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We study information aggregation in a dynamic trading model. We show theoretically that separa-
ble securities, introduced by Ostrovsky in the context of Expected Utility, no longer aggregate information
if some traders have imprecise beliefs and are ambiguity averse. Moreover, these securities are prone to
manipulation as the degree of information aggregation can be influenced by the initial price set by the
uninformed market maker. These observations are also confirmed in our laboratory experiment using
prediction markets. We define a new class of strongly separable securities, which are robust to the above
considerations and show that they characterize information aggregation in both strategic and non-strategic
environments. We derive several testable predictions, which we are able to confirm in the laboratory.
Finally, we show theoretically that strongly separable securities are both sufficient and necessary for
information aggregation but, strikingly, there does not exist a security that is strongly separable for all
information structures.
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1. INTRODUCTION

Making predictions about future events is an inescapable part of decision-making. Revenues
in the forecasting industry are estimated at around $300 billion in current dollars (Atanasov
et al., 2017), hence even slightly better predictions are economically beneficial for individuals,
governments, firms, and organizations. Prediction markets constitute one of the most promising
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tools to perform forecasts as they leverage the wisdom of the crowds by aggregating information
that is dispersed among individuals.

In fact, in several cases, prediction markets perform significantly better than other conven-
tional forecasting methods, such as polls or expert opinion. Berg et al. (2008) compared the
predictions in the five presidential elections between 1988 and 2004 of the Iowa Electronic Mar-
kets and those of 964 polls. They found that 74% of the time, the prediction market was closer to
the truth, whereas for forecasts 100 days before the actual election, the prediction market outper-
formed the polls at every election. Cowgill and Zitzewitz (2015) examined data from prediction
markets ran by Google, Ford, and an anonymous basic materials’ conglomerate, and found that
the internal prediction markets conducted improved upon the forecasts of experts in all three
firms by as much as a 25% reduction in the mean squared errors.

Interestingly, in the case of a “once-in-a-lifetime” event, prediction markets may fare signif-
icantly worse. For instance, Cultivate Labs designed a prediction market on the outcome of the
Brexit referendum. It ran for 10 days prior to the polling day and the closing prediction was a
15% probability of “leave,” suggesting that the most likely outcome would be “remain.”1 On
the contrary, an average of all polls, reported by the Financial Times on the day of the referen-
dum, found 48% in favour of “remain” and 46% in favour of “leave,” suggesting a probability of
Brexit closer to 50%.2 Given that the actual result was 48.1% in favour of “remain” and 51.9%
in favour of Brexit, the almost even split between the two outcomes reported by the Financial
Times seems more accurate than the heavy favourite outcome of “remain” suggested by the
prediction market.

Clearly, there are limitations to the forecasting ability of prediction markets. In this study,
we examine the conditions under which prediction (and, more generally, financial) markets are
successful at aggregating information. In particular, can they aggregate information for events
that are rare or uncommon and for which beliefs are imprecise? The literature has so far focused
exclusively on traders with precise probabilities about events and objective Expected Utility
(EU) preferences. Specifically, Ostrovsky (2012) has shown that with unique priors and EU
preferences, when payoffs are determined using the Market Scoring Rule (MSR) (Hanson, 2003,
2007), even if there are a few large and strategic traders, information aggregates for a large class
of securities, called separable, which includes the Arrow–Debreu securities. More importantly,
there are securities that are separable for all information structures; thus, a market designer can
be sure that the prediction market will always aggregate information.

These results rely heavily on the assumption that traders share a unique (and common) prior.
However, Brexit is a once-in-a-lifetime event for which no historical data exist. How can we
be sure that the traders have precise probabilities for such a hard-to-quantify and unfamiliar
event?3 If we cannot maintain the hypothesis of a unique prior and EU, it is no longer the
case that markets aggregate information even if the traders’ multiple priors are common. More
importantly, a slight departure from a unique prior could result in the traders agreeing on a
security price that is far from its intrinsic value.

1. The market can be found at Cultivate Forecasts (2016).
2. A closer look at the individual polls suggests a similar story. Throughout 2016, neither of the two outcomes

was a consistent winner and margins were always small. In the telephone polls, No Brexit was a consistent winner but
with a margin that was declining over time. The results can be found at The Financial Times (2016a, 2016b).

3. Additional evidence is provided by Kilka and Weber (2001) who study experimentally the investment decisions
of German subjects on stocks of (self-reported) familiar German banks and less familiar Japanese ones. The authors
report that German subjects have more ambiguous beliefs about the associated outcomes of the Japanese banks. Earlier,
Heath and Tversky (1991) found similar evidence.
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TABLE 1
Information Structure

Outcome Trader 1’s signal Trader 2’s signal

Brexit Referendum Not Cancelled Either Brexit or Cancelled
No Brexit Referendum Not Cancelled No Brexit
Referendum Cancelled Referendum Cancelled Either Brexit or Cancelled

Notes: This table depicts the private signals of Trader 1 and Trader 2. The two traders’ pooled information always reveals
the true state.

To show this, consider the ambiguity aversion model of Gilboa and Schmeidler (1989), where
a decision maker acts as if maximizing the minimum expected utility over a set of multiple
priors (henceforth, referred to as MEU preferences).4 An important insight, which we prove in
Lemma 1 and use heavily, is that with multiple priors, the optimal announcement of a myopic
trader is still unique and the expectation of the security according to one of her beliefs. The
choice of the belief, however, depends on the previous announcement, thus introducing path
dependence (which is absent if the prior is unique). If the previous announcement happens to be
the expectation of the security according to some of i’s beliefs, then i’s optimal myopic strategy
is to repeat it. As we show in the example of Section 2, path dependence implies that the security
is susceptible to manipulation, for instance, by the market maker who sets the initial price and
can thus influence the degree of information aggregation.

To build some intuition, consider two individuals who trade an Arrow–Debreu security X
in a dynamic setting.5 Suppose there are three possible states: (i) Brexit, (ii) No Brexit, and
(iii) Referendum Cancelled. Security X pays 1 if Brexit occurs (i.e. the intrinsic value in that state
is 1) and 0 otherwise. The information structure is such that Trader 1 cannot distinguish between
Brexit and No Brexit but knows if the referendum is cancelled. Trader 2 cannot distinguish
between Brexit and the referendum being cancelled, but knows if the referendum result is No
Brexit.6 To simplify the exposition, we assume that the two traders are non-strategic and take
turns (i.e. alternate) in announcing the price to maximize their period payoff according to the
MSR. A scoring rule, like the quadratic, computes a score that increases as the announced price
gets closer to the intrinsic value of the security. The period payoff of the MSR is the difference
between the expected scores of the current and the previous announcement. Each announcement
reveals some information about the intrinsic value of the security, which may prompt the other
trader to revise her announcement. We say that information aggregates if the announcements
converge to the intrinsic value of the security.

Suppose that the true state is Brexit and the market maker’s initial announcement is 0. In the
EU framework, the initial announcement plays no role. When Trader 1 learns that the referendum
is not cancelled, so that either Brexit or No Brexit is true, she updates her unique belief and
announces the expected value of X, which is a number strictly between 0 and 1. This reveals to
Trader 2 that the referendum is not cancelled, otherwise Trader 1 would know it and announce
a value of 0. Trader 2 already knows that no Brexit is not true, hence announces 1. This informs
Trader 1 that Brexit is true, and she also announces 1 leading to information aggregation.

4. Anantanasuwong et al. (2019) use an incentivized survey on a representative sample of investors to study
ambiguity attitudes across different assets. They find that around 65% of investors are ambiguity averse. Moreover,
ambiguity aversion is highly and positively correlated across these assets.

5. The formal treatment of this example for the case of a quadratic scoring rule is presented in Section 2. However,
the arguments work for any proper scoring rule.

6. Table 1 in Section 2 summarizes the information structure. Note that the traders’ combined information always
reveals the true state.
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3426 REVIEW OF ECONOMIC STUDIES

In the MEU framework, the initial announcement is crucial and may prevent information
aggregation due to path dependence. Suppose that at least one prior (but not all) assigns zero
probability to Brexit.7 When Trader 1 learns that the referendum is not cancelled, she knows that
either Brexit or No Brexit is true and updates each of her priors. She then announces the expected
value of X according to one of her updated beliefs. Given that the previous announcement was
0 and the expected value of X according to one of her beliefs is 0, she makes the exact same
announcement.8 If there was no Brexit, her information would be the same and so would make
the same announcement. If the referendum was cancelled, Trader 1 would know this (through
her private signal) and again announce 0. Given that the same announcement of 0 would be
made in all possible states, no public information is revealed from Trader 1’s announcement. As
a result, Trader 2 does not learn anything from Trader 1’s announcement and her announcement
is, for similar reasons, 0. In turn, Trader 1 also announces 0.

The market fails to aggregate information because both traders do not want to deviate from
an announcement of 0. However, if the initial announcement was different, there would be infor-
mation aggregation. In particular, in this example, any non-zero initial announcement would
prompt Trader 1 to announce something other than 0, which would then reveal to Trader 2 that
the referendum is not cancelled, hence Trader 2 would learn that there is Brexit and informa-
tion would thus aggregate.9 In summary, the example shows that information which would be
revealed under EU preferences fails to be revealed under MEU preferences.

We make three key contributions in this article. First, to the best of our knowledge, we are the
first to analyse dynamic prediction markets with ambiguity aversion. We propose a new class of
strongly separable securities and show that in a prediction market which implements the MSR,
they are necessary and sufficient for information aggregation. Theorem 1 characterizes informa-
tion aggregation in terms of strongly separable securities for the case of myopic players. For
the case of strategic players, the trading procedure is an infinite-horizon game with incomplete
information. Given that traders are ambiguity averse, they might be dynamically inconsistent.
This means that Trader i might devise an optimal continuation strategy at time t, which may
not be optimal for her at a later time. To tackle with this problem, we generalize the Revision-
Proof equilibrium, first studied by Asheim (1997) and Ales and Sleet (2014) in the context of
infinite-horizon complete information games with time-inconsistent preferences, to games with
incomplete information. Theorem 2 shows that strongly separable securities are both necessary
and sufficient for information aggregation for all Revision-Proof equilibria. Although we prove
these results for the MEU preferences model of Gilboa and Schmeidler (1989), in the Supple-
mentary Appendix, we show that they are also true for the much larger class of Variational
preferences (Maccheroni et al., 2006a, 2006b), which includes, for example, the Multiplier
preferences of Hansen and Sargent (2001), and the class of Smooth Ambiguity preferences
(Klibanoff et al., 2005). Interestingly, the set of strongly separable securities stays the same
as we move from MEU to the general class of Uncertainty Averse preferences (Cerreia-Vioglio
et al., 2011).

Our second contribution is an impossibility result. In Proposition 3, we show that no secu-
rity is strongly separable for all information structures and this result extends to all Uncertainty

7. This simplifies the exposition but it is not necessary. In Appendix C, we show how path dependence and no
information aggregation can arise when all priors have full support.

8. This is due to Lemma 1 as we explain above. Intuitively, due to her MEU preferences, she wants to minimize
the expected difference between her score and the score of the previous announcement. This difference is minimized
when the announcements coincide.

9. In Appendix C, we show that one can easily construct examples where information aggregation fails for
multiple initial announcements.
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Averse preferences.10 This property is not true for separable securities. For example, Arrow–
Debreu securities are always separable. Given that strongly separable securities characterize
information aggregation, we show that if we move away from EU and precise beliefs, there is
no prediction market that can aggregate information for all possible information structures. Fur-
thermore, if we cannot find a security that can always aggregate information in the special case
of prediction markets, we cannot hope to find one in the more general class of financial markets.
In other words, imprecise beliefs can severely constrain the ability of markets to generically
aggregate information, which goes against the general consensus of the literature that starts with
Hayek (1945).11 This is detrimental to both investors and policy makers who can no longer trust
that market prices “incorporate all available information.” Mispricing can have distortionary
effects on investment, stemming from under- or over-investment. Moreover, path dependence
and manipulation can lead to persistent price bubbles.

Our third contribution is to investigate and confirm our testable predictions in an incentivized
laboratory experiment that we conducted, where subjects assumed the role of traders in predic-
tion markets forecasting the value of a security in sequential trading. Specifically, we examined
the impact on information aggregation of three dimensions: the market type (unique priors and
EU preferences versus multiple priors and MEU preferences), the security type (separable ver-
sus strongly separable), and the initial price announcement of the market maker. Our first set
of results finds that in the case of separable securities, information aggregation is significantly
worse in environments with imprecise beliefs and ambiguity-averse individuals compared to that
in environments with precise beliefs and EU preferences. This is not the case in the mirrored
environments with strongly separable securities; specifically, information aggregation across the
two environments is not significantly different. The latter result is in line with our Theorems 1
and 2. Our second set of results, finds that, in the case of separable securities, the initial price
announcement of the market maker in an environment with imprecise beliefs and ambiguity-
averse individuals can influence subjects’ behaviour and, thereby, the degree of information
aggregation. On the contrary, in the case of strongly separable securities, the initial announce-
ment does not influence subjects’ behaviour in the same environment, which is again consistent
with our theory. Taken together, these results suggest that strongly separable securities aggre-
gate information and are resilient to manipulation by the market maker in environments with
imprecise beliefs and ambiguity aversion.

Our article contributes to two main strands of the literature. The first strand looks at ambi-
guity and information aggregation (revelation) in various contexts. The underlying themes here
revolve around information transmission, interpreting information, and information acquisition.
Condie and Ganguli (2011) demonstrate a failure of information transmission with ambigu-
ity averse agents in standard heterogeneous information exchange economies. In the context of
common values voting games with ambiguity averse voters, Ellis (2016) finds that there is no
equilibrium in which information aggregates. Chen (2022) allows informational ambiguity to
occur naturally in a sequential learning problem to find that it can result in an information cas-
cade. Mailath and Samuelson (2020) study agents who have different and incomplete models

10. See Section 1 of the Supplementary Appendix.
11. Grossman (1976) showed that, in equilibrium, prices aggregate information. Radner (1979) introduced the

concept of Rational Expectations Equilibrium (REE) and proved that generically prices aggregate information dispersed
among traders. Several results regarding the convergence of REE in dynamic settings have been shown by Hellwig
(1982), McKelvey and Page (1986), Dubey et al. (1987), Wolinsky (1990), and Golosov et al. (2014) among others. Siga
and Mihm (2021) provide microfoundations for REE using common-value auctions and study when prices aggregate
information.
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to elucidate the sense in which interpretations can effectively aggregate information and gen-
erate approximate consensus. Finally, Mele and Sangiorgi (2015) analyse costly information
acquisition in asset markets with ambiguity averse traders to show that when uncertainty is high
enough, information acquisition decisions become strategic complements and lead to multiple
equilibria.12

The second strand looks at the increasingly extensive literature on prediction markets.13 The
first theme in this strand studies the degree and conditions of information aggregation of pre-
diction markets in various frameworks. Ostrovsky (2012) and Chen et al. (2012) show that in
a market with dynamically consistent traders, separable securities, introduced by DeMarzo and
Skiadas (1998, 1999), are both necessary and sufficient for information aggregation. Dimitrov
and Sami (2008) and Chen et al. (2010) also look at information aggregation but focus instead
on varying the assumptions regarding the traders’ information structure. The second theme
asks whether prediction markets can be manipulated. In the theoretical literature, Ottaviani and
Sørensen (2007) provide the first formal analysis of outcome manipulation in a corporate pre-
diction market setup, where traders are able to influence the outcome. In the empirical literature,
most studies find very little evidence of price manipulation, both in the actual markets (see
Camerer, 1998; Wolfers and Leigh, 2002; Rhode and Strumpf, 2004), and in the laboratory
(Hanson et al., 2006; Hanson and Oprea, 2009). However, Zitzewitz (2007) and Snowberg et al.
(2013) document a case from actual markets where a manipulator was able to influence the price
on an Arrow–Debreu contract. Along similar lines, Veiga and Vorsatz (2010) show experimen-
tally that, under some conditions, prices can be manipulated by an uninformed trader, which is
also corroborated in Jian and Sami (2012).

Although some aspects and ideas in the aforementioned studies do find common ground
in our study, what we propose here is different. First, we depart from (and thus contribute to)
the existing literature, by analysing prediction markets with ambiguity averse and dynamically
inconsistent traders, not only for the MEU framework but also for the more general ones of Vari-
ational and Smooth Ambiguity preferences.14 We do so because the alternative EU framework
with traders that have precise beliefs is unrealistic and highly stylized for events that are rare or
unfamiliar. Our analysis culminates in a profound result for asset markets in general: there is no
way to build a securitization scheme that will ensure information revelation for all information
structures. Second, our approach to investigate price manipulation is different from the exist-
ing studies. We thus extend this stream of research by utilizing a new channel, where imprecise
beliefs interact with the initial price announcement of the uninformed market maker. Conse-
quently, we are able to vary directly the initial price to determine the effect on the degree of
information aggregation of the security. Third, our approach is holistic in the sense that it com-
bines testable predictions with an empirical investigation by means of a controlled laboratory
experiment.

The article adheres to the following plan. In Section 2, we provide the formal treatment of our
introductory example. Section 3 describes the model. In Section 4, we characterize information
aggregation for the case of myopic traders, whereas in Section 5, we examine the case of strategic
traders. In Section 6, we describe our experiment and discuss the support for our theory. Finally,
in Section 7, we conclude and offer suggestions for future research. All proofs are included

12. Relatedly, Page and Siemroth (2017) study experimentally information acquisition in prediction markets at
the individual level to find that traders with larger endowments, existing inconclusive information, lower risk aversion,
and less experience in financial markets tend to acquire more information.

13. See Wolfers and Zitzewitz (2004) for an early overview of the literature.
14. Galanis and Kotronis (2021) also study prediction markets with dynamically inconsistent traders. However,

the cause is not ambiguity aversion but being boundedly rational and unaware of some signals (Galanis, 2011, 2013).

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/91/6/3423/7588779 by U

niversity of D
urham

 user on 31 January 2025



Galanis et al. INFORMATION AGGREGATION UNDER AMBIGUITY 3429

in the Appendices. In the Supplementary Appendix, we extend our results to the framework of
Uncertainty Averse preferences, show the existence of a Revision-Proof equilibrium, and include
the experimental instructions.

2. AN EXAMPLE

In this section, we describe in detail the 2016 Brexit referendum example of Section 1. The
dynamic trading mechanism begins with an initial public announcement about the value of the
security by the market maker and with nature choosing a state. Then, each trader sequentially
announces in public her prediction, which may reveal some of her private information. A score
for each prediction, based on a strictly proper scoring rule, is calculated after trading ends and the
true state is revealed. For non-strategic traders, who only care about their current payoff, MSR
ensures that the optimal strategy is to announce the expected value of the security given their
posterior beliefs. The per-period utility of a trader is calculated by subtracting, from the score of
her prediction, the score of the prediction made by the previous trader. A potential interpretation
could be that each time a trader makes a prediction, she “buys out” the previous one.

The state space has three states, � = {ω1, ω2, ω3}, which correspond to Brexit, No
Brexit, and Referendum Cancelled, respectively. Trader 1’s information partition is �1 =
{{ω1, ω2}, {ω3}}, whereas Trader 2’s is �2 = {{ω1, ω3}, {ω2}}. They trade an Arrow–Debreu
security X that pays 1 at ω1 (i.e. if Brexit occurs) and 0 otherwise. The information structure is
depicted in Table 1. In particular, Trader 1 is informed whether the referendum is cancelled or
not. Trader 2 is informed whether the referendum’s result is against Brexit or not. Notice that
the two traders’ pooled information always reveals the true state.

The two traders are non-strategic, they have MEU preferences and share a common set of pri-
ors P , which is the convex hull of p1 = (

0, 1
2 , 1

2

)
and p2 = ( 1

3 , 1
3 , 1

3

)
. If trader i’s announcement

is y, the intrinsic value of the security is x∗ = X (ω), and the announcement of the previous trader
(or the market maker) is z, then i’s utility is s(y, x∗) − s(z, x∗), where s(y, x∗) = −(y − x∗)2

is the quadratic scoring rule (or, more generally, a proper scoring rule).
Trader i announces y that solves her myopic problem

max
y∈[y,y]

min
p∈P

E p[s(y, X) − s(z, X)],

where y, ȳ are the minimum and maximum announcements, respectively.
By announcing y = z, she can secure a payoff of zero. Because s is a proper scoring rule,

and sets [y, ȳ],P are convex and compact, the minimax theorem applies and we can consider
the dual problem

min
p∈P

max
y∈[y,y]

E p[s(y, X) − s(z, X)].

The inner max problem is solved for each unique prior p, hence the unique solution is
y = E p[X ], as in Ostrovsky (2012), because s is a proper scoring rule. We can therefore simplify
the problem to

min
p∈P

E p[s(E p[X ], X) − s(z, X)].

Note that if the prior is unique, as in the EU framework, the optimal announcement is inde-
pendent of the previous announcement z. With MEU preferences, the announcement is still the
expectation of X, but according to some p ∈ P that depends on the previous announcement
z, thus introducing path dependence. Moreover, if the previous announcement is the expecta-
tion of X according to one of her beliefs p ∈ P , so that E p[X ] = z, then she will repeat the
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same announcement securing a payoff of zero.15 The reason is that she wants to minimize the
expected difference between the score of her prediction and the score of the previous announce-
ment because she evaluates this difference using the worst possible probability due to her MEU
preferences.16 However, this creates inertia as traders try to announce as close as possible to the
previous announcement given the constraint that their announcement must be the expectation
of X according to one of their beliefs. If Trader 1’s announcement is the expected value of X
according to one of Trader 2’s beliefs, then she will repeat it, prompting Trader 1 to do the same
so that there is no more updating of information and, consequently, no information aggregation.

Suppose that the true state is ω1 so that the correct price to be inferred is x∗ = X (ω1) = 1.
Moreover, suppose that the initial price of the security is y0 = 0 set by the market maker. Trader
1 is informed that E1 = {ω1, ω2} has occurred and maximizes her utility myopically. If she
announces 1, her payoff is the difference between the expected score of 1 and the expected score
of 0. With MEU preferences, she considers the worst-case scenario by choosing p that minimizes
her expected payoff. This means that she will choose p that maximizes the score of announcing 0
and minimizes the score of announcing 1. The reason is that scoring rules are “order-sensitive,”
so that the further away the forecast is from the true expected value, according to the chosen
p, the lower is the expectation of the score. This means that she will get a negative payoff
by announcing 1. If her announcement is closer to 0, the negative expected payoff decreases,
irrespective of which p she uses to evaluate it. In fact, the optimal announcement is to repeat 0
because her payoff will then be zero for all p.

Formally, using Lemma 1 and letting pE1 be the conditional of p given E1, the solution to
her maxmin problem is the same as the solution to her minimax problem. Hence, she minimizes
over her priors and for each prior she maximizes her expected utility by announcing the expected
value of the security E pE1

[X ]. We therefore have min
p∈P

E pE1
[s(E pE1

[X ], X (ω)) − s(0, X (ω))] =
min
p∈P

[pE1(ω1)
2(2 − pE1(ω1) − pE1(ω2))] = min

p∈P
pE1(ω1)

2. We conclude that the solution is p1

with p1(ω1) = 0 and her prediction is y1 = 0. If the true state was ω3, she would know that the
intrinsic value of X was 0, and she would announce 0.

The above imply that Trader 2 cannot learn anything from Trader 1’s announcement, hence
can only rely on her private signal E2 = {ω1, ω3}. Maximizing myopically her utility, she
solves min

p∈P
E pE2

[s(E pE2
[X ], X (ω)) − s(0, X (ω))] = min

p∈P
[pE2(ω1)

2(2 − pE2(ω1) − pE2(ω3)] =
min
p∈P

pE2(ω1)
2. The solution is again p1, with p1(ω1) = 0, and her prediction is y2 = 0.

Each trader learns nothing from the other’s announcement, which is always 0. Hence, both
traders agree on repeating a price of 0 for the security. Given that the intrinsic value of the
security at ω1 is 1, there is no information aggregation, even though their pooled information
would reveal that the true state is ω1 and the intrinsic value is 1. However, if the state is either
ω2 or ω3, an initial announcement of 0 will lead to information aggregation as the traders will
agree on that price.

We make the following observations. First, the same result of no aggregation can be obtained
if the common set of priors is the convex hull of p1 = (

0, 1
2 , 1

2

)
and p2 = (

ε, 1−ε
2 , 1−ε

2

)
, where

0 < ε ≤ 1
3 . Hence, even if belief imprecision is vanishingly small, a prediction market may fail

to aggregate information. Second, in this example, there is a belief p that assigns probability
zero to the true state ω1. However, this is not necessary. Example 1 in Appendix C shows that
information aggregation can also fail when all priors have full support.

15. We summarize these points in Lemma 1.
16. In Section 3.3, we provide intuition about this property.
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Third, the initial announcement by the market maker is crucial. An announcement of 1 when
the true state is ω1 leads to information aggregation. The reason is that Trader 1 would announce
1 at ω1 or ω2 and 0 at ω3, thus revealing to Trader 2 that the true state is ω1.17 However, it
is impossible for an uninformed market maker to know whether 1 or 0 is the “correct” initial
announcement. More importantly, information aggregation fails only when the initial announce-
ment is 0. Nevertheless, this is due to the simplicity of the example. In Appendix C, we show how
to easily construct examples where information aggregation fails for multiple initial announce-
ments. Finally, the result of no aggregation does not depend on the quadratic scoring rule, but it
is true for all proper scoring rules. The third claim of Lemma 1 shows that as long as the market
maker’s announcement is 0 and the expectation of X according to one of Trader 1’s beliefs is 0,
then Trader 1 will also announce 0.

To accommodate the case of imprecise probabilities, consider security X ′ that pays 0 if there
is no referendum and 1 otherwise. Then, Trader 1 always knows the value of the security. This
implies that, irrespective of the initial announcement, Trader 1 will announce 0 if there is no
referendum and 1 otherwise. If the true state is Brexit, Trader 1’s announcement reveals to
Trader 2 that the referendum took place. Since she already knows that No Brexit is not true, she
deduces that the true state is Brexit and repeats the announcement of 1. Irrespective of what the
true state is and what the beliefs of the traders are, the two traders always agree eventually on
the intrinsic value of the security, hence there is information aggregation. It is straightforward
to check that, whatever the public information is generated from previous announcements, one
of the two traders knows the intrinsic value of the security. As we show in Corollary 1, this is a
sufficient condition for strong separability.

Security X ′ aggregates information for any initial announcement of the market maker,
irrespective of whether market participants have precise probabilities, or they are ambiguity
averse and have multiple priors. Hence, it is robust as compared to the separable securities of
Ostrovsky (2012). Moreover, security X ′ is immune to manipulation by the market maker. We
call such securities strongly separable and show that they are always separable, but the converse
is not true. Theorems 1 and 2 characterize information aggregation in terms of strongly separable
securities for the non-strategic and strategic environments, respectively.

We conclude the example by commenting on the generality and applicability of the MSR. A
prediction market with a MSR can be reinterpreted as an inventory-based market with a market
maker who continuously adjusts the price of the securities depending on the orders she receives.
Ostrovsky (2012) establishes such a justification and Example 2 in Appendix C provides the
details for the case of ambiguity aversion. The advantage of the MSR over more well-known
market mechanisms, such as the continuous double auction, is that an agent can make her predic-
tion/trade without waiting for another agent to take the opposite side, or submit a limit order and
wait for it to be filled. This feature makes it an attractive mechanism for markets with relatively
few participants who do not trade daily. MSR-based prediction markets have been used widely,
for example, by firms such as Ford, Google, General Electric, and Chevron (see Ostrovsky, 2012;
Cowgill and Zitzewitz, 2015) as well as governments, for example, in the U.K. and the Czech
Republic (The Economist, 2021).18

17. Note that, in this case, Trader 2 would not be able to do prior-by-prior updating on the specific p that assigns
zero probability to state ω1. As this case is not the main focus of our example, we nevertheless chose to keep it. We
could present here Example 1 of Appendix C with full support priors in order to avoid the issue; however, it is a more
complicated example without any further insights.

18. Firms and governments use companies such as Cipher and Cultivate Labs to implement MSR-based predic-
tion markets. See Cultivate Labs (2021) for an explanation of how the logarithmic MSR is implemented in practice and
Schlegel et al. (2022) for axiomatic foundations.
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3. THE MODEL

In this section, we describe the ambiguity averse preferences of the traders and the MSR trading
environment, which, in turn, is based on proper scoring rules (e.g. Brier, 1950). We next distin-
guish between two cases. In the first case, all traders are myopic so that they only care about the
current period’s payoff. In the second case, all traders act strategically and care about the future.

3.1. Preferences and updating

Consider a finite state space � = {ω1, . . . , ωl} and let the powerset 2� be the σ -algebra over
�. Traders are ambiguity averse and have MEU preferences (Gilboa and Schmeidler, 1989). In
particular, each trader evaluates act f : � → R as

V ( f ) = min
p∈P

∫
u( f (s))dp(s),

where u : R → R is a utility index, and P is a convex and closed subset of �(�). We assume
that P is common among all traders and, without loss of generality,

⋃
p∈P

Supp(p) = � so that

each state is considered possible by some p ∈ P . Traders are risk-neutral so u(x) = x .
The set of traders is I = {1, . . . , n}. Trader i’s initial private information is represented by

partition �i of �. When the true state is ω ∈ �, Trader i considers the set of states �i (ω) ⊆ � to
be possible. As in Ostrovsky (2012), we assume that the join (the coarsest common refinement)
of partitions � = {�1, . . . �n} consists of all states in � so that

⋂
i∈I

�i (ω) = {ω} for all ω ∈ �.

In other words, the traders’ pooled information always reveals the true state. This implies that,
for any two states ω1 �= ω2, there exists Trader i who can distinguish between them so that
�i (ω1) �= �i (ω2).

We argue that this is a reasonable assumption for two reasons. First, if the conjunction of
the traders’ private information cannot distinguish between two states, we cannot expect that a
security which pays differently in these two states can achieve information aggregation as this
would imply that the market has more information than all traders combined.19 We therefore do
not consider securities that pay differently within an element of the coarsest common refinement.
Second, given that restriction, it is without loss of generality to consider each element of the
coarsest common refinement to be a state rather than a set of states.

When a trader learns event E, her beliefs are PE , the prior-by-prior updating of P .20 This
rule is well-defined as long as each prior assigns positive probability to E. We say that measures
p1, p2 ∈ P are mutually absolutely continuous with respect to a collection of events E if, for all
E ∈ E , p1(E) = 0 if and only if p2(E) = 0. Compact and convex set P ⊆ �(�) is regular with
respect to E if all p1, p2 ∈ P are mutually absolutely continuous with respect to E . We interpret
E as the collection of all events that can be revealed when traders make announcements. Hence,
if all priors assign positive probability, prior-by-prior updating is well-defined. However, note
that regularity does not imply that priors have the same support. For example, it is possible that
measure p assigns probability zero to state ω, whereas other measures do not. If event {ω} does
not belong to E , then, P can be regular with respect to E .

19. As we explain in Section 3.4, information aggregation means that the price of the security converges to its
intrinsic value. Thus, an outside observer, without any private information and just by observing the price, would be able
to distinguish between the two states, effectively having more information than all traders combined.

20. This rule is axiomatized in Pires (2002).
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3.2. Trading environment

Trading is organized as follows. At time t0 = 0, nature selects a state ω∗ ∈ � and the uninformed
market maker makes a prediction y0 about the value of security X : � → R. At time t1 > t0,
Trader 1 makes a revised prediction y1, then at t2 > t1 Trader 2 makes her prediction, and so
on. At time tn+1 > tn , Trader 1 makes another prediction yn+1. Let ak be the trader that makes a
prediction at time tk . All predictions are observed by all traders. Each prediction yk is required
to be within the set [y, y], where y = min

ω∈�
X (ω) and y = max

ω∈�
X (ω).

The process repeats until time t∞ = limk→∞ tk . At time t∗ > t∞, the intrinsic value x∗ =
X (ω∗) is revealed. The traders’ payoffs are computed using a scoring rule s(y, x∗), where x∗
is the intrinsic value of the security and y is a prediction. A scoring rule is proper if, for any
probability measure p and any random variable X, the expectation of s is maximized at y =
E p[X ]. It is strictly proper if y is unique. We focus on continuous strictly proper scoring rules.
Examples are the quadratic, where s(y, x) = −(x − y)2, and the logarithmic, where s(y, x) =
(x − a)ln(y − a) + (b − x)ln(b − y) with a < min

ω∈�
X (ω), b > max

ω∈�
X (ω).

Under the basic MSR (McKelvey and Page, 1990; Hanson, 2003, 2007), a trader is paid
for each revision she makes. In particular, her payoff from announcing ytk at tk is s(ytk , x∗) −
s(ytk−1 , x∗), where ytk−1 is the previous announcement and x∗ is the intrinsic value of the security.
We then say that the trader “buys out” the previous trader’s prediction.21

The assumption that the payoff is the difference between the previous and the current scores
is an inconsequential normalization with EU preferences and myopic traders because a myopic
trader will always announce the expected value of the security according to her measure. With
MEU preferences, behaviour can change drastically because the measure that minimizes the
expected score of the announcement may not be the same as the one that minimizes the expected
difference of the two scores. Although this presents some limitations, we argue that the MSR is
a reasonable assumption for two reasons. First, the MSR is used in the real world, in both public
and corporate prediction markets. Second, the MSR can be reinterpreted as an inventory-based
market with a market maker who continuously adjusts the price of the securities depending on
the orders she receives, as we explain in Section 2 and in Example 2 of Appendix C.

We examine trading in two settings. The myopic or non-strategic is analysed in Section 4,
where each trader does not care about future payoffs when making an announcement.22

We denote this setting by �M(�, I,�, X,P, y0, y, y, s). The strategic setting is studied in
Section 5. Following Dimitrov and Sami (2008), we focus on the discounted MSR, which
specifies that the payment at tk is βk(s(ytk , x∗) − s(ytk−1 , x∗)), where 0 ≤ β < 1. The total
payoff of each trader is the sum of all payments for revisions. We denote this setting by
�S(�, I,�, X,P, y0, y, y, s, β).

3.3. Properties of scoring rules

In the EU framework, the optimal (myopic) choice of ytk that maximizes E p[s(ytk , x∗) −
s(ytk−1 , x∗)] does not depend on the previous announcement ytk−1 because p is fixed. This is no

21. A trader can be guaranteed a payoff of zero by repeating the previous announcement or by abstaining from
the market. It would be interesting to separate the two by providing an explicit outside option to the traders. However,
such direction is outside the scope of this study and is thus deferred for future research.

22. With EU preferences, this non-strategic setting effectively turns into the communication process of Geanako-
plos and Polemarchakis (1982), where traders sequentially announce posterior beliefs about an event. Several other
papers extend this process to other aggregate statistics, such as Cave (1983), Sebenius and Geanakoplos (1983), Nielsen
(1984), Bacharach (1985), and Nielsen et al. (1990).
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longer the case with MEU preferences and multiple priors P , further complicating our analysis.
However, the following lemma establishes three properties that we use heavily.23 First, the opti-
mal (myopic) announcement is still unique for continuous strictly proper scoring rules. Second,
the announcement is the expectation of X according to some belief in P . Third, the announce-
ment coincides with the previous one if the latter is the expectation of X according to some belief
in P .

Lemma 1. Let s be a continuous strictly proper scoring rule on [y, y] and let z ∈ [y, y] be an
announcement. Then,

• y∗ ≡ arg max
y∈[y,y]

min
p∈P

E p[s(y, X) − s(z, X)] is unique,

• y∗ = E p[X ] for some (not necessarily unique) p ∈ arg min
p∈P

max
y∈[y,y]

E p[s(y, X) − s(z, X)],
• if z = E p[X ] for some p ∈ P , then y∗ = z.

As s is a proper scoring rule, hence the optimal announcement is E p[X ], when the expected
score is evaluated using p, the second property implies that y∗ = E p[X ] for some (not neces-
sarily unique) p ∈ arg min

p∈P
E p[s(E p[X ], X) − s(z, X)]. In other words, the maxmin operation

simplifies to choosing probability p that minimizes her expected score given that she announces
E p[X ].

To provide some intuition for the third property, first note that given an announcement y∗,
MEU preferences imply that the trader will evaluate her period payoff by minimizing over all
available beliefs in P . Moreover, scoring rules are “order-sensitive” so that the further away the
forecast is from the true expected value, according to the chosen p, the lower is the expectation
of the score. These two properties imply that the trader will minimize her expected utility by
picking the probability that maximizes the expected score of the previous announcement, which
is subtracted from her payoff, and minimizes the expected score of her own announcement,
which is added. The only way of counteracting this worst-case scenario is by announcing as close
as possible to the previous announcement, given the constraint that it must be the expectation of
X according to some p ∈ P . Moreover, if it is possible to repeat the previous announcement, she
will do that and get 0, which is the minimum payoff when announcing the myopic best response.

3.4. Information aggregation

We say that information aggregates if the traders’ predictions converge to the intrinsic value
X (ω) of security X, for all ω ∈ �. For every ω ∈ �, let yk(ω) be the announcement of the trader
who moves in period tk . The announcement yk(ω) depends on ω because traders have different
private information across states. Because {yk}∞k=1 is a sequence of random variables, we need a
probabilistic version of convergence.

Definition 1. Under a profile of strategies in �M or �S , information aggregates if sequence
{yk}∞k=1 converges in probability to random variable X.

Note that our definition of information aggregation does not specify how prices will evolve in
the middle of the game for some t. In fact, it is perfectly possible that prices will diverge widely

23. Lemma 1 is related to a result in Chambers (2008). The proofs are closely related too.
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before they start converging to the intrinsic value of the security. Moreover, the intrinsic value
X (ω) is defined objectively, for each ω, and it does not depend on the traders’ multiple priors.24

3.5. Strong separability

Ostrovsky (2012) introduced the notion of separable securities, which are sufficient for aggre-
gating information in an environment with EU.

Definition 2. A security X is called non-separable under partition structure � if there exists
probability p and value v ∈ R such that:

(i) X (ω) �= v for some ω ∈ Supp(p),
(ii) E p[X | �i (ω)] = v for all i = 1, . . . , n and ω ∈ Supp(p).

Otherwise, it is called separable.

A security X is non-separable if, for some belief p that assigns positive probability to a state
where X does not pay v, all traders agree on its conditional expected value to be v, irrespective of
which private signal they have received. In such a case, even if all traders truthfully and repeat-
edly announce v, no new information is revealed. However, their pooled information reveals the
state, hence information aggregation fails.25 To avoid this, the security must be separable. The
most common example is the Arrow–Debreu security, which pays 1 at some state and 0 other-
wise. Unfortunately, separable securities may not aggregate information with ambiguity aversion
as shown in Section 2.

In order to maintain information aggregation in an environment with ambiguity aversion, we
need to strengthen the notion of separability. Treating security X as given, let

dP(E, v) = arg max
y∈[y,y]

min
p∈PE

E p[s(y, X) − s(v, X)]

be the (unique from Lemma 1) myopic announcement that maximizes the trader’s current
period’s utility if her beliefs are PE and the previous announcement was v. Note that if P = {p}
is a singleton so that we are back to the EU case, dP(E, v) = E p[X | E] for any v and proper
scoring rule s. Hence, the myopic announcement dP(E, v) under ambiguity is a direct general-
ization of the myopic announcement under EU, E p[X | E]. Below, we generalize the notion of
separability by substituting E p[X | E] with dP(E, v). To save on notation and since security X
is fixed throughout the article, we omit it.

Definition 3. A security X is called not strongly separable under partition structure � and proper
scoring rule s if there exist a regular P ⊆ �(�) with respect to each �i , i = 1, . . . , n, and v ∈ R

such that:

(i) X (ω) �= v for some ω ∈ ⋃
p∈P

Supp(p),

24. As Harrison and Kreps (1978) comment, it may not be possible to define an objective intrinsic value for some
t in the middle of the game if traders do not share a common unique prior, or if they have multiple priors. This means
that our model only deals with what happens in the long run. We thank an anonymous referee for pointing out this issue.

25. An example of a non-separable security is provided by Ostrovsky (2012). Let � = {ω1, ω2, ω3, ω4}
and suppose X (ω1) = X (ω4) = 1, X (ω2) = X (ω3) = −1. Partitions are �1 = {{ω1, ω2}, {ω3, ω4}} and �2 =
{{ω1, ω3}, {ω2, ω4}}. For p that assigns 1/4 at each state, both players always have an expectation of 0, although their
pooled information always reveals the intrinsic value of X, which is never 0.
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(ii) dP(�i (ω), v) = v for all i = 1, . . . , n and ω ∈ ⋃
p∈P

Supp(p).

Otherwise, it is called strongly separable.

The interpretation of a not strongly separable security is similar to that of a non-separable
security. The only difference is that P is not a singleton and, as a result, the myopic announce-
ment E p[X | �i (ω)] = v under EU is replaced by the myopic announcement dP(�i (ω), v) = v
under MEU. However, in both definitions, each trader announces v given that the previous
announcement was v and irrespective of the private signal that she has received. We also
require that P is regular with respect to each Trader’s partition so that prior-by-prior updating is
well-defined.

A potential issue about the definition of strong separability is that it depends on the particular
scoring rule because dP(E, v) = arg max

y∈[y,y]
min
p∈PE

E p[s(y, X) − s(v, X)]. This is not the case for

separability, which only depends on the information structure. Proposition 2, discussed later in
this section, establishes that strong separability is also independent of the particular continuous
strictly proper scoring rule.

In the example of Section 2, the Arrow–Debreu security is not strongly separable given the
information structure. To see this, note that condition (ii) in the definition is satisfied for all
states with v = 0. Since some priors put strictly positive probability to ω1 and X (ω1) = 1 �= v ,
condition (i) is also satisfied.

Observe that if a security is non-separable (for some prior p), then it is not strongly separa-
ble as well (for P = {p}). This means that strong separability implies separability. Moreover,
the converse is not true as shown in Section 2. As we discuss after Proposition 2, for any
information structure, there exists a strongly separable security. For example, consider state
space � = {ω1, ω2, ω3} and security X with X (ω1) = X (ω2) = 1, X (ω3) = 0. Under the parti-
tion structure �1 = {{ω1, ω2}, {ω3}},�2 = {{ω1, ω3}, {ω2}} and any continuous proper scoring
rule, X is strongly separable.

Ostrovsky (2012) proposes a useful characterization of separable securities. It specifies that X
is separable if and only if for any possible announcement v, we can find numbers λi (�i (ω)) for
each i and ω, such that the sum over all traders has the same sign as the difference of X (ω) − v .
Intuitively, for any v and at each ω, all traders “vote” and the sign of the sum of the votes has to
agree with the sign of the difference between the value of the security and v.

Proposition 1 (Ostrovsky, 2012). Security X is separable under partition structure � if and
only if, for every v ∈ R, there exist functions λi : �i → R for i = 1, . . . , n such that, for every
state ω with X (ω) �= v ,

(X (ω) − v)
∑
i∈I

λi (�i (ω)) > 0.

We provide a similar but stronger condition that characterizes strong separability. It specifies
that, given any v and conditional on any event E where X is never equal to v, there is a trader
who knows at some state in E that X is either always above or always below v. We can interpret
E as the public information that is revealed by hearing the previous announcements, and v as the
current price of the security. Hence, the condition requires that, at any period, at least one trader
knows whether the intrinsic value of the security is either higher or lower than the current price.
Note that this trader may not be the one who makes the announcement in the next period.

Proposition 2. Security X is strongly separable under partition structure � if and only if for
any v ∈ R, for any non-empty event E ⊆ {ω ∈ � : X (ω) �= v}, there exists Trader i, state ω ∈ E
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and λ ∈ R such that for all ω′ ∈ �i (ω) ∩ E,

(X (ω′) − v)λ > 0.

In the Supplementary Appendix, we show that the same condition characterizes strongly
separable securities in the much more general framework of Uncertainty Averse preferences.
Hence, the set of strongly separable securities is the same and all the properties discussed next
(Section 3.6) apply to Uncertainty Averse preferences as well. This is surprising because, when
we move from EU to MEU, the set of separable securities is a strict subset of the set of strongly
separable securities. We discuss the intuition behind this result in the Supplementary Appendix.

3.6. Properties of strongly separable securities

In order to better understand strongly separable securities, we establish the following properties.
Fix an information structure. First, there always exists a non-constant, strongly separable secu-
rity. In particular, we can construct one which predicts all possible events (Lemma 2). This means
that, just by observing the price of the security and as it converges to the security’s intrinsic value
due to information aggregation, an outside observer learns whether the event has occurred or not.
Second, we find a sufficient condition to easily check whether a security is strongly separable
(Corollary 1). It requires that for any event E, there exists at least one trader who would know the
security’s value if she was informed of that event.26 As with Proposition 2, we can interpret E as
the public information that is revealed by the previous announcements. This condition allows us
to easily construct strongly separable securities for any information structure. We describe such
an algorithm below. The final property is an impossibility result and one of our main contribu-
tions (Proposition 3). In sharp contrast to the EU framework with separable securities, in the
framework with MEU preferences, there does not exist a security that is strongly separable for
all information structures.

We say that an event E is predictable by security X if the values it assigns to states in E
are different from the values it assigns to states not in E. Formally, if ω ∈ E and ω′ ∈ Ec, then
X (ω) �= X (ω′). We then say that X is informative for E because if the price of X converges
to its intrinsic value at all states, then it will be revealed whether E has occurred. For the EU
model, Chen et al. (2012) show in Theorem 5 that there always exists a separable security that
is informative for all events. We show that the same is true for the MEU model. We construct a
sequence of strongly separable securities, X1, . . . , Xn , where the collection of predictable events
by Xk is larger than that by Xk−1 for k = 2, . . . n. The last security Xn , where n is the number
of Traders, assigns a different value to each state, hence all events are predictable.

(1) Fix the order of Traders 1, 2, . . . , n. Order Trader 1’s partition elements {�1(ω)}ω∈� from
1 to k1. If �1(ω) is the j th partition element, assign value X1(ω

′) = j to all ω′ ∈ �1(ω).
As X1 provides a different payoff to each of Trader 1’s partition elements, X1 can predict
all events in Trader 1’s partition together with any of their unions.

(2) Security X2 assigns a different value to each event in the collection { ⋂
i=1,2

�i (ω)}ω∈�.

Order 2’s partition elements, {�2(ω)}ω∈� from 1 to k2. If X1(�1(ω)) = m and �2(ω) is

26. In practice, one needs to check only events for which the security specifies different values; as for the rest,
the condition is automatically satisfied.
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the j th partition element, assign value X2(ω
′) = m + j−1

k2
to all ω′ ∈ ⋂

i=1,2
�i (ω). Secu-

rity X2predicts all events in { ⋂
i=1,2

�i (ω)}ω∈� together with any of their unions. Hence, it

predicts more events than X1.
(3) Inductively, for security Xl we order l’s partition elements {�l(ω)}ω∈� from 1 to kl . If

Xl−1(
⋂

i=1,...,l−1
�i (ω)) = m, the next highest value of Xl−1 is m ′ and �l(ω) is the j th par-

tition element, then assign value Xl(ω
′) = m + j−1

kl
(m ′ − m) to all ω′ ∈ ⋂

i=1,...,l
�i (ω). By

construction, from security Xl to security Xl+1 the ordering of states is preserved. That is,
if Xl(ω) < Xl(ω

′), then Xl+1(ω) < Xl+1(ω
′).

(4) The final security Xn assigns a different value to each state because of our assumption that⋂
i∈I

�i (ω) = {ω} for all ω ∈ �. Hence, it can predict any event.

The following lemma shows that these securities are strongly separable. Hence, we can always
construct non-trivial strongly separable securities, some of which can predict all possible events.
However, it is important to note that not all securities that assign a different value to each state,
and therefore can predict any event, are strongly separable. For a counter example, see Example
1 in Appendix C.

Lemma 2. Securities X1, . . . , Xn are strongly separable.

The following Corollary provides a sufficient condition for strong separability. It requires
that conditioning on any event E, there is at least one trader who knows the value of the
security.

Corollary 1. Suppose that for any event E, there exist Trader i and state ω ∈ E such that
�i (ω) ∩ E ⊆ X−1(k) for some k. Then, security X is strongly separable under partition
structure �.

Using this Corollary, we can construct a strongly separable security in the following way
given any information structure. First, fix an order of traders T = 1, 2, . . .. A specific trader
may appear more than once in T and its cardinality is weakly less than the cardinality of
�. Pick Trader 1 and a state ω1 ∈ E1 ≡ �, assigning value X (ω′) = k1 for all ω′ ∈ �1(ω1).
Then, pick Trader 2 and a state ω2 ∈ E2 = E1 \ �1(ω1), assigning value X (ω′) = k2 for all
ω′ ∈ �2(ω2) ∩ E2. This process continues using ωi+1 ∈ Ei+1 = Ei \ �i (ωi ), assigning value
X (ω′) = ki+1 for all ω′ ∈ �i+1(ωi+1) ∩ Ei+1 for i ≥ 2 until Ei+1 becomes empty. To see
how we can apply Corollary 1, take any event E. If there exists ω ∈ E ∩ �1(ω1) �= ∅, then
�1(ω) ∩ E ⊆ X−1(k1). If E ∩ �1(ω1) = ∅ but there is some state ω ∈ �2(ω2) ∩ E , then E ⊆
E2 and �2(ω) ∩ E ⊆ X−1(k2). Continuing inductively, we can find some Trader i and state
ω ∈ E such that �i (ω) ∩ E ⊆ X−1(ki ).

The last question is whether there exists a security that is strongly separable for all infor-
mation structures. Recall that there are several securities that are separable for all information
structures, such as the Arrow–Debreu. However, the following proposition shows that there is
no security which is strongly separable for all information structures.

Proposition 3. If state space � has at least three states, there is no (non-constant) security X
which is strongly separable under all partition structures � = {�1, . . . �n}, where the join of
� consists of singleton sets.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/91/6/3423/7588779 by U

niversity of D
urham

 user on 31 January 2025



Galanis et al. INFORMATION AGGREGATION UNDER AMBIGUITY 3439

As we show in subsequent subsections (Theorems 1 and 2), strong separability is not only
sufficient but also necessary for information aggregation under ambiguity. This suggests a neg-
ative result as there is no security that aggregates information for all information structures
in contrast to the EU case. In other words, if an outside observer does not know the traders’
information structure, there is no way of being sure that a particular security is strongly
separable and therefore will aggregate information.

More interestingly, a security which has been successful at aggregating information (because
of the particular information structure), may subsequently fail to do so, once the composition of
the traders and their information changes. Although this negative result is shown for the specific
case of prediction markets, it is also a negative result for financial markets in general. This means
that markets may fail to predict events and that prices do not incorporate all available informa-
tion. Moreover, as we show in Proposition 5 in the Supplementary Appendix, the set of strongly
separable securities does not change in the much more general framework of Uncertainty Averse
preferences. Hence, this negative result is robust.

4. MYOPIC TRADERS

Let �M(�, I,�, X,P, y0, y, y, s) be an environment with myopic traders who only care about
their period t payoff when making an announcement at t. Suppose ω∗ is the true state and y0 is
the market maker’s initial announcement. At time t1, Trader 1 announces her prediction y1 =
dP(�1(ω

∗), y0) = arg max
y∈[y,y]

min
p∈P�1(ω∗)

E p[s(y, X) − s(y0, X)]. As mentioned above, y1 depends

on the market maker’s announcement y0, which is not the case with EU.
The prediction of any trader is public, therefore, the new information revealed refines the

information partitions of all other traders. In particular, the initial public information at t0 is
F0(ω∗) = �. At t1, Trader 1 announces y1 = dP(F0(ω∗) ∩ �1(ω

∗), y0). The updated pub-
lic information is F1(ω∗) = {ω′ ∈ F0(ω∗) : dP(F0(ω∗) ∩ �1(ω

′), y0) = y1}. Note that from
Lemma 1, the announcement is unique, hence F1(ω∗) is well-defined. Trader i’s new private
information is F1(ω∗) ∩ �i (ω

∗).
Trader 2 is next to make a public announcement and her private information is F1(ω∗) ∩

�2(ω
∗). At t2, she announces y2 = dP(F1(ω∗) ∩ �2(ω

∗), y1) and the updated public informa-
tion is F2(ω∗) = {ω′ ∈ F1(ω∗) : dP(F1(ω∗) ∩ �2(ω

′), y1) = y2}. Trader 3 updates her private
information to F2(ω∗) ∩ �3(ω

∗), makes an announcement, and the process goes on. More gen-
erally, player ak = i at time tk has private information F = F k−1(ω∗) ∩ �i (ω

∗) and announces
yk = dP(F, yk−1).

Let E = {F k(ω) ∩ �ak (ω)}k≥0,ω∈� be the collection of all events on which the traders update
their beliefs given that it is their turn to make an announcement. We say that �M is regular if P
is regular with respect to E .

4.1. Information aggregation

Our first main result is to fully characterize information aggregation in an environment with
myopic and ambiguity averse traders.

Theorem 1. Fix security X, information structure � and continuous strictly proper scoring
rule s. Information aggregates for any regular �M(�, I,�, X,P, y0, y, y, s) if and only if X is
strongly separable.

To provide some intuition, we describe briefly the steps of the proof. We first show that the
public (and therefore private) information is no longer updated after some time t. This is a direct
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consequence of the finiteness of the state space so that all possible states are within a common
knowledge event F .

Second, traders agree on the announcement and they stop updating it. If Dynamic Con-
sistency was satisfied, as it is the case with EU and Bayesian updating, this step would be
straightforward. Since Trader i optimally announces yi in each of her partition cells, irrespec-
tive of the previous announcement, Dynamic Consistency, and the law of iterated expectations
imply that it is optimal to announce yi if her information was just F . Given that this is true for
all traders, common priors imply that their announcements must coincide.

However, with MEU preferences and prior-by-prior updating, Dynamic Consistency is vio-
lated and there is no longer separability across states as a different belief might be picked at
each partition cell. Hence, we cannot apply the law of iterated expectations.27 Moreover, the
myopic prediction depends not only on the private information, as in the EU case, but also on
the previous trader’s prediction. Since there are many possible myopic predictions, it could be
the case that traders engage in a never-ending cycle of revised predictions, even though their
private information does not change. We show that this does not occur because a monotonicity
property of the scoring rule and ambiguity aversion imply that Trader i will want to announce
as close as possible to the previous announcement in order to minimize the worst-case scenario.
Moreover, the set of all myopic announcements is fixed given F and do not depend on the pre-
vious announcement. We therefore have only two cases. First, there is an announcement that is
common to all traders. Once a trader makes this announcement, everyone else will repeat it so
there will be agreement. Second, two traders disagree so much that i’s maximum myopic predic-
tion, according to her posterior beliefs, is lower than j’s minimum myopic prediction, according
to her posterior beliefs. But if this is true for all partition cells, it will also be true when condi-
tioning on F , which is impossible because there is at least one common prior. Effectively, this is
a generalization of the result of Aumann (1976) for MEU preferences; that is, “we cannot agree
to disagree too much.”28

Finally, suppose that all traders agree on the prediction, which is the expected value of the
security for some posterior for all states in F . Then, the definition of strong separability implies
that this can only happen if there is no uncertainty about the value of the security. That is,
all states in F prescribe the same value for the security, which is then equal to the common
prediction and there is information aggregation.

5. STRATEGIC TRADERS

Consider a game �S(�, I,�, X,P, y0, y, y, s, β), where I is the set of n players, s is a strictly
proper scoring rule, y0 is the market maker’s initial announcement at time t0, [y, y] is the set of
possible announcements that a player can make, and β is the common discount rate.

Let H k = (y1, . . . , yk) be a history of announcements up to time tk , and H 0 be the empty
history. Given any two histories H k = (y1, . . . , yk) and Hl = (y′

1, . . . , y′
l), let (H k, Hl) be

their concatenation. Although traders have multiple priors over �, a mixed strategy consists
of randomizing using a unique probability distribution. Player i trades at periods ti+nk , k ∈ N,
hence ai+nk = i . Her mixed strategy at time tk is a measurable function σi,k : �i × [y, y]k−1 ×

27. See Galanis (2021) for a discussion of Dynamic Consistency in a general framework with multiple beliefs
and convex preferences.

28. In an environment with ambiguity aversion, several papers extend the no trade theorems of Aumann (1976),
such as Dominiak and Lefort (2013, 2015), Carvajal and Correia-da Silva (2010), and Kajii and Ui (2005, 2009), whereas
Condie and Ganguli (2011) show the existence and robustness of partially revealing REE.
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[0, 1] −→ [y, y]. It specifies an announcement yk given the element of her partition, the history
of announcements (y1, . . . , yk−1) up to time tk , and the realization of random variable ιk ∈ [0, 1],
which is drawn from the uniform distribution. These draws are independent of each other and of
the true state ω. The full state is φ = (ω, ι1, ι2, . . .) and describes the initial uncertainty and the
randomizations of the players. Let � = � × [0, 1]N be the full state space. Player i’s strategy,
denoted σi , is a set of strategies at all times where it is her turn to make an announcement. Let
σ = (σ1, . . . , σn) be a profile of strategies.

A profile of strategies σ and a full state φ determine a sequence of predictions on-path,
which we denote y1(σ, φ), y2(σ, φ), . . .. Let H k(σ, φ) = (y1(σ, φ), . . . , yk(σ, φ)) be the his-
tory at tk generated by σ and φ on-path. Given a history H k−1, which may not be on-path,
let yk−1+m(σ, φ | H k−1) be the announcement at time tk−1+m if traders play according to strat-
egy profile σ and full state φ, from tk onwards, where m ≥ 0. We denote by H k−1+m(σ, φ |
H k−1) = (H k−1, yk(σ, φ | H k−1), . . . , yk−1+m(σ, φ | H k−1)) the history that is generated by
these announcements.

Let ω(φ) and ιk(φ) be the first and (k + 1)th components of full state φ = (ω, ι1, . . .),
respectively. At time tk , Trader i knows component ιl(φ), which denotes the realization of the
random variable at tl , if al = i and l ≤ k. Her private information at time tk and state φ is
�k

i (φ) = �i (ω(φ)) × [0, 1]k ⋂[φ′ : ιl(φ
′) = ιl(φ) for all l ≤ k with al = i]. Trader i’s infor-

mation set at decision node (H k−1, φ) is denoted I(H k−1, φ) = �k
i (φ). Let I k

i be the collection
of all information sets for i at time tk , and I be the collection of all information sets.

The public information revealed at time tk+m , m ≥ 0, after history H k and given that traders
play from tk+1 according to σ at full state φ is

F k+m(σ, φ | H k) = {φ′ ∈ � : H k+m(σ, φ | H k) = (yk+1(σ, φ′ | H k), . . . , yk+m(σ, φ′ | H k))}.

If k = 0, then we denote by Fm(σ, φ | H 0) = F k+m(σ, φ) the public information at tm that is
revealed when everyone plays on-path.

Player ak+m = i , who makes an announcement at tk+m , can combine the public information
F k+m(σ, φ | H k) with her private information �k+m

i (φ) ⊆ � in order to form her updated pri-
vate information. We denote the player’s updated private information given strategy σ , state φ
and history H k , by

F k+m
i (σ, φ | H k) = �k+m

i (φ)
⋂

F k+m(σ, φ | H k).

A system of beliefs is a collection of compact and convex sets of beliefs, one for each information
set.

Definition 4. A system of beliefs is a tuple P = {P(I)}I∈I such that each P(I) is compact
and convex.

To save on notation, we denote the beliefs P(I(H k−1, φ)) of agent i who announces at tk and
information set I(H k−1, φ) as P(H k−1, φ).29

We now define the continuation payoff of player ak at decision node (H k−1, φ). Note that we
define this payoff also in nodes that are not reached given strategy profile σ .

29. If k = 0, then we are at the initial time t0 so that a0 denotes each i ∈ I and P(H0, φ) = P .
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Definition 5. The continuation payoff of player ak = i at time tk and state φ, given strategy
profile σ , history H k−1 and system of beliefs P is

Vi (H k−1, φ, σ,P) = min
p∈P(H k−1,φ)

E p

[ ∞∑
m=0

βnm (
s
(
yk+nm(σ, φ | H k−1), X (φ)

)

− s
(
yk+nm−1(σ, φ | H k−1), X (φ)

)) ]
.

The expectation is taken over � and we set X (φ) = X (ω(φ)), where ω(φ) ∈ � is the first
component of φ. To save on notation, we sometimes denote Vi with V as it is clear in each time
tk who is making the announcement. The only exception is at time t0, where only the market
maker has made an announcement and all traders have received their private information. In that
case, we denote i’s ex ante payoff as Vi (H 0, φ, σ,P).

5.1. Revision-Proof equilibrium

In this section, we define the notion of a Revision-Proof equilibrium and use it to show that
strongly separable securities characterize information aggregation. An issue that arises in incom-
plete information games with ambiguity averse players is that their preferences may not be
dynamically consistent. This means that an ex ante optimal plan may be considered suboptimal
by the same player at a subsequent period, therefore, choosing not to follow it.30

One way of solving the issue of dynamic inconsistency is by imposing a solution concept
similar to the consistent planning of Strotz (1955), which is a refinement of backward induc-
tion.31 Effectively, the decision maker takes into account the constraint that her future selves
might have different preferences and may not follow through a plan that is optimal now. Since
in our environment there are infinitely many periods, we cannot impose backward induction so
the generalization would be to check for one-shot deviations.

Before formalizing the notion of consistent planning, we define consistency, which imposes
prior-by-prior updating at all decision nodes whenever possible.32

Definition 6. Pair (σ,P) is consistent if, for any full state φ ∈ �, history H k , k ≥ 0 and player
ak = i ,

(i) P(H k, φ) is regular with respect to F = F k+n
i (σ, φ | H k),

30. Pahlke (2022) studies games with incomplete information and MEU preferences, finitely many actions and
periods. She shows the existence of a Sequential equilibrium with rectangular priors (Epstein and Schneider, 2003),
thus ensuring Dynamic Consistency. In the Smooth Ambiguity model, Hanany et al. (2020) show the existence of a
Sequential equilibrium in a setting with finite actions and periods, using the smooth rule (Hanany and Klibanoff, 2007,
2009). Few other papers study equilibrium notions in general dynamic games under ambiguity, such as Eichberger et al.
(2019) and Battigalli et al. (2019). Ellis (2018) argues that in games with incomplete information and MEU preferences
that satisfy Dynamic Consistency, consequentialism and a common set of priors P , players act as if they have EU
preferences. Pahlke (2022) avoids such a criticism by allowing for different priors.

31. Consistent planning was further developed by Peleg and Yaari (1973) and Goldman (1980). Siniscalchi
(2011) provides behavioural foundations in a single-agent setting. Specific applications with MEU preferences, prior-
by-prior updating and some form of consistent planning are provided, among others, by Bose and Daripa (2009), Bose
and Renou (2014), Kellner and Le Quement (2017, 2018), and Beauchêne et al. (2019).

32. Consistency adapts the standard definition of consistency in a Perfect Bayesian Equilibrium (Fudenberg and
Tirole, 1991). Bonanno (2013, 2016) examines the relationship between Perfect Bayesian Equilibrium and Sequential
Equilibrium, by providing a qualitative notion of AGM-consistency, which is based on the theory of belief revision
introduced by Alchourrón et al. (1985).
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(ii) If
⋃

p∈P(H k ,φ)

Supp(p)
⋂

F �= ∅, then P(H k+n(σ, φ | H k), φ) is the prior-by-prior updating

of P(H k, φ) given F.33

At decision node (H k, φ), the beliefs of player ak = i are P(H k, φ). Given that everyone
plays according to σ and φ for one round of n announcements, i’s private information is updated
using new information F = F k+n

i (σ, φ | H k). Consistency requires that beliefs P(H k, φ) are
regular with respect to F and that there is prior-by-prior updating whenever possible.

Definition 7. Consistent pair (σ ∗,P) is a Consistent-Planning equilibrium if there is no deci-
sion node (H k−1, φ), player ak = i and alternative strategy σ = (σi , σ

∗
−i ) with σi,k ′ = σ ∗

i,k ′ for
all k ′ �= k, such that

V (H k−1, φ, σ,P) > V (H k−1, φ, σ ∗,P).

This solution concept (for infinitely many periods) has not yet been studied in games with
incomplete information and ambiguity averse preferences. However, in complete information
games with time-inconsistent preferences, Asheim (1997) and Ales and Sleet (2014) argue
against such a solution concept and provide a refinement, Revision-Proofness, which we adapt
in our setting.

A consistent pair (σ ∗,P) is a Revision-Proof equilibrium if it is immune to any “collective”
deviations by a trader and her future selves, where every future self evaluates the deviation
given her updated beliefs and preferences. This latter condition is crucial because of dynamic
inconsistency. Even if Trader i considers a deviation profitable at time tk , it does not mean that
her future self, after r rounds, will also find it profitable at tk+nr .

Definition 8. Consistent pair (σ ∗,P) is a Revision-Proof equilibrium if there is no decision
node (H k−1(φ, σ ∗), φ), player ak = i and alternative strategy σ = (σi , σ

∗
−i ) such that for all

r ≥ 0 and H nr ,

V ((H k−1(φ, σ ∗), H nr ), φ, σ,P) ≥ V ((H k−1(φ, σ ∗), H nr ), φ, σ ∗,P)

with the inequality strict for at least one H nr .

Our concept has three differences from that of Asheim (1997) and Ales and Sleet (2014).
First, they only consider complete information games, hence they do not specify how beliefs are
updated. Second, they consider deviations from any set of subsequent players, whereas we only
check deviations of a single player and her future selves. Third, they check deviations from any
history, not just the one that is followed on-path.

Note that, as is the case with complete information games, Revision-Proof equilibria may
not always exist. In the Supplementary Appendix, we show that Revision-Proof equilibria exist
when the game is continuous at infinity. A game is continuous at infinity if strategies that only
differ in the distant future have negligible impact on the utility of any player. As with Ostrovsky
(2012), this is achieved by shortening the time period tk as k → ∞, so that the discount factor
decreases.

Our main result in the strategic environment is that strongly separable securities aggregate
information in all Revision-Proof equilibria.

Theorem 2. Fix information structure � and bounds [y, y].

33. If k = 0, then we are at the initial time t0 so that a0 denotes each i ∈ I and P(H0, φ) = P .
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(i) If security X is strongly separable under �, then for any �S and any Revision-Proof
equilibrium, information aggregates.

(ii) If security X is not strongly separable under �, then there exist game �S and a Revision-
Proof equilibrium such that information does not aggregate.

6. EXPERIMENT

Our experimental design focused on three dimensions. The first dimension was whether beliefs
about events were precise to reflect EU preferences or imprecise to reflect MEU preferences. The
second dimension related to the type of security that was traded: separable securities, such as
Arrow–Debreu securities,34 or strongly separable securities. The third dimension related to the
initial price of the security set by the uninformed market maker: we allowed for two initial prices.
In summary, we applied a 2X2X2 experimental design to examine the impact on information
aggregation of the market type, security type, and initial price.

6.1. Experimental design

Initially, subjects received 6,000 Experimental Currency Units (ECUs) as a show-up fee. The
conversion was 2,000 ECUs for e1. There were three parts in the experimental instructions.
In the first part, we measured subjects’ risk attitudes. Specifically, we used a variant of the
Eckel–Grossman test (Eckel and Grossman, 2002, 2008), where subjects were presented with
five gambles of varying riskiness and were required to select the one they prefer. In the second
part, the game play took place. The instructions here accommodated the underlying assumptions
about the nature of beliefs, type of security, and initial price. The second part was the only part
that differed across the treatments conducted. In the third part, subjects were asked to complete
a questionnaire about their demographic characteristics. With the conclusion of the experimen-
tal session, subjects were paid in cash by the experimenter. The experimental instructions are
included in the Supplementary Appendix.

In the game-play stage, subjects were recruited to play the role of traders in prediction mar-
kets forecasting the value of a stock.35 The traders’ forecast could take any integer value from
0 to 100 inclusive. The stock value was a binary outcome taking either the value of high (i.e.
100) or low (i.e. 0). To determine the stock value and, thereby, the payoffs of the traders in the
sequential trading (see below for more details), a random draw took place in the beginning of
the round. Specifically, a coloured ball was drawn from a fictional urn containing 90 coloured
balls. The colours of the balls in the urn {red, green, blue} represented states that mapped onto
a high- or low-stock value. Prior to the start of trading, subjects were provided with information
on the colour composition of the urn, the mapping of colours to a high- or low-stock value, a
private signal about the colour of the drawn ball, and the initial price of the stock. The infor-
mation on the colour composition of the urn reflected the market type (unique priors and EU
preferences or multiple priors and MEU preferences), whereas the mapping of colours to a high-
or low-stock value reflected the available type of traded securities (separable or strongly separa-
ble). The information structure, presented to subjects in a tabular form as shown in Table 2, was
fixed and common knowledge in all treatments. This information was explicitly discussed in the

34. See also Healy et al. (2010), Choo et al. (2019, 2022), and Page and Siemroth (2021) for laboratory
experiments that study information aggregation with Arrow–Debreu securities.

35. In lieu of the word “security,” in the experimental instructions, we used the word “stock,” which is
contextually more familiar to most individuals.
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TABLE 2
Information structure

Private information

Ball drawn Trader 1 Trader 2

Red Not blue Not green
Green Not blue Green
Blue Blue Not green

Notes: The table displays the state-conditional signals that were provided to the two traders. Even though the structure
was common knowledge, the trader’s signal in each round was private.

instructions.36 Furthermore, before trading, subjects were also informed of the initial stock price
(0 or 50).

In the treatments with unique priors, subjects were given the exact composition of the urn.
Specifically, they were told that there are 90 balls in the urn, where 30 of those are red, 30
are green, and 30 are blue. This information allowed subjects to formulate precise beliefs about
events and have EU preferences.37 Henceforth, this market is referred to as EU. In the treatments
with multiple priors, subjects were not given the exact composition of the urn. In the treatment
with multiple priors and separable securities, subjects were informed that the urn contains 90
balls, where between 0 and 30 are red balls, between 20 and 70 are green balls, and between
20 and 70 are blue balls. This setting mimics the example in Section 1 (and Section 2), where
one belief puts probability 0 on the first state, which we call “red” in the experiment. In the
treatment with multiple priors and strongly separable securities, subjects were informed that the
urn contains 90 balls, where between 1 and 30 are red balls, between 20 and 69 are green balls,
and between 20 and 69 are blue balls. Notice that, here, we change the composition so that no
belief puts zero probability on the red state. The reason is that since our theory predicts that
there will be information aggregation on the red state, we need to apply prior-by-prior updating
when a red ball is drawn and, therefore, all beliefs must assign strictly positive probability on
red. Providing partial information about the composition of the urn enables ambiguity averse
subjects to formulate multiple priors that give rise to the MEU preferences. Henceforth, this
market is referred to as Amb.

The second treated variable was the type of the security. In the case of separable securities,
we informed subjects that if the red ball was drawn, then, the stock value would be high (i.e.
100), otherwise the stock value would be low (i.e. 0). Hence, this is a standard Arrow–Debreu
security. In the case of strongly separable securities, we informed subjects that if the red or
green ball was drawn, then, the stock value would be high (i.e. 100), otherwise the stock value
would be low (i.e. 0). Note that the security is constant on the partition cells of Trader 1. From
Proposition 2, this is a sufficient condition for the security to be strongly separable.

The initial price of the security was another treated variable. In the myopic setting, theo-
retically, the two security types exhibit the same information aggregation, in every single state,
for all initial prices with the exception of 0; at the 0 initial price, the information aggregation

36. For instance, subjects were told that “if the drawn ball is red, Trader 1 will be informed that the drawn ball
is not blue, whereas Trader 2 will be informed that the drawn ball is not green.” Analogous descriptions were provided
for the other colours.

37. It should be noted that simply providing explicit information about the composition of the urn does not
guarantee that subjects have EU preferences. Rather, the assumption that individuals have EU preferences, in this setting,
is a joint hypothesis of the alternative tests that are being run. We thank an anonymous referee for pointing out the
necessity of this clarification.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/91/6/3423/7588779 by U

niversity of D
urham

 user on 31 January 2025



3446 REVIEW OF ECONOMIC STUDIES

should still be the same across the two security types in the green and blue states, but worse in
the red state for the separable security with ambiguity.38,39 We thus chose to investigate experi-
mentally information aggregation at the initial price of 0 as well as at an initial price where the
two security types perform the same. We chose 50 as the midpoint between 0 and 100.

Subjects were asked to take part in 12 rounds of prediction markets. In each round, traders
made sequential predictions about the stock value. Specifically, Trader 1 would make a predic-
tion in the first trading period, then Trader 2 would provide her prediction in the second trading
period, then Trader 1, and so on and so forth. Although the number of rounds was common
knowledge, the number of trading periods within each round was unknown. However, subjects
were informed that there was a 95% chance of having an extra trading period within a given
round.40

The draws for the number of trading periods within each round were done ex ante to
ensure that all treatments would have the same number of trading periods. The states were
also drawn ex ante and hard coded. We did so to enable a consistent comparison across
treatments without invoking variability in learning effects. The actual numbers of trading
periods in each round were {(4,16,17,12,9,15,12,8,17,16,21,5)}. Thus, the round with the
highest number of trading periods was round #11 with 21 trading periods, and the round
with the lowest number was round #1 with 4 trading periods. The realized states were
{(Red,Blue,Blue,Blue,Red,Blue,Red,Green,Red,Green,Blue,Blue)}.41 The realized colour of the
ball was revealed to the subjects at the end of the respective round. Recall that depending on the
type of security, the green colour, for instance, could reflect a low-stock value (in the case of
separable securities) or a high-stock value (in the case of strongly separable securities). Further-
more, the trading pairs were fixed for the duration of the round, but new pairs were formed in
every new round. This information was common knowledge.

At the beginning of each round, traders were given an endowment of 1,500 ECUs. Payoffs
were calculated based on the MSR at the end of each trading period. Thus, the trader’s payoff
was a function of (1) the stock value (high or low), (2) the trader’s own prediction, and (3) the
previous trader’s reported prediction.

• When the value of the stock was high (i.e. 100), the trader’s payoff was given by the formula:

0.01[(100 − previous trader’s reported prediction)2 − (100 − trader’s prediction)2].
• When the value of the stock was low (i.e. 0), the trader’s payoff was calculated by the

formula:

0.01[(previous trader’s reported prediction)2 − (trader’s prediction)2].
The round payoff was then the summation of all the payoffs of the trading periods in the round.
Crucially, the round payoff was determined at the end of the round when the stock value was

38. In general, a security that does not aggregate information in the myopic case would be difficult to aggregate
information in the strategic case.

39. Note that the failure of information aggregation in the Amb setting with a separable security at the 0 initial
price is special to the particular example we use. In general, information aggregation can fail at multiple initial prices.

40. This assumption is similar to that made in Fréchette and Yuksel (2017), Ioannou and Romero (2014), Vespa
(2019), and Ioannou et al. (2023). It is necessary in order to simulate the infinitely many-periods assumption of the
theoretical setting and to avoid having subjects implement backward induction reasoning.

41. The respective signals (i, j), where i is the signal of Trader 1 and j is the signal of Trader 2, were {(Not Blue,
Not Green),(Blue, Not Green),(Blue, Not Green),(Blue, Not Green),(Not Blue, Not Green),(Blue, Not Green),(Not Blue,
Not Green),(Not Blue, Green),(Not Blue, Not Green),(Not Blue, Green),(Blue, Not Green),(Blue, Not Green)}.
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TABLE 3
Characteristics of the experimental sessions

No. of Subj. No. of Ses. Market type Security type Acronym

Initial price is 0
36 2 EU Separable EUS0
36 2 Amb Separable AmbS0
36 2 EU Str. Separable EUStS0
36 2 Amb Str. Separable AmbStS0
Initial price is 50
36 2 EU Separable EUS50
36 2 Amb Separable AmbS50
36 2 EU Str. Separable EUStS50
36 2 Amb Str. Separable AmbStS50

Notes: In the first column, we provide the total number of participants in each treatment. In the second column, we
provide the number of sessions per treatment. In every session, we had 18 participants. Treatments differed in the market
type, the type of securities traded, and the initial price. The acronyms in the last column consist of the market type (EU
for the market with EU preferences or Amb for the market with MEU preferences), the security type (S for separable
securities or StS for strongly separable securities), and the initial price (0 or 50).

revealed to the traders. It was possible that based on the payoffs of a subject’s predictions in
the round that her funds would go down to zero or even negative.42 In that case, we would
zero their round payoff. Specifically, subjects were told that “if your round payoff is a negative
number, then we will zero your round payoff for that round. In the new round, you will be given
once again your starting 1,500 ECUs.” The final payoff of a trader was the summation of all
the round payoffs of the trader in the 12 rounds played. To ensure that subjects understood the
environment, before the actual game play, they had to complete a quiz with 15 questions.

The experimental sessions took place in February of 2019. For each treatment, we con-
ducted two sessions. The 288 subjects were recruited from the database of the Université Paris
1 Panthéon–Sorbonne. We sent emails publicizing the experiment; interested individuals replied
by email. We had participants from a variety of majors, such as business, computer science,
economics, history, political science, engineering, biology, finance, art, physics, and mathemat-
ics. Participants were allowed to participate in only one session. The sessions lasted around an
hour and a half. Average earnings per participant were e12.90. The experimental codes were
programmed using the experimental software z-Tree (Fischbacher, 2007). Some general charac-
teristics of the sessions are shown in Table 3. Note that each treatment is denoted by an acronym.
In particular, the acronym (market type, security type, initial price) consists of the market type
(EU for the market with EU preferences or Amb for the market with MEU preferences), the
security type (S for separable securities or StS for strongly separable securities), and the initial
price (0 or 50).

6.2. General hypotheses

Recall that we aim to investigate the impact on information aggregation of three dimensions.
The first is the market type (unique priors and EU preferences or multiple priors and MEU
preferences). The second relates to the type of security that is traded (separable or strongly
separable). The third relates to the initial price announcement of the uninformed market maker
(0 or 50).

42. In the actual experiments, no subject lost the entire endowment of the round.
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To measure the degree of information aggregation in a market, we use the intrinsic value
of the security as a benchmark. This is the most natural candidate to serve as a benchmark for
two main reasons. First, by construction, the intrinsic value of the security is always revealed if
the private information of the two traders is aggregated. Second, Ostrovsky (2012) showed that
in any environment with EU preferences, the predictions of Bayesian Traders always converge
to the intrinsic value for separable securities. The same holds true in environments with MEU
preferences and strongly separable securities (Theorems 1 and 2). We therefore use the intrinsic
value of the security as our baseline and measure its absolute difference (AD) in distance from
the final prediction. We say that, given a state (i.e. the colour of the drawn ball in the experiment),
information aggregation in market B is at least as good as that in market A, if the AD in market
A is greater or equal to that in market B.

We now formulate our hypotheses. Hypothesis 1 extends and interprets the main result of
Ostrovsky (2012) to an environment with ambiguity aversion assuming an initial price of 0.

Hypothesis 1. Assuming an initial price of 0 and separable securities, information aggregation
in the Amb market is at least as good as that in the EU market regardless of the colour of the
drawn ball.

Hypothesis 2 is a direct implication of Theorems 1 and 2, which show that strongly separable
securities always aggregate information, in both EU and Amb markets with myopic or strategic
traders. Here, it is formulated assuming an initial price of 0.

Hypothesis 2. Assuming an initial price of 0 and strongly separable securities, information
aggregation in the Amb market is at least as good as that in the EU market regardless of the
colour of the drawn ball.

We now test the degree of information aggregation of the two security types when the initial
price is 50.

Hypothesis 3. Assuming an initial price of 50 and separable securities, information aggregation
in the Amb market is at least as good as that in the EU market regardless of the colour of the
drawn ball.

Hypothesis 4. Assuming an initial price of 50 and strongly separable securities, information
aggregation in the Amb market is at least as good as that in the EU market regardless of the
colour of the drawn ball.

The next pair of hypotheses investigates whether separable and strongly separable securities,
respectively, are prone to manipulation by the uninformed market maker. Note that we again
interpret and extend the main result of Ostrovsky (2012) to an environment with ambiguity
aversion. Specifically, we test whether, holding the Amb market fixed, changing the initial price
from 0 to 50 has any impact on the degree of information aggregation of each security type.

Hypothesis 5. In the Amb market with separable securities and for any colour of the drawn
ball, the information aggregation under an initial price of 50 is at least as good as that under
an initial price of 0.

Hypothesis 6. In the Amb market with strongly separable securities and for any colour of the
drawn ball, the information aggregation under an initial price of 50 is at least as good as that
under an initial price of 0.
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FIGURE 1
Box plots for initial price of 0

Notes: We display the box plots of the ADs across the market and security types conditional on the realized state (red, green, blue) when
the initial price is 0.

6.3. Results

6.3.1. Descriptive statistics. We report next some descriptive statistics about the absolute
difference (AD) in distance of the final prediction from the intrinsic value of the security. On one
hand, when the stock value is low (i.e. in the green and blue states of the separable securities, and
in the blue state of the strongly separable securities), the median AD also indicates the median
last reported prediction. On the other hand, when the stock value is high (i.e. in the red state of
the separable securities, and in the red or green states of the strongly separable securities), one
needs to subtract the median AD from 100 to get the median last reported prediction.

In Figure 1, we display the box plots of the ADs across the market types when the initial
price is 0, and in Figure 2, we display the box plots when the initial price is 50. It is evident
from the box plots that there was a lot of variability in the reports of the subjects. This could
be attributed to the nature of the game which allows for strategic behaviour, and thus results in
noisier predictions.

Looking at the median ADs, typically the red state had the largest value, then the green state
and, finally, the blue state. For instance, in the treatment EUS0, the median AD for the red state
was 30 (i.e. the median last reported prediction was 70), the median AD for the green state
was 15, and for the blue state it was 10. The last two values were also the median last reported
predictions. There was also one treatment where the median AD of the red state was equal to
that of the green state; specifically, in the treatment AmbStS0, the red and green states had a
median AD of 20. In another treatment, EUStS0, the green state and the blue state both had a
median AD of 5. The highest median AD was 50 in treatments AmbS0 and AmbS50 for the red
states. The fact that subjects consistently had trouble aggregating information with the red state
should not be surprising given that it was the only state that did not explicitly reveal the colour
of the drawn ball to any trader, in contrast to the green and blue states.

6.3.2. Information aggregation. To investigate the impact on information aggregation of
the treated variables, we perform the following statistical analysis. In particular, we use the
Mann–Whitney test, where the H0 states that the AD in the EU market is greater or equal to
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FIGURE 2
Box plots for initial price of 50

Notes: We display the box plots of the ADs across the market and security types conditional on the realized state (red, green, blue) when
the initial price is 50.

the AD in the Amb market when fixing the realized state. Thus, rejecting the H0 signifies that
information aggregation is significantly worse in the Amb market relative to that in the EU
market. The p-values are displayed in Table 4.

The first hypothesis dealt with the case of separable securities and initial price of 0. The first
result is formalized next.

Result 1. For an initial price of 0 and separable securities, information aggregation in the Amb
market is at least as good as that in the EU market when the drawn balls are green or blue.
When the drawn ball is red, information aggregation in the Amb market is significantly worse.

Support. Contrary to our hypothesis, we find that in the red state, information aggregation in
the Amb market is significantly worse (p-value is 0.001). Therefore, the H0 can be rejected at
the conventional 5% level of statistical significance in the red state.

Next, we investigate the hypothesis of strongly separable securities when the initial price is
0. Our second result sheds light to the strength of the strong separability condition.

Result 2. For an initial price of 0 and strongly separable securities, information aggregation
in the Amb market is at least as good as that in the EU market regardless of the colour of the
drawn ball.

Support. The p-values in the red, green and blue states are 0.107, 0.133 and 0.195, respectively.
We thus fail to reject the H0.

Hypotheses 3 and 4 investigate the effect on information aggregation of separable and
strongly separable securities, respectively, but this time for an initial price of 50.

Result 3. For an initial price of 50 and separable securities, information aggregation in the Amb
market is at least as good as that in the EU market regardless of the colour of the drawn ball.

Support. We fail to reject the H0 as the p-values in the red, green, and blue states are 0.394,
0.342, and 0.265, respectively.
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TABLE 4
Mann–Whitney tests on information aggregation

Initial price: 0

Separable Strongly separable
Alternative hypothesis: ADi < AD j

p-values

Panel A
Red state
EU versus Amb 0.001 0.107
Green state
EU versus Amb 0.479 0.133
Blue state
EU versus Amb 0.447 0.195

Panel B Initial price: 50

Red state
EU versus Amb 0.394 0.316
Green state
EU versus Amb 0.342 0.167
Blue state
EU versus Amb 0.265 0.262

Notes: We utilize the Mann–Whitney tests to determine whether the AD of the security in the EU market is greater or
equal to its AD in the Amb market when fixing the realized state. In Panel A, we report the p-values of the comparisons
in the ADs when the initial price is 0. In Panel B, we report the p-values of the comparisons in the ADs when the initial
price is 50.

Result 4. For an initial price of 50 and strongly separable securities, information aggregation
in the Amb market is at least as good as that in the EU market regardless of the colour of the
drawn ball.

Support. The p-values in the red, green and blue states are 0.316, 0.167 and 0.262, respectively.
Hence, we fail to reject the H0.

Hypotheses 5 and 6 test the degree of information aggregation in an environment with ambi-
guity for separable and strongly separable securities, respectively, when the initial price changes.
For the analysis, we again use the Mann–Whitney test, where the H0 states that, in the Amb mar-
ket when fixing the realized state, the AD of the security when the initial price is 0 is greater or
equal to the AD of the security when the initial price is 50. Therefore, rejecting in this context
the H0 means that information aggregation is significantly worse under an initial price of 50.

Result 5. In the Amb market with separable securities, information aggregation under an initial
price of 50 is at least as good as that under an initial price of 0 in the red and green states, but,
in the blue state, information aggregation under an initial price of 50 is significantly worse.

Support. None of the p-values is statistically significant in the red and green states (p-values are
0.144 and 0.194, respectively). However, in the blue state, the p-value is 0.068; thus, we reject
the H0 at the 10% level of statistical significance in this state.

Result 6. In the Amb market with strongly separable securities, information aggregation under
an initial price of 50 is at least as good as that under an initial price of 0 regardless of the colour
of the drawn ball.

Support. The p-values in the red, green and blue states are 0.111, 0.186 and 0.231, respectively.
We thus fail to reject the H0.
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7. CONCLUDING REMARKS

In 1969, Clive W. J. Granger and John M. Bates established in their seminal study that com-
bining different forecasts was more accurate than trying to find the best one (see Bates and
Granger, 1969). Those discoveries, combined with the earlier work of Friedrich Hayek, laid the
foundations of prediction markets. Our primary purpose in this study has been to investigate the
information aggregation properties of prediction markets with ambiguity-averse traders that have
imprecise beliefs. The inability of prediction markets (financial markets in general) to aggregate
information when ambiguity is present is a negative result.

We find theoretically that separable securities, which aggregate information in environments
with precise beliefs and EU preferences are no longer sufficient when beliefs are imprecise. This
implies that utilizing prediction markets to get a better prediction for events that are hard to quan-
tify might backfire as traders could converge to the wrong price of the security. We introduce a
new class of strongly separable securities, and show that they aggregate information in an envi-
ronment with ambiguity, irrespectively of whether traders play strategically or not. Similar to
Ostrovsky (2012), we study information aggregation only for sufficiently high t without exam-
ining what happens to prices in the middle of the game where it is possible, in an equilibrium,
to diverge widely from the intrinsic value of the security.

We take our testable predictions to the laboratory where we simulate trading in prediction
markets between pairs of subjects. We find that in environments with imprecise beliefs and
ambiguity-averse individuals, separable securities do not aggregate information and are prone
to manipulation by the market maker’s initial price announcement. In sharp contrast, in the
same environments, strongly separable securities do aggregate information and are resilient to
such manipulation. The results for strongly separable securities are in line with the theoretical
predictions.

Our emphasis and concern for dynamic prediction markets with ambiguity aversion is not
only partisan, but also culminates in a profound result for asset markets in general. Proposition 3
states that there is no way to build a securitization scheme that will ensure information revelation
for all information structures; that is, given that strongly separable securities are both sufficient
and necessary for information aggregation, we show that there exists no security that can deliver
information aggregation for all information structures. This is a negative result not only for the
ability of prediction markets to aggregate information with ambiguity, but of financial markets
in general.

The article leaves several open questions for future research. First, to alleviate the negative
result of Proposition 3, a natural next question is whether a subset of strongly separable securities
can deliver information aggregation for large classes of information structures that are of interest.
Second, given that a fixed security in prediction markets cannot ensure information aggregation
for all information structures, is there a different market design that can? A third direction for
future research is to examine whether strongly separable securities aggregate information under
ambiguity in the widely used model of Kyle (1985), which includes noise traders and competitive
market makers. In that model, the question of information aggregation is intertwined with the
question of information revelation so that even with one informed trader, it is not straightforward
that her information will be eventually revealed.43

43. Ostrovsky (2012) characterizes separable securities in that framework as well, whereas Lambert et al. (2018)
extend it to informationally complex environments to show that, under some conditions, prices in large markets aggregate
all available information. Information aggregation has also been studied in the context of other settings, such as elections
(see Barelli et al., 2020; Ekmekci and Lauermann, 2020).
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APPENDIX

A. Proofs for the non-strategic environment

In this section, we present the proofs for the characterization of strongly separable securities and the information
aggregation in the non-strategic environment.

Proof of Lemma 1. Where convenient, we use the notation s(y)(.) ≡ s(y, X (.)). We first show that arg max
y∈[y,y]

min
p∈P

E p[s(y) − s(z)] does, in fact, exist. This is true because s is a continuous function, therefore, min
p∈P E p[s(y) − s(z)]

is upper semicontinuous (as infimum of continuous functions) as a function of y. Since [y, y] is compact, a maximum
exists and the set arg max

y∈[y,y]
min
p∈P E p[s(y) − s(z)] is not empty.

Next, we define V to be the convex hull of {s(y)}y∈[y,y]. The set {s(y)}y∈[y,y] is compact in R
l because s

is continuous in y and [y, y] is compact, hence V is compact. Consider the function G : P × V −→ R defined by
G(p, v) = E p[v − s(z)]. The function is linear in p and affine in v. Moreover, it is continuous both in p and in v.

By Sion’s Minimax Theorem (Berge, 1963, p. 210), there exists p∗ ∈ P and v∗ ∈ V such that for all (p, v) ∈ P ×
V , E p∗ [v − s(z)] ≤ E p∗ [v∗ − s(z)] ≤ E p[v∗ − s(z)]. Then, we get that min

p∈P max
v∈V

E p[v − s(z)] = max
v∈V

min
p∈P E p[v −

s(z)] and it is achieved at p = p∗, v = v∗.
For a fixed p, as s is a strictly proper scoring rule, the unique maximizer of E p[v − s(z)] over V is s(E p[X ]) so that

v∗ = s(E p∗ [X ]). Hence, we may conclude that min
p∈P max

y∈[y,y] E p[s(y) − s(z)] = max
y∈[y,y] min

p∈P E p[s(y) − s(z)] and it is

achieved at p = p∗, y = E p∗ [X ]. This proves the second point.
We claim that y = E p∗ [X ] is a unique element of arg max

y∈[y,y]
min
p∈P E p[s(y, X (ω)) − s(z, X (ω))]. To see that, let

y′ �= E p∗ [X ]. Then,

min
p∈P E p[s(y′, X (ω)) − s(z, X (ω))] ≤ E p∗ [s(y′, X (ω)) − s(z, X (ω))]

< E p∗ [s(E p∗ [X ], X (ω)) − s(z, X (ω))]
= max

y∈[y,y] min
p∈P E p[s(y, X (ω)) − s(z, X (ω))].

Hence, the maximizer is unique.
For the third claim, note that E p[s(z, X) − s(z, X)] = 0 for all p ∈ P , hence max

y∈[y,y] min
p∈P E p[s(y, X) −

s(z, X)] ≥ 0. As z = E p[X ] for some p ∈ P , we have that p ∈ arg min
p∈P

max
y∈[y,y] E p[s(y, X) − s(z, X)] and y∗ = z.

Proof of Proposition 2. Suppose that X is not strongly separable for P and v. Then, from Lemma 1, we have that for
each ω ∈ ⋃

p∈P
Supp(p) = E and for each i ∈ I , E p[X (ω) − v | �i (ω)] = 0 for some p ∈ P ignoring, without loss of

generality, states ω′ for which X (ω′) = v . Given that Supp(p) ⊆ E , it cannot be that for some Trader i, state ω ∈ E
and λ ∈ R, (X (ω′) − v)λ > 0 for all ω′ ∈ �i (ω) ∩ E .

Conversely, suppose that for some v ∈ R and E ⊆ {ω ∈ � : X (ω) �= v}, for any Trader i and state ω ∈ E , we
have both (X (ω′) − v) > 0 and (X (ω′′) − v) < 0 for some ω′, ω′′ ∈ �i (ω) ∩ E . Then, for each i there exists p′′ with
Supp(p′′) = E such that E p′ ′ [X (ω) − v | �i (ω)] = 0. To see this, let E1 = {ω′ ∈ �i (ω) : X (ω′) > v} with k1 ele-
ments and E2 = {ω′ ∈ �i (ω) : X (ω′) < v} with k2 elements. Then, k

∑
ω′∈E1

X (ω′) + (1 − k)
∑

ω′∈E2

X (ω′) is strictly

above v for big enough k ∈ (0, 1) and strictly below v for small enough k. From the Intermediate Value Theorem, for
some k, we have E p′ [X (ω) − v] = 0, where p′ assigns k

k1
to each state ω′ ∈ E1 and k

k2
to each state ω′ ∈ E2. We can

then extend p′ to a belief p′′ with full support on E such that its conditional given �i (ω) is p′.
Collect all these beliefs p′′ for each i and ω ∈ E , letting P be their convex hull. Note that P is regular with respect

to each �i . From the third result of Lemma 1, given that the previous announcement is v, every trader at each state ω

will also announce v. Hence, X is not strongly separable for v and P , a contradiction.

Proof of Lemma 2. Given a value v ∈ R and a security X, let �X �=v = {ω ∈ � : X (ω) �= v}. We use induction on the
number of securities. For k = 1, take any v and any event E ⊆ �X1 �=v . There are two cases. First, there exist ω, ω′ such
that �1(ω)

⋂
E and �1(ω′) ⋂

E are non-empty and disjoint. Second, E ⊆ �1(ω) for some ω. By construction, at each
state ω ∈ E , Trader 1 knows the value of security X1, hence we have that for all ω′ ∈ �1(ω) ∩ E , (X (ω′) − v)λ > 0 for
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some λ ∈ R. Using Proposition 2, X1 is strongly separable. Note that in the first case, if v is strictly between X1(�1(ω))

and X1(�1(ω′)), there is a Trader i (in particular 1) who knows at state ω that the value of X1 is strictly above v, and in
some other state ω′ that the value is strictly below v. We will use this fact as our induction hypothesis.

Suppose that Xk is strongly separable. We show that Xk+1 is also strongly separable. Take any v and E ⊆ �Xk �=v .
There are two cases. First, there exist ω, ω′ such that

⋂
i=1,...,k

�i (ω)
⋂

E and
⋂

i=1,...,k
�i (ω

′) ⋂
E are non-empty

and disjoint. From the induction hypothesis, if v is strictly between Xk
( ⋂

i=1,...,k
�1(ω)

)
and Xk

( ⋂
i=1,...,k

�1(ω′)
)
,

there is a Trader i = 1, . . . , k who knows at state ω that the value of Xk is strictly above v and a possibly different
Trader j = 1, . . . , k who knows in some other state ω′ that the value is strictly below v. For any value Xkv ′v ′′ >

vω′ Xkv ′′ Xk
( ⋂

i=1,...,k
�1(ω)

)
Xk

( ⋂
i=1,...,k

�1(ω′)
)
Xk

By construction, when going from security Xk to security Xk+1 the ordering of states is preserved. That is, if
Xk (ω) < Xk (ω′), then Xk+1(ω) < Xk+1(ω′). The reason is that, for each ω ∈ �, Xk assigns the same value to all
states in

⋂
i=1,...,k

�i (ω), whereas Xk+1 partitions
⋂

i=1,...,k
�i (ω) using the elements of k + 1’s partition and assigns

different values to each, respecting the order for states ω, ω′ such that Xk (ω) �= Xk (ω′). This implies that for any v,
there is Trader i and state ω ∈ E such that i knows that the value of Xk+1 is above v or a possibly different trader who
knows that it is below v.

The second case is that E ⊆ ⋂
i=1,...,k

�i (ω) for some ω. By construction, Xk+1 partitions
⋂

i=1,...,k
�i (ω) using the

elements of k + 1’s partition and assigns different values to each. Moreover, given E, Trader k + 1 knows the value of
Xk+1 at every state in E. If v ∈ [min

ω∈E
Xk+1(ω), max

ω∈E
Xk+1(ω)], then Trader k + 1 knows whether the value of Xk+1 is

above or below v at some state in E. The same is true if v /∈ [min
ω∈E

Xk+1(ω), max
ω∈E

Xk+1(ω)].
We have shown that in all cases, for any v and any E ⊆ �Xk �=v , there is a Trader i who knows at some state

ω ∈ E whether the value of Xk+1 is strictly below or strictly above v. Hence, we have that for all ω′ ∈ �i (ω) ∩ E ,
(X (ω′) − v)λ > 0 for some λ ∈ R. Using Proposition 2, Xk+1 is strongly separable.

Proof of Corollary 1. Take any v and non-empty event E ⊆ {ω ∈ � : X (ω) �= v}. We then have that there exist Trader
i and state ω ∈ E such that �i (ω) ∩ E ⊆ X−1(k) for some k. By construction of E, k �= v . This implies that for some
λ ∈ R, (X (ω′) − v)λ > 0 for all ω′ ∈ �i (ω) ∩ E . Using Proposition 2, the security is strongly separable.

Proof of Proposition 3. Take any (non-constant) security X and consider the partition X generated by its values: for
each ω ∈ �, ω′ ∈ X (ω) if X (ω) = X (ω′). The partition X has at least two partition cells. Let A be the partition cell
generated by the lowest value of X, call it vA , and B the partition cell generated by the highest value of X. Since � has
at least three states, we assume, without loss of generality, that the complement of A, denoted Ac , has at least two states
(if not, then the complement of B must have at least two states and the same argument applies).

Consider an information structure with two traders. Trader 1’s partition cell at state a ∈ A also includes state b ∈ Ac

so that �1(a) = {a, b}. For any other state ω �= a, b, �1(ω) = {ω}. Trader 2’s partition cell at a ∈ A also contains state
c ∈ Ac so that �2(a) = {a, c} with b �= c. For any other state ω �= a, c, �2(ω) = {ω}. Hence, the join of the two traders’
partitions consists of singleton sets.

Let v be strictly higher than vA and strictly lower than all other values of X. If we let event E = {a, b, c} ⊆ {ω ∈
� : X (ω) �= v} = �, then �1(a) ∩ E = {a, b} and �2(a) ∩ E = {a, c}. For v, E and state ω = a, we have that for
i = 1, 2 there is no λ ∈ R such that for all ω′ ∈ �i (ω) ∩ E , (X (ω′) − v)λ > 0. The reason is that both traders consider
possible a state where X has a value strictly higher than v and a state where X has a value strictly lower than v. Applying
Proposition 2, we have that X is not strongly separable.

Proof of Theorem 1. (⇐) Suppose X is strongly separable. By construction, F0(ω) ⊇ F1(ω) ⊇ · · · ⊇ Fk (ω). As � is
finite, there exists tk such that Fk′

(ω) = Fk (ω) for every tk′ ≥ tk . We denote this set by F(ω) ≡ Fk (ω).
Define the function g(E p[X ]) = min

q:Eq [X ]=E p[X ] Eq [s(Eq [X ], X) − s(z, X)]. We first show that g is strictly convex

in {E p[X ] : p ∈ �(�)}. Let g(k) = E p[s(E p[X ], X) − s(z, X)] and g(m) = Eq [s(Eq [X ], X) − s(z, X)]. We have

g(ak + (1 − a)m) = g(aE p[X ] + (1 − a)Eq [X ]) = g(Eap+(1−a)q [X ])
= min

r :Er [X ]=Eap+(1−a)q [X ] Er [s(Er [X ], X) − s(z, X)]

≤ Eap+(1−a)q [s(Eap+(1−a)q [X ], X) − s(z, X)]
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= aE p[s(Eap+(1−a)q [X ], X) − s(z, X)] + (1 − a)Eq [s(Eap+(1−a)q [X ], X) − s(z, X)]
< aE p[s(E p[X ], X) − s(z, X)] + (1 − a)Eq [s(Eq [X ], X) − s(z, X)]
= ag(k) + (1 − a)g(m).

Note that g(E p[X ]) ≥ 0 for all E p[X ] and its unique minimizer is at z, where g(z) = 0.44 We then have that g is
decreasing at [a, z] and increasing at [z, b], where a = min{E p[X ] : p ∈ �(�)} and b = max{E p[X ] : p ∈ �(�)}.
From Lemma 1, the myopic announcement of Trader i with beliefs PF(ω)∩�i (ω′) and previous announcement z is
given by dP (F(ω) ∩ �i (ω

′), z) = arg min
x∈{E p [X ]:p∈PF(ω)∩�i (ω′)}

g(x).

Define Ai
ω′ = {E p[X ] : p ∈ PF(ω)∩�i (ω′)} for every i = 1, . . . , n and ω′ ∈ F(ω). If z (the unique minimizer

of g(E p[X ]) for all p ∈ �(�)) is less than or equal to the minimum value of Ai
ω′ , then that minimum value is the

minimizing value of g(x) given PF(ω)∩�i (ω′) and therefore the myopic announcement. Similarly, if z is greater or

equal to the maximum value of Ai
ω′ , then that maximum value is the minimizing value of g(x) given PF(ω)∩�i (ω′)

and therefore the myopic announcement. If z is inside Ai
ω′ , then the myopic announcement is z. This is due to the strict

convexity of g and the fact that z is the global minimum.
Note that for all t ≥ tk , Ai

ω′ is constant for all i and ω′ ∈ F(ω) because information is no longer updated. We now
show that traders agree on the myopic announcement. There are three cases.

Case 1: For some i, Ai = ⋂
ω′∈Fk (ω)

Ai
ω′ = ∅.

This implies that Ai
ω′ ∩ Ai

ω′ ′ = ∅ for some states ω′, ω′′ ∈ F(ω). From Lemma 1, Trader i will either make an

announcement in Ai
ω′ (if she considers ω′ to be true) or Ai

ω′ ′ (if she considers ω′′ to be true). As Ai
ω′ ∩ Ai

ω′ ′ = ∅, either
ω′ or ω′′ will be revealed not to be true, which means that not all information has been aggregated yet, a contradiction.

Case 2: Ai �= ∅ for all i ∈ I and
⋂
j∈I

A j �= ∅.

There are two subcases. First, there is v such that for all ω′ ∈ F(ω), X (ω′) = v . From Lemma 1, the myopic
announcement for every Trader is v, hence Traders agree on the announcement. Second, there are two states ω′, ω′′ ∈
F(ω) such that X (ω′) �= X (ω′′). This means that the first part of Definition 3 of a not strongly separable security is satis-
fied for PF(ω). Let z ∈ ⋂

j∈I
A j �= ∅. From Lemma 1, part (iii), if the previous announcement is z and z ∈ Ai , then Trader

i will also announce z. We then have that dPF(ω)
(�i (ω

′), z) = z for all i = 1, . . . , n and ω′ ∈ ⋃
p∈PF(ω)

Supp(p). But

this implies that X is not strongly separable, a contradiction.

Case 3: Ai �= ∅ for all i ∈ I but
⋂
j∈I

A j = ∅.

We first make two observations. From the second property of Lemma 1, each Trader j makes an announcement in
A j

ω′ for some ω′ ∈ F(ω). As all information has been aggregated after tk , any such myopic announcement must be in

A j . Second, the third property of Lemma 1 shows that if the previous announcement of Trader i − 1 is in Ai , then Trader
i will repeat the same announcement. Combining these two observations, we have that if the announcement changes,
from Trader i − 1 to Trader i, then it must be that Trader i is announcing either the right-hand side extreme point of
Ai (i.e. the maximum) or the left-hand side extreme point of Ai (i.e. the minimum). In that case, if she announces the
maximum (minimum) of Ai , then this is equal to the maximum (minimum) of Ai

ω′ for all ω′ ∈ F(ω), otherwise there
would be further information aggregation.

Define i0 = min{i : ⋂
j∈{1,...,i}

A j = ∅}. Given that
⋂
j∈I

A j = ∅, i0 exists. Moreover, Ai0 has an empty intersection

with
⋂

j∈{1,...,i0−1}
A j and, without loss of generality, suppose that Ai0 is on the left-hand side of

⋂
j∈{1,...,i0−1}

A j . Given

that
⋂

j∈{1,...,i0−1}
A j is an interval, we can conclude that there are Ai1 and Ai2 such that one of them defines the left-hand

side extreme point of the interval and the other one the right-hand side extreme point.

44. We can observe that there exists p ∈ �(�) such that E p[X ] = z. In addition, the set {E p[X ] : p ∈ P} is an
interval as a convex and closed set of the real numbers.
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From the second property of Lemma 1, each Trader j makes an announcement in A j . Hence, for any value yk−1,
trader i3 = max{i1, i2} makes a prediction belonging in the set

⋂
j∈{1,...,i0−1}

A j . For the same reason, any subsequent

announcement up to i0 − 1 also belongs to
⋂

j∈{1,...,i0−1}
A j . From the convexity of g and the fact that Ai0 is to the left of

that interval, the prediction of i0 is always the right-hand side extreme point of Ai0 , which we denote by v0. Moreover,
it cannot be that the right-hand extreme point of Ai0 is different from the right-hand extreme point of Ai0

ω′ for some
ω′ ∈ F(ω), otherwise it would be revealed that ω′ is not true.

As i3 makes some announcement vi3 > v0 and i3 will announce in the next round, it must be that some Trader j
after i0 will change the announcement to some v ′ > v0. Then, it must be that v ′ is the left-hand extreme point of A j .
Using the same argument as in the previous paragraph, it cannot be that the left-hand extreme point of A j is different
from the left-hand extreme point of A j

ω′ for some ω′ ∈ F(ω), otherwise it would be revealed that ω′ is not true.
We then have that for all p ∈ PF(ω) for all ω′ ∈ F(ω), E p[X | �i0 (ω′)] ≤ v0 < v ′ ≤ E p[X | � j (ω

′)]. Inte-
grating over all ω′ ∈ F(ω) and since F(ω) is common knowledge at ω, we have that E p[X ] ≤ v0 < E p[X ] for all
p ∈ PF(ω), a contradiction.

(⇒) Suppose that for any regular �M , information aggregates so that yk (ω) = dP (�ak (ω) ∩ Fk−1(ω), yk−1) −→
X (ω) for every ω ∈ ⋃

p∈P
Supp(p). We show that, for any regular P and v ∈ R, if (ii) in Definition 3 is satisfied, then

(i) is violated.
Suppose there exist regular P and v ∈ R such that dP (�i (ω), v) = v for all i = 1, . . . , n and ω ∈ ⋃

p∈P
Supp(p).

Consider regular �M (�, I, �, X,P, y0, y, y, s) with initial announcement y0 = v . Then, the predictions ytk (ω), k =
0, 1, . . ., are equal to v for all ω ∈ ⋃

p∈P
Supp(p). If we have X (ω) �= v for some ω ∈ ⋃

p∈P
Supp(p), then at ω all

traders agree on v, which is the wrong value of the security. This implies that there is no information aggregation, a
contradiction. Hence, condition (i) in Definition 3 is violated and X is strongly separable.

B. Proofs for the strategic environment

Before proving Theorem 2, we state the following auxiliary result, which shows that a trader’s continuation value is
always greater than her one-period payoff.

Proposition 4. In a Revision-Proof equilibrium, the continuation value for Trader i who plays at tk is at least as much
as her utility from the one-period payoff from playing the myopic best response.

Proof. We construct a deviation strategy that guarantees a continuation value at least as much as that of the one-period
payoff from playing the myopic strategy. We will show that for each tk , the continuation payoff of Trader i who makes
the announcement is weakly more than χk , her one-period payoff from playing the myopic strategy at tk .

We define a deviation strategy σ = (σi , σ
∗−i ), where all traders j �= i follow the equilibrium strategy σ∗ and σi is

identical to σ∗
i up to time tk−1. At tk , σi specifies that Trader i plays the myopic best response. Given that i deviates

and all other traders stick to the equilibrium strategy σ∗, let H1, . . . , Hm be the possible paths of announcements by all
other traders j �= i from tk to tk+n−1, together with the common history of announcements up to tk−1. They are finitely
many because we consider mixing over finite actions. At tk+n , σi specifies that:

(a) If V (Hm , φ, σ, P) ≥ 0 by playing what σ∗
i prescribes at Hm , then σi coincides with σ∗ in every succeeding

information set,
(b) If V (Hm , φ, σ,P) < 0, then σi repeats the previous trader’s prediction.

If (a) occurs, then σi coincides with σ∗ in every succeeding information set, so Trader i follows the recommendation
of σi . If (b) occurs, then Trader i repeats the previous announcement and in every succeeding information set, σi is
determined using the two cases (a) and (b). For every other information set not specified by the above procedure, σi is
identical to σ∗

i .
We now show that at (b), Trader i will follow the recommendation to repeat the previous announcement and get a

period payoff of zero. This is true if her continuation value, excluding her current period payoff, is weakly positive, as
long as all future selves follow σ . We now show that this is true at all t ≥ tk . We show this for t = tk , without loss of
generality, and note that, from i’s perspective, there are two types of subsequent paths, given that everyone follows σ .
The first type is a path that specifies some zero payoffs initially, and at some time t > tk+n the continuation value of
i’s future self is weakly positive by playing σ∗ onwards. The second type is a path where the future selves just repeat
the previous announcement because from σ∗ they would get a negative continuation value, hence the payoffs along this

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/91/6/3423/7588779 by U

niversity of D
urham

 user on 31 January 2025



Galanis et al. INFORMATION AGGREGATION UNDER AMBIGUITY 3457

path are zero always. This means that all paths have a weakly positive continuation value at some time t > tk , and the
previous payoffs between tk and t are zero. Hence, it is without loss of generality to assume that the future selves at
period tk+n and at each path, compute weakly positive continuation value. However, because of Dynamic Inconsistency
the continuation value at some path at tk+n may be evaluated at a different prior than the one that Trader i uses at tk to
evaluate her own continuation value. The collection of all paths generates a partition � of state space � and σ generates
a sequence of acts fm , for each t > tk . We therefore have, for each E ∈ �, and from the perspective of the future selves
in time tk+n , that

0 ≤ min
p∈P E pE

∞∑
m=0

βnmu( fk+n+nm ) = EqE

∞∑
m=0

βnmu( fk+n+nm ).

At every partition cell E, the future self at tk+n chooses a potentially different belief qE . Let p be the belief that Trader
i uses at tk to compute her continuation value. We then have that

0 ≤ EqE

∞∑
m=0

βnmu( fk+n+nm ) ≤ E pE

∞∑
m=0

βnmu( fk+n+nm ).

By multiplying with β and p(E), and adding over all E ∈ �, we have

0 ≤ β
∑
E∈�

p(E)E pE

∞∑
m=0

βnmu( fk+n+nm ) ≤ E p

∞∑
m=0

βnm+1u( fk+n+nm ).

This shows that the continuation value at any t ≥ tk is weakly positive if Trader i repeats the previous announcement at
t and gets a period payoff of zero. Therefore, she will always follow the recommendation at (b), if by sticking to σ∗ her
continuation value is strictly negative.

At tk , Trader i plays her myopic best response Eq [X ] and gets a period payoff of χk (q), which is weakly pos-
itive, where q solves min

q∈P χk (q). Her continuation value is evaluated at some p, and therefore, we have χk (q) ≤
χk (p). Because E p

∑∞
m=0 βnm+1u( fk+n+nm ) ≥ 0, we have χk (p) + E p

∑∞
m=0 βnmu( fk+n+nm ) ≥ χk (q). Hence,

her continuation value is always weakly greater than her period payoff by playing the myopic best response.

Proof of Theorem 2. For part (i), the proof closely follows that of Ostrovsky (2012) and proceeds in four steps. The
main innovations are in Step 1, where the arguments for establishing the lower bound of the instant opportunity are very
different, and in Step 4, where we need to account for the multiplicity of beliefs.

Step 1: We show that if the security is strongly separable and its value is not constant for each state in the support
of the set of beliefs, at least one trader can achieve a strictly positive payoff at some state and a weakly positive payoff
at all other states, whatever the previous announcement.

Let Pk be the beliefs over � of an outside observer who hears the announcements up to tk−1 and updates the initial
set of beliefs P given the equilibrium strategies but has no private information about �. Let Supp(Pk ) be the union of
the supports of all p ∈ Pk . For each ω ∈ Supp(Pk ) and i ∈ I , define Aik

ω = {E p[X | �i (ω)] : p ∈ Pk } to be the set
of all myopic best responses of Trader i and let min Aik

ω ( max Aik
ω ) be the minimum (maximum) value. We first show

that, in any equilibrium, the announcement of Trader i gets arbitrarily close to the announcement of Trader i − 1 and
to Aik

ω , for all ω ∈ Supp(Pk ), as tk → t∞. Note that Aik = ⋂
ω∈Supp(Pk )

Aik
ω cannot be empty, otherwise the outside

observer would understand that some state ω is not true, because the announcements do not get arbitrarily close to Aik
ω

as tk → t∞. Hence, the announcements get arbitrarily close to Aik as well.

Lemma 3. For any ε > 0 and Trader i, there is period t ′ such that for all tk > t ′ where i makes an announcement,
|yk − yk−1| < ε and yk ∈ [min Aik

ω − ε, max Aik
ω + ε], for all ω ∈ Supp(Pk ).

Proof. We first show that, for any ε > 0, if Trader i − 1’s announcement z is outside [min Aik
ω − ε, max Aik

ω + ε],
for some state ω and time tk , then i’s expected payoff from playing her myopic best response is greater than
some χk > 0. For all z < min Aik

ω − ε, i’s myopic best response at ω is min Aik
ω = E p1 [X ] for some p1 ∈ Pk

�i (ω),

where Pk
�i (ω) are i’s beliefs at time tk and state ω, given the equilibrium play up to time tk−1. Her period util-

ity is E p1 (s(min Aik
ω , X) − s(z, X)) > E p1 (s(min Aik

ω , X) − s(min Aik
ω − ε, X)) = l1k > 0. The inequality follows

because min Aik
ω − ε is closer to E p1 [X ] than z so that the score s increases because any scoring rule is order sen-

sitive. Similarly, for all z > max Aik
ω + ε, i’s myopic best response is max Aik

ω = E p2 [X ] for some p2 ∈ Pk
�i (ω).

Her period utility is E p2 (s(max Aik
ω , X) − s(z, X)) > E p2 (s(max Aik

ω , X) − s(max Aik
ω + ε, X)) = l2k > 0. Hence,
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for all z /∈ [min Aik
ω − ε, max Aik

ω + ε], i’s period utility at ω from playing the myopic best response is higher than
χk = min{l1k , l2k } > 0.

We next show that χk cannot converge to 0 as tk → t∞. Consider the set of beliefs {pk } for which the myopic best
response is calculated for each tk . Since the set of all beliefs is compact, there is a converging sequence {pk } of beliefs.
If lim

pk→p
E pk (s(E pk [X ] + ε, X) − s(E pk [X ], X)) = 0, the continuity of the scoring rule implies that E p(s(E p[X ] +

ε, X)) = E p(s(E p[X ], X)) so that both announcements E p[X ] + ε and E p[X ] are optimal given p, contradicting that
s is a strictly proper scoring rule.

From Proposition 4, Trader i’s continuation payoff in equilibrium must be weakly higher than her one-period payoff
χk . This implies that if Trader i − 1 makes announcements outside of [min Aik

ω − ε, max Aik
ω + ε] for infinitely many

tk , then i’s expected continuation payoff (which is greater than χk ) does not converge to zero. We now show that this is
impossible.

Suppose not. Then, the expected continuation payoff for i is bounded below by a positive number. For all other
traders it is weakly positive, again using Proposition 4 and because their one-period payoff is always weakly positive.
Given that the continuation payoff is minimized over all beliefs in Pk , we can pick any p ∈ Pk and define �k to be the
sum of all traders’ expected continuation payoffs (given that p) at tk , divided by βk ,

�k = (sk − sk−1) + β(sk+1 − sk ) + β2(sk+2 − sk+1) + . . .

The s̄k is the expected score of prediction yk , where the expectation is over all φ given some p ∈ Pk and the moves of
players according to the mixed equilibrium.

For any K, we have

∑K

k=1
�k = (s1 − s0) + β(s2 − s1) + β2(s3 − s2) + . . .

+ (s2 − s1) + β(s3 − s2) + β2(s4 − s3) + . . .

+
.
.
.

+ (sK − sK−1) + β(sK+1 − sK ) + β2(sK+2 − sK+1) + . . .

= (sK − s0) + β(sK+1 − s1) + β2(sK+2 − s2) + . . .

≤ 2M/(1 − β),

where M = max
y∈[y,y],ω∈�

|s(y, X (ω))|. But this contradicts the fact that i’s expected continuation payoff is bounded

below by a positive number. We then have that, in equilibrium, Trader i − 1 makes announcements that are arbitrarily

close to Aik
ω for each ω ∈ Supp(Pk ), hence arbitrarily close to Aik . Given that

K∑
k=1

�k is bounded above by a positive

number for any K, and each �k is weakly positive, we have that lim
K→∞

K∑
k=1

�k = χ0 for some finite χ0.

We finally show that, given that i − 1 announces arbitrarily close to Aik , the announcement of i gets arbitrarily
close to the announcement of i − 1 in equilibrium, and therefore the announcements of i get arbitrarily close to Aik .
Suppose not, so that |yk − yk−1| > ε for a fixed ε and for infinitely many tk , where i makes an announcement. Suppose
that in every tk , where i makes an announcement, we evaluate i’s period payoff at tk using pk ∈ Pk

�i (ω), such that

E pk [X ] = yk−1 if yk−1 ∈ Aik
ω , E pk [X ] = min Aik

ω if yk−1 < min Aik
ω (but arbitrarily close to it) or E pk [X ] = max Aik

ω

if yk−1 > max Aik
ω (but arbitrarily close to it). In all cases and since i − 1’s announcement is arbitrarily close to Aik

ω , we
have that i’s period payoff E pk (s(yk , X) − s(yk−1, X)) is strictly negative. As scoring rules are order sensitive, we have
that the period payoff will also be strictly negative if i’s announcement is exactly ε away from the announcement of i − 1.
By collecting these pk for all such tk , we have that E pk (s(E pk [X ] + ε, X) − s(E pk [X ], X)) < 0, where s(yk−1, X) is
arbitrarily close to s(E pk [X ], X), by continuity.45 Since the set of all beliefs is compact, there is a converging sequence
{pk } of beliefs. If lim

pk→p
E pk (s(E pk [X ] + ε, X) − s(E pk [X ], X)) = 0, the continuity of the scoring rule implies that

E p(s(E p[X ] + ε, X)) = E p(s(E p[X ], X)) so that both announcements E p[X ] + ε and E p[X ] are optimal given p,

45. We assume, without loss of generality, that i’s announcement is always ε-higher than the previous announce-
ment. Similar arguments can be employed if it was always ε-lower or it was alternating as we can always get a
subsequence of pk for which i’s announcement is always higher (or lower).
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contradicting that s is a strictly proper scoring rule. If lim
pk→p

E pk (s(E pk [X ] + ε, X) − s(E pk [X ], X)) < 0, i’s period

payoff given some beliefs pk is bounded above by a strictly negative number. But, this is the first element of some �k .

We have already shown that
K∑

k=1
�k is bounded above by a positive number for each K and each �k is weakly positive

because a trader can always repeat the previous announcements, as shown in Proposition 4. Therefore, we have that
lim

k→∞ �k = 0, which contradicts that the first term can be bounded above by a negative number. Since this is true for all

states in Supp(Pk ), the above statements are also true for Aik and the result follows. That is, given that i − 1 announces
arbitrarily close to Aik , the announcement of i gets arbitrarily close to the announcement of i − 1 in equilibrium, and
therefore the announcements of i get arbitrarily close to Aik .

Given an equilibrium, the updating of beliefs Pt may never stop for sufficiently high tk , as traders play their mixed
strategies and do prior-by-prior updating. Let P be a set of limit beliefs of this sequence {Pk } with some probability.
Let D be the collection of these sets of limit beliefs that describe some uncertainty about the value of the security. That
is, for each P ∈ D, there exist ω,ω′ ∈ ⋃

p∈P
Supp(p) such that X (ω) �= X (ω′).

From Lemma 1, we know that given beliefs P ∈ D and at any state ω ∈ ⋃
p∈P

Supp(p), each Trader j can achieve

a weakly positive payoff by making the myopic announcement min
p∈P� j (ω)

E p[s(E p[X ], X) − s(z, X)], where z is the

previous announcement.
Generalizing the notion of Ostrovsky (2012), we define the instant opportunity of Trader i, given beliefs P ∈ D and

previous announcement z, to be

min
q∈P

∑
ω∈�

q(ω)

[
min

p∈P�i (ω)

E p
[
s(E p[X ], z), X) − s(z, X)

]]
.

Note that at each partition cell �i (ω), Trader i chooses a possibly different p ∈ P�i (ω) that minimizes her expected
utility. The instant opportunity is the ex ante (minimal over P) expected utility aggregated over all partition cells.

The following lemma shows that if the security X is strongly separable and beliefs P ∈ D describe some uncertainty
about X, then the instant opportunity of some Trader i is strictly positive irrespective of what the previous announcement
is.

Lemma 4. If security X is strongly separable, then for every P ∈ D, there exist χ > 0 and i ∈ I such that, for every
z ∈ R, the instant opportunity of i given P and z is greater than χ .

Proof. Note that the expression for the instant opportunity inside the brackets,

min
p∈P�i (ω)

E p
[
s(E p[X ], z), X) − s(z, X)

]
, (1)

is i’s expected payoff given �i (ω) when making the myopic announcement and the previous announcement is z. From
Lemma 1, this is weakly positive for all ω ∈ ⋃

p∈P
Supp(p). Moreover, given that P is regular, each p ∈ P assigns

positive probability to each �i (ω) where ω ∈ ⋃
p∈P

Supp(p) = E . Therefore, we only need to show that there exists

some trader i ∈ I , such that for any z, there is some �i (ω) for which the expression in (1) is above a strictly positive
lower bound. Note that the lower bound must be the same for all z.

For each ω and i ∈ I , define Ai
ω = {E p[X | �i (ω)] : p ∈ P} and let min Ai

ω ( max Ai
ω) be the minimum

(maximum) value. Let Ai = ⋂
ω∈F

Ai
ω . There are three cases.

Case 1: For some i, Ai = ∅.

Let i be such that Ai = ∅. Given that each Ai
ω is a convex set, there exist states a, b ∈ E with

Ai
a = [c, d], Ai

b = [c′, d ′] such that c′ > d. Let k = (c′ − d)/2 and z be the previous announcement. If z >

k, then min
p∈P�i (a)

max
y∈[y,y] E p[s(y, X) − s(z, X)] = min

p∈P�i (a)

E p[s(E p[X ], X) − s(z, X)] = E p∗ [s(E p∗ [X ], X) −

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/91/6/3423/7588779 by U

niversity of D
urham

 user on 31 January 2025



3460 REVIEW OF ECONOMIC STUDIES

s(z, X)] ≥ E p∗ [s(E p∗ [X ], X) − s(k, X)] ≥ min
p∈P�i (a)

E p[s(E p[X ], X) − s(k, X)] ≡ χ1 > 0.46 Similarly, if z ≤ k,

then min
p∈P�i (b)

max
y∈[y,y] E p[s(y, X) − s(z, X)] ≥ min

p∈P�i (b)

max
y∈[y,y] E p[s(y, X) − s(k, X)] ≡ χ2 > 0. The lower bound

χ > 0 is just the minimum of χ1 and χ2. Moreover, it is independent of the previous announcement z.

Case 2: Ai �= ∅ for all i ∈ I and
⋂
j∈I

A j �= ∅.

This is the same as Case 2 in the proof of Theorem 1. There are two subcases. First, in all states that are considered
possible, security X pays the same. This is impossible because we have assumed that there is uncertainty about X given
P . Second, there is uncertainty about X. As we showed in Case 2 in the proof of Theorem 1, this implies that X is not
strongly separable, a contradiction.

Case 3: Ai �= ∅ for all i ∈ I but
⋂
j∈I

A j = ∅.

We will show that this case is impossible. Lemma 3 shows that in any set of beliefs Pt that can arise in equilibrium
after a sufficiently large tk , i’s announcements get arbitrarily close to Ait . Moreover, Trader i’s announcements get
arbitrarily close to the announcements of i − 1, which get arbitrarily close to Ai−1t . At the limit set of beliefs P , we have
that Ai−1 ∩ Ai �= ∅ for each i ∈ I . Continuing inductively over all traders, we have that

⋂
j∈I

A j �= ∅, a contradiction.

Step 2: We construct a stochastic process describing how the beliefs of an outside observer about the realized state
φ are updated and establish its martingale properties. Let P be the common set of priors given a (possibly mixed)
strategy σ . Consider the following stochastic process, which is the same as in step 2 of the proof of Theorem 1 of
Ostrovsky (2012) with the only difference that it is applied to each p ∈ P instead of the unique p. Nature draws a
state φ ∈ ⋃

p∈P
Supp(p) and each player i observes �i (ω(φ)). Based on her private information and her strategy, player

1 announces y1. An outside observer, who shares the same set of beliefs P and knows strategy σ but has no private
information about the state ω, updates each p ∈ P using Bayes’ rule. Note that the regularity of P implies that all
elements of P are updated. Denote this set as P1.

At time tk , the outside observer updates these beliefs, denoted Pk , using the public announcements up to tk and the
equilibrium strategies. Note that from the regularity of P , each Pk is compact and convex. As explained in Ostrovsky
(2012), the process Q of updating p ∈ P at each time t is a martingale due to the law of iterated expectations. Given that
it is also bounded (as it is between 0 and 1), the martingale convergence theorem implies that each Q converges to some
random variable q∞. Since this is true for all p ∈ P and all corresponding martingales, we denote the set of the limits
of all convergent beliefs by Q∞.

Step 3: We show that if the statement of Theorem 2 does not hold for this equilibrium, then we can identify a “non-
vanishing arbitrage opportunity:” there is a player i∗ and a positive number η∗, such that the continuation value of player
i∗ exceeds η∗ at infinitely many trading times tk .

Step 3, Case 1: Suppose that for some φ ∈ ⋃
p∈P

Supp(p), there is positive probability that some random variable

q ∈ Q∞ assigns positive likelihoods to two states a and b with X (a) �= X (b), where qk converges to q. As shown
by Ostrovsky (2012), there exists probability distribution r assigning positive probability to both a and b, such that
the following is true. For any ε > 0, there exist K and ζ > 0 such that, for any k > K , the probability that qk , which
converges to q, is in the ε-neighbourhood of r is greater than ζ . This can be done for every q ∈ Q∞ and, in that case,
the K can be selected uniformly because it is affected only by the uncertainty due to mixed strategies.47

Any compact and convex set of beliefs P which contains these limit probability distributions describes some uncer-
tainty about X, hence it belongs to D. Lemma 4 shows that there is player i and χ > 0, such that i’s instant opportunity
is greater than χ given P and any previous announcement z.

As the definition of instant opportunity minimizes over all available beliefs, there is player i and χ > 0 such that
i’s instant opportunity (using any combination of q and p in the definition of instant opportunity) is greater than χ for
any previous announcement z. By continuity, we can conclude that this is true for any combination of qt and pt (of the

46. The inequality is true because a proper scoring rule is “order-sensitive” so that the further away the forecast
is from the true expected value, the lower is the expectation of the score (see p. 2618 in Ostrovsky (2012)).

47. Note that the only change in beliefs after some time t arises because they are weighted by the unique mixed
strategy. Therefore, the convergence to q∞ is uniform.
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definition of instant opportunity), hence we get that the instant opportunity at t (for t big enough) is greater than χ > 0
for any previous announcement for some probability ζ > 0.48

Concluding, for some i, χ > 0, tK and ζ > 0, i’s instant opportunity at any time tnk+i > tK is greater than χ

with probability at least ζ , and thus for i, tK and η = χζ > 0, the expected instant opportunity of player i at any time
tnk+i > tK is greater than η.

Step 3, Case 2: Suppose that there is zero probability that some q ∈ Q∞ assigns positive likelihoods to two states
a and b with X (a) �= X (b). That is, at the limit, the outside observer believes with certainty that the value of the security
is equal to some x. As shown in Section A.2.4 of Ostrovsky (2012), almost surely (with probability 1),

⋃
p∈Q∞

Supp(p)

contains the true state h. Hence, with probability 1, all q ∈ Q∞ assign probability 1 to the value of the security being
X (h) = x . In other words, the outside observer’s belief about the value of the security converges to the intrinsic value.

Suppose that yk does not converge in probability to the intrinsic value of the security. Then, there exist state h,
numbers ε, δ > 0 such that when h is the true state and for any K, there exists k > K such that the probability that
|yk − X (h)| > ε is greater than δ. As all players have more information than the outside observer, their beliefs about the
value of the security also converges to the intrinsic value. This implies that for some player i and some η > 0, for any K,
there exists tnk+i > tK such that her expected instant opportunity is greater than η.

As a conclusion, in both Case 1 and Case 2, there exist player i∗ and value η∗ > 0 such that there is an infinite
number of times tnκ+i∗ in which the expected instant opportunity of player i∗ is greater than η∗. Fix i∗ and η∗.

Step 4: This step concludes the proof by showing that the presence of a “non-vanishing arbitrage opportunity” is
impossible in equilibrium.

Let P(Hk−1) be the set of updated beliefs for the outside observer at time tk , given the mixed equilibrium, the set
of prior beliefs P and history Hk−1. Note that with mixed strategies, Hk−1 occurs with some probability. Moreover,
because the equilibrium profile may consist of mixed strategies, P(Hk ) may not be the same as P(Hk−1), however for
big enough tk , they will have the same support on the state space � as it is finite. Consider such a big enough tk .

Fix tk , history Hk−1 and suppose i makes an announcement. Her continuation payoff given history Hk−1 and state

φ is V (Hk−1, φ) = min
p∈P(Hk−1,φ)

E p
∞∑

m=0
βnm (sk+nm (φ′) − sk+nm−1(φ′)), where sk+nm (φ′) is the score at state φ′

and time tk+nm .
Using Proposition 4, we have that her continuation payoff V (Hk−1, φ) is greater than the one-period payoff from

playing the myopic strategy at tk . Because this is true for all states φ ∈ ⋃
p∈P(Hk−1)

Supp(p) that the outside observer

considers possible at tk , given history Hk−1, we have that min
p∈P(Hk−1)

E p V (Hk−1, φ) is greater than i’s instant

opportunity given beliefs P(Hk−1).
Again using Proposition 4, the continuation payoff at tk of each Trader j �= i , who announces at tk , is weakly

positive at each state φ and history Hk−1. Since this is true for all states φ ∈ ⋃
p∈P(Hk )

Supp(p), we have that

min
p∈P(Hk−1)

E p V (Hk−1, φ) ≥ 0.

Since min
p∈P(Hk−1)

E p V (Hk−1, φ) is weakly positive for each i ∈ I , we have that
∑
i∈I

E p V (Hk−1, φ) is weakly pos-

itive for any p ∈ P(Hk−1). Moreover, it is strictly positive if i’s instant opportunity is strictly positive given P(Hk−1).
Since this is true for all p ∈ P(Hk−1) and any previous announcement, by fixing prior q ∈ P and considering the
(unique) probability over histories Hk−1 that can arise at tk , generated by the (possibly) mixed equilibrium, we can let
�k be the sum of all players’ expected continuation payoffs at tk , divided by βk as

�k = (sk − sk−1) + β(sk+1 − sk ) + β2(sk+2 − sk+1) + . . .

The s̄k is the expected score of prediction yk , where the expectation is over all φ, given the fixed q ∈ P and the moves of
players according to the mixed equilibrium. We keep q ∈ P constant for all tk . We then have that �k is weakly positive.
Additionally, it is strictly positive if i’s expected instant opportunity is strictly positive and it is i’s turn to make an
announcement. That is, with some probability, some history Hk−1 occurs and i’s instant opportunity is strictly positive.

48. A proper scoring rule may not be continuous. However, Ostrovsky (2012) shows, in footnote 19 of p.
2620, that the instant opportunity is continuous, the way he defines it. This implies that our instant opportunity is also
continuous.
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The last step is identical to that of Ostrovsky (2012) because all �k are calculated using the same prior q ∈ P . The

proof of Lemma 3 shows that lim
K→∞

K∑
k=1

�k = χ0 for some finite χ0. From Step 3, this limit must be infinite because

each �k is weakly positive and an infinite number of them is greater than η∗. Hence, both cases of Step 3 are impossible
and yk must converge to the intrinsic value of security X.

For Part (ii), suppose X is not strongly separable under � and s. Then, there exist P ⊆ �(�), regular with respect to
each �i and v ∈ R, such that (a) X (ω) �= v for some ω ∈ ⋃

p∈P
Supp(p) and (b) dP (�i (ω), v) = v for all i = 1, . . . , n

and ω ∈ ⋃
p∈P

Supp(p).

Consider game �S(�, I, �, X,P, y0, y, y, s, β), where the initial announcement of the market maker is y0 = v .
We will construct a Revision-Proof equilibrium (σ∗,P), where information does not aggregate. Define pair (σ∗, P),
where σ∗ specifies that each Trader i announces v after any history. At each information set I of Trader i, set P(I) =
P�i (ω). A player may deviate by not announcing at some period tk the myopic best response v. All other players will
continue announcing v in all subsequent periods and no information is revealed. Hence, she will not gain anything and
her best response would be the myopic announcement v.

Since v is announced irrespective of whether a player deviates, there is never any information revealed and (σ∗, P)

is consistent. We now argue that it is not possible to find an alternative strategy that will make i’s future selves weakly
better off and at least one strictly better off. If Trader i deviates, everyone else plays v and there is no updating of
information so her future selves have the same beliefs as i. Since the myopically optimal is to play v for every future
self, then it is not possible for such a deviation to exist.

C. Examples

In this section, we discuss the robustness of our results. We first show that the negative result that separable securities
may not aggregate information under ambiguity does not depend on some priors assigning probability zero to the true
state as in the example of Section 2. Such a case is illustrated in Example 1, where all priors have full support. We also
use Example 1 to show that if a security assigns different values to each state, and therefore can predict all events, it is
not necessarily strongly separable.

Example 1. Consider state space � = {ω1, . . . , ω6} and information structure with �1 = {{ω1, ω3}, {ω2, ω4},
{ω5, ω6}}, �2 = {{ω1, ω2, ω6}, {ω3, ω4, ω5}} and �3 = {{ω1, ω2}, {ω3, ω5}, {ω4, ω6}}. The security is X (ω1) =
X (ω5) = 0, X (ω2) = X (ω6) = 2, X (ω3) = 1, and X (ω4) = −1.

To show that the security is separable, we show that the condition of Proposition 1 is always satisfied. In particular,
for each v ∈ R, we specify λi : �i → R for i = 1, 2, 3 such that, for every state ω with X (ω) �= v ,

(X (ω) − v)
∑
i∈I

λi (�i (ω)) > 0.

Whenever λi (�i (ω)) is not specified, it is implicitly set to 0.

• For v ≥ 2, set λ1(�1(ω)) < 0 for all ω ∈ �,
• For v ∈ [1, 2), set λ1(�1(ω1)) = −2, λ2(�2(ω1)) = 1, λ2(�2(ω3)) = −1,
• For v ∈ [0, 1), set λ1(�1(ω1)) = 1.4, λ1(�1(ω2)) = 1.6, λ1(�1(ω5)) = 1, λ2(�2(ω1)) = −0.5, λ2(�2(ω3)) =

−4, λ3(�3(ω1)) = −1, λ3(�3(ω3)) = 2.7, λ3(�3(ω4)) = 2,
• For v ∈ [−1, 0), set λ1(�1(ω1)) = 1, λ1(�1(ω2)) = 1, λ1(�1(ω5)) = 1, λ2(�2(ω3)) = −1.5, λ3(�3(ω3)) = 1,
• For v < −1, set λ1(�1(ω)) > 0 for all ω ∈ �.

However, the security is not strongly separable. To see this, suppose that the market maker’s initial announcement is
y0 = 0.5 and consider any strictly proper scoring rule. Given y0, consider any compact and convex set of priors that
includes the priors p1 =

(
1
8 , 1

8 , 1
8 , 1

8 , 3
8 , 1

8

)
, p2 =

(
6
18 , 1

18 , 7
18 , 2

18 , 1
18 , 1

18

)
, and p3 =

(
3
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8

)
. It is easy

to check that the expectation of X, conditioning p1 on Trader 1’s information, is 0.5 at all states. The same is true for
Trader 2 with p2 and Trader 3 with p3. Using the third claim of Lemma 1, the myopic announcement is 0.5. This is
true for all states and all traders. As X is not constant on �, it is not strongly separable, and there is no information
aggregation at any state.

To show that a security that assigns different values to each state, and therefore can predict all events, is not always
strongly separable, consider the following counter example. Let security X ′ that pays {1, 3.6, 6, 3.1, 3, 4} in states ω1 to
ω6, respectively. We can easily check that, when v = 3.5 and E = �, no trader knows at some state ω ∈ E whether the
value of the security is always above or below 3.5, hence the condition of Proposition 2 is violated.
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The previous example, together with that of Section 2, shows that information aggregation can fail for separable
securities, when there are multiple priors. However, in both cases the failure occurs for a (potentially) unique announce-
ment of the market maker. An interesting question is whether there are examples where the failure occurs for several
different announcements from the market maker. We show here how such examples can easily be constructed.

Consider two examples, A and B, with the same set of traders I, state spaces �A,�B , prior beliefs P A,PB ,
securities X A, X B which are separable, information structures �A = {�A

i }i∈I ,�
B = {�B

i }i∈I and suppose there is
failure of information aggregation for initial announcements x A �= x B at states ωA, ωB , respectively. We can then create
a new example, C, which is just the concatenation of the previous two, where the information aggregation failure occurs
at both x A and x B . In particular, let �C = �A ∪ �B and �C

i (ω) = �A
i (ω) if ω ∈ �A , otherwise �C

i (ω) = �B
i (ω).

The set of priors PC consists of all priors pC constructed as follows. For each pA ∈ P A, pB ∈ PB , construct pC =
1/2pA + 1/2pB . Note that PC is compact, convex and regular with respect to �C .

Construct security XC such that XC (ω) = X A(ω) if ω ∈ �A , otherwise XC (ω) = X B (ω). From Proposition 1
and using the same λi , if X A and X B are separable, then so is XC . Moreover, since �C consists of two disjoint
common knowledge events, �A and �B , there is no information aggregation for initial announcements x A �= x B at
states ωA, ωB ∈ �C , respectively. By concatenating more examples like that, one can construct examples with multiple
announcements where information aggregation fails at some state.

Finally, following Ostrovsky (2012), Example 2 illustrates how the MSR model can be reinterpreted as a basic
model of trading with an automatic inventory-based market maker who offers to buy or sell at a price, which is a function
of the (possibly negative) net inventory that he holds. In addition, we show that, in the inventory-based interpretation,
information does not always aggregate in the presence of ambiguity averse traders.

Example 2. Suppose there are two traders, the state space is � = {ω1, ω2, ω3, ω4} and the information structure is
�1 = {{ω1, ω2}, {ω3, ω4}} and �2 = {{ω1, ω3}, {ω2, ω4}}. The security is given by X (ω1) = 2, X (ω2) = X (ω3) =
X (ω4) = 1, and the price function is q(z) = e−z , where z is the market maker’s net inventory. The common set of
priors is P = conv

{(
0, 1

3 , 1
3 , 1

3

)
,
(

1
4 , 1

4 , 1
4 , 1

4

)}
. Suppose that initially the market maker holds zero inventory of the

security so that z = 0.
Suppose that the true state is ω1. First, Trader 1 makes a decision about how many shares of the security to buy

or sell. We assume, for consistency, that the amount of shares belong to Z = q−1([y, y]), which is compact. Thus, the
trader solves max

z∈Z
min
p∈P E p[∫ z

0 q(z̄) − X (ω)dz̄] = min
p∈P max

z∈Z
E p[∫ z

0 q(z̄) − X (ω)dz̄]. We have the equality by applying

the same argument as in the proof of Lemma 1.49

As in Ostrovsky (2012), given the price function, we can define the strictly proper scoring rule s(X (ω), y) =∫ q−1(y)
0 q(z) − X (ω)dz. We have that the price function is one-to-one continuous with a continuous inverse func-

tion. Therefore, we can conclude that in the MSR market, based on that strictly proper scoring rule, the trader

solves max
y∈[y,y] min

p∈P E p[∫ q−1(y)
0 q(z̄) − X (ω)dz̄] = min

p∈P max
y∈[y,y] E p[∫ q−1(y)

0 q(z̄) − X (ω)dz̄].50 We shall show that if

z∗ solves the first optimization problem and y∗ the second one, then it is q(z∗) = y∗and that the revenues or losses

are the same (i.e. max
z∈Z

min
p∈P E p[∫ z

0 q(z̄) − X (ω)dz̄] = max
y∈[y,y] min

p∈P E p[∫ q−1(y)
0 q(z̄) − X (ω)dz̄]). The conclusion is

that the purchase of the optimal amount of shares and the announcement of the myopic prediction are related with a
one-to-one relation using the pricing function and that the two markets are equivalent in terms of revenues and losses.

We can observe that for every p ∈ P , the amount z′
p that solves max

z∈Z
E p[∫ z

0 q(z̄) − X (ω)dz̄] is unique and that

q(z′
p) = E p[X ]. Similarly, for every p ∈ P , the prediction y′

p that solves max
y∈[y,y] E p[∫ q−1(y)

0 q(z̄) − X (ω)dz̄] is

y′
p = E p[X ], hence q−1(y′

p) = z′
p .

Therefore, for every p ∈ P , we have that E p[∫ z′ p
0 q(z̄) − X (ω)dz̄] = E p[∫ q−1(y′ p)

0 q(z̄) − X (ω)dz̄]. We can

conclude that min
p∈P E p[∫ z′ p

0 q(z̄) − X (ω)dz̄] = min
p∈P E p[∫ q−1(y′ p)

0 q(z̄) − X (ω)dz̄] and it is achieved for the same p∗.

49. We use that F(z) = ∫ z
0 q(z̄) − X (ω)dz̄ is continuous and we follow the arguments of Lemma 1.

50. Similarly, we follow the arguments of Lemma 1 with the continuous function F(y) = ∫ q−1(y)
0 q(z̄) −

X (ω)dz̄.
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The optimal quantity of shares z∗ for the ambiguity averse trader is such that q(z∗) = E p∗ [X ] and the optimal
prediction y∗ is such that y∗ = E p∗ [X ], and thus we get the conclusion.51

Finally, the first trader finds that the belief that achieves the minimum gives at state ω1 zero probability. From
the previous paragraph, we conclude that the optimal amount to purchase z∗ is such that q(z∗) = 0 ∗ 2 + 1 ∗ 1 = 1or
equivalently (as long as q is 1-1) z∗ = 0. Hence, she neither buys nor sells any shares (equivalently she would have
announced 1 as her prediction). From symmetry, it is straightforward that the same would happen for every state in the
partition cell {ω3, ω4} and for Trader 2. The conclusion is that both traders do not purchase shares from the market
maker and there is no information aggregation.
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FRÉCHETTE, G. R. and YUKSEL, S. (2017), Infinitely Repeated Games in the Laboratory: Four Perspectives on

Discounting and Random Termination”, Experimental Economics, 20, 279–308.
FUDENBERG, D. and TIROLE, J. (1991), “Perfect Bayesian Equilibrium and Sequential Equilibrium”, Journal of

Economic Theory, 53, 236–260.
GALANIS, S. (2011), “Syntactic Foundations for Unawareness of Theorems”, Theory and Decision, 71, 593–614.
GALANIS, S. (2013), “Unawareness of Theorems”, Economic Theory, 52, 41–73.
GALANIS, S. (2021), “Dynamic Consistency, Valuable Information and Subjective Beliefs”, Economic Theory, 71,

1467–1497.
GALANIS, S. and KOTRONIS, S. (2021), “Updating Awareness and Information Aggregation”, The B.E. Journal of

Theoretical Economics, 21, 613–635.
GEANAKOPLOS, J. and POLEMARCHAKIS, H. (1982), “We Can’t Disagree Forever”, Journal of Economic Theory,

28, 192–200.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/91/6/3423/7588779 by U

niversity of D
urham

 user on 31 January 2025

https://alphacast.cultivateforecasts.com/questions/1311-will-the-uk-vote-to-leave-the-eu-in-the-june-2016-referendum
https://www.cultivatelabs.com/prediction-markets-guide/how-does-logarithmic-market-scoring-rule-lmsr-work


3466 REVIEW OF ECONOMIC STUDIES

GILBOA, I. and SCHMEIDLER, D. (1989), “Maxmin Expected Utility with Non-Unique Prior”, Journal of Mathemat-
ical Economics, 18, 141–153.

GOLDMAN, S. M. (1980), “Consistent Plans”, The Review of Economic Studies, 47, 533–537.
GOLOSOV, M., LORENZONI, G. and TSYVINSKI, A. (2014), “Decentralized Trading with Private Information”,

Econometrica, 82, 1055–1091.
GROSSMAN, S. (1976), “On the Efficiency of Competitive Stock Markets Where Trades Have Diverse Information”,

The Journal of Finance, 31, 573–585.
HANANY, E. and KLIBANOFF, P. (2007), “Updating Preferences with Multiple Priors”, Theoretical Economics, 2,

261–298.
HANANY, E. and KLIBANOFF, P. (2009), “Updating Ambiguity Averse Preferences”, The B.E. Journal of Theoretical

Economics, 9, 1–53.
HANANY, E., KLIBANOFF, P. and MUKERJI, S. (2020), “Incomplete Information Games with Ambiguity Averse

Players”, American Economic Journal: Microeconomics, 12, 135187.
HANSEN, L. P. and SARGENT, T. J. (2001), “Robust Control and Model Uncertainty”, American Economic Review:

Papers and Proceedings, 91, 60–66.
HANSON, R. (2003), “Combinatorial Information Market Design”, Information Systems Frontiers, 5, 107–119.
HANSON, R. (2007), “Logarithmic Market Scoring Rules for Modular Combinatorial Information Aggregation”, The

Journal of Prediction Markets, 1, 3–15.
HANSON, R. and OPREA, R. (2009), “A Manipulator Can Aid Prediction Market Accuracy”, Economica, 76, 304–314.
HANSON, R., OPREA, R. and PORTER, D. (2006), “Information Aggregation and Manipulation in an Experimental

Market”, Journal of Economic Behavior & Organization, 60, 449–459.
HARRISON, J. M. and KREPS, D. M. (1978), “Speculative Investor Behavior in a Stock Market with Heterogeneous

Expectations”, The Quarterly Journal of Economics, 92, 323–36.
HAYEK, F. A. (1945), “The Use of Knowledge in Society”, The American Economic Review, 35, 519–530.
HEALY, P. J., LINARDI, S., LOWERY, J. R., et al. (2010), “Prediction Markets: Alternative Mechanisms for Complex

Environments with Few Traders”, Management Science, 56, 1977–1996.
HEATH, C. and TVERSKY, A. (1991), “Preference and Belief: Ambiguity and Competence in Choice under

Uncertainty”, Journal of Risk and Uncertainty, 4, 5–28.
HELLWIG, M. F. (1982), “Rational Expectations Equilibrium with Conditioning on Past Prices: A Mean-Variance

Example”, Journal of Economic Theory, 26, 279–312.
IOANNOU, C. A., MATHEVET, L., ROMERO, J., et al. (2023), “Data Mining in Repeated Games” (Mimeo).
IOANNOU, C. A. and ROMERO, J. (2014), “A Generalized Approach to Belief Learning in Repeated Games”, Games

and Economic Behavior, 87, 178–203.
JIAN, L. and SAMI, R. (2012), “Aggregation and Manipulation in Prediction Markets: Effects of Trading Mechanism

and Information Distribution”, Management Science, 58, 123–140.
KAJII, A. and UI, T. (2005), “Incomplete Information Games with Multiple Priors”, The Japanese Economic Review,

56, 332–351.
KAJII, A. and UI, T. (2009), “Interim Efficient Allocations under Uncertainty”, Journal of Economic Theory, 144,

337–353.
KELLNER, C. and LE QUEMENT, M. T. (2017), “Modes of Ambiguous Communication”, Games and Economic

Behavior, 104, 271–292.
KELLNER, C. and LE QUEMENT, M. T. (2018), “Endogenous Ambiguity in Cheap Talk”, Journal of Economic

Theory, 173, 1–17.
KILKA, M. and WEBER, M. (2001), “What Determines the Shape of the Probability Weighting Function under

Uncertainty?”, Management Science, 47, 1712–1726.
KLIBANOFF, P., MARINACCI, M. and MUKERJI, S. (2005), “A Smooth Model of Decision Making Under

Ambiguity”, Econometrica, 73, 1849–1892.
KYLE, A. S. (1985), “Continuous Auctions and Insider Trading”, Econometrica, 53, 1315–35.
LAMBERT, N. S., OSTROVSKY, M. and PANOV, M. (2018), “Strategic Trading in Informationally Complex

Environments”, Econometrica, 86, 1119–1157.
MACCHERONI, F., MARINACCI, M. and RUSTICHINI, A. (2006a), “Ambiguity Aversion, Robustness, and the

Variational Representation of Preferences”, Econometrica, 74, 1447–1498.
MACCHERONI, F., MARINACCI, M. and RUSTICHINI, A. (2006b), “Dynamic Variational Preferences”, Journal of

Economic Theory, 128, 4–44.
MAILATH, G. J. and SAMUELSON, L. (2020), “Learning under Diverse World Views: Model-Based Inference”,

American Economic Review, 110, 1464–1501.
MCKELVEY, R. D. and PAGE, T. (1986), “Common Knowledge, Consensus, and Aggregate Information”, Economet-

rica, 54, 109–27.
MCKELVEY, R. D. and PAGE, T. (1990), “Public and Private Information: An Experimental Study of Information

Pooling”, Econometrica, 58, 1321–39.
MELE, A. and SANGIORGI, F. (2015), “Uncertainty, Information Acquisition and Price Swings in Asset Markets”, The

Review of Economic Studies, 82, 1533–1567.
NIELSEN, L. T. (1984), “Common Knowledge, Communication, and Convergence of Beliefs”, Mathematical Social

Sciences, 8, 1–14.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/91/6/3423/7588779 by U

niversity of D
urham

 user on 31 January 2025



Galanis et al. INFORMATION AGGREGATION UNDER AMBIGUITY 3467

NIELSEN, L. T., BRANDENBURGER, A., GEANAKOPLOS, J., et al. (1990), “Common Knowledge of an Aggregate
of Expectations”, Econometrica, 58, 1235–1239.

OSTROVSKY, M. (2012), “Information Aggregation in Dynamic Markets With Strategic Traders”, Econometrica, 80,
2595–2647.

OTTAVIANI, M. and SØRENSEN, P. N. (2007), “Outcome Manipulation in Corporate Prediction Markets”, Journal of
the European Economic Association, 5, 554–563.

PAGE, L. and SIEMROTH, C. (2017), “An Experimental Analysis of Information Acquisition in Prediction Markets”,
Games and Economic Behavior, 101, 354–378.

PAGE, L. and SIEMROTH, C. (2021), “How Much Information is Incorporated Into Financial Asset Prices? Experi-
mental Evidence”, The Review of Financial Studies, 34, 4412–4449.

PAHLKE, M. (2022), “Dynamic Consistency in Incomplete Information Games with Multiple Priors”, Games and
Economic Behavior, 133, 85–108.

PELEG, B. and YAARI, M. E. (1973), “On the Existence of a Consistent Course of Action When Tastes are Changing”,
The Review of Economic Studies, 40, 391–401.

PIRES, P. (2002), “A Rule for Updating Ambiguous Beliefs”, Theory and Decision, 53, 137–152.
RADNER, R. (1979), “Rational Expectations Equilibrium: Generic Existence and the Information Revealed by Prices”,

Econometrica, 47, 655–678.
RHODE, P. W. and STRUMPF, K. S. (2004), “Historical Presidential Betting Markets”, Journal of Economic

Perspectives, 18, 127–142.
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