebra dual to the color algebra of the gauge theory, which is intimately related
to Lw1+∞ symmetry [41]. Moreover, these structure constants also arise in the soft limit
of SDG diagrams now multiplied by a kw (see (5.37)). Naively, we would expect to have
square of a kinematic structure constant, but in curved background the additional structure
constant gets deformed [30] (as one can see from the 3-point correlator in (4.17)) and only
the kw term survives in the soft limit.

Note that the kinematic structure constants appearing the soft limit of SDYM and
SDG diagrams actually vanish in the soft limit. In appendix D we explain how to lift the
three-point SDYM scalar correlator to a spinning correlators. After doing so, we find that
the soft limit of a positive helicity leg gives a nonzero result while the soft limit of a negative
helicity leg vanishes, as expected. We expect similar results to hold after lifting scalar SDG
correlators to spinning ones.

6 Conclusion

In this article, we have made progress towards a more systematic understanding of the recent
formulation of SDG in an AdS4 background [30], using also the analogous case of SDYM in
AdS4 as guidance. Firstly, we described how the lightcone actions for SDYM and SDG in
AdS4 are part of the full lightcone actions for YM and gravity, written in terms of positive
and negative helicity fields. In particular, guided by past work in flat background [59], we
showed how the introduction of the cosmological constant modifies the structure of the
lightcone graviton vertices, matching the results of [30] in the self-dual sector. No such
modification occurs in the YM case, due to conformal symmetry. We did not study in
detail the boundary terms that arise due to the conformal boundary, and only kept track of
such terms in an appendix in the case of YM. Nevertheless, our results provide a starting
point to systematically perturb away from the self-dual sector. Since boundary terms can
give non-trivial contributions to correlation functions, a very important direction for the
future would be to carry out a systematic analysis of boundary terms in SDYM, SDG, as
well as more general theories.

Secondly, we took the first steps in the computation of boundary correlators in the
self-dual sector, showing that they can be recast in terms of flat-space boundary correlators
built from diagrams with cubic vertices. This leads to major simplifications and offers glimpses
of an underlying double-copy structure. There has been a great deal of recent progress in the
study of the double copy of (A)dS correlators [74, 87–93]. Due to the simplicity of SDYM
and SDG correlators, we believe that they may provide the simplest setting for studying the
double copy in these backgrounds and we hope to develop a more systematic understanding
in the future. At this stage, we do not have a systematic understanding of how to map
the scalar SDYM and SDG correlators to spinning ones so this is another important future

– 34 –



J
H
E
P
0
1
(
2
0
2
5
)
1
7
2

direction. In the case of gluons, we discuss this mapping in appendix D, which highlights the
importance of boundary terms and appropriate translation between gauges.

Finally, we computed soft limits of the SDYM/SDG correlators at the diagrammatic
level, and noticed they have a very similar structure to those of full YM and gravity given
in [52], a work that was partly motivated by our early investigations. Again, the explicit
relation requires us to translate our results for the ‘scalar’ correlators into those of gluons and
gravitons. The ultimate hope is that SDG in AdS could be a powerful toy model, capable
of revealing hidden structures in the computation of correlators, mimicking the successes
of its flat-space counterpart.

There are a number of directions open for future work, apart from the ones already
mentioned. The soft limits of the correlators, some of which we have computed, may have an
interpretation as Ward identities of some suitably defined asymptotic symmetries [53, 54].
Indeed, in flat space, an infinite tower of such symmetries, constructed recursively, was
described in [94] for SDYM and SDG in the lightcone formalism. Related to this, the Lw∞+1
algebra of soft-collinear limits which has played a central role in celestial holography [43, 95]
was shown to follow directly from the Poisson structure of the colour-kinematics duality in
flat-space SDG [41, 42]. The deformation of this Poisson structure presented in [30], based
on the lightcone formalism, provides a natural counterpart, and it would be important to
understand how it relates to the deformation of Lw∞+1 later described in [40, 45]. In addition,
it would be important to understand how these relate to the soft/collinear limits of correlators.

The computation of graviton correlators in de Sitter backgrounds is of natural interest to
cosmology, with recent progress at four and five points [92, 96, 97]. It would thus be interesting
to generalise our results to in-in correlators following [49, 50], or other de Sitter observables
recently proposed in [98]. Indeed, it has recently been shown that in-in correlators of certain
scalar theories have simpler structure than wavefunction coefficients which arise from Wick
rotation of Witten diagrams for boundary correlators [99], so it would be interesting to see if
simpler simplifications arise for SDYM and SDG correlators. Another interesting direction
would be to see if the correlators in this paper can be expressed geometrically as cosmological
polytopes [72, 100] or simplices [101], where previous work has focused on scalar fields. In
this regard, our work could provide a bridge to spinning theories like YM and gravity since
the scalar theories we consider encode a subsector of the dynamics of full YM and GR. We
can also consider SDYM and SDG correlators in more general FLRW spacetimes, for which a
similar self-dual formulation based on Jacobi brackets was given in [36]. This may in turn
provide an interesting new arena for generalising the differential equations for cosmological
correlators recently presented in [102].

Beyond these specific applications, there is the general aim — which has been central
for scattering amplitudes — to provide the ‘simplest formulas’ for correlators, exhibiting
as manifestly as possible their analytic structure and symmetries. We expect that twistor
theory will play a role, and indeed, there is a close connection to the lightcone formalism.
Ref. [103] recently took some steps in applying twistor methods to correlators. There is
significant related work using either twistor techniques and/or lightcone methods that would
be important to understand in a unified framework, e.g. [104–109]. There has also been
progress in all-multiplicity formulae for certain scalar correlators in the framework of scattering
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equations [110–112]. We note that we have included in an appendix calculations up to six
points in SDYM and up to five points in SDG, which will hopefully prove to be useful data
points for unveiling general structures and for constructing a holographic dual to SDG and
it higher spin extensions in AdS [113–115].

Finally, the lightcone formalism is well suited to compute correlators at loop level, due
to the absence of ghost contributions. SDYM and SDG in (A)dS4 are expected from the
Feynman rules to be perturbatively one-loop exact, because one cannot draw higher-loop
diagrams with the vertex of the self-dual sector. We can try to extend the lightcone flat-space
computations of [22] (see also [116]) using the Feynman rules we developed. Loop effects in
(A)dS are a thorny subject, and the self-dual theories may provide an insightful toy model.
In fact, motivated by recent flat-space results [117–119], a conjecture was made in [71]—in
particular (5.6) and (5.7) in that article — that would suggest a relatively simple form of
the self-dual one-loop (A)dS correlators.
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A Boundary terms

In section 2, we reviewed how to derive a lightcone action for YM written in terms of positive
and negative helicity fields. While performing integrations by parts, one accumulates several
boundary terms at z = 0. Together with the bulk action, these form the definition of the
theory. In this appendix, we list the set of boundary terms one accumulates from the original
action in lightcone gauge, namely expression (2.10), to the simplified expression (2.13). One
can perform a similar (but much more complicated) analysis for gravity.

The set of terms accumulated at the boundary of the Poincare patch, z = 0, in the
case of YM, is:

S∂ = 1
2tr

∫
z=0

d3x

[
Aw∂zAw̄ + Av(∂wAw̄ + ∂w̄Aw)− iAv

(
[∂uAw,

1
∂u

Aw̄] + [∂uAw̄,
1
∂u

Aw]
)

− 1
∂2

u

(
[Aw̄, ∂uAw] + [Aw, ∂uAw̄]

) 1
∂u

(
[Aw̄, ∂uAw] + [Aw, ∂uAw̄]

)
− [Aw, Aw̄] 1

∂u
[Aw, Aw̄]− 1

∂u
[Aw̄, ∂uAw] 1

∂2
u

[Aw, ∂uAw̄] + 1
∂2

u

[Aw̄, ∂uAw] 1
∂u

[Aw, Aw̄]

− 4i
(
∂wAw̄[Aw̄, ∂uAw] + ∂w̄Aw[Aw, ∂uAw̄]

)]
, (A.1)

where d3x = dt dx dy. Notice that none of the terms depend on AwAwAw or Aw̄Aw̄Aw̄, and
hence we do not obtain any contribution to the all-plus (or all-minus) helicity amplitude,
even from the boundary terms, with our definition of helicity. In order to use the effective
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action (2.13) for YM — and therefore the associated action for SDYM—, we need to add a
boundary term that exactly cancels (A.1). Together with the original action for YM (2.10),
this set of boundary terms forms the definition of the theory which results in the effective
action (2.13). We note that, as usual in light-cone gauge, we have performed certain operations
up to boundary terms, such as

∫
f 1

∂u
g = −

∫
g 1

∂u
f .

B Alternative light-cone coordinates

In section 2.2, we derived the action for Einstein gravity in AdS in terms of positive and
negative helicity fields, h and h̄. There, in order to match the conventions of [30], we took
the lightcone directions (u, v) to depend on the bulk coordinate z. Here, we will instead
consider an alternative choice where (u, v) are boundary coordinates:

ds2
AdS = R2

z2 (−dudv + (dx1)2 + dz2). (B.1)

As a result, the lightcone gauge condition in (2.18) will set to zero boundary components
of the metric rather than bulk components. In the choice we made previously, there is a
non-trivial interplay between the inverse derivatives with respect to u, on the one hand,
and the non-translationally-invariant direction z of the Poincaré coordinates. That is the
main motivation for considering in this appendix the other choice, where z and u are not
intertwined. Then inverse derivatives with respect to u present no difficulties (e.g. considering
Fourier space), as this is a translationally-invariant direction in AdS. This is likely to be
a more convenient choice for future work. In fact, the derivation of the AdS light-cone
action simplifies considerably.

Starting with the AdS metric given by (B.1), the expression (2.48) for AdS still holds,
now with xi = (x1, z), and the fields G and F are still defined to deviate from the AdS values
as in (2.49). However, in the coordinates we use here, the constraint (2.24) is given by

∂uF̃ ∂uG̃− 1
2(∂uG̃)2 − ∂2

uG̃ + 1
4∂uγij∂uγij = 0 . (B.2)

This is the same expression as for Λ = 0, and it should be contrasted with (2.50). Hence,
in the coordinates we now use, the gauge choice

F̃ = 1
2 G̃ (B.3)

leads to

G̃ = 1
4

1
∂2

u

(∂uγij∂uγij). (B.4)

The action (2.28) can now be expanded in κ. Integrating by parts several times, we find

SG|κ0 =
∫

d4x
√
|gAdS|

(
−gµν

AdS∂µh∂ν h̄ + 2
R2 hh̄

)
(B.5)

and

SG|κ1 = κ√
2

∫
d4x ∂2

uh̄
R2

z2

[(
∂w

∂u
h

∂w

∂u
h− h

∂2
w

∂2
u

h

)
+ 2i

z

( 1
∂u

h
∂w

∂u
h− h

∂w

∂2
u

h

)

+ 1
z2

(
h

1
∂2

u

h− 3
4

1
∂u

h
1
∂u

h

)]
+ C.C. ,

(B.6)
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where C.C. denotes the complex conjugate contribution hh̄h̄. Notice that we now defined

w = x1 + iz , w̄ = x1 − iz . (B.7)

The terms of order κ2 and higher obey the same properties as in section 2.2, i.e., only
h̄h̄ · · ·hh contributions occur.

Restricting now to the self-dual sector, where we keep the terms linear in h̄, the expression
simplifies if we employ the field redefinition

h =
√

2 ∂2
uϕ , h̄ =

√
2 1

∂2
u

ϕ̄ . (B.8)

This is the same field redefinition as for Λ = 0, and it should be contrasted with (2.58).
Notwithstanding these differences to the coordinate choice made in section 2.2, we still find
the action for self-dual gravity to be given as

SSDG = 2
∫

d4x

[√
|gAdS|ϕ̄

(
□AdS + 2

R2

)
ϕ− 4κϕ̄{{ R

u− v
ϕ,

R

u− v
ϕ}}∗

]
, (B.9)

just like (2.59), with the important distinction that now the double-bracket {{·, ·}}∗ is
defined in terms of

Π = (Πv, Πw̄) = (∂w, ∂u) , Π̃ = (Π̃v, Π̃w̄) = (∂w −
4

w − w̄
, ∂u) , (B.10)

as opposed to (2.62).
Similarly, the action for self-dual Yang-Mills theory in AdS still takes the form (2.16) if

we use the coordinate/gauge choice in this appendix, but now with the definition (B.7).

C Higher points

In this appendix we extend the calculations in section 4 to higher points. In particular, we
go up to six points in SDYM and five points in SDG.

C.1 SDYM

Let us begin with SDYM.

5 points. Two types of diagrams can arise at 5 points, which are depicted in (C.1) and (C.3).
The first type of diagram has a negative helicity field at one of the external vertices. This can
be evaluated using the same methods as done in the main text and the final answer is given as

1+

2+

3+

4+

5−

= X1,2X4,5
[
2(X3,1 + X3,2) • • • + ik3w • • •

]
,

(C.1)
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where we use the same shorthand notation introduced in the main text. The first term in
the bracket on the right-hand-side can be expressed in terms of the lower-point functions
via the following recursion relation [72]:

• • • = 1
k12345

[
• • • + • • •

]
.

This representation makes the flat space limit manifest and we note that only the first term
on the right-hand-side in (C.1) will contribute to the flat space limit, which is given as

lim
k12345→0

k12345

1+

2+

3+

4+

5−

= 2X3,1+2X1,2X4,5
s12s123

, (C.2)

where s12 and s123 are the Mandelstam’s in flat space.19 This matches the expected result
in flat space which can be found in equation (41) of [21].

The second type of diagram that can appear at 5 points has a negative helicity field
at the middle vertex. Such a diagram evaluates to

1+

2+

3−

4+

5+

=−X1,2X4,5

[
X1+2,4+5 • • • + i

2y2w • • • + i

2y1w • • •

]

(C.3)

This expression again makes the flat space limit manifest as the only first term contributes
to it, resulting in

lim
k12345→0

k12345

1+

2+

3−

4+

5+

= −2X1+2,4+5X1,2X4,5
s12s123

, (C.4)

which matches with the result in [21]
19si···j = (ki + · · ·+ kj)2 − (k⃗i + · · ·+ k⃗j)2.
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Six points. Higher point diagrams have a recursive structure in terms of stick graphs. For
example, the following 6-point diagram in SDYM can be expressed as

F6 = • • • •

F
(1)
6 = −k12F6 + • • • •

F
(2)
6 = −k3F6 + F

(1)
6 + • • • •

F
(3)
6 = k12F

(2)
6 − (k3 + y1) • • • • + • • • • ,

(C.5)

where f1 = −iy1tk3w − 2y1wk3u, f2 = ik3w, f3 = −iy2tk4w − 2y2wk4u, f4 = ik4w. In general,
any diagram admits a representation where each term is obtained from a stick graph and
its sub-graphs.

C.2 SDG

Now let us consider tree-level 5-point diagrams in SDG. Once again there are two types
of diagrams, which are depicted in (C.6) and (C.8). A diagram with a negative helicity
leg at an outer vertex is given by

1+

2+

3+

4+

5−

y1 y2

=4iX1,2X3,1+2X4,5D̂1,2D̂3D̂4,5 • • •
k12 k45k3

y1 y2

+X1,2X4,5D̂1,2D̂4,5k3w

[{
4iX3,1+2+k3w(y1−k12)

}
∂k3−2(y1w+k3w)

]
• • •k12+y1

k45k3+y1

y2 ,

(C.6)

where X3,1+2 = X3,1 + X3,2 and the differential operators are

D̂1,2 = X1,2∂k12 + i(k1w − k2w)
D̂3 = X3,1+2∂k3 + i(k3w + y1w)
D̂4,5 = X4,5∂k45 + i(2k4w + y2w),

(C.7)

with boundary momentum conservation implying:

k⃗1 + k⃗2 = −y⃗1, y⃗1 = k⃗3 + y⃗2, y⃗2 = k⃗4 + k⃗5.

By comparing with equation (C.1) we see that the term containing the total energy pole
admits a similar double copy structure to the 3- and 4-point graphs discussed in section 4. It
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would be interesting to explore how this structure generalizes to the other subgraphs in (C.6).
The other type of graph which can arise at 5 points has a negative helicity leg in the middle:

1+

2+

3−

4+

5+

y1 y2

=D̂1,2D̂4,5

(
−4X1+2,4+5

[
X1+2,4+5∂k3−i(y1w+y2w)

]
• • •

+y1w

[
2(y1w+y2w)+

{
4iX1+2,4+5+y2wk12345

}
∂k3

]
• • •

+y2w

[
2(y1w+y2w)+

{
4iX1+2,4+5+y1wk12345

}
∂k3

]
• • •

)

(C.8)

The compact results presented above were obtained using an integration by parts
technique, which we spell out below. Let us illustrate how this works for the diagram in (C.6)
(similar comments apply to the diagram in (C.8)). Using the Feynman rules in section 3.3,
the digram in (C.6) is given as

1+

2+

3+

4+

5−

y1 y2

=
∫ ∞

0
dz1dz2dz3Vz1(ϕ1, ϕ2)Vz2(G12, ϕ3)Vz3(G23, ϕ4)z3e−k5z3 ≡ F SDG

5,1 .

(C.9)

Momentum conservation gives us

k⃗1 + k⃗2 = −y⃗1, y⃗1 = k⃗3 + y⃗2, y⃗2 = k⃗4 + k⃗5. (C.10)

Vertex factors. The vertex factors are given by

Vz1(ϕ1, ϕ2) = eik1·x1eik2·x2

2z1
X1,2

(
z1X1,2 − i(k1w − k2w)

)
, (C.11)
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Vz2(G12,ϕ3)

={{G12
z2

,
ϕ3
z2
}}∗

=z1eiy⃗1·(x⃗1−x⃗2)e−k3z2+ik⃗3·x⃗2

∫ ∞

−∞

dω

ω2+y2
1

sin(ωz1)

× 1
16z2

[
sin(ωz2)

{
2ω2z2k2

3w−2(y1tk3w−2ik3uy1w)(z2y1tk3w−2iz2k3uy1w+2y1w+2k3w)
}

+ωcos(ωz2)
{
4k3w (z2y1tk3w−2iz2k3uy1w+y1w+k3w)

}]

=z1eiy⃗1·(x⃗1−x⃗2)e−k3z2+ik⃗3·x⃗2

∫ ∞

−∞

dω

ω2+y2
1

sin(ωz1)

× 1
8z2

[
sin(ωz2)

{
ω2z2k2

3w−c1(z2c1+2c2)
}

+2k3wωcos(ωz2)
{
z2c1+c2

}]
,

(C.12)

where c1 = y1tk3w − 2ik3uy1w = (2iX3,1+2 − k3wk12) and c2 = k3w + y1w,

Vz3(G23, ϕ4)

= z2eiy⃗2·(x⃗2−x⃗3)e−k4z3+ik⃗4·x⃗3

∫ ∞

−∞

dω

ω2 + y2
2

sin(ωz2)

× 1
8z3

[
sin(ωz3)

{
ω2z3k2

4w − c3(z3c3 + 2c4)
}

+ 2k4wω cos(ωz3)
{
z3c3 + c4

}]
,

(C.13)

where c3 = (−2iX4,5 + k4wk45) and c4 = (k5w + 2k4w).

z integrals. By directly performing the z1 and z2 integrals, we obtain the following (up
to overall numerical factors):

F SDG
5,1 =X1,2X4,5

∫ ∞

0
dz1dz3e−k12z1e−k45z3

×
∫ ∞

−∞

dωdω′ωω′

(ω2+y2
1)(ω2+y2

2)

{
2ik12X1,2

ω2+k2
12

+(2k1w+y1w)
}{

2ik45X4,5

ω′2+k2
45

+(2k4w+y2w)
}

× 1
(ω2+k2

12)(ω′2+k2
45)

×
∫ ∞

0
dz2e−k3z2

[
sin(ωz2)

{
ω2z2k2

3w−c1(z2c1+2c2)
}

+2k3wωcos(ωz2)
{

z2c1+c2
}]

sin(ω′z2)

(C.14)

The left most and the right most vertex can be easily expressed in terms of the differential
operators, and having done that we are left with

F SDG
5,1 = X1,2X4,5D̂1,2D̂4,5

∫ ∞

0
dz1dz2dz3e−k12z1e−k3z2e−k45z3

×G23
{(
− z2k2

3w∂2
z2 − c1(z2c1 + 2c2)

)
+ 2k3w

(
z2c1 + c2

)
∂z2

}
G12,

(C.15)
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where the differential operators are defined in (C.7). We thus are left with the following five
integrals, which are conveniently evaluated using IBP:

1) ∫ ∞

0
dz1dz2dz3e−k12z1e−k3z2e−k45z3z2(−k2

3w∂2
z2G12)G23

= k2
3w∂k3

∫ ∞

0
dz1dz2dz3e−k12z1e−k3z2e−k45z3(∂2

z2G12)G23

= k2
3w∂k3

[
k2

12 • • • − (k12 + y1) • • •
]
,

(C.16)

where the last step follows from the relation∫ ∞

0
dz1dz2dz3e−k12z1e−k3z2e−k45z3∂2

z2G12G23

= k2
12 • • • − (k12 + y1) • • •

2) ∫ ∞

0
dz1dz2dz3e−k12z1e−k3z2e−k45z3z2(−c2

1)G12G23 = c2
1∂k3 • • • (C.17)

3) ∫ ∞

0
dz1dz2dz3e−k12z1e−k3z2e−k45z3(−2c1c2)G12G23 = −2c1c2 • • • (C.18)

4) ∫ ∞

0
dz1dz2dz3e−k12z1e−k3z2e−k45z3(2k3w)(c1z2)(∂z2G12)G23

= −(2k3wc1∂k3)
∫ ∞

0
dz1dz2dz3e−k12z1e−k3z2e−k45z3(∂z2G12)G23

= −2k3wc1∂k3

[
− k12 • • • + • • •

]
,

(C.19)

where the last equality follows from∫ ∞

0
dz1dz2dz3e−k12z1e−k3z2e−k45z3∂z1G12G23 =−k12 • • • + • • •

5) ∫ ∞

0
dz1dz2dz3e−k12z1e−k3z2e−k45z3(2k3w)(c2)(∂z2G12)G23

= 2k3wc2
[
− k12 • • • + • • •

] (C.20)

Combining everything (1 + 2 + 3 + 4 + 5) we get

= (c1 + k3wk12)
{
(c1 + k3wk12)∂k3 − 2c2

}
• • •

− k3w

[{
k3w(k12 + y1) + 2c1

}
∂k3 − 2c2

]
• • • ,

(C.21)
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where c1 = 2iX3,1+2−k3wk12 and c2 = k3w +y1w. Substituting this we obtain a simplified form

= 4iX3,1+2
{
iX3,1+2∂k3 − (y1w + k3w)

}
• • •

− k3w

[{
4iX3,1+2 + k3w(y1 − k12)

}
∂k3 − 2(y1w + k3w)

]
• • •

(C.22)

In the first line above we can recognize the term inside the curly bracket {iX3,1+2∂k3 − (y1w +
k3w)} as D̂3 which appears in (C.6) and is given in (C.7). Hence the final answer for 5-point
graphs can be expressed in terms of differential operators given in (C.7) acting on scalar
graphs, in a similar manner as the four-point graphs in 4.

D Spinorial correlators

In this appendix, we will explain how to convert scalar correlators computed in section 4
to spinor variables and lift a subset of them to spinning correlators. In particular, we will
show that lifting the three-point scalar correlator of SDYM to a spinning one gives the
three-point correlator of full YM plus a boundary term. Extending this story to higher points
and to SDG will be left for future work.

Spinor-helicity in lightcone gauge. First let us describe the spinor-helicity formalism for
AdS. Whereas the spinor-helicity formalism is usually implemented in axial gauge (where
components along the z direction are set to zero) [51, 120], we will adapt it to light-cone
gauge (where components along a null direction are set to zero). To our knowledge, this
has not been done before.

Noting that the 4d Lorentz group is locally SU(2) × SU(2), a 4d momentum can be
written in terms of spinor indices as follows:

pαβ̇ = qµσαβ̇
µ =

(
iqt + qz qx + iqy

qx − iqy iqt − qz

)
=
(

qu qw

qw̄ qv

)
, (D.1)

where σµ are the Pauli matrices, and α, α̇ are spinor indices. In AdS4, the z direction is
special since momentum is not conserved along that direction. Converting the unit vector
along this direction to spinor indices gives

T β

β̇
= σβα̇

3 ϵα̇β̇ =
(

0 1
1 0

)
. (D.2)

This object can be used to convert dotted indices to undotted indices, breaking the 4d
bulk Lorentz group to the 3d Lorentz group in the boundary [121]. To illustrate how this
works, let us consider a generic 4-vector qαα̇. After converting it to undotted indices, its
components are explicitly given by

qαβ = qαβ̇T β

β̇
=
(

qw qu

qv qw̄

)
=
(

qw iqt

iqt qw̄

)
+ qz

(
0 1
−1 0

)
. (D.3)

From this, we see that the antisymmetric part encodes the z component while the symmetric
part encodes boundary components.
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Recall that a 4d null momentum can be written in bispinor form as follows:

kαβ̇ = λαλ̄β̇ . (D.4)

Using (D.2) to convert dotted to undotted indices gives

kαβ = λαλ̄β = λ(αλ̄β) + λ[αλ̄β] = λ(αλ̄β) + kϵαβ , (D.5)

where k =
∣∣⃗k∣∣ = −1

2ϵαβλαλ̄β = −1
2

〈
λλ̄
〉

. From this, we see that the boundary momentum is
given by λ(αλ̄β) while the energy (which is how we refer to the z-component) is given by k.
Recalling that boundary momentum is conserved for an n-point correlator, we also find that

n∑
i=1

λα
i λ̄β

i = −k1...nϵαβ . (D.6)

Let us now turn to polarisation vectors for gluons. In a general gauge, these are given by

ϵαβ
+ = µαλ̄β

⟨µλ⟩
, ϵαβ

− = λαµ̄β〈
λ̄µ̄
〉 , (D.7)

where the momentum of the gluon is λαλ̄β̇ and µ and µ̄ are reference spinors which encode
the gauge choice. A standard choice is axial gauge for which µα = λ̄α and µ̄α = λα [51]. In
this case the polarisations are symmetric in the spinor indices, so they have no z-component.
In this paper, we instead use light-cone gauge 0 = Au = qµAµ, where qµ =

(
qu, qv, qw, qw̄

)
=

(1, 0, 0, 0). Since q is a null vector, it can be written in bispinor form. Using (D.3), we
can read off the reference spinors:

qαβ = µαµ̄β =
(

0 1
0 0

)
→ µα = (1, 0), µ̄α = (0, 1) . (D.8)

We shall label external momenta and polarisations with the index i, i.e. kαβ
i = λα

i λ̄β
i . We

then see that in light-cone gauge ϵ±i · ϵ±j = 0, so all-plus and all-minus correlators must
vanish. This is in contrast to axial gauge, where such correlators are nonzero. In contrast to
scattering amplitudes, correlators are not field-redefinition invariant. Under field redefinitions
they shift by boundary contact terms in position space, which can take a nontrivial form in
momentum space. This indicates that all-plus and all-minus correlators are boundary contact
terms. This was previously observed at three points in [51, 114].

Let us now apply this formalism to the correlators computed above.

2 points. First let us recall the form of two and three-point correlators for YM and GR
in AdS [51, 87]:

A2pt
YM ∝ k1ϵ1 · ϵ2, A2pt

GR ∝ k3
1 (ϵ1 · ϵ2)2 , (D.9)

where we will not be concerned with numerical prefactors. We will follow the same convention
usually followed for scattering amplitudes in flat space, where the propagator connects
particles with opposite helicity. Using (D.7), we see that in lightcone gauge

ϵ+
i · ϵ

−
j =

⟨µj⟩
〈
īµ̄
〉

⟨µi⟩ ⟨jµ̄⟩
, (D.10)
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where the reference spinors are given in (D.8). At two points, boundary momentum con-
servation implies that

pαβ
1 = λ

(α
1 λ̄

β)
1 = −pαβ

2 = −λ
(α
2 λ̄

β)
2 , (D.11)

so we set λ1 = λ2 and λ̄2 = −λ̄2. plugging this into (D.10), then implies that ϵ+
1 · ϵ

−
2 = 1

so we find that

A+−
YM ∝ k1, A+−

GR ∝ k3
1. (D.12)

Note that [51] makes a different choice for the 2-point kinematics, notably λ1 = λ̄2 and
λ2 = −λ̄1. As a result, in axial gauge nonzero two point functions must have the same helicity
rather than opposite helicities. Indeed, in axial gauge we have

ϵ+,axial
i · ϵ+,axial

j =

〈
īj̄
〉2〈

īi
〉〈

j̄j
〉 , ϵ+,axial

i · ϵ−,axial
j =

〈
īj
〉2〈

īi
〉〈

jj̄
〉 , (D.13)

so we get zero 2-point functions for opposite helicities when λ1 = λ̄2 and λ2 = −λ̄1.
Let us now consider how to lift the scalar 2-point correlators of SDYM and SDG to

spinning ones. Following the approach in flat space [22], we multiply them by certain factors
which encode external helicities:

Ã+−
SDYM = ε+

1 ε−2 A
+−
SDYM, Ã+−

SDG =
(
ε+

1 ε−2

)2
k2

1A+−
SDG, (D.14)

where

ε+
i =

〈
µ̄ī
〉

⟨µi⟩
, ε−i =

(
ε+

i

)−1
, (D.15)

and a factor of k2
1 was included in the second expression since the gravity 2-point function

scales like k3
1.20 Using the 2-point kinematics described below (D.11), we find that

ε±1 ε∓2 = 1 (D.16)

from which we immediately find that the dressed scalar 2-point correlators defined in (D.14)
are indeed proportional to those of YM and GR in (D.12).

3 points. Let us now see what form three-point correlators take in spinor notation. Recall
that they are expressed in terms of kinematic structure constants

Xi,j = kiwkju − kiukjw. (D.17)

Using (D.3) and (D.8), we see that

kw = kw̄ = µαkαβµβ , ku = −kv = µαkαβµ̄β , (D.18)
20We can already see from this 2-point example that lifting from SDG scalar correlators to gravitational

correlators is nontrivial because the scalars describing SDG are conformally coupled while graviton states can
be treated like massless scalars dressed with polarisation tensors.
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where
µα = ϵαβµ̄β = (0, 1), µ̄α = ϵαβµ̄β = (−1, 0). (D.19)

Hence, the kinematic structure constant can be written in spinor form as follows:

Xi,j = ⟨µi⟩ ⟨µj⟩
(〈

īµ
〉〈

j̄µ̄
〉
− i↔ j

)
= ⟨µi⟩ ⟨µj⟩µαµ̄βλ̄

[α
i λ̄

β]
j

= ⟨µi⟩ ⟨µj⟩
〈
īj̄
〉

, (D.20)

where we noted that λ̄
[α
i λ̄

β]
j = ϵαβ

〈
īj̄
〉

and ⟨µµ̄⟩=1. Hence, we find that the SDYM scalar
3-point function computed in (4.9) is given by

A3(1+, 2+, 3−) = X1,2
k123

= ⟨µ1⟩ ⟨µ2⟩
〈
1̄2̄
〉

k123
. (D.21)

Similarly, the SDG 3-point function computed in (4.17) is given by

M3(1+, 2+, 3−) = X1,2
k123

(
X1,2
k123

− i (k1w − k2w)
)

(D.22)

= ⟨µ1⟩ ⟨µ2⟩
〈
1̄2̄
〉

k123

(
⟨µ1⟩ ⟨µ2⟩

〈
1̄2̄
〉

k123
− i

(
⟨µ1⟩

〈
1̄µ
〉
− ⟨µ2⟩

〈
2̄µ
〉))

, (D.23)

where we have used (D.18) and (D.20).
Let us now consider how to lift the scalar SDYM correlator in (D.21) to a spinning

correlator. We will leave the analogous calculation in gravity for future work. We follow the
same procedure used in flat space [22] and dress it with the following factors:

ÃSDYM
3 (1+, 2+, 3−) = ε+

1 ε+
2 ε−3

k3u

k1uk2u
ASDYM

3 , (D.24)

where ε±i are defined in (D.15). The factors of ku are implied by (3.15) and can be converted
to spinor notation using (D.4) and (D.18). Putting everything together, we find that

ÃSDYM
3 (1+, 2+, 3−) = 1

k123

〈
1̄2̄
〉
⟨µ3⟩2

⟨µ1⟩ ⟨µ2⟩ . (D.25)

Let us compare this result to the three-point correlator for full YM in AdS4. The
calculation is essentially the same as in flat space, except that the integral over z runs from
0 to ∞, which gives a pole in the total energy rather than a delta function:

AYM
3 (1+, 2+, 3−) = 1

2k123
(ϵ1 · ϵ2ϵ3 · k1 + cyclic)− (1↔ 2) . (D.26)

Recalling that in lightcone gauge ϵ±i · ϵ
±
j = 0 and using the spinorial expressions in (D.7)

we see that

ϵ+
i · ϵ

−
j =

⟨µj⟩
〈
īµ̄
〉

⟨µi⟩
〈
µ̄j̄
〉 , pi · ϵ+

j =
⟨iµ⟩

〈
īj̄
〉

⟨µj⟩
, pi · ϵ−j =

⟨ij⟩
〈
īµ̄
〉

〈
j̄µ̄
〉 . (D.27)
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Using these formulae, we find that

ϵ+
1 · ϵ

+
2 ϵ−3 · k1 + cyclic = ⟨µ3⟩

⟨µ1⟩ ⟨µ2⟩
〈
µ̄3̄
〉 (〈2̄µ̄

〉
⟨2µ⟩

〈
2̄1̄
〉

+
〈
µ̄1̄
〉 〈

3̄2̄
〉
⟨µ3⟩

)
= ⟨µ3⟩
⟨µ1⟩ ⟨µ2⟩

〈
µ̄3̄
〉 {〈2̄µ̄

〉
⟨2µ⟩

〈
2̄1̄
〉
−
(〈

µ̄3̄
〉 〈

2̄1̄
〉

+
〈
µ̄2̄
〉 〈

1̄3̄
〉)
⟨µ3⟩

}
=
〈
1̄2̄
〉
⟨µ3⟩2

⟨µ1⟩ ⟨µ2⟩ + k123
⟨µ3⟩

〈
µ1̄
〉 〈

µ̄2̄
〉

⟨µ1⟩ ⟨µ2⟩
〈
µ̄3̄
〉 , (D.28)

where we obtained the second line using the Schouten identity:

λ̄α
i

〈
j̄k̄
〉

+ λ̄α
j

〈
k̄ī
〉

+ λ̄α
k

〈
īj̄
〉

= 0, (D.29)

and we obtained the third line using (D.6). Hence we find that

AYM
3 (1+, 2+, 3−) = 1

k123

〈
1̄2̄
〉
⟨µ3⟩2

⟨µ1⟩ ⟨µ2⟩ + ⟨µ3⟩
2 ⟨µ1⟩ ⟨µ2⟩

〈
µ̄3̄
〉 (〈µ1̄

〉 〈
µ̄2̄
〉
−
〈
µ2̄
〉 〈

µ̄1̄
〉)

=
(

1− k123
2k3u

)
ÃSDYM

3 (1+, 2+, 3−), (D.30)

where we noted that
〈
µ1̄
〉 〈

µ̄2̄
〉
−
〈
µ2̄
〉 〈

µ̄1̄
〉

=
〈
1̄2̄
〉

and ⟨µ3⟩
〈
µ̄3̄
〉

= −k3u (from (D.18)).
Taking the difference between the SDYM result in (D.25) and the full YM result in (D.30)

then gives

ÃSDYM
3 (1+, 2+, 3−)−AYM

3 (1+, 2+, 3−) = ε+
1 ε+

2 ε−3
k3u

k1uk2u

(
X1,2
2k3u

)
. (D.31)

This discrepancy can be removed by subtracting the following total derivative term from
the scalar action of SDYM:

δL = 1
2∂zTr

[(
∂−1

u Φ̄
)
{Φ, Φ}

]
. (D.32)

Indeed, using the bulk-to-boundary propagators in section 3.2, we easily see that the con-
tribution to the 3-point correlator due to this interaction vertex is given by

δA3(1+, 2+, 3−) = 1
2

∫ ∞

0
dz∂z

( 1
k3u

X1,2e−k123z
)

= X1,2
2k3u

, (D.33)

which indeed gives (D.31) after dressing the scalar correlator according to (D.24). Note
that the right-hand-side of (D.33) vanished in the flat space limit since it does not contain
an energy pole.

4-point SDYM. As an illustration of the spinor-helicity notation we compute the full
SDYM scalar correlator at four points and show that it is void of a total energy pole. This is
expected as it is well known that the amplitude for this helicity configuration is zero in the
flat space limit and thus provides a useful consistency check. The full 4-point color-ordered
correlator receives a contribution from two diagrams, one from the s-channel and the other
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from the t-channel. The expression for the s-channel diagram was computed in section 4.2
and the final result is given as

A(s)
4 (1+, 2+, 3+, 4−) = X1,2X3,4

EE
(s)
L E

(s)
R

, (D.34)

where E = k1234, E
(s)
L = k12 + |⃗k12| and E

(s)
R = k34 + |⃗k12|. Similarly, the contribution

from the t-channel is given as

A(t)
4 (1+, 2+, 3+, 4−) = X1,4X3,2

EE
(t)
L E

(t)
R

, (D.35)

where E
(t)
L = k23 + |⃗k23| and E

(t)
R = k14 + |⃗k23|. By adding the two we obtain the full correlator

A4(1+, 2+, 3+, 4−) = 1
E

(
X1,2X3,4

E
(s)
L E

(s)
R

+ X1,4X3,2

E
(t)
L E

(t)
R

)
. (D.36)

To simplify the expression we note the following relation:

k2
ij − |⃗kij |2 = 2(kikj − k⃗i · k⃗j) = −4 ⟨ij⟩ ⟨̄ij̄⟩ , (D.37)

which results in the following simplification for the denominators of (D.36),

E
(s)
L E

(s)
R = E

(s)
L E + 4 ⟨12⟩ ⟨1̄2̄⟩ ,

E
(t)
L E

(t)
R = E

(t)
L E + 4 ⟨23⟩ ⟨2̄3̄⟩ .

(D.38)

Combined with (D.20) we find that

A4(1+, 2+, 3+, 4−) = ⟨µ1⟩ ⟨µ2⟩ ⟨µ3⟩ ⟨µ4⟩
EE

(t)
L E

(t)
R E

(s)
L E

(s)
R

[
EE

(t)
L ⟨1̄2̄⟩ ⟨3̄4̄⟩+ EE

(s)
L ⟨2̄3̄⟩ ⟨4̄1̄⟩

+ 4 ⟨1̄2̄⟩ ⟨2̄3̄⟩
(
⟨12⟩ ⟨4̄1̄⟩+ ⟨23⟩ ⟨3̄4̄⟩

)]
.

(D.39)

The term in the second line can be simplified using the momentum conservation equation
given in equation (D.6). This results in the following simplified expression for the correlator:

A4(1+, 2+, 3+, 4−) = ⟨µ1⟩ ⟨µ2⟩ ⟨µ3⟩ ⟨µ4⟩
E

(s)
L E

(t)
L E

(s)
R E

(t)
R

(
E

(t)
L ⟨1̄2̄⟩ ⟨3̄4̄⟩+ E

(s)
L ⟨2̄3̄⟩ ⟨4̄1̄⟩+ 4 ⟨1̄2̄⟩ ⟨2̄3̄⟩ ⟨24̄⟩

)
.

(D.40)

By restoring the factors of Xi,j we obtain

A4(1+,2+,3+,4−) = 1
E

(s)
L E

(t)
L E

(s)
R E

(t)
R

(
E

(t)
L X1,2X3,4+E

(s)
L X2,3X4,1+4X1,2X3,4

⟨4̄2⟩⟨2̄3̄⟩
⟨4̄3̄⟩

)
.

(D.41)

Hence the full SDYM scalar correlator does not contain a total energy pole and therefore
vanishes in the flat space limit. It would be interesting to lift this to a spinning correlator
and compare it to the 4-point correlator of full YM, which we leave for future work.
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4-point SDG. Finally, let us compute the tree-level 4-point scalar correlator in SDG. The
s-channel contribution to the 4-point function was computed in section 4 where the final
result was expressed in terms of the differential operators given in (4.23). By explicitly
evaluating the derivatives in (4.23) we obtain the following:

M(s)
4 (1+,2+,3+,4−)=X1,2X3,4

[
X1,2X3,4

{
2

E2 + 1
EE

(s)
L

+ 1
EE

(s)
R

+ 1
E

(s)
L E

(s)
R

}
(D.42)

−iX1,2(k3w−k12w)
{ 1

E
+ 1

E
(s)
R

}
−iX3,4(k1w−k2w)

{
1
E

+ 1
E

(s)
L

}

−(k1w−k2w)(k3w−k12w)
]

1
EE

(s)
L E

(s)
R

,

where we use the notations E, E
(s)
L , E

(s)
R are defined below equation (D.34). The complexity of

the expression above shows the simplicity of using the differential operators in equation (4.23).
As discussed around (4.24), the flat space limit of this correlator is obtained by evaluating
the residue of the 1

E3 pole. However, since the full amplitude is known to vanish in flat
space, we expect that the 1

E3 pole in the correlator cancels out after summing over all
diagrams. Apart from the s-channel contribution given above, the full correlator receives a
contribution from t and u-channels, which are obtained by the replacements (1234)→ (2341)
and (1234)→ (1324) respectively in (D.42). The full correlator can be expressed in terms of
psinor variables by performing a similar set of manipulations as the SDYM case. Adding
the 1

E3 contribution from each channel then gives

2
E3

(
X2

1,2X2
3,4

E
(s)
L E

(s)
R

+
X2

1,4X2
2,3

E
(t)
L E

(t)
R

+
X2

1,3X2
2,4

E
(u)
L E

(u)
R

)

=
2X2

1,2X2
3,4 ⟨1̄4̄⟩ ⟨1̄3̄⟩

E2E
(s)
L E

(s)
R E

(t)
L E

(t)
R E

(u)
L ⟨1̄2̄⟩ ⟨3̄4̄⟩

[
− E − ⟨2̄4⟩ ⟨4̄3̄⟩+ 2 ⟨2̄3⟩ ⟨3̄4̄⟩

]
,

(D.43)

which shows that the 1
E3 pole drops out as expected so full correlator indeed vanishes in

the flat space limit. Lifting the SDG scalar correlator to a spinning correlator is a very
nontrivial task which we leave to future work.
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