
Beyond Syntax: How Do LLMs Understand Code?
Marc North

CS, Durham University
Durham, UK

marc.north@durham.ac.uk

Amir Atapour-Abarghouei
CS, Durham University

Durham, UK
amir.atapour-abarghouei@durham.ac.uk

Nelly Bencomo
CS, Durham University

Durham, UK
nelly.bencomo@durham.ac.uk

Abstract—Within software engineering research, Large Lan-
guage Models (LLMs) are often treated as ‘black boxes’, with
only their inputs and outputs being considered. In this paper, we
take a machine interpretability approach to examine how LLMs
internally represent and process code.

We focus on variable declaration and function scope, training
classifier probes on the residual streams of LLMs as they process
code written in different programming languages to explore
how LLMs internally represent these concepts across different
programming languages. We also look for specific attention heads
that support these representations and examine how they behave
for inputs of different languages.

Our results show that LLMs have an understanding —
and internal representation — of language-independent coding
semantics that goes beyond the syntax of any specific program-
ming language, using the same internal components to process
code, regardless of the programming language that the code is
written in. Furthermore, we find evidence that these language-
independent semantic components exist in the middle layers of
LLMs and are supported by language-specific components in the
earlier layers that parse the syntax of specific languages and feed
into these later semantic components.

Finally, we discuss the broader implications of our work,
particularly in relation to concerns that AI, with its reliance on
large datasets to learn new programming languages, might limit
innovation in programming language design. By demonstrating
that LLMs have a language-independent representation of code,
we argue that LLMs may be able to flexibly learn the syntax
of new programming languages while retaining their semantic
understanding of universal coding concepts. In doing so, LLMs
could promote creativity in future programming language design,
providing tools that augment rather than constrain the future of
software engineering.

Index Terms—Mechanistic interpretability, Large Language
Models (LLMs), Software engineering

I. INTRODUCTION

Despite the recent progress of Large Language Models
(LLMs) in coding tasks, the internal mechanisms that LLMs
use to understand and process code are poorly understood.
Specifically, how LLMs process code written in different
programming languages — and whether LLMs have a seman-
tic understanding of underlying coding concepts, rather than
relying on a shallow processing of the specific syntax of each
programming language — remains unclear.

This is the central research question that our work aims to
answer: Is LLMs’ understanding of code language specific,
or do LLMs have an internal representation of coding logic
that is independent of any specific programming language
syntax?

Fig. 1: Attention pattern of head 12@21 in Pythia 2.8b for
the token ‘x’ (highlighted in red). The attention head is

moving information from the variable type token ‘int’ to the
variable token ‘x’.

A. Syntax vs Semantics

To briefly elucidate this central question, Figure 1 shows
the attention pattern of an attention head in Pythia 2.8b while
processing some Python code. As can be seen, the head
strongly attends to the token corresponding to the type of the
variable x; that is, this attention head is moving information
from the type token ‘int’ to the variable token ‘x’. It is
unsurprising that such an attention head would exist in an LLM
– after all, a variable’s type seems like useful information to
move to the variable’s token position. However, it does raise
the question of how an LLM might perform this task for inputs
of different programming languages; there are two plausible
methods one can imagine:

• An LLM could have separate circuits (sub-graphs of
connections between internal components) for each pro-
gramming language it has seen in its training data – e.g.,
a ‘variable type’ circuit for Python code and a completely
separate ‘variable type’ circuit for Java code.

• An LLM could have one ‘variable type’ circuit that uses
the same model components to understand variable types
regardless of the language of the input.

In this paper, we show that is the second — in our view
more interesting — method that LLMs use to understand
code written in different programming languages. That is,
LLMs use the same attention head to move variable
type information for inputs from different programming
languages. Furthermore, the variable type information is rep-
resented internally the same way regardless of programming
language. This idea is illustrated in Figure 2.

We find that this separate syntax-dependent to common
syntax-independent path is used by LLMs of different archi-

Fig. 2: Conceptual illustration of the path through a
transformer of separate inputs written in Python and Java

respectively.

tectures and sizes, suggesting that this behaviour is universal.

B. Why Does This Matter?

40% of code being committed to GitHub is written using
AI, and developers who use AI have been found to be 55%
more productive [1]. There are, however, concerns about the
long-term effects that AI will have on software engineering.

In education, for instance, there is a growing worry that
students may become overly reliant on AI tools to generate and
debug code [2]. Moreover, that a reliance on AI will entrench
old ideas and stifle new innovation.

When examining how the rise of AI-assisted program-
ming has negatively affected knowledge sharing, Burtch et
al. [3] found that AI has already had a noticeable impact,
commenting that “reliance on AI-generated solutions might
contribute to stagnation... impeding progress across various
fields, including programming and other technical domains.”

Of specific relevance to our research is the future impact of
AI-assisted programming on the development of programming
languages. While LLMs have made huge strides in pro-
gramming ability, recently achieving 92% on the HumanEval
benchmark [4], it was found that AI “typically performs better
on languages for which bigger datasets are available” [5], with
the authors further speculating that the varying abilities of
LLMs “will likely determine which language will be used in
the future”. This is a cause for concern, as the development
of new programming languages helps make software more
“maintainable, robust, and performance-guaranteed” [6].

This is the context in which we explore how LLMs under-
stand code. It is our hope that knowledge of LLMs’ internal
representation of code will help us avoid this prophesied
stagnation of software engineering.

The rest of the paper sets out the background that this work
builds on, details the methods via which we discover and
quantify our findings, and discusses the practical implications
and future plans of our work.

II. BACKGROUND AND RELATED WORK

A. Mechanistic Interpretability

Since LLMs are trained with the objective of minimising
loss on next-token prediction [7], they are often thought of
as simply token predictors, or ‘stochastic parrots’ [8]. An
alternative idea, with links to neuroscience research [9], is that
this next-token prediction objective — given enough model
capacity and training data — is sufficient for a model to
develop internal, abstract ‘world models’ [10] that go beyond
parroting language, enabling LLMs to develop structured
reasoning abilities and internal representations of complex
ideas such as — as we explore in our work — programming
concepts and semantics.

Mechanistic interpretability (MI) is a burgeoning field of
AI research that aims to reverse engineer machine learning
models’ internal mechanisms into human-understandable al-
gorithms — going beyond previous black-box interpretability
techniques [11] — that, as well as being of inherent academic
merit, potentially has practical application for AI alignment
[12], model steering [13], and AI safety [14] in many different
domains [15] [16].

A central concept in mechanistic interpretability is the
residual stream and its role as a channel through which model
components communicate [17]. In MI, the residual stream is
thought of as the cumulative sum of all model components,
which can quantify each individual component’s contribution
to not only the model’s final output, but also to the input of
each downstream component within the model [18].

One MI technique that can be used to demystify the residual
stream is probing [19]. A probe is a classifier model —
separate from the LLM being interpreted — that is trained
to classify a linguistic feature using an LLM’s internal repre-
sentation as input. For example, we might use the values of
the residual stream at a certain layer to classify the part-of-
speech at token positions. The classifier’s performance is used
to infer the extent to which the LLM’s internal representation
captures the feature being classified.

Another useful technique for understanding the behaviour
of LLMs is ablation [20], where specific components of the
model are disabled, typically either by setting the component’s
output to zero or to the component’s mean output across a
dataset, to observe their impact on performance. This allows us
to quantify how much the model depends on that component,
or set of components, for a given task.

Recent interpretability research has also developed tech-
niques to examine the multilayer perceptron (MLP) layers of
LLMs, such as sparse autoencoders [21] and transcoders [22].
However, in this paper we focus on the attention layers, which
contain attention heads that move information between tokens
[23], as we are exploring how LLMs understand and reason
about code. LLMs have been found to do their reasoning in the
attention layers [24], while the MLP layers act as the model’s
knowledge store [25]. As such, while MLP interpretability is
an important area of study and may become relevant to our
future work, it is not the focus of this paper.

In the field of natural language, Jawahar et al. [26] found
that BERT captures linguistic information in a similar way
to classical language tree structures, and that different lay-
ers capture different levels of language information. More
recently, research has been carried out into the abilities of
LLMs to understand multiple natural languages, with Zhao et
al. [27] finding that LLMs process different natural languages
in language-specific components in the early layers, before
using the same model components across all languages to
solve the task in the mid-layers, before splitting back up into
language-specific components in the later layers.

While much mechanistic interpretability research has fo-
cused on finding specific circuits for modal algorithms, our
focus in this work is not to exhaustively describe the circuits
we are examining, but rather to demonstrate that components
within these circuits are independent of the syntax of specific
programming languages and instead process programming
concepts at a semantic level.

III. METHODS AND RESULTS

A. Type-Mover Heads

We first look for attention heads that use variable declaration
statements to move information from tokens containing the
variable type to the token containing the corresponding vari-
able name. In order to explore LLMs generally, we examine
three different models with diverse model architectures and
different sizes: LlaMa 2 7B [28], Pythia 2.8B [29], and GPT-J
6B [30].

The attention pattern in an attention head for a destination
token with sequence index i is given by:

Attention(i) = softmax
(
(XWq)[i](XWk)

T

√
dhead

)
, (1)

where Wq and Wk are the head query and key matrices
respectively, X is the n x dmodel input matrix to the attention
head, where n is the sequence length and dmodel is the
dimensionality of the model residual stream, and dhead is the
attention head dimensionality.

We look for attention heads that move information from
variable type tokens to variable name tokens by finding heads
for which argmax(Attention(v)) = t (where v is the index
in the input sequence of the variable name token and t is
the index of the variable type token) for every example of
generated datasets of Python, Java, and Go code. That is, heads
for which the highest attention score of the variable name
token is the variable type token. After finding a list of type-
attending attention heads for each language, we filter to heads
that are on all three lists, i.e., heads that attend to variable
type for all three languages.

We found such attention heads present in each of the models
we investigated; one such attention head can be seen in figure
3, which shows the attention pattern of the same attention head
on inputs of Python, Java, and Go, where for the three different
variables in each code sample, the head always attends to
that variable’s type token. This attention head’s behaviour is
independent of the programming language of the input, relying

(a) Python: token ‘x’ (b) Python: token ‘y’ (c) Python: token ‘z’

(d) Java: token ‘x’ (e) Java: token ‘y’ (f) Java: token ‘z’

(g) Go: token ‘x’ (h) Go: token ‘y’ (i) Go: token ‘z’

Fig. 3: Attention patterns of Pythia 2.8b head 12@21 on
three different inputs at three different token positions. This

single attention head attends to the destination token’s
declaration type for input written in Python, Java, or Go,

even though the declaration syntax is different in each
language.

on the language-specific syntax processing of earlier model
layers.

That there are individual heads in each model that perform
this function for code written in different programming lan-
guages shows that these heads are programming language
independent, and that these attention heads are working
based on code semantics, not just code syntax.

B. Type-Mover Attention Head Classification Probes

Following on from our finding that attention heads exist that
move information from variable type tokens to the correspond-
ing variable name tokens, we next explore what information
these heads are moving and — importantly — whether the
information being moved is language independent.

We train probes to classify variable types at the variable
name token position, using the activations of these attention
heads across a dataset of code examples as inputs. These
classifiers are simple dense networks with one hidden layer
that is 1/4 the size of the input layer, using ReLU activation
functions. We use Adam optimisation and cross entropy loss.
We train one classifier per programming language, using
generated datasets of Python, Java, and Go code.

These head-activation classifiers achieved perfect accuracy,
confirming our intuition that the information being moved
by these heads is indeed the variable token’s corresponding
variable type. That variable-type classifiers can be trained on
the attention-head activations of variable name tokens shows
that LLMs move variable type information from variable
type tokens to the corresponding variable name tokens when
processing code. This result is interesting, but not surprising.
More significantly, these trained classifiers could also accu-
rately classify the types of variables in inputs written in
programming languages that they were not trained on; e.g.,
a classifier trained on the residual streams of Python inputs
could accurately classify variable types in Java code. This

Training
Dataset

Unablated Test Dataset Ablated Test Dataset

Python Java Go Python Java Go

(a) LLaMa 2 7B
Python 1.00 1.00 1.00 0.55 0.65 0.35
Java 1.00 1.00 1.00 0.45 0.85 0.75
Go 0.95 0.97 1.00 0.20 0.50 0.40

(b) GPT-J 6B
Python 1.00 1.00 1.00 0.30 0.45 0.45
Java 1.00 1.00 1.00 0.25 0.95 0.55
Go 1.00 0.95 1.00 0.40 0.60 0.85

(c) Pythia 2.8B
Python 1.00 0.97 0.91 0.44 0.50 0.56
Java 0.85 1.00 0.85 0.28 0.98 0.42
Go 0.99 0.72 1.00 0.29 0.49 0.91

TABLE I: Accuracy of the classifier probes trained on the
residual stream values of each model with inputs of each
language. Each probe is tested against the test dataset of
each language, not just the language it was trained on, as

well as the ablated versions of each model.

further shows that the internal representation of variable types
are represented internally by LLMs in a language independent
way.

C. Residual Stream Classification Probes

We similarly train classifiers on the residual stream of each
model after the attention blocks identified in section III-B at
the variable name token position, using the same classifier
architecture and training as described above. The accuracy of
these residual-stream classifiers is shown in Table I; we find
that these classifiers can accurately classify the variable type
of a token based on the residual stream of the variable name
token.

As with the attention-head classifiers, these residual-
stream classifiers can also accurately classify the types of
variables in inputs written in programming languages that
they were not trained on, showing that the models’ internal
representation of variable type is language independent.

D. Semantic Component Ablation

In section III-B, we identified attention heads in each model
that move variable type information to variable name tokens,
and — importantly — do so for inputs written in different
programming languages, i.e. they are semantic, rather than
syntactic.

We create ablated versions of each of the LLMs by zero-
ablating all of these semantic-level type-moving heads in order
to to test how this will affect the model’s ability to identify
variable types. We quantify this by testing the same residual-
stream trained classifiers from III-C on the residual stream
of these ablated models. As table I shows, the classifiers’
accuracy dropped significantly, i.e. ablating these semantic-
level attention-heads removed type information from the
variable name tokens.

Interestingly, the Java- and Go-trained classifiers were still
able to detect variable types in the language they were trained
on, while their accuracy on languages they weren’t trained
on dropped. This perhaps suggests that when we ablate the
semantic-level model components, the classifiers still have

syntax-level features in the residual stream to fall back on. The
same doesn’t seem to be true of the Python-trained classifier.

One interesting possibility is that the way that LLMs process
code is by having an internal representation of one program-
ming language – in this case Python — and then translating
code from any other language into this one representation in
its early layers, i.e. LLMs have language-specific early-layer
components and then in the mid-layers process all code as if
it were Python code. This would be similar to Zhao et al.’s ar-
gument that multilingual LLMs first translate other languages
into English in their early layers before processing everything
as English [27]. This interpretation would explain our finding
that ablating semantic components has a much larger negative
effect on a model’s internal representation of Python than
on that of Java or Go; in this interpretation, a model’s code
semantic components are its Python components. While an
interesting thought, more investigation is required to explore
this idea.

IV. FUTURE PLANS

Other programming features. We have looked at how
LLMs process variable types; future work will look at other
programming features, such as function scope and control
structures, to explore if they are similarly processed in a
language-independent way.

Full LLM circuits. This work has focused on identifying
semantic-level components of LLMs. Future work will join
this up fully with earlier model components, using mechanistic
interpretability techniques such as direct logit attribution, to
develop a full picture of code-related circuits in LLMs and
how earlier language-specific syntax components connect to
these later semantic components.

Syntax-level fine-tuning. A future research direction of our
work is fine-tuning LLMs by freezing language-independent
semantic components while allowing the language-specific
layers to adapt. Future work will explore whether this approach
allows an LLM to learn new programming languages, or
enhance its understanding of a less common programming
language — without altering its core understanding of coding
semantics — more effectively and efficiently than existing
fine-tuning techniques.

MLP language independence. Training SAEs and
transcoders on MLP layers to identify the directions in the
model’s vector space of programming concepts across dif-
ferent programming languages in order to determine whether
programming knowledge is stored in a language-agnostic way
in the MLP layers of LLMs.

Python as LLMs’ internal representation of code. Fol-
lowing on from our observation in Section III-D that ablating
semantic-level LLM components has a greater effect on mod-
els’ ability to detect variable types in the residual stream of
Python code, future work will explore the idea that LLMs use
Python as their internal representation of code, and whether
there are specific features of Python or of widely used LLM
training datasets that would lead to this.

REFERENCES

[1] Microsoft, “Morgan stanley tmt conference,” 2023. [Online].
Available: https://www.microsoft.com/en-us/Investor/events/FY-2023/
Morgan-Stanley-TMT-Conference

[2] M. Abbas, F. A. Jam, and T. I. Khan, “Is it harmful or helpful? examining
the causes and consequences of generative ai usage among university
students,” International Journal of Educational Technology in Higher
Education, vol. 21, no. 1, p. 10, Feb. 2024.

[3] G. Burtch, D. Lee, and Z. Chen, “The consequences of generative ai for
ugc and online community engagement,” SSRN Electronic Journal, Jan.
2023.

[4] Anthropic, “Introducing claude 3.5 sonnet.” [Online]. Available:
https://www.anthropic.com/news/claude-3-5-sonnet

[5] A. Buscemi, “A comparative study of code generation using chatgpt
3.5 across 10 programming languages,” 2023. [Online]. Available:
https://arxiv.org/abs/2308.04477

[6] “How do developers discuss and support new programming languages
in technical qa site? an empirical study of go, swift, and rust in stack
overflow,” vol. 137, p. 106603, Sep. 2021.

[7] A. Radford and K. Narasimhan, “Improving language
understanding by generative pre-training,” 2018.
[Online]. Available: https://www.semanticscholar.org/paper/
Improving-Language-Understanding-by-Generative-Radford-Narasimhan/
cd18800a0fe0b668a1cc19f2ec95b5003d0a5035

[8] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On
the dangers of stochastic parrots: Can language models be too big? ,” in
Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, ser. FAccT ’21. New York, NY, USA: Association
for Computing Machinery, Mar. 2021, p. 610–623. [Online]. Available:
https://dl.acm.org/doi/10.1145/3442188.3445922

[9] T. Salvatori, A. Mali, C. L. Buckley, T. Lukasiewicz, R. P. N.
Rao, K. Friston, and A. Ororbia, “Brain-inspired computational
intelligence via predictive coding,” no. arXiv:2308.07870, Aug. 2023,
arXiv:2308.07870 [cs]. [Online]. Available: http://arxiv.org/abs/2308.
07870

[10] J. Kulveit, C. von Stengel, and R. Leventov, “Predictive minds: Llms
as atypical active inference agents,” no. arXiv:2311.10215, Nov. 2023,
arXiv:2311.10215 [cs]. [Online]. Available: http://arxiv.org/abs/2311.
10215

[11] S. Casper, C. Ezell, C. Siegmann, N. Kolt, T. L. Curtis, B. Bucknall,
A. Haupt, K. Wei, J. Scheurer, M. Hobbhahn, L. Sharkey, S. Krishna,
M. Von Hagen, S. Alberti, A. Chan, Q. Sun, M. Gerovitch,
D. Bau, M. Tegmark, D. Krueger, and D. Hadfield-Menell, “Black-
box access is insufficient for rigorous ai audits,” in The 2024
ACM Conference on Fairness, Accountability, and Transparency,
Jun. 2024, p. 2254–2272, arXiv:2401.14446 [cs]. [Online]. Available:
http://arxiv.org/abs/2401.14446

[12] A. Arditi, O. Obeso, A. Syed, D. Paleka, N. Panickssery, W. Gurnee,
and N. Nanda, “Refusal in language models is mediated by a single
direction,” no. arXiv:2406.11717, Jul. 2024, arXiv:2406.11717 [cs].
[Online]. Available: http://arxiv.org/abs/2406.11717

[13] A. M. Turner, L. Thiergart, G. Leech, D. Udell, J. J. Vazquez,
U. Mini, and M. MacDiarmid, “Activation addition: Steering language
models without optimization,” no. arXiv:2308.10248, Jun. 2024,
arXiv:2308.10248 [cs]. [Online]. Available: http://arxiv.org/abs/2308.
10248

[14] L. Bereska and E. Gavves, “Mechanistic interpretability for ai safety
– a review,” no. arXiv:2404.14082, Aug. 2024, arXiv:2404.14082 [cs].
[Online]. Available: http://arxiv.org/abs/2404.14082

[15] M. North, A. Atapour-Abarghouei, and N. Bencomo, “Code
gradients: Towards automated traceability of llm-generated code,”
Aug. 2024. [Online]. Available: https://durham-repository.worktribe.
com/output/2433851

[16] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark,
T. Hennigan, E. Noland, K. Millican, G. v. d. Driessche, B. Damoc,
A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals,
and L. Sifre, “Training compute-optimal large language models,”
no. arXiv:2203.15556, Mar. 2022, arXiv:2203.15556 [cs]. [Online].
Available: http://arxiv.org/abs/2203.15556

[17] N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann,
A. Askell, Y. Bai, A. Chen, T. Conerly, N. DasSarma, D. Drain,
D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones, J. Kernion,

L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan,
S. McCandlish, and C. Olah, “A mathematical framework for
transformer circuits.” [Online]. Available: https://transformer-circuits.
pub/2021/framework/index.html

[18] Z. Yu and S. Ananiadou, “Exploring the residual stream of
transformers,” no. arXiv:2312.12141, Dec. 2023, arXiv:2312.12141
[cs]. [Online]. Available: http://arxiv.org/abs/2312.12141

[19] C. Singh, J. P. Inala, M. Galley, R. Caruana, and J. Gao,
“Rethinking interpretability in the era of large language models,”
no. arXiv:2402.01761, Jan. 2024, arXiv:2402.01761 [cs]. [Online].
Available: http://arxiv.org/abs/2402.01761

[20] Y. Yao, X. Xu, and Y. Liu, “Large language model unlearning,”
no. arXiv:2310.10683, Feb. 2024, arXiv:2310.10683 [cs]. [Online].
Available: http://arxiv.org/abs/2310.10683

[21] Anthropic, “Scaling monosemanticity: Extracting interpretable features
from claude 3 sonnet.” [Online]. Available: https://transformer-circuits.
pub/2024/scaling-monosemanticity/index.html

[22] J. Dunefsky, P. Chlenski, and N. Nanda, “Transcoders find interpretable
llm feature circuits,” Jun. 2024. [Online]. Available: https://arxiv.org/
abs/2406.11944v1

[23] M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, and S.-M. Hu, “Visual
attention network,” no. arXiv:2202.09741, Jul. 2022, arXiv:2202.09741
[cs]. [Online]. Available: http://arxiv.org/abs/2202.09741

[24] B. Liao and D. V. Vargas, “Attention-driven reasoning: Unlocking the
potential of large language models,” no. arXiv:2403.14932, Mar. 2024,
arXiv:2403.14932 [cs]. [Online]. Available: http://arxiv.org/abs/2403.
14932

[25] M. Geva, R. Schuster, J. Berant, and O. Levy, “Transformer feed-
forward layers are key-value memories,” no. arXiv:2012.14913, Sep.
2021, arXiv:2012.14913 [cs]. [Online]. Available: http://arxiv.org/abs/
2012.14913

[26] G. Jawahar, B. Sagot, and D. Seddah, “What does bert learn about the
structure of language?” in Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, A. Korhonen,
D. Traum, and L. Màrquez, Eds. Florence, Italy: Association
for Computational Linguistics, Jul. 2019, p. 3651–3657. [Online].
Available: https://aclanthology.org/P19-1356

[27] Y. Zhao, W. Zhang, G. Chen, K. Kawaguchi, and L. Bing, “How
do large language models handle multilingualism?” 2024. [Online].
Available: https://arxiv.org/abs/2402.18815

[28] Meta, “Llama 2: Open foundation and fine-tuned chat models,”
no. arXiv:2307.09288, Jul. 2023, arXiv:2307.09288 [cs]. [Online].
Available: http://arxiv.org/abs/2307.09288

[29] S. Biderman, H. Schoelkopf, Q. Anthony, H. Bradley, K. O’Brien,
E. Hallahan, M. A. Khan, S. Purohit, U. S. Prashanth, E. Raff,
A. Skowron, L. Sutawika, and O. van der Wal, “Pythia: A suite
for analyzing large language models across training and scaling,”
no. arXiv:2304.01373, May 2023, arXiv:2304.01373 [cs]. [Online].
Available: http://arxiv.org/abs/2304.01373

[30] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino,
N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders,
C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa,
A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer,
P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and
W. Zaremba, “Evaluating large language models trained on code,” Jul.
2021. [Online]. Available: https://arxiv.org/abs/2107.03374v2

https://www.microsoft.com/en-us/Investor/events/FY-2023/Morgan-Stanley-TMT-Conference
https://www.microsoft.com/en-us/Investor/events/FY-2023/Morgan-Stanley-TMT-Conference
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2308.04477
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://dl.acm.org/doi/10.1145/3442188.3445922
http://arxiv.org/abs/2308.07870
http://arxiv.org/abs/2308.07870
http://arxiv.org/abs/2311.10215
http://arxiv.org/abs/2311.10215
http://arxiv.org/abs/2401.14446
http://arxiv.org/abs/2406.11717
http://arxiv.org/abs/2308.10248
http://arxiv.org/abs/2308.10248
http://arxiv.org/abs/2404.14082
https://durham-repository.worktribe.com/output/2433851
https://durham-repository.worktribe.com/output/2433851
http://arxiv.org/abs/2203.15556
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
http://arxiv.org/abs/2312.12141
http://arxiv.org/abs/2402.01761
http://arxiv.org/abs/2310.10683
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/2406.11944v1
https://arxiv.org/abs/2406.11944v1
http://arxiv.org/abs/2202.09741
http://arxiv.org/abs/2403.14932
http://arxiv.org/abs/2403.14932
http://arxiv.org/abs/2012.14913
http://arxiv.org/abs/2012.14913
https://aclanthology.org/P19-1356
https://arxiv.org/abs/2402.18815
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2107.03374v2

Citation on deposit: North, M., Atapour-

Abarghouei, A., & Bencomo, N. (2025, April).

Beyond Syntax: How Do LLMs Understand Code?.

Presented at 2025 IEEE/ACM International

Conference on Software Engineering ICSE, Ottawa

, Canada

For final citation and metadata, visit Durham Research Online URL:

https://durham-repository.worktribe.com/output/3465850

Copyright statement: This accepted manuscript is licensed under the Creative

Commons Attribution 4.0 licence.

https://creativecommons.org/licenses/by/4.0/

https://durham-repository.worktribe.com/output/2873617

	Introduction
	Syntax vs Semantics
	Why Does This Matter?

	Background and Related Work
	Mechanistic Interpretability

	Methods and Results
	Type-Mover Heads
	Type-Mover Attention Head Classification Probes
	Residual Stream Classification Probes
	Semantic Component Ablation

	Future Plans
	References

